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Abstract

Aim of this work is the development of a system to detect personal Web pages
of scientists and extract structured data - the scientist name, affiliation, gender,
profession - from these personal Web pages. In addition we detect occurrences of the
scientists in other Web pages texts to use these texts as information sources for search
queries about the scientist in question. As a source of raw data we use Common
Crawl1 - a open archive of 3.16 billion+ crawled Web Pages. For the classification task
we reviewed recent work on categorizing Web pages and implemented web-specific
features to train a supervised binary classifier using existing and manually labeled
data. To extract the correct name we utilized Named Entity recognition techniques
and SVMs with special features for gender, profession and affiliation combined with
available lookup tables to improve performance. Finally we use the retrieved data to
create a Broccoli[1] index so we can use the data to search for existing scientists in
different contexts.

1Common Crawl: http://commoncrawl.org/, [Online: Last accessed on 09.07.2017]
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Zusammenfassung

In dieser Arbeit wird ein System entwickelt um persönliche Webseiten von Wis-
senschaftlern zu erkennen und aus diesen Informationen wie Namen, Geschlecht,
berufliche Position und zugehörige Institution zu erhalten. Mit den erhaltenen En-
titäten werden die Texte der übrigen Webseiten nach Vorkommen der Entitäten
durchsucht und diesen zugewiesen. Mit diesen Daten wird abschließend ein Index für
die semantische Suchmaschine Broccoli[1] erstellt. Als Dantenquelle verwenden wir
das Common Crawl2 Webarchiv. Für die Klassifizierung der Webseiten evaluieren wir
bestehende Ansätze, implementieren aufgabenspezifische Features für die Webseiten
und trainieren eine SVM mit bestehenden und selbst erstellten Datensätzen. Zur
Eigennamenerkennung verwenden wir bestehende Algorithmen. Zur Bestimmung
von Geschlecht, Position und zugehöriger Institution entwickeln wir eigene Features
für Lineare Klassifikationsmethoden und kombinieren diese mit Lookup-Tabellen für
ein verbessertes Ergebnis.

2Common Crawl: http://commoncrawl.org/, [Online: Last accessed on 09.07.2017]
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1. Introduction

1.1. Motivation

The Web is the biggest collection of information humans ever created but inherent
unstructured. The sheer size of the Web and the lack of structure makes it hard
to handle, especially if one is looking for specific information. Classification of
Webpages and the extraction of structured information are key tasks for mining
data in the Web. For example most researchers have one or even many personal
Webpages (Homepages). Hence structured data about a researchers name, profession,
affiliation, research topics etc. is potentially available in the Web. Automatically
mining structured data from the Web is a versatile and nontrivial task.

1.2. Problem Description

We try to identify personal Web pages of scientists and extract structured content
from the pages to use them in the semantic search engine Broccoli[1]. To get from
raw HTML data to a Broccoli index we face the following tasks:

• Fetching raw HTML data.

• Categorize Webpages into personal and non-personal pages.

• Find and extract the persons name the personal Webpage is about.

• Predict the persons profession, affiliation, gender.

• Find occurrences of the person entity in other thexts from a web corpora to
use these as sources for semantic search.

• Parse the data into an ontology database and context documents as required
by Broccoli.

1



1.3. System overview

We start by downloading all crawled Web pages from the Common Crawl archive
for every university given by a list of domains. We remove non relevant parts called
boilerplate from the HTML files and store the left over part for further processing.
We create labeled training sets to be used in supervised classifiers and merge them
with existing labeled data. We review related work on web page classification and
decide for task specific features to be used in the classification task. On personal Web
pages we apply named entity recognition algorithms to extract names on the page
and predict the correct name - the one the page is about - using position features of
occurrences for the different names. Then we utilize SVMs using text features to
predict the profession and SVMs using text features combined with lookup-tables
for gender detection. Having the scientist entities we detect their occurrences in
the non-personal Web pages and store the matched texts as a source for semantic
search documents. Finally we build a index for the semantic search engine Broccoli
using the gathered facts on scientists to build an ontology database and the text
documents to build the context corpora.
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2. Related Work

Classification of web pages and in particular identifying personal pages is a recurring
problem when building digital person related search engines such as aminer1, dblp2,
Google Scholar3 amoung a huge number4 of applikations alike.
Approaching the Web page classification problem Qi et al.[2] classifies the task

as a type of supervised learning problem and subdivides it into categories: Subject
classification, functional classification, sentiment classification. Where functional
classification cares about the role of a webpage, if it is a "personal homepage", "course
page" etc. which we focus on in this work.

Regarding features used for categorization Kan et al. [3] showed, that only using
URL features yield good results on webpage categorization. Qi et al. proposed the
combination of content and link based features. Das G. et al.[4] made suggestions
for URL features in the task of researcher homepage classification and showed,
that they provide good additional evidence for homepage classification which is
used in this work. Support Vector Machines (SVM) tend to be well suited for all
kinds of categorization tasks (Joachims [5]) and are therefore used in this work for
classification.

1https://aminer.org/
2http://dblp.uni-trier.de
3https://scholar.google.de/
4https://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines
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3. Background and Implementation

We divided the process of getting from archived web crawling data to the structured
data about scientists into four main steps as shown in Figure 1.

Figure 1.: Meta workflow of the approach used.

The next three sections of this chapter each describe the implementation for one of
the steps with additional background information.

3.1. Download WARC files

Crawled Web pages in the Common Crawl archive are stored in the WARC1 format
which consists of a Header containing meta information about the content concate-
nated with the associated HTTP response in the body. In the Common Crawl archive
a number of single WARC files are packed together into compressed files (called
WARC collections). One complete crawl contains about 3 billion WARC files and is

1WARC - Format https://en.wikipedia.org/wiki/Web_ARChive [Online; last access 13.01.2018]
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distributed into about 70.000 WARC collections resulting in about 43.000 WARC
files per collection. Since the origins of the crawl results are random, Common Crawl
provides a URL Index2 to allow downloading an explicit URL by mapping the URL
to the WARC collection and byte position the crawled data is located. The archive
filename and position can be used to download a specific WARC record from the
archive.

Because processing the whole Common Crawl archive would cost to much storage
and computation time we used a collection of university domains to reduce the
amount of processed data. The world-universities-csv [6] project was used to retrieve
9599 university domains.

Figure 2.: Process of downloading WARC files.

Figure 2 provides an overview about the tasks done in the download process. For
each university domain we extracted the positions of all websites covered by Common
Crawl using the Common Crawl archive of the March 2017 crawl3. In total we

2Common Crawl Index http://index.commoncrawl.org/ [online; last access 13.01.2018]
3March 2017 Crawl http://commoncrawl.org/2017/04/march-2017-crawl-archive-now-available/
[Online; Last access 13.01.2018]
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extracted 38.517.248 WARC file positions and downloaded the WARC content (about
400GB compressed data) for further processing.

3.2. Web page Classification

3.2.1. Classification process implementation

The classification process (figure 3) consists of 5 main tasks.
First we have to remove boilerplate, which means to extract relevant context from

the Web page and dropping irrelevant content like navigation, copyright remarks etc.
We continue by choosing and extracting features used as input for the classification
algorithms, building a labeled training set, train the classifier and finally feeding the
feature vectors of unseen sites into the classifier to classify these web pages.

Figure 3.: Process of Web page classification.

3.2.1.1. Remove Boilerplate

Besides the relevant content, most web pages containing elements which are not
part of the actual content also called Boilerplate [7]. This can be design elements,

6



navigation, header, footer or other additional elements as shown in Figure 4.

Figure 4.: Boilerplate in personal Web pages.
Relevant content in green boxes.

To extract relevant content we used the jusText [7] algorithm which is designed
to preserve mainly text containing full sentences and it is therefore well suited for
creating linguistic resources such as Web corpora4. After removing the Boilerplate
we used the page title given by the string in between the <title></title> tags,
content text, and headings returned by the jusText algorithm in the further process.
Since it appears a feasible assumption, that content positions will gain information
about relevance for certain content parts, we also kept track of the headings and text
parts order by assigning integers in the order they occurred.

3.2.1.2. Choosing features

Web page classification relates strongly to text categorization which uses typically
a "bag of words" approach [5] [8]. This means to collect terms frequently occurring
in the training data to generate a dictionary. In addition we used used n-grams5

4jusText python implementation https://github.com/miso-belica/jusText [Online; last access
18.02.2018]

5https://en.wikipedia.org/wiki/N-gram [Online; lsat access 16.01.2017]
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of words (after grid searching for the best performance as described in Section 4.2
we ended up using 1-, 2-, 3-word-grams). Word n-grams are able to capture the
concept expressed by a sequence of terms [2]. Pages in our system are represented as
normalized term frequency–inverse document frequency vectors6.
Based on the observation, that URLs often contain strong features for webpage

classification as shown in Table 1.

Nr. URL

(1) https://www.inf.ethz.ch/ personal /markusp/
(2) http://www.cs.cmu.edu/ ~ wpdann/index.html
(3) https://ece.cmu.edu/ news / article /439687/
(4) http://www.informatik.uni-freiburg.de/institut/ press

Table 1.: Empirical URL features for webpage classificatioin.
Parts indicating personal pages in green. Red parts against.

Gollapalli et al. [4] suggested to also use URL features as additional evidence and
have shown, that URL based features perform good especially on the researcher
homepage identification task. We adapted the algorithm and used the version shown
in Algorithm 1 which extracts URL parts and converts them to features. For example
the Algorithm yields

http://www.cs.cmu.edu/~wpdann/index.html

⇒ urlparamtildenodict, urlparamindex

We padded the resulting URL features with urlparam and concatinated the features
with the retrieved web page texts to transform them into a tf–idf vector. In addition
we predicted that headings and n-grams of the headings will provide additional
evidence for the categorization. The Idea originates from common patterns in
researcher home pages which often include sections like "CV ", "Current Work",
"Research interests", "Publications" etc. Using n-grams will conserve more of the
context since for example "Publications" is quite common to also appear in non
personal pages but preceded by the heading "CV " it might be a strong feature in
favor of personal pages. We prefixed the Headings using the string headingparam

to be able to use this feature in the same tf–idf vector without inducing overlap to
words in the actual context and therefore distort the contained information.

6tf–idf https://en.wikipedia.org/wiki/Tf-idf [Online; last access 14.01.2018]
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Algorithm 1 Extract Url features
function getUrlFeatures(url)

url_params← getUrlParams(url) . delete extensions (.html, ...)
. Splits the URL by ”/”

result← list()
for param in url_params do

if param starts with ~ then
param.remove(~)
if param is word then

result += ′urlparamtilde′ + param
else

result += ′urlparamtildenodict′

end if
else if param.length ≥ maxlen_param then

result += ′urlparamlongword′

else if any of (−,_) in param then
result += ′urlparamhyphenatedword′

else if param is digit then
result += ′urlparamnumeric′

else if param is word then
result += ′urlparam′ + param

else
result += ′urlparamnodict′

end if
end for
return result

end function

9



3.2.1.3. Create training set

The training set we used consists of raw Html files associated with a label dictionary:

category : {personal or nonpersonal}

name : {The scientists name or None}

gender : {The scientists gender or None}

profession : {The scientists profession or None}

As a source for already labeled Html files we used the WebKb7 dataset containing
2,902 personal pages of scientists and 5,214 negative examples. In addition we
utilized the dblp - computer science bibliography,8 which is a service that provides
open bibliographic information on major computer science journals and proceedings.
Authors covered in dblp may be associated with a personal page.9 Using this
information we extracted 1,916,530 additional personal pages. Investigating the
retrieved pages from the dblp revealed that a lot of the pages where just profiles
on social media services or landing pages of universities. Therefore dbpl can not be
used out of the box and we filtered the URLs removing all common social media
hosts and URLs pointing only to the top level of an institution. After filtering we
downloaded the Html pages and were left with 21,991 additional personal pages.
We then manually collected 246 personal pages for scientists at the University of
Freiburg. For negative examples we randomly choose pages from the total set of
available Html files downloaded from Common Crawl and manually filtered personal
pages to be left with a set of 25,139 nonpersonal pages. In total our training set
consists of 25,139 personal and 25,139 negative labeled pages.
For the remaining data extraction tasks we manually labeled set 296 names, 114

genders and 144 professions using a specific label software written for this task10.

3.2.1.4. Train and classify

For the page classification we used the scikit-learn11 implementation of a linear SVM.
To prepare the SVM input we first concatenated the URL features, Heading features

7The 4 Universities Data Set http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/
data/ [Online; last access 19.02.2018]

8dblp - computer science bibliography http://dblp.uni-trier.de/ [Online; last access 20.02.2018]
9Dblp: What is the meaning of these www-Home-Page records? http://dblp.uni-trier.de/faq/

What+is+the+meaning+of+these+www-Home-Page+records [Online; last access 20.02.2018]
10PPE Labeler: /ccp/code/flask_app
11scikit-learn http://scikit-learn.org/stable/index.html [Online; last access 20.02.2018]
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and page content text. Then we created a count vector for the 1-, 2- and 3-word-
grams and used a maximum of the top 20,000 tokens while clamping the document
frequency (equation 1) between 0.004 and 1. To normalize the term-document matrix
we created a tf-idf term-document matrix using equation 4 to calculate the tf-idf
values. The absolute values used where determined by the scikit-learn grid search
implementation for hyper-parameter optimization.

df(term, docs) := |{doc ∈ docs : term ∈ doc}| (1)

idf(term, docs) := log

( |docs|+ 1
df(term, docs) + 1

)
+ 1 (2)

tf(term, doc) := |{token ∈ doc : token = term}|
|doc|

(3)

tf − idf(token, doc, docs) := tf(term, doc) · idf(term, docs) (4)

To train the SVM we used 80% of the available training data and the remaining 20%
to evaluate the classifiers performance. Results on performance are documented in
the evaluation Section 4.2.

3.3. Extract data from personal pages

3.3.1. Retrieve the name

For retrieving the correct name of a personal page, we first extracted named entities
appearing on the page using the Stanford Named Entity Recognizer (NER) [9]. After
identifying person entities in the site content we face two problems when more then
one name is extracted. First: Which name is the "correct" name and secondly which
names represent the same person. These problems are illustrated in Figure 5.
As a solution we first detected and merged aliases for the same names occuring on a
page into one name using Algorithm 2.
For the merged names we assigned each name a vector vner(name) encoding the

11



Figure 5.: Ambiguity and diversity in person names.
Associated name in green, aliases in yellow. Other names in red.

occurrences of name in the page content:

vner(name) :=



name in title,

name in heading0,

· · · ,

name in heading9,

name in paragraph0,

· · · ,

name in paragraph9


(5)

To distinguish headings and paragraphs we reused the JusText algorithm results used
for Boilerplate removal which distinguishes between text and headings and divides
text into sentences. The vector vner was then used to train a SVM to yield the name

12



Algorithm 2 Find and merge alias names in a single page.
available_names← getNamesUsingNer(page)
function nameMergeAlias(name)

new_name← name
if name substring of any available_names then

new_name← matched name in available_names
end if
if new_name 6= name then

return nameMergeAlias(new_name)
end if
return new_name

end function

of the person the webpage is associated with.

3.3.2. Retrieve Profession, Gender and Association

For assigning an association to a retrieved scientist we mapped the domain host
of the personal webpage URL to the educational institution given by the World
Universities database [6].

To retrieve the profession we utilized the already available features used for page
categorization but omitting the URL features since they do not provide significant
evidence for the persons profession.
For determining the gender we used the pages content text 1-, 2-, 3-word-gram

features with the same tf-idf representation used to categorize the pages (section
3.2.1.4) to train a SVM. In addition we collected name ⇒ gender mappings using
different sources (List of the Sources available in Section A.1) yielding 97,220 names
with their occurrences for male or female gender. To predict the actual gender we
used Algorithm 3.

3.4. Build a broccoli Index

Building a broccoli index in our case consists of three main tasks (Figure 6).
First we build a knowledge base using our retrieved data to generate entries for

each person as shown in figure 7.

13



Algorithm 3 Predict gender.
function StatisticGender(name)

gender ← gender with more occurrences for name.
gender.probability ← number gender was assigned for name

total number name occures in data
return gender

end function
function predictGender(page)

name← getName(page) . As described in section 3.3.1
gender ← SV MPredict(page) . Using content text features.
stat_gender ← StatisticGender(name)
if gender 6= stat_gender and stat_gender.probability > 0.7 then

gender ← statistic_gender
end if
return gender

end function

Jane Doe is-a Person .

Jane Doe is-a PostDoc .

Jane Doe affiliation Brown University .

Jane Doe gender Female .

Figure 7.: Broccoli Knowledge Base (ontology) entry.

Next we built a collection of context texts called postings in Broccoli. This means
we need to identify text associated with a person in the knowledge base. An obvious
source is the personal page mapped to the scientist. In this page we used the retrieved
content text sentences (as described in section 3.2.1.1). For this texts we decided
whether or not to use it as a posting using algorithm 4.
As an additional source we identified all name entities in the content texts of all
nonpersonal webpages available in the crawl. If an entity matched with the set of
available persons - meaning an exact name match, we split the content into sentences
and used the sentences containing the name as additional postings.
To score the persons in broccoli, which determines their order in search query

results, we counted the occurrence of a person in other pages then their assigned
personal pages. Each occurrence increased the score of a person by 1.

14



Figure 6.: Building a broccoli index flow chart.

Algorithm 4 Is Personal Text relevant.
function IsPersonalTextRelevant(person, text)

if person.name in text then
return true

end if
if person.is_male and male_pronoun in text then

return true
end if
if person.is_female and female_pronoun in text then

return true
end if
if [my, we, our] in text then

return true
end if
return false

end function

15



4. Evaluation

We are mainly interested in the quality of classification and data extraction. Ad-
ditionally we measured crawl coverage in the Common Crawl archive to assess the
quantities in our results and put the real world recall measurements into perspective.
We start by comparing the coverage of crawled pages in the availabe Common

Crawl archives for a given set of scientists. In Section 4.2 we evaluate the performance
of our classification models on the test data set and in Section 4.3 we evaluate the
real world quality of the generated broccoli index by measuring results based on
specific lists of scientists. In the end of this chapter in Section 4.4 we informally
point out the main runtime factors and results for our implementation.

4.1. Coverage of Web pages in common crawl

As mentioned we used the March 2017 Common Crawl archive1 as a source for raw
data. Downloading all crawled webpages for the 9.599 domain hosts given by the
‘World universities‘[6] database yielded 38.517.248 webpages.

To measure the crawl coverage for our task we manually created a list of 334
personal home pages hosted by http://uni-freiburg.de. The coverage in the
March 2017 crawl for this list is 28.74%. To judge on the coverage quality we
compared this result to all available crawls. Figure 8 shows the results for all
available archives from Summer 2013 till the June 2017 archive. We can see, that
the coverage varies between 2.69% and 28.74% which means it would make sense to
union different crawls to get a better coverage, which would result in a maximum
coverage of 48.50%. In fact a portion of the URLs Common Crawl includes in a
crawl are chosen randomly and based on Harmonic Centrality2. While measuring
the recall of personal pages for different scientists in Section 4.3.1 we discovered a
big difference in Common Crawl coverage between Uni-Freiburg hosted pages and a

1March 2017 Crawl http://commoncrawl.org/2017/04/march-2017-crawl-archive-now-available/
[Online; Last access 13.01.2018]

2Hramonic Centrality; https://en.wikipedia.org/wiki/Centrality#Harmonic_centrality
[Online; last Access 08.03.2018]
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Figure 8.: Coverage personal webpages in the Common Crawl arcives.
334 Uni-freiburg personal pages and the top 100 researchers by h-Index
given by http://www.guide2research.com/scientists/.
Uni-Freiburg: Max. accumulated 48.50%, max. single 28.74%
Top 100 h-Index: Max. accumulated 89%, max. single 70%.

list of the top 100 researchers given by google scholar h-Index3. Therefore we also
measured the coverage and accumulated coverage in all Common Crawl indexes for
the top 100 h-Index list. The better coverage for personal webpages of 59% in the
March 2017 crawl and in general can be explained by the probably higher ranking of
these pages (or pages near them in terms of similar URLs) due to their popularity.
Common Crawl will therefore more likely crawl these pages as a part of the URLs
Common Crawl includes in the archive is determined by a graph using links between
pages as edges and then rank nodes by their degree. As a consequence webpages
with more incoming links will be more likely considered to be taken into the archive.4

3h-Index; https://en.wikipedia.org/wiki/H-index; List of top 100 researcher by h-Index as
listed by http://www.guide2research.com/scientists/ [Online, last access 06.03.2018]

4Common Crawl Webgraph http://commoncrawl.org/2018/02/
webgraphs-nov-dec-2017-jan-2018/ [Online; Last access 08.03.2018]
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4.2. Evaluating the performance of the classification models

The complete set of labeled data used to train and test our models consists of
50.248 webpages 25.139 labeled as personal and 25.139 labeled as nonpersonal, 296
personal webpages with the associated name, 114 personal webpages labeled with
the associated gender and 144 personal webpages with the persons profession. To
measure the performance of our classifier we randomly split our labeled data into
two sets. The first sized 80% of available data was used to train the classifier and
the remaining 20% were used as a test set to measure the classifiers performance.
In order to get a more representative measurement we repeated the training 10
times with different random seeds and averaged the results. In addition we used the
grid-search implementation of scikit-learn5 for hyper parameter optimization of the
classifiers. The final scores for each classifier are shown in Table 2.

Classifier Precision Recall F1−Score Test sizetp
tp+fp

tp
tp+fn

2
1

P recision
+ 1

Recall

Page 0.89 0.89 0.89 1613
Name 0.90 0.88 0.89 46
Gender 0.81 0.74 0.75 19
Profession 0.58 0.59 0.47 22

Table 2.: Classifier performance measurements.
Values are weighted average over all labels. Test size is combined for all
labels.

For the main task of categorizing the webpages into personal and non personal we
reached a F1−Score of 0.89. For a more detailed interpretation of the model learned
by the page classifier, we extracted the 20 most important features shown in Figure 9.
The most important feature in favor of a personal webpage is :url:~nodict which
translates to webpages with URLs ending with a tilde followed by a word not in a
dictionary. This is no surprise due to the historic use of the tilde indicating a home
folder on Unix systems and in URLs the tilde mimics the Unix shell usage.6 Also
the headings "Research Interests" is a logical strong indicator for a personal page.
On the other side for our model the heading "Faculty" turned out to be the strongest

5GridSearch hyper-parameter tuning http://scikit-learn.org/stable/modules/grid_search.
html [Online; Last Access 11.02.2018]

6Tilde usage in URLs https://en.wikipedia.org/wiki/Tilde#Directories_and_URLs [Online;
last access 11.03.2018]
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Figure 9.: Top 20 features for page classifier.
":url: nodict :url:nodict": Means /~nodict/nodict (Algorithm 1).
":heading:<text>": Is a heading with <text> in the page.

indicator against a personal page, which is not obvious and may indicate a bias in
the training set. The relative importance of the features against personal pages are
significantly lower than the features in favor of personal pages which models the lack
of unambiguously features for non personal pages.

4.3. Evaluating Broccoli Index results

Generating a broccoli index resulted in a index of 39,017 persons - about one identified
and successful processed personal page each 1000 webpages. On average each person
is associated with 4.65 context documents which is a total of 181,258 texts with
an average length of 24.73 words. The retrieved persons are distributed over 1,563
institutions where the top 10 universities yielded 35% and the top 50 66% of the
results.
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4.3.1. Recall for specific entities.

We collected and evaluated the recall for a number of persons as shown in Table 3.

Source Total Common Crawl Broccoli Index

nt nc pc := nc
nt

nb pcb := nb
nc

pb := nb
nt

informatica-feminale.de7 113 26 23,01% 5 19,23% 4,42%
uni-freiburg.de8 334 96 28,74% 21 21,88% 6,29%
Top 100 H-Index researchers9 100 59 59,00% 14 23,73% 14,00%

Table 3.: Recall for specific entities.
Full lists can be found in Section A.2.

The absolute numbers are significantly low, for example a recall of only 4, 42% for
personal pages collected from the informatica-feminale list. A main reason is the
low coverage of 23, 01% in common crawl. The recall of available sites in this case of
19, 23% can be explained by the structure and content of the given personal pages.
For example the personal page URL

http://www.informatik.uni-bremen.de/soteg/virthos.php?-pg=111

Yields no positive features due to its generic form. Since our classifier is mainly
text based, personal pages as shown in Figure 10 are likely to be categorized as
nonpersonal since they do not provide enough classification features.

Another common issue is the excessive use of tables to structure the webpage as
shown in Figure 11 which leads to fragmentation of the content and finally causes
jusText [7] - the algorithm to retrieve relevant content - to classify the the webpage
completely as boilerplate and therefore the page yields no classification features.

4.3.2. Quality of the results

To measure quality we randomly choose 185 index results given by the query

triples=$1 is-a :e:Person;$1 occurs-with robotics

7informatica-feminale.de https://www.inforamatica-feminale.de/Professorinnen/Uni/
listeuni.html [Online; Last access 02.03.2018]

8Manually generated list of 334 personal pages hosted by http://www.uni-freiburg.de
9Manually generated list of top 100 H-Index researchers as listed by http://www.guide2research.

com/scientists/
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Figure 10.: Personal pages with meager text content.

which results in a list of persons occuring with the word robotics in the context
texts. For this list we evaluated the quality of resulting names, if they are valid:
For example ’Jason J. Corso’ or invalid ones like ’Pura Vida’ or ’Viterbi Voices’.
Then we examined if the linked webpages are in fact personal pages and if so, if the
retrieved name is also the correct name of the person the page is about. Results are
shown in Table 4.

Source Total Is name Is personal page Is correct name

Persons occurring with ‘robotics‘ 185 92.97% 79.46% 94.56%

Table 4.: Quality of Broccoli index.
Is name: The retrived name is a valid name. Is personal page: The linked
page is a personal page. Is correct name: If linked to a personal page: Is
the name the one the page is about.

The most interesting figure in Table 4 is that 79.46% of the resulting entries are
originating from a personal page. This is a bit lower than what we expect given
the precision value of 0.89 (Table 2) for our page classifier, which is a sign, that we
slightly over-fitted our classifier.
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Figure 11.: Excessive usage of tables in personal webpages.
On the left the rendered webpage. Right only the <table> structure
used in this page. Source: http://wwwiti.cs.uni-magdeburg.de/
~jdittman/

4.4. Runtime evaluation

All development and evaluation were done on a single machine with specifications as
described in Table 5.

Hardware Specifications

Processor Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
RAM 16GB DDR3 1333 MHz
HDD 2 x Western Digital RE4 (3TB) using RAID 0
Internet connection 1 GBit/s synchron

Table 5.: Test system hardware specifications.

The most time consuming part of the system is downloading the WARC files from
the Common Crawl archive which took about 12 days in total and then removing
Boilerplate and extracting the text contents for the 38,517,248 WARC documents.
Since we stored the results of every step separately to be able to re use the results
in future improvements of the system, we produced a lot of overhead which could
be avoided in a production system. In our implementation we used mainly multi-
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processing where applicable and the bottleneck was mostly CPU power except for
downloading the WARC files from the Common Crawl archive where the network
speed was the limiting factor. A detailed list of runtime per task are provided in
Table 6

Process Task n Tasks Speed Runtime Bottleneck

Download
WARC

Get locations 9599 1.67 loc
s 4.5h Internet

ConnectionDownload from S3 38,517,248 37.65W ARC
s 11.8d

Extract
WARC

Get Html 38,517,248 517.6W ARC
s 20.7h CPU

Rem. Boilerplate 38,517,248 98.44W ARC
s 4.5d CPU

Train Train models 40.222 74.7s CPU

Classify
Page 38,517,248 448.39P P E

s 23.9h CPU
NER 39,017 126.45P P E

s 308s CPU
Predict attributes 39,017 452.2P P E

s 86s CPU

Broccoli
Index

NER 38,478,231 131.42T exts
s 3.4d CPU

Generate KB 39,017 452.2P P E
s 86s CPU

Add texts 181,258 71.9T ext
s 0.7h CPU

Score Entities 181,258 43.6T ext
s 1.1h CPU

Table 6.: Detailed runtime evaluation.
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5. Conclusion and Future Work

We implemented a system which extracted 39,017 researchers from the Common
Crawl March 2017 web archive. The evaluation has shown, that this system extracts
about 20% of the available scientists with a precision of 80% on real world examples.
The implementation is mostly independent of classifiers and raw data origin so that
the developed system can be used to evaluate other approaches or data sources in
future work.

5.1. Improvement suggestions.

Improving the system should firstly focus on the recall since for this metric the
largest improvements are possible. Quick and easy to implement improvements for
the classification can be implemented in preprocessing on the text contents.

• Generous Boilerplate removal: A main reason for low recall is the lack of
features at all as described in Section 4.3.1 for Pages with little content. This
could be improved by changing the JusText algorithm to be more generous
and may worth to be evaluated.

• Word-Stemming:1 As seen in Section 4.2 the heading "Research Interests" is
a strong feature in favor of personal pages but it can be assumed that "Research
interest" is eaqually important. Word stemming would reduce the amount of
distinct features with the same meaning.

• Structural features: Features like the number of images, tables, headings
might yield additional evidence for classification. Kai Shih et al. [10] also
used the table layout of a page to categorize its content which could also be
applicable in our task.

More complex improvements might consider using the images on the page for semantic
segmentation and the resulting labels as features for page classification. Since

1Stemming https://en.wikipedia.org/wiki/Stemming [Online; Last access 11.03.2018]
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recurrent neural networks are successfully applied in a lot of NLP tasks like Sentiment
Classification (Hirschberg et al. [11]) it stands to reason that these techniques can
also be applied to the task of webpage classification.

Another starting point is the fact, that webpages exist within a hyperlinked context,
with links to and from other pages. An incoming link from a persons index page is a
strong feature in favor of a personal page. Hence the labels of webpages linking to or
linked from can be used as additional features.
To improve the real world recall we suggest to union the results sets for crawled

webpages in Common Crawl which is expected to yield more results as shown in
Section 4.1.
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A. Additional Sources

A.1. Gender name Mapping

To build the name ⇒ gender mapping used in section 3.3.2 we used the following
sources to create the mapping:

• https://github.com/ropensci/genderdata

• https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-
data-by-state-and-district-of-

• https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-
national-level-data

• http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/0.html

• https://usa.ipums.org/usa/

• https://www.nappdata.org/napp/

Combining the sources yielded 97,220 names mapped to their occurences by gender.
The mapping and an implementation of our used Algorithm 3 can be found on
GitHub.1

A.2. Raw evaluation measurements

(TODO: Where are the results stored.)

• Coverage eavaluation results can be found here: http://www.todo.de

1name-gender-mapping https://github.com/samuorous/namegender [Online; last access
27.02.2018]
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