PublicTransitSnapper:

Dynamic Map-Matching To Public Transit Vehicles

Bachelor's Thesis by Robin Wu

Department of Computer Science Chair of Algorithms and Data Structures Albert-Ludwigs-University of Freiburg FREIBURG

Introduction

Problem Definition

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

URG

Approach

FREIBURG

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

GTFS Dataset

- General Transit Feed Specification (GTFS)
- Each trip is described by:
 - Shape
 - Route
 - Service
 - Active weekdays
 - Exception dates
 - Stops
 - Location
 - Stop times

5

BURG

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Check service for the given date

Time information available for stops

• Check $time_{start} - \varepsilon \le t \le time_{end} + \delta$

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

BURG

Hidden Markov Model (HMM)

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

8

HMM Cost Functions

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

9

BURG

FREI

Most Likely Shape

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Multiple trips can be active at the same time

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

UNI FREI

- Find all close edges
- Filter the close edges for active edges
- Determine the most likely shape with a HMM
- Select the most likely trip from the most likely shape

Evaluation

UNI FREIBURG

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Evaluation Method

Generate own test dataset with GTFS dataset

- Generate test data for each trip with multiple tests
- User travels on a trip for 4 stops with 10 GPS Points
- Generate a timestamp for each GPS Point

- Add noise
 - GPS inaccuracy $\mathcal{N} \sim (0, 16)$
 - Stop times $\max(0, \mathcal{N} \sim (0, 60))$
 - Timestamps $\mathcal{N} \sim (0, 30)$

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Accuracy Measure

$$1(test) = \begin{cases} 1, & \text{if matched correct trip} \\ 0, & \text{otherwise} \end{cases}$$

Number of tests depends on number of stops

$$\operatorname{accuracy} = \frac{1}{|\operatorname{Test Data}|} \sum_{td \in \operatorname{Test Data}} \left(\frac{1}{|td|} \sum_{test \in td} \mathbbm{1}(test) \right)$$

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Evaluation Datasets

Dataset	total trips	tram	bus	funicular	train
Freiburg	$19,\!153$	9,063	10,090		
SWEG	733				733
Zürich	$33,\!178$	—	$31,\!971$	1,206	—

16

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Baseline Algorithms

	Avera	ge Accuracy	e Accuracy Average Run-Time		
Dataset	Baseline	BaselineHMM	Baseline	BaselineHMM	
Freiburg	0.4%	0.8%	0.06s	$0.67 \mathrm{s}$	
SWEG	0.8%	1.6%	0.002s	$0.037 \mathrm{s}$	
Zürich	0.2%	0.4%	0.06s	0.70s	

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Evaluation Results

	Average A	ccuracy	Average Ru	Average Run-Time		
Dataset	ActiveEdges	TimeAfter	ActiveEdges	TimeAfter		
Freiburg	91.2%	91.3%	0.246s	0.241s		
SWEG	32.5%	32.3%	0.018s	0.018s		
Zürich	92.3%	94.8%	0.233s	0.238s		

with allowed time "slack" $\varepsilon = 1, \delta = 5 \min$

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

18

SWEG Dataset

Trains have higher distances between stops

Reducing the number of stops in the test data for the SWEG dataset

Live Demo

20

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Real-Time Data

- GTFS Realtime
- Update for a trip: ["stop_sequence" : 1, "departure" : {"delay" : 5} "stop_sequence" : 3, "departure" : {"delay" : 10}]

Apply the delay to the stop times

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

A graph does not support efficient spatial queries

Insert edges into an R-Tree

Lookup on average O(log(n))
NPQ
AB CDE FG

κ

Μ

RS

н

https://cglab.ca/~cdillaba/comp5409_project/R_Trees.html

"Overtime" Trips

- Trips can be in "overtime"
 - a trip runs on Monday from 23:30:00 till 25:30:00 (Tuesday 01:30:00)
 - \rightarrow active weekdays only contains Monday
- Checking active weekdays from the service can fail
 - User on Tuesday 01:00:00
- Generate {(0,23,False),(1,0,True),(1,1,True)}
- For the user check (1,0,False) and (1,0,True)

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

23

BURG

Determine the Next Stop

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Storage and Memory Consumption

Dataset	GTFS size	precompute size	precompute time	docker memory usage
Freiburg	28.3MB	36.1MB	1.65s	384MiB
SWEG	4.6MB	$5.6\mathrm{MB}$	0.27s	148MiB
Zürich	45.5MB	58.0MB	2.47s	627MiB

25

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

"Broken" Trips

Trip: 573.T0.11-3-I-j22-1.6.R

Trip active on: ['monday', 'tuesday', 'wednesday', 'thursday', 'friday']							
Freiburg,	Munzinger Straße	arrival	time:	06:22:00	departure	time:	06:22:00
Freiburg,	VAG-Zentrum	arrival	time:	06:23:00	departure	time:	06:23:00
Freiburg,	Am Lindenwäldle	arrival	time:	06:25:00	departure	time:	06:25:00
Freiburg,	Bugginger Straße	arrival	time:	06:26:00	departure	time:	06:26:00
Freiburg,	Rohrgraben	arrival	time:	06:27:00	departure	time:	06:27:00
Freiburg,	Bissierstraße	arrival	time:	06:29:00	departure	time:	06:29:00
Freiburg,	Runzmattenweg	arrival	time:	06:31:00	departure	time:	06:31:00
Freiburg,	Rathaus im Stühlinger	arrival	time:	06:32:00	departure	time:	06:32:00
Freiburg,	Eschholzstraße	arrival	time:	06:34:00	departure	time:	06:34:00
Freiburg,	Hauptbahnhof	arrival	time:	06:35:00	departure	time:	06:35:00

Trip: 586.T0.11-3-I-j22-1.3.R

Trip active on: ['monday', 'tuesday', 'wednesday', 'thursday', 'friday']

Freiburg,	Am Lindenwäldle	arrival	time:	06:25:00	departure	time:	06:25:00
Freiburg,	Bugginger Straße	arrival	time:	06:26:00	departure	time:	06:26:00
Freiburg,	Rohrgraben	arrival	time:	06:27:00	departure	time:	06:27:00
Freiburg,	Bissierstraße	arrival	time:	06:29:00	departure	time:	06:29:00
Freiburg,	Runzmattenweg	arrival	time:	06:31:00	departure	time:	06:31:00
Freiburg,	Rathaus im Stühlinger	arrival	time:	06:32:00	departure	time:	06:32:00

Two partly indistinguishable trips in the Freiburg dataset

PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

26