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Introduction
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Problem Definition
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𝑛 timestamped GPS Points 

𝑔 = [𝑝𝑡1, … , 𝑝𝑡𝑛]
Most likely public transit 

vehicle
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Approach
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GTFS Dataset

◼ General Transit Feed Specification (GTFS)

◼ Each trip is described by:

◼ Shape

◼ Route

◼ Service

◼ Active weekdays

◼ Exception dates

◼ Stops

◼ Location

◼ Stop times
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Close Edges
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◼ Check service for the given date

◼ Time information available for stops

◼ Check 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 − 𝜀 ≤ 𝑡 ≤ 𝑡𝑖𝑚𝑒𝑒𝑛𝑑 + 𝛿

Active Edges
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15:00:00 15:02:00 15:04:00

𝑡
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Hidden Markov Model (HMM)
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HMM Cost Functions

◼ Convert to log-space → summation

◼

◼
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Most Likely Shape
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Adding Time Data

◼ Multiple trips can be active at the same time

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles 11



Algorithm

◼ Find all close edges

◼ Filter the close edges for active edges

◼ Determine the most likely shape with a HMM

◼ Select the most likely trip from the most likely shape
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Evaluation
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◼ Generate own test dataset with GTFS dataset

◼ Generate test data for each trip with multiple tests

◼ User travels on a trip for 4 stops with 10 GPS Points

◼ Generate a timestamp for each GPS Point

◼ Add noise

◼ GPS inaccuracy

◼ Stop times

◼ Timestamps  

Evaluation Method
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Accuracy Measure

◼ Number of tests depends on number of stops
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Evaluation Datasets
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Baseline Algorithms
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Evaluation Results

with allowed time “slack” 𝜀 = 1, 𝛿 = 5 min
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SWEG Dataset

◼ Trains have higher distances between stops

Reducing the number of stops in the test data for the SWEG dataset
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Live Demo
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◼ GTFS Realtime

◼ Update for a trip:

[“stop_sequence” : 1, “departure” : {“delay” :   5}

“stop_sequence” : 3, “departure” : {“delay” : 10}]

◼ Apply the delay to the stop times

15:00:00 + 5s

15:05:00 + 5s

15:10:00 +10s

Real-Time Data
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https://cglab.ca/~cdillaba/comp5409_project/R_Trees.html

R-Tree

◼ A graph does not support efficient spatial queries

◼ Insert edges into an R-Tree

◼ Lookup on average 𝑂(log(𝑛))
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“Overtime” Trips

◼ Trips can be in “overtime”

◼ a trip runs on Monday from 23:30:00 till 25:30:00 (Tuesday 

01:30:00) 

→ active weekdays only contains Monday

◼ Checking active weekdays from the service can fail

◼ User on Tuesday 01:00:00

◼ Generate {(0,23,False),(1,0,True),(1,1,True)}

◼ For the user check (1,0,False) and (1,0,True)
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Determine the Next Stop

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

trip segment 0 trip segment 1
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Storage and Memory Consumption
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“Broken” Trips

Two partly indistinguishable trips in the Freiburg dataset
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