
PublicTransitSnapper:

Dynamic Map-Matching To

Public Transit Vehicles

Bachelor‘s Thesis by Robin Wu

Department of Computer Science

Chair of Algorithms and Data Structures

Albert-Ludwigs-University of Freiburg

Introduction

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 2

Problem Definition

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

𝑛 timestamped GPS Points

𝑔 = [𝑝𝑡1, … , 𝑝𝑡𝑛]
Most likely public transit

vehicle

3

Approach

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 4

GTFS Dataset

◼ General Transit Feed Specification (GTFS)

◼ Each trip is described by:

◼ Shape

◼ Route

◼ Service

◼ Active weekdays

◼ Exception dates

◼ Stops

◼ Location

◼ Stop times

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 5

Close Edges

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 6

◼ Check service for the given date

◼ Time information available for stops

◼ Check 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 − 𝜀 ≤ 𝑡 ≤ 𝑡𝑖𝑚𝑒𝑒𝑛𝑑 + 𝛿

Active Edges

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

15:00:00 15:02:00 15:04:00

𝑡

7

Hidden Markov Model (HMM)

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 8

HMM Cost Functions

◼ Convert to log-space → summation

◼

◼

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 9

Most Likely Shape

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 10

Adding Time Data

◼ Multiple trips can be active at the same time

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 11

Algorithm

◼ Find all close edges

◼ Filter the close edges for active edges

◼ Determine the most likely shape with a HMM

◼ Select the most likely trip from the most likely shape

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 12

Evaluation

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 13

◼ Generate own test dataset with GTFS dataset

◼ Generate test data for each trip with multiple tests

◼ User travels on a trip for 4 stops with 10 GPS Points

◼ Generate a timestamp for each GPS Point

◼ Add noise

◼ GPS inaccuracy

◼ Stop times

◼ Timestamps

Evaluation Method

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 14

Accuracy Measure

◼ Number of tests depends on number of stops

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 15

Evaluation Datasets

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 16

Baseline Algorithms

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 17

Evaluation Results

with allowed time “slack” 𝜀 = 1, 𝛿 = 5 min

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 18

SWEG Dataset

◼ Trains have higher distances between stops

Reducing the number of stops in the test data for the SWEG dataset

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 19

Live Demo

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 20

◼ GTFS Realtime

◼ Update for a trip:

[“stop_sequence” : 1, “departure” : {“delay” : 5}

“stop_sequence” : 3, “departure” : {“delay” : 10}]

◼ Apply the delay to the stop times

15:00:00 + 5s

15:05:00 + 5s

15:10:00 +10s

Real-Time Data

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 21

https://cglab.ca/~cdillaba/comp5409_project/R_Trees.html

R-Tree

◼ A graph does not support efficient spatial queries

◼ Insert edges into an R-Tree

◼ Lookup on average 𝑂(log(𝑛))

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 22

“Overtime” Trips

◼ Trips can be in “overtime”

◼ a trip runs on Monday from 23:30:00 till 25:30:00 (Tuesday

01:30:00)

→ active weekdays only contains Monday

◼ Checking active weekdays from the service can fail

◼ User on Tuesday 01:00:00

◼ Generate {(0,23,False),(1,0,True),(1,1,True)}

◼ For the user check (1,0,False) and (1,0,True)

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 23

Determine the Next Stop

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

trip segment 0 trip segment 1

24

Storage and Memory Consumption

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 25

“Broken” Trips

Two partly indistinguishable trips in the Freiburg dataset

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 26

