
Bachelor’s Thesis

PublicTransitSnapper: Dynamic
Map-Matching To Public Transit Vehicles

Robin Wu

Examiner: Prof. Dr. Hannah Bast
Adviser: Patrick Brosi

University of Freiburg
Faculty of Engineering

Department of Computer Science
Chair of Algorithms and Data Structures

September 25th, 2022



Writing Period
25. 07. 2022 - 25. 10. 2022

Examiner
Prof. Dr. Hannah Bast

Adviser
Patrick Brosi



Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare that my Thesis has not been prepared for another examination
or assignment, either in its entirety or excerpts thereof.

Place, Date Signature

i





Abstract

PublicTransitSnapper is an application for matching a user to the public transit
vehicle the user is currently traveling on. We base the matching to a public transit
vehicle on a sequence of timestamped locations. Public transit vehicles travel along a
specific path at a specific time within their public transit network. Since location
measurements are noisy, only ”snapping” to the closest road might not work. Map-
matching can be used to match a sequence of locations to the most probable path in
a static road network. For map-matching to a public transit vehicle we need to find a
vehicle that follows a similar path to the locations and the vehicle must be at these
locations at the measured times. In this thesis we present a solution to this dynamic
map-matching problem. Similar to conventional map-matching, we utilize a Hidden
Markov Model. Furthermore, we include time information from the schedule to find
the most likely public transit vehicle.

iii





Zusammenfassung

PublicTransitSnapper ist eine Anwendung, um zu bestimmen, in welchem öffentlichen
Verkehrsmittel ein Benutzer gerade unterwegs ist. Hierfür verwenden wir eine Liste an
zeitgestempelten Standorten. Öffentliche Verkehrsmittel fahren in ihrem Verkehrsnetz
entlang eines bestimmten Weges zu einer bestimmten Zeit. Da Standortmessun-
gen verrauscht sein können, genügt es nicht, jeden Standort auf die nächstgelegene
Straße zu projizieren. Map-Matching kann verwendet werden, um mit einer Liste
von Standorten den wahrscheinlichsten Weg in einem statischen Straßennetz zu bes-
timmen. Für das Map-Matching auf ein öffentliches Verkehrsmittel müssen wir ein
Fahrzeug finden, das einen ähnlichen Weg zu den gemessenen Standorten zurück-
legt und zusätzlich zu den gemessenen Zeiten an den Orten ist. In dieser Arbeit
stellen wir eine Lösung für dieses dynamische Map-Matching-Problem dar. Ähnlich
wie beim herkömmlichen Map-Matching verwenden wir ein Hidden Markov Modell.
Darüber hinaus beziehen wir Zeitinformationen aus dem Fahrplan mit ein, um das
wahrscheinlichste öffentliche Verkehrsmittel zu finden.

v





Contents

1 Introduction 1

2 Related Work 3

3 Background 5
3.1 Public Transit Network . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Network Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 GTFS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 Missing Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 GTFS Realtime Extenstion . . . . . . . . . . . . . . . . . . . 7

3.4 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 GPS Location and Great-Circle Distance . . . . . . . . . . . . . . . . 10

4 Approach 13
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Dynamic Map-Matching Idea . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Close Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Active Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5.1 HMM Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5.2 Matching to a Specific Trip . . . . . . . . . . . . . . . . . . . 20
4.5.3 Adding Time Data . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.4 Including GTFS Realtime in Map-Matching . . . . . . . . . . 22

4.6 Getting All Information About the Matched Trip . . . . . . . . . . . 23
4.7 User Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8 Linking Backend and Frontend . . . . . . . . . . . . . . . . . . . . . 25
4.9 Storage of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Evaluation 31
5.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Generating Test Data . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Accuracy Measure . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Evaluation Data Sets . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.4 Evaluation Algorithms . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



6 Conclusion 39
6.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Acknowledgments 41

Bibliography 44

viii



List of Figures

1 Illustration of map-matching to a static road network . . . . . . . . . 1

2 Example GTFS Realtime update . . . . . . . . . . . . . . . . . . . . 9

3 Illustration of close(pt) . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Illustration of trip segments . . . . . . . . . . . . . . . . . . . . . . . 17
5 Example Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . 18
6 Visualization of minimal time difference for an edge . . . . . . . . . . 21
7 Determining the next stop with two trip segments . . . . . . . . . . . 24
8 Screenshot of the different pages in the frontend . . . . . . . . . . . . 25
9 Example request by the frontend with the response by the backend . 26

10 Example for trips that cannot be distinguished . . . . . . . . . . . . 36
11 Accuracy in SWEG data set with a different number of stops . . . . 37

ix





List of Tables

1 Route types in each evaluation data set . . . . . . . . . . . . . . . . 33
2 Average accuracy and run-time of baseline algorithms . . . . . . . . . 34
3 Average accuracy for ActiveEdges without time slack . . . . . . . . . 35
4 Average accuracy of our dynamic map-matching algorithms . . . . . 35
5 Memory and storage usage of our backend . . . . . . . . . . . . . . . 37
6 Average run-time of our dynamic map-matching algorithms . . . . . 38

xi





1 Introduction

Imagine sitting in a public transit vehicle and you want to know more information
about the current vehicle on your mobile phone. This could be the name of the route,
the next stop or transfer possibilities at the next stop. In order to correctly display
any relevant information, we need to determine in which public transit vehicle you
are currently traveling on. Our application PublicTransitSnapper can run on your
mobile phone and collect location information on your device. Based on the last
collected locations, we try to determine the current vehicle you are on.

This problem can be solved with map-matching. Figure 1 shows map-matching of
a sequence of locations to a most likely path in a static road network. The main
challenge is that location measurements are not infinitely accurate and may contain
measurement noise. Simply ”snapping” every location to the closest street may
not be the best possible solution. Solving this kind of map-matching problem is a
well-researched topic.

(a) Location measurements (b) Matched path

Figure 1: Illustration of map-matching to a static road network.

In contrast to map-matching to a static road network, public transit vehicles are
highly dynamic. Public transit vehicles follow a specific path at a specific time. We

1



cannot simply map-match the sequence of location measurements to the roads of a
public transit network. Instead, we need to check for active public transit vehicles
and only allow matching onto those.

Our project PublicTransitSnapper serves as a solution to this dynamic map-matching
problem. PublicTransitSnapper is split into a backend and a frontend part. The
backend performs a dynamic map-matching, that matches timestamped locations
onto the most likely public transit vehicle. Most of the backend is implemented in
Python1. The frontend is an application that runs on a mobile device. The frontend
collects timestamped locations on the mobile device and sends these to the backend
for processing. Once a public transit vehicle is matched, more information about the
current vehicle is displayed to the user. Moreover, we provide a group chat for users
sitting in the same vehicle. The frontend is built with the Flutter framework2 which
uses the Dart3 programming language.

We provide PublicTransitSnapper as a public open-source project4. In the repository,
there is a detailed readme for installation and running both the backend and frontend.
Additionally, we provide a tool for simulating locations of a public transit vehicle to
test the matching of our application.

1https://www.python.org/
2https://flutter.dev/
3https://dart.dev/
4https://github.com/RobDaNub/PublicTransitSnapper

2

https://www.python.org/
https://flutter.dev/
https://dart.dev/
https://github.com/RobDaNub/PublicTransitSnapper


2 Related Work

Map-matching tries to determine a most likely path through a road network given a
sequence of location measurements. Our work is closely related to this problem.

In order to solve map-matching to a static road network a Hidden Markov Model
(HMM) can be used. It was first introduced to map-matching in [1]. In [2], the authors
improved the HMM approach, by tuning the emission and transition probability
of the HMM. This was done by taking the measurement noise and the underlying
road network into consideration. Their approach produced accurate results up to a
sampling rate of 30 seconds. Since we are collecting location measurements with a
mobile phone, we can expect modern devices to have a similar or higher sampling
rate.

Our work is also closely related to map-matching based on schedule data.

With the stops of a public transit vehicle and the underlying road network, determining
the most likely path a vehicle has taken was described in [3]. Depending on the type
of vehicle the stops can have a high distance between each other. This leads to a
highly sparse map-matching problem. In this case a HMM was used with additional
inter hop turn restrictions based on [4].

Since we want to provide a responsive experience to the user, we require a fast
calculation of the dynamic map-matching. Typically, the Viterbi algorithm [5] is
used to calculate the sequence of states with the highest probability in a HMM. In
[6], instead of using the Viterbi algorithm the probabilities were determined with
a single execution of Dijkstra’s algorithm [7] to reduce the run-time. With [8], an
alternative using bidirectional Dijkstra was introduced. In most cases only a fraction
of all nodes needs to be visited for finding the shortest path [9]. Therefore, we adapt
the approach with bidirectional Dijkstra.

In our approach, the main difference to existing work in map-matching is the added
dynamic element of public transport vehicles. Added to possible noise of location
measurements and the road network of a public transit network we need to consider
the schedule data of a public transit network.

In September 2018 Google launched Pigeon1 for generating crowd-sourced real-time
data. The idea was that users are able to report delays, incidents, ”crowdedness”,
condition of vehicles or facilities and other information for other users to see. The

1https://www.blog.google/technology/area-120/pigeon-transit-app-new-cities/

3

https://www.blog.google/technology/area-120/pigeon-transit-app-new-cities/


expectation was that the crowd-sourced real-time data is more accurate than real-time
data provided by public transport agencies. Moreover, information can be updated
faster with many users. The app was launched as a test in six major cities across the
USA. Unfortunately, the Pigeon project was canceled in 2020.

Another application for public transit vehicles is transit2. It provides many services,
such as finding location of nearby public transport vehicles, finding transfer options
and ”rider-powered locations”, which seems to be similar to crowd-sourced real-time
data. In Germany it is only available in Berlin, Hamburg and Ulm. Thus, we were
not able to try the features of this app.

Both pigeon and transit do not have publications available. Thus, we do not have
any information about how these applications work in detail.

PublicTransitSnapper was developed together with G. Freiwald. His thesis [10] covers
further aspects of PublicTransitSnapper, especially details related to the frontend
part.

2https://transitapp.com/

4

https://transitapp.com/


3 Background

In this chapter we introduce a representation of a public transit network. Moreover,
we introduce the GTFS standard that describes a public transit network. Lastly, we
briefly describe location data and calculating distances.

3.1 Public Transit Network

A public transit network (PTN) provides transportation for passengers. It is intended
to be used by the general public. Most PTNs operate based on a repeating weekly
schedule and service routes according to this schedule. A public transit vehicle (PTV)
that services a route follows a specific course of the road and stops at predetermined
stops for passengers to board or get off. We refer to the course of the road as the
shape of a PTV. There can be different kinds of PTVs within a PTN such as trains,
buses, trams or ferries.

3.2 Network Graph

PTVs follow a shape which we can intuitively represent in a directed Graph. A
directed Graph G = (V,E) consists of a set of vertices V = {v1, . . . , vm} and a set
of directed edges E = {(vi, vj)|vi, vj ∈ V } = {e1, . . . , en}. The shape of a PTV is
a sequence of locations on a map. Each of the locations is represented as a vertex.
We connect the vertices of consecutive locations in the shape with a directed edge
in direction of travel. This way, we can construct GPTN for a given PTN. In a
PTN some shapes can have the same edge. We want to avoid duplicate edges in
GPTN. Therefore, we annotate each edge with the names of the shapes they are
contained in. A weighted graph assigns a weight to every edge with weight function
w : E → R. A path from vertex vi to vj in a graph is a finite sequence of edges
path(vi → vj) = (e1, . . . , en), ei ∈ E with e1 starting from vi and en ending at vj .
Shortest path algorithms find a path that minimizes the sum of edge weights. In our
Python implementation we use the NetworkX1 library for handling graphs.

1https://networkx.org/

5

https://networkx.org/


3.3 GTFS Data Set

The General Transit Feed Specification (GTFS) [11] is an open standard released by
Google in 2006. It is used for the distribution of geographic data and schedules of
PTVs. It is the de facto standard that public transport agencies around the wold use
to publish data DPTN about their PTN.

A GTFS data set is a ZIP file with information stored in multiple comma-separated
values (CSV) files. Currently there are 22 files with different content specified in
the standard. At least six of these files are required for a minimal data set. For our
application not all files in the GTFS standard are used. In the following, we briefly
describe necessary files and the relevant attributes of their content.

• routes.txt
Defines the transit routes. A route is a collection of trips, that display the same
information to the user.
Attributes: route_id, route_short_name, route_color, route_text_color
and route_type.

• trips.txt
Describes the trips for each route. A trip is defined as a sequence of at least
two stops, that is active at specific time.
Attributes: trip_id, route_id, service_id and shape_id.

• stops.txt
The individual stops trips stop at.
Attributes: stop_id, stop_name, stop_lat and stop_lon

• stop_times.txt
Arrival and departure time of trips at every stop is stored. A time can be
greater than 24 hours. This is needed for trips that start on a particular day,
but finish after midnight on the next day. If this happens, we refer to this as
overtime.
Attributes: trip_id, stop_id, stop_sequence, arrival_time and
departure_time

• calendar.txt
The weekdays a service is active on in a weekly schedule.
Attributes: service_id, start_date, end_date, monday, tuesday, wednesday,
thursday, friday, saturday and sunday

• calendar_dates.txt
Contains any exceptions to the weekly schedule. These exceptions dates can be
added or removed services for a date.
Attributes: service_id, date and exceptions_type

6



• shapes.txt
A shape describes the course of the road a PTV takes. A shape consists of a
sequence of locations and only has one direction of travel. Multiple trips may
follow the same shape.
Attributes: shape_id, shape_pt_lat, shape_pt_lon and shape_pt_sequence.

In the following we first assume, that this data is all available in DPTN. In section
4.9 we describe how we store all necessary data in detail.

3.3.1 Missing Shapes

The shapes.txt contains the locations for building GPTN. According to the GTFS
standard, the shapes.txt file is optional. During our work, most data sets we have
used, did not include the shapes.txt. In his thesis [10], G. Freiwald examined GTFS
data sets for different PTN in Germany more closely in this regard.

As described in the related work section, in [3], the authors provide an approach
to generate the shape given the stops and underlying road network of a PTN. An
implementation pfaedle2 is provided as an open-source project. With GTFS files and
OpenStreetMap data, pfaedle generates a fitting shapes.txt.

3.3.2 GTFS Realtime Extenstion

The GTFS data set described above is a static schedule data. Even with some PTNs
releasing weekly updated GTFS data sets, we do not get accurate time information for
every trip. This is because PTVs can vary from the schedule caused by external factors.
Our map-matching is highly dependent on accurate time information. Therefore, in
addition to the static GTFS data set we can incorporate real-time data.

Public transport agencies publish real-time data with different standards. GTFS
has an extension GTFS Realtime specified in the GTFS standard. In Germany
some transport agencies (e.g., Hamburg/HVV, Berlin/VBB) use ”HaCon Fahrplan-
Auskunft-System” (HAFAS)3. The structure of HAFAS is different to GTFS. We
found a project4 that enables polling a HAFAS endpoint and then publishing a
GTFS Realtime feed by matching the HAFAS information to the GTFS data set.
Since GTFS Realtime is an open standard that is compatible with the static GTFS
data set, we are going to use GTFS Realtime for fetching real-time updates. In the
following, we are going to cover relevant parts of the GTFS Realtime standard for
our approach.

2https://github.com/ad-freiburg/pfaedle
3https://www.hacon.de/en/portfolio/information-ticketing
4https://github.com/derhuerst/hafas-gtfs-rt-feed

7

https://github.com/ad-freiburg/pfaedle
https://www.hacon.de/en/portfolio/information-ticketing
https://github.com/derhuerst/hafas-gtfs-rt-feed


The GTFS Realtime data is provided as a feed in a format that is defined with
protocol buffers5. Protocol buffers is a standard provided by Google, that is used for
serializing data independent of programming languages or platforms. The protocol
buffer for GTFS Realtime data is defined here6. Bindings are provided for many
different programming languages. For fetching a GTFS Realtime in Python, a module
is provided here7. To access the data more easily, we found a project8 that converts
the feed into a Python dictionary. This way we can easily access the real-time
information. Thus, we introduce the GTFS Realtime data as a dictionary.

First the converted dictionary represents a FeedMessage. A FeedMessage requires a
header and can have a list of entitys.

The header contains the GTFS Realtime version. Currently there are version 1 and
version 2. The main difference between version 1 and 2 is that in version 2 some
fields have been converted from optional to required.

Each entity contains a unique id and a trip_update.

The trip_update contains real-time information of a specific trip. It has an entry
trip and a list of stop_time_updates. The trip should contain enough information
to distinctly identify a trip. In most cases, a trip_id is sufficient. Optionally, the
start_date of the trip can be specified. This is necessary in cases where trips have
enough delay to collide with a scheduled trip on the next day. For instance, if a trip
has service on two consecutive days, but on the first day the trip has 24 hours of delay,
then on the second day there are two trips at the same time. We can unambiguously
distinguish between them with the start_date.

A trip_update also contains a list of stop_time_updates. A stop_time_update
identifies a stop of a trip by either a stop_sequence or a stop_id. The delay of a
trip is split into arrival and departure. They do not have to be specified at the
same time. The delay can either be specified as a delay in seconds or as an absolute
time.

In order keep an update message as small as possible, if a stop of a trip has a delay,
then this delay applies to all following stops on the trip until the next stop that has
a delay. For this next stop, the delay before will not be added. Figure 2 contains an
example FeedMessage.

Some transport agencies publicly provide their real-time feed. With a link to the feed,
we can fetch the real-time data with a HTTP GET request. Other transport agencies
limit access and require authentication. For Switzerland we can create an account on
their website (full explanation with access to API described here9). To access their

5https://developers.google.com/protocol-buffers
6https://gtfs.org/realtime/proto/
7https://github.com/MobilityData/gtfs-realtime-bindings/blob/master/python/README.
md

8https://github.com/kaporzhu/protobuf-to-dict
9https://opentransportdata.swiss/de/cookbook/gtfs-rt/

8

https://developers.google.com/protocol-buffers
https://gtfs.org/realtime/proto/
https://github.com/MobilityData/gtfs-realtime-bindings/blob/master/python/README.md
https://github.com/MobilityData/gtfs-realtime-bindings/blob/master/python/README.md
https://github.com/kaporzhu/protobuf-to-dict
https://opentransportdata.swiss/de/cookbook/gtfs-rt/


1 {
2 "header": {
3 "gtfs_realtime_version": "1.0"
4 },
5 "entity": [
6 {
7 "id": "1.T0.10-46-I-j22-1.2.H",
8 "trip_update": {
9 "trip": {

10 "trip_id": "1.T0.10-46-I-j22-1.2.H",
11 "start_date": "20220816"
12 },
13 "stop_time_update": [
14 {
15 "stop_sequence": 1,
16 "arrival": {
17 "delay": 0
18 },
19 "departure": {
20 "delay": 5
21 },
22 "stop_id": "de:08311:6508:3:14"
23 },
24 {
25 "stop_sequence": 12,
26 "arrival": {},
27 "departure": {
28 "delay": 10
29 },
30 "stop_id": "de:08311:30065:0:1"
31 }
32 ]
33 }
34 }
35 ]
36 }

Figure 2: Example GTFS Realtime update for a single trip as a Python
dictionary.

9



real-time feed, we need to pass a generated API-key in the header of the HTTP GET
request. The server will respond with the real-time feed data only if the request is
correct. Other transport agencies may have different requirements. Therefore, we
currently cannot support fetching an arbitrary GTFS real-time feed. A function that
fetches the feed must be implemented first if it differs from the two options described
above.

Some transport agencies limit the amount of allowed requests within a certain time
frame. In Switzerland it is twice every minute. Therefore, the update rate of the
real-time data can be limited in a configuration file.

3.4 Hidden Markov Model

A Markov chain describes a sequence of possible events. Each event is modeled as
a state and only depends only on the previous state. The probability of changing
from one state to another state is the transition probability. If we assume that a
process can be modeled by a Markov chain, but we do not know the states, we use a
Hidden Markov Model (HMM). A HMM has observable events and hidden states.
We are only able to perceive observable events and try to find the states that caused
the observable event to happen. For every observable event we create hidden states.
We give them a probability of generating the observable event. This is the emission
probability. The transition probability measures the likelihood of transition from a
hidden state to another hidden state. With the HMM, we can determine the most
likely sequence of hidden states for the solution to our problem.

3.5 GPS Location and Great-Circle Distance

The location of a mobile phone is provided by the location services of the operating
system. Most commonly the Global Positioning System (GPS) is used. GPS uses
satellites around the globe to determine the location of a mobile phone. The satellites
constantly broadcast a signal with their time and position. A mobile phone is able to
accurately calculate the distance to satellites with the current time and the speed of
light. Using signals from multiple satellites a mobile device can accurately determine
latitude, longitude and altitude with trilateration. Typically, locations measured with
GPS is accurate to about a few meters. In addition to the measurement noise, the
signal of GPS satellites can be blocked or reflected from the environment of a mobile
device. This can greatly reduce the accuracy of location measurements using GPS.
For indoor environments, modern mobile phones are able to include further sources,
such as Wi-Fi based positioning systems.

In the following, the tuple of latitude and longitude is referred to as location tuple
p = (lat, lon). With the location tuple we can describe any point on earth’s surface.

10



If we want to measure the shortest distance between two location tuples, we cannot
simply take the distance as in a Cartesian coordinate system. We need to account for
the curvature of earth’s surface. Instead, we can approximate the shortest distance
which is called the great-circle distance with the haversine formula. The haversine
formula assumes that the earth is a perfect sphere. Since earth is not a perfect sphere,
we can expect errors for distances smaller than a few meters. For more accurate
distance calculation, the computationally heavier vincenty formula can be used. For
our application the precision of the haversine formula will suffice and we prefer the
faster computation with the haversine formula. In the following, we denote the
great-circle distance between two location tuples p1 and p2 as ||p1, p2||gcd.

11





4 Approach

4.1 Problem Definition

Our goal is to match a sequence of location time tuples collected from a mobile device to
a PTV in DPTN. A location time tuple pt contains the location as latitude, longitude,
and a timestamp at which the measurement was taken pt = (lat, lon, time). Let g be a
list of n location time tuples ordered by time g = [pt1, , . . . , ptn], time1 < . . . < timen.
Every trip in DPTN is identified by a unique trip_id and contained in the list
T = [trip_id1, . . .]. Let P (trip_id|g) be the probability that the trip with trip_id
fits to g. We can formulate our dynamic map matching problem as the following
maximization problem:

trip_id∗ = argmax
trip_id∈T

P (trip_id|g)

After matching trip_id∗ we can look up any additional information about the trip
in DPTN. To get an estimate for the current location of the user, we project the
location of the last location tuple in g onto the shape of the trip.

4.2 Dynamic Map-Matching Idea

First, we briefly present the main steps of our approach. Similar to map-matching in
[2], we use a HMM for calculating P (trip_id|g). In order to reduce the number of
edges in the HMM we want to discard as many edges as possible. This is equivalent
to assigning the probability 0. Thus, we can design the following algorithm.

Given a list of location time tuples g and the edges E in GPTN:

1. For every pti ∈ g find the following two sets:

• close(pti), find all edges e ∈ E that are close to pti.

• active_close(pti), for every close edge e ∈ close(pti) check if there are
any vehicles currently active according to the schedule at the time of the
timestamp.

13



2. Build a HMM with all edges in active_close(pti), pti ∈ g. Then, calculate the
sequence of edges that has the highest probability.

3. Find the trip that fits best to sequence of edges. Fetch and provide any relevant
information about this trip.

With a general overview on the algorithm, we will go more into detail of how to solve
every step.

4.3 Close Edges

For any location time tuple pt we need to find all edges in E that are within a distance
d in meters to pt. We use a value of d = 100m. Since we do not need time information
for this step p = (lat, lon) is the latitude and longitude from pt. All close edges are
contained in the set close(pt) := {e ∈ E| ||e, p||gcd <= d}. Figure 3 visualizes getting
the close edges.

Figure 3: Illustration of close(pt). All edges within distance d to a pt are fetched.

14



We have already build GPTN that contains all edges from the shapes file. Unfortunately,
a graph does not support spatial queries. Therefore, we cannot easily find any edges
that are within a distance d to p, without checking the distance of every edge to p in
the GPTN.

In 1984, A. Guttman proposed R-Trees [12] as a data structure for efficient spatial
queries. In R-Trees, the leaf nodes contain a list of tuples. The tuple contains the
smallest rectangle that contains a stored geometric object and a reference to the
stored geometric object. In our case, the geometric objects are the edges from E.
The non-leaf nodes have a list of tuples. Each tuple contains a reference to a child
node and the smallest rectangle that contains all the rectangles of the child node.
The R-Tree can be used to find any edge, that intersects the point p. For this we
need to traverse the R-Tree starting from the root. At every node we need to check
all the rectangles stored in the node. If a rectangle contains p, then we need to check
the child node as well. If a rectangle does not intersect p we can skip it. Once we
arrive at a leaf node, we can retrieve the edge with the reference and check if the
edge intersects with the point p.

Traversing the tree is on average proportional to the depth of the tree. Therefore, a
lookup has an average time complexity of O(log n) with n edges stored in the R-Tree.
In the worst case we can expect O(n), because we might need to check every entry in
the list at a node. Thus, if the tree is not split optimally, we might need to check
every edge for intersection.

For our project we use the Python library Shapely1 for handling any geometric
objects, such as edges or points. Conveniently, shapely provides an interface for the
STR packed R-tree (STRtree) from the GEOS library2. We can insert all edges e ∈ E
into an STRtree.

In our approach we want to find any edges that are within distance d to p. Instead
of querying the STRtree with point p we can create a circle. This circle Cp,d has its
center in p and a diameter of d. The STRtree checks for any edges, that intersect the
area of the circle Cp,d. Therefore, we get all edges within distance d to p.

4.4 Active Edges

After getting close(pt) for a location time tuple pt, we need to determine which
of the edges have vehicles on them at the timestamp t of the location time tuple.
Only edges, that have a vehicle on them are considered active and are added to
active_close(pt).

1https://shapely.readthedocs.io/
2https://libgeos.org/doxygen/classgeos_1_1index_1_1strtree_1_1STRtree.html

15

https://shapely.readthedocs.io/
https://libgeos.org/doxygen/classgeos_1_1index_1_1strtree_1_1STRtree.html


In GPTN every edge is annotated with the shapes shpe = [s1, s2, ...] they belong to.
For any given edge e, we only need to check trips that follow a shape in shpe.

The time data for any trip is split into two categories in the GTFS dataset. The
service contains the weekdays on which a trip is active. Moreover, it contains any
dates with an exception. Secondly, there are arrival and departure times for every
stop in a trip.

To check if a trip is active on a date, we can extract the date from t. Then, we need
to check if the date is an exception date in the service. Exception dates can either
be removed or additional dates. In case of a removed date there is no service. We
discard the trip in this case. In case of an additional date there is a service on this
date. We can skip the weekday check of the service. Otherwise, we continue with the
weekday check.

Since the service contains the weekdays on which a trip is active, we only need to get
the weekday of t and check if it is in the active weekdays.

Unfortunately, this approach does not work due to overtime trips. For instance, a trip
only has service on Mondays and is running from 23:35:00 until 25:30:00 (translates to
Tuesday 01:30:00). In the weekdays of the service only Monday is an active weekday.
If the user is at a time of 00:30:00 on Tuesday, simply checking the weekday fails.
Similarly, the exceptions dates check can fail, e.g., if a Monday is in the removed
dates.

Instead, we introduce active-weekday-hours (awh). Awh is a set that contains
weekday-hour-tuples wh = (weekday, hour, overtime), awh = {wh1, . . . , whn}. The
first entry is an integer that represents a weekday (Monday→ 0,Tuesday→ 1, . . .).
The second entry is the hour information of a time. Hence, each weekday is split
into 24 segments. The third entry is a flag that shows if the time is in overtime
(≥24:00:00). The sample trip that runs on Mondays from 23:25:00 until 25:30:00
has awh = {(0, 23, False), (1, 0, True), (1, 1, True)}. We convert the user time t into
both possible weekday-hour-tuples and check if any of them is in awh of a trip. If
the weekday-hour-tuple without overtime is in awh, then the date of t can be used
for the exception dates check. If the weekday-hour-tuple with overtime is in awh,
then the date of the previous day of t can be used for the exception dates check.
If none of the weekday-hour-tuples are contained, the trip is not active. For the
example above the user time on Tuesday 00:30:00 is converted into (1, 0, False) and
(1, 0, True). Here (1, 0, True) is in the awh set of the sample trip. We need to check
the exception dates with the date of the day prior to the user time.

With this data structure, we reduce the amount of trips that need to be checked.
Instead of checking trips that are active on a whole weekday, we only need to check
trips that are active in the given hour. After that, we need to determine if the edge
is active for any trip with a more exact time.

16



Figure 4: Illustration of trip segments. A trip segment is between two stops
and begins/ends at a stop position projected onto the shape.

The time information is available for every stops of a trip as a tuple of arrival and
departure time. The location of a stop does not have to be exactly on an edge or a
vertex in GPTN. Thus, we need to project the stop onto the closest edge. A stop can
be projected onto an edge and there can be multiple edges between stops. Thus, it can
be difficult to determine the time of an edge. We can solve this with trip segments,
which are the segments between two consecutive stops of a trip. Figure 4 visualizes
trip segments. Every trip has len(stops)−1 trip segments. We identify each trip
segment with an id ts. We create a dictionary edge_to_ts = {e : [ts1, ts2, . . .]} that
maps every edge to trip segments that contain this edge. Due to the fact, that the
stops do not have to be exactly on the shape of trip projecting a stop onto the shape,
the projected point can be on an edge. Moreover, multiple stops can be projected
onto the same edge. Thus, an edge can be in multiple trip segments.

In order to create edge_to_ts, we have to project the stops onto the edges of a shape.
Projecting every stop to the closest edge does not work on all shapes. For instance
some shapes have loops and some shapes traverse a street more than once. In these
cases the wrong part of the shape can be projected onto. Instead of matching the stop
to the closest edge, we also include information about how far a trip has progressed
along the shape. If a street is used twice, during the first pass, we match to the edge
that is closest to the beginning of the shape.

With the dictionary edge_to_ts we can easily find the trip segment numbers ts for
a given edge. The arrival and departure times of stops in a trip is stored in a list
stop_times = [(arr1, dep1), . . . , (arrm, depm)]. The start_time of a trip segment
is the departure time of the tsth entry in stop_times. Similarly, the end_time of
a trip segment is the arrival time of (ts + 1)th entry in stop_times. Then, we
check if the user timestamp t is within the start and end time of the trip segment
start_time − earliness <= t <= end_time + delay. We can add some slack to
the time with earliness and delay. This is important if the the trip has any delay.
Without slack the trip would not be able to match properly.

To sum up, for every trip we store stop_times, the set awh and the dictionary
edges_to_ts that maps edges to trip segments. To add an edge e to active_close(pt),
we first check the service with the weekday-hour-tuples and then extra dates. Then,
we find the trip segments e is on and check if there is vehicle at the user time. Only

17



then an edge e is active. All other non active edges are discarded for the HMM
step.

4.5 Hidden Markov Model

With active_close(pt) for all pt ∈ g, we want to determine the sequence of edges
with the highest probability of fitting to the sequence of location time tuples. To find
the highest probability, we can use a HMM. If every edge of the close active edges is
a state node, we can model the HMM as a directed acyclic graph GHMM:

1. Add a start node to the vertices V = {start}. The edges are empty E = ∅. In
each step, we remember the nodes created in the last step L = {start}.

2. For every pt ∈ g, add a state node for every edge in active close edges to the
vertices V ← V ∪ active_close(pt). For the edges, we connect newly created
state nodes to the state nodes created in the last step E ← E ∪ {(u, v)|u ∈
L, v ∈ active_close(pt)}. For the next iteration set L← active_close(pt).

3. Add an end node to the vertices V ← V ∪{end}. Connect edges to the previous
active close edges E ← E ∪ {(u, end)|u ∈ L}.

Figure 5 shows a Hidden Markov Build from the close edges in Figure 3.

Start End

e0pt1

e1pt1

e2pt1

e0pt2

e1pt2

e2pt2

close(pt1) close(pt2)

Figure 5: Example Hidden Markov Model. The HMM has two observed events
pt1 and pt2. The hidden states use close(pt1) and close(pt2) from Figure
3.

Typically, the Viterbi algorithm [5] is used to determine the sequence of states in the
HMM with the highest probability. Alternatively, we convert finding the path with
highest probability into a shortest path problem as described in [8]. In order to find

18



the most probable path pathmatch, we must find a path in GHMM from the start to
the end node with the highest probability. The probability of path is the product of
the probabilities of all edges on that path.

Shortest path algorithms find the path through a graph from a given start to an end
node by minimizing the sum of weights on the edges in a path. In GHMM, the weights
are the probabilities. Therefore, we convert the transition probabilities to transition
cost and perform all calculations in log-space. In this case, minimizing the sum of
transition cost is the same as maximizing the product of transition probabilities.

We use Dijkstra’s algorithm [7] to solve the shortest path problem. Dijkstra’s algorithm
is not guaranteed to be optimal in a graph with negative weights. Therefore, the
transition cost should never be less than 0. We can speed up the calculation by using
bidirectional Dijkstra.

4.5.1 HMM Probabilities

In a HMM, the probabilities are typically split into emission and transition probability.
The emission probability is dependent on the current state and the observed event.
The transition probability is only dependent on the previous state.

As mentioned before, we convert the emission and transition probability in to a
emission and transition cost.

Emission Cost

The emission probability Pemission(e|pt) is the likelihood that edge e is part of the
shape of the public transit vehicle. We take the distance of the location tuple to the
edge as a cost. Hence, edges that are closer to pt are considered more likely.

Cemission(e|pt) = ||e, pt||gcd

Transition Cost

The transition probability Ptransition(e1 → e2) is the likelihood that starting on edge
e1 a PTV transitions to e2.

First, we want to measure whether two edge are on the same shape. We assume
that it is unlikely that users changes the PTV during transit. Moreover, we want
the matched edges to follow the overall direction of the locations tuples as best as
possible. This can be done by including the distance in GPTN from e1 to e2. We can
try find a shortest path from the end of e1 to the start of e2 in GPTN. If a path exists,

19



we can add the sum of the length of the edges to the transition cost. Otherwise, we
can just add a penalty cost. In this way we can avoid matching to any detours.

C1
transition(e1 → e2) = ||e1||gcd + ||e2||gcd + ||shortest_path((end(e1), start(e2))||gcd

With this simple transition cost, it is possible to match a shape that follows the
opposite direction. Due to the inaccuracy of location measurements, the shape of the
opposite direction can be closer that the actual direction. Thus, we want to add a
cost for travelling into the wrong direction.

C2
transition = C1

transition + direction_penalty(e1, e2)

The direction can be calculated if we store the shape with a shape_sequence num-
ber for every edge. If we have e1 and e2, we can compare the shape_sequence
and if it is ascending, we add no cost. In contrast, we can penalize a descending
shape_sequence.

4.5.2 Matching to a Specific Trip

In the previous section, our matching only matched g to the edges of GPTN. We still
need to find the most likely trip trip_id∗. Each edge in pathmatch can be contained
in multiple shapes, since we merged duplicated edges in different shapes. We can
count the occurrence of every shape in the edges of pathmatch and take the most
frequent one as the matched shape. Unfortunately, different trips can have the same
shape. In our application, the goal is to match to a specific and single PTV, or to be
more specific, a single trip. Especially in crowded areas, such as city centers, there
can be more than one trip active on a given edge. We need a way to choose a trip
out of the possible ones for our matched path. We can use the following steps to
determine trip_id∗ for our matched path:

1. We get the most common shape in the matched edges in pathmatch.

2. Since there is a list of trips for every shape, we can count the occurrences for
every trip that belongs to a most common shape and select the most common
trip. If multiple trips have the same occurrence, we randomly pick one. This is
trip_id∗.

If multiple trips have the same occurrence, and thus same probability P (trip_id|g),
randomly choosing one can yield the wrong trip.

4.5.3 Adding Time Data

We used a very broad time window for filtering close edges by the active time. This
can be improved by calculating a more exact time for a PTV location. When matching

20



to a specific trip we can also try to match a trip that fits best in terms of time.
We calculate the average time difference from the time in the location time tuples
to a time a trip would presumably have at that location. Figure 6 shows the time
difference for a single location time tuple pt to two possible trips. We pick the trip
with the least amount of average time difference. Therefore, we want to solve the
following problem efficiently: given a location time tuple and a trip, calculate a time
at which the trip is at that given location according to the schedule.

Figure 6: Visualization of minimal time difference for an edge. The blue
and the green trip are both active on the same edge. We measure the
time difference from pt to the blue and the green trip according to the
schedule. Here, we would prefer the blue trip.

In order to calculate such information, we need to modify our data. To calculate
which trip is closest on average to g, we measure the average time difference between
the time from a location time tuple to the time the vehicle of a trip is at that location
according to the schedule. In order to calculate such a time difference, we first need
to calculate a time t for any given point p on the shape of a trip. The only time
information we have is included in the stops of the trip. Therefore, we split the
shape of a trip by the stops into trip segments. In contrast to the trip segments
in section 4.4, we split the polyline of the shape into a list of trip segments. Each
trip segment is between two consecutive stops of a trip. We split the polyline of
the shape by first projecting the location of the stop onto the polyline, and then split
at the projected point. Now onto calculating a time for the vehicle at point p on the
shape:

1. Find the trip segment p is on and project p onto the trip segments which
gives us the closest point tsp on the trip segment to p.

2. Calculate the distance dp = ||tsstart, tsp||gcd along the trip segment from p to
the start of the trip segment.

21



3. Take tp =
dp

||ts||gcd as the progression along the trip segment. Calculate a
predicted time as the percentage of the total duration of the trip segment and
add it to the start time of trip segment:

time(p) = time(start) + (time(end)− time(start)) · tp

This approach assumes that a vehicle travels at a constant speed at a given trip
segment. In reality this is unlikely. We expect a vehicle to accelerate or decelerate
when starting or stopping at a stop. Moreover, we expect that vehicles to have a
higher speed on straight lines, than in curves. Additionally, vehicles might need to
stop during the journey at traffic lights or due to traffic.

With a time estimation of the point p we can measure the time difference of the
location time tuple pt to time(p) for every location time tuple in g. We can compare
the average time difference for multiple trips. Then, we just select the trip with the
smallest average time difference.

We can add the time difference during matching to a specific trip. If there are multiple
possible most likely trips, instead of randomly choosing one, choose the trip with the
least average variation from the schedule.

4.5.4 Including GTFS Realtime in Map-Matching

In our dynamic map-matching approach, we try to find trips that are as close as
possible from an ideal schedule. If a user is in a PTV with delay, the user can be
matched to another trip. We can mitigate this by adding real-time updates with
GTFS Realtime. As described in section 3.3.2, we can get the delay of a trip at any
stop. We need to apply this delay when working with the stop times of a trip and
with ahw.

With awh, a delayed trip can be active in another weekday-hour-tuple. If this
weekday-hour-tuple is not within the awh of a trip, this trip will not be considered
active. To mitigate this, we can apply the negative delay as an offset to the user time
and then generate a weekday-hour-tuple. For example, if a trip has one hour of
delay, then we subtract one hour from the user weekday-hour-tuple. This way, the
delayed trip is considered active.

The arrival and departure time of a stop also have to be adapted when using real-time
data. Here, we must add the delay to any time during look-up.

22



4.6 Getting All Information About the Matched Trip

After matching a trip, our frontend should display further relevant information to
the user. Therefore, we need to fetch any relevant information.

In the map-matching step we determined a most probable path pathmatch of edges
and trip_id∗. We can predict the current location of a user by projecting the last
location tuple in g onto the last edge in pathmatch. We get a predicted user location,
that is on the shape of the matched trip trip_id∗.

Further relevant data is included in DPTN. Every trip_id has a route_id which
contains the route_short_name, route_color, route_text_color and route_type.
Additionally, every trip_id also has a list of stops. We can look up the destination
of the trip by taking the name of the last stop in the list. If we take the last edge of
the matched path, we can determine on which trip segment the user is currently
on with edge_to_ts of the trip. The trip segment with id ts corresponds to the
segment of the tsth stop until the ts + 1th stop. If an edge only has a single trip
segment id ts, the next stop is the ts+ 1th stop in the list of stops. If an edge has
multiple trip segment ids, then we need to determine, which of the stops is the next.
We know that the stop must be on the last matched edge e. We can take p, the last
location tuple of g, and project it onto the edge pe. Then, we project the stop s onto
the edge se. We measure both dp,e = ||pe, start(e)||gcd and ds,e = ||se, start(e)||gcd.
If dp,e is greater than ds,e we have already passed the stop and check for the next
stop. If not, then the stop s is the next stop. Figure 7 illustrates both cases. With
the next stop we can also gather possible transfer options from DPTN.

4.7 User Application

A PublicTransitSnapper user only sees our frontend on their mobile phone. Thus,
all necessary information is displayed in our frontend. The frontend is written with
the Flutter framework. The advantage of using this framework is, that we can build
different mobile and web apps from a single code base. Currently, we only support
Android 10+ with our native application. Additionally, we offer a web app that can
be used through a browser. With Flutter it is possible to generate an iOS build. Due
to the lack of an iOS device, we were not able to try it out.

The frontend measures the location of a mobile phone by accessing the location
services. We store a list of the last locations with a timestamp. The frontend sends
the list of location time tuples to an API on a server where the backend runs. The
backend processes any incoming request. It performs a dynamic map-matching and
calculates a most probable solution. It responds to the frontend by sending the
matched trip_id with additional information about the trip.

23



(a) ds,e > dp,e

(b) ds,e < dp,e

Figure 7: Determining the next stop with two trip segments. In (a), s is
the next stop. In (b), the stop after s is the next stop.

Our frontend does not store and information about the GTFS data set. It only
displays information provided by the backend. A user can choose between three pages
in the application. The first page displays information about the PTV the user has
been matched to. Such as the vehicle type, the route number and terminal station. It
also shows the name of the upcoming stop. The second page contains a map. An icon
that fits to the vehicle type is displayed at the currently matched position. Moreover,
the shape and stops of the currently matched trip are displayed in the route_color of
the route. Thus, the user can easily see the previous and upcoming course of the road.
On the third page, we display possible transfer options at the next stop for the user.
It shows the type of vehicle, with their route number, destination and the departure
time at the next stop. We use the route_color and the route_text_color for easier
identification of the route by the user. Figure 8 shows the three pages.

Next to the three pages, the user can open a chat overlay in any of the three pages.
We provide a group chat feature, where all users that are matched onto the same trip
are able to communicate with each other. If a user enters a trip, all messages that
have been sent since the beginning of the trip can be seen. The chat messages are
only stored for the duration of the trip and are deleted after the trip has reached the
destination stop.

For more details about the frontend application with user feedback see G. Freiwald’s
thesis about this project [10].

24



Figure 8: Screenshot of the different pages in the frontend.

4.8 Linking Backend and Frontend

In the previous chapters we have described how to solve the dynamic map-matching in
the backend part of our project. Moreover, we have described the design and features
of the frontend application. In this chapter, we describe the communication between
frontend and backend. The frontend does not store any schedule data from the GTFS
data set. Thus, all necessary information must be fetched from the backend.

In our backend, we handle any incoming requests with our API. The API is created
with the Python package Flask3. We have created multiple endpoints for the different
features of our frontend. The shape and connections contain a lot of data, but they
only have to be fetched if the matched shape or the next stop changes. If we only
request this information when needed, we can reduce the amount of data that needs
to be sent over the network.

• /map-match This endpoint takes a list of location time tuples. After the map-
matching is calculated information about the matched trip is returned for the
frontend to display. Note that the shape and connections are not included.

• /shape Here the frontend can fetch all location tuples in a shape, so that the
shape of a matched trip can be drawn on the map page. Moreover, the locations
of each stop in the matched trip are returned as well.

• /connections Given a stop_name and a timestamp return the next transfer
possibilities at that stop.

3https://flask.palletsprojects.com/en/2.2.x/

25

https://flask.palletsprojects.com/en/2.2.x/


• /chat With a matched trip the frontend can use this to send and fetch any
chat messages for a trip.

In every endpoint of our API, we need to exchange data between the frontend and
the backend. We use the JavaScript Object Notation (JSON)4 for interchanging data
between the Dart frontend and Python backend. A sample request and reply for the
/map-match endpoint can be found in Figure 9. For the other endpoints we use a
similar JSON structure.

1 request = {
2 "coordinates": [
3 "47.984554414717,7.893493406577,1663594021401",
4 "47.984396141097,7.894909945709,1663594032515",
5 "47.985218134608,7.894933737771,1663594054057"
6 ],
7 "trip_id": ""
8 }
9

10 response = {
11 "location": (47.9852057074915, 7.8949523500852),
12 "next_stop": "Freiburg, Heinrich -Heine -Str.",
13 "route_color": "646363",
14 "route_dest": "Freiburg, Langmatten",
15 "route_name": "18",
16 "route_type": "3",
17 "shape_id": "shp_3_233",
18 "trip_id": "352.T0.10-18-I-j22-1.6.R"
19 }

Figure 9: Example request by the frontend with the response by the
backend.

4.9 Storage of Data

In the previous sections we assumed that all data about a specific public transit
network is stored in DPTN. We assumed, that we can retrieve any information, that
we need from it.

In this chapter we introduce a Python class called GTFSContainer which contains all
data necessary for the dynamic map-matching and API requests. Our main design
goals are a quick lookup of information and a small memory consumption.

4https://www.json.org/json-en.html

26

https://www.json.org/json-en.html


As described before, we already have the graph GPTN that contains all edges. Each
edge has a list of tuples with shape_id and shape_sequence number. Additionally,
we need a STRtree with edges from GPTN for quick spatial queries.

For the other lookups we use Python lists, dictionaries and sets. The time complexity
of all possible operations is described in here5. We only focus on lookup time
complexity.

We use a list if we have elements that are ordered and we know the index for look-up.
In this case, the average and amortized worst case is O(1). If we do not know the
index we get O(n), because we need to possibly check all n elements in a list. We use a
set, if we want to quickly check for membership, such as the active-weekday-hours.
In the average case we get O(1), but in amortized worst case we get O(n). We use a
dictionary if we have keys and want to associate values with the key. In the average
case we get O(1), but in worst case we get O(n).

For the active edges we need to find edges that have trips active on them. Since
edges are only annotated with shape_ids, we need to find candidate trips given a
shape_id. Moreover, we need all location tuples in a shape for /shape. We do not
have the shapes stored separately, which are already contained in GPTN. Instead, we
store the starting edge of every shape. Then, we can use GPTN to find all edges of a
given shape. Since GPTN is a directed graph, we start at the starting edge. Then,
we repeatedly examine all outgoing edges for the annotated list of shape_ids and
shape_sequence and follow the edge containing the same shape_id and the next
higher shape_sequence. This way, we can find all edges of a given shape, without
introducing a new dictionary with look up time of O(n).

1 {
2 shape_id: [
3 ((lat, lon), (lat, lon)),
4 [(trip_id, serivce_id, route_id), ...]
5 ],
6 ...
7 }

Given a trip, we need to determine the service information and arrival and departure
time to determine if the trip is active at a given user time.

The service information is represented by the service_id. Multiple trips can have the
same service_id. Thus, we use the service_id as a reference for the trip and only
store the information for a service_id once. A service has a set of removed_dates, a
set of extra_dates, a start_date and an end_date. With the set for removed_dates
and extra_dates we can quickly determine if a given date is an exception. A service
also has active_weekdays. We do not store this, since we created the awh.

5https://wiki.python.org/moin/TimeComplexity

27

https://wiki.python.org/moin/TimeComplexity


1 {
2 service_id: [
3 start_date, end_date, {removed_dates}, {extra_dates}
4 ],
5 ...
6 }

Since the stop times vary from trip to trip, we store the stop times individually for
every trip. This is just a list of the stop times. For the same reason, each trip has
its own awh. If we know the trip segment id ts, we can quickly look up stop time
information in a list with O(1). The tsth stop is the stop at the start of a trip
segment. The ts+ 1th stop is the stop at the end of a trip segment. We determine
the trip segment id for an edge with the dictionary edge_to_ts, that maps edges to
trip segment ids. With edge_to_ts we can quickly determine trip segment ids and
thus the start and end times.

The dictionary edge_to_ts does not need to be stored for every trip. For trips
with the same shape_id and stops, the edge_to_ts is identical. Since multiple trips
can have the same shape_id and stops, we can remove the duplicates by storing
edge_to_ts in another dictionary. The trips then refer to the correct entry in this
new dictionary.

For calculating a predicted time for a trip given a point, we need to determine which
trip segment a point belongs to. Unfortunately, the edge_to_ts dictionary cannot
provide this information. Therefore, we store a list of trip segment polylines. The
trip segment polylines are again only depended on the shape and stops of the trip.
Thus, we can store them together with the edge_to_ts for reduced storage.

1 {
2 trip_id: [
3 [[[arrival_time,depature_time], stop_id], ...],
4 active_weekday_hours,
5 route_id,
6 service_id,
7 hash_value
8 ],
9 ...

10 }

28



1 {
2 hash_value: [
3 edge_to_ts,
4 [trip_segment_polyline, ...]
5 ],
6 ...
7 }

In the frontend application, we want to display information to the current user about
the current vehicle. Moreover, we use the colors and type of a vehicle, to make
the information more appealing. This information is mainly contained by the route
information. Since the active edges also return the route_id we need to quickly look
up any information related to the route.

1 {
2 route_id: [
3 route_short_name, route_type,
4 route_color, route_text_color
5 ],
6 ...
7 }

For /shape, we also need the location of the stops to display. We can look at the
information we saved for a trip_id. It contains all stop_ids in a trip. Thus, we
need a new dictionary, that given a stop_id returns location of a stop. We also store
the stop_name, so that this can be displayed to the user as the next stop.

1 {
2 stop_id: [stop_name, stop_lat, stop_lon],
3 ...
4 }

In the frontend we display possible connections for the next stop. Multiple stops can
be grouped together. For example a central station can have a tram, a train and
a bus station all with the same name. Thus, given a stop_name we need a list of
stop_ids to determine which stops we need to examine.

1 {
2 stop_name: [stop_id, ...],
3 ...
4 }

Now with a number of possible stop_ids, we still need to find trips that stop at the
next stop after a given timestamp. For every stop_id we store of list of trip_ids with

29



the departure_time. We can check if the departure_time is after the timestamp
and only then check if the trip is active on the date of the timestamp. This gives us
a list of possible transfer options at the next stop for a user.

1 {
2 stop_id: [[trip_id, departure_time], ...],
3 ...
4 }

Most of the information in GTFSContainer is stored similarly to the GTFS data
set. We can precalculate most of the data structures described above. For the GPTN
and the STRtree we store all edges as a list in JSON format. On startup the server
loads all precalculated data as dictionaries and generates the GPTN and the STRtree
from the list of edges. We have written the precalculation part in C++. A library for
parsing CSV in C++ is available here6. All the precalculated data is stored in JSON
format with the library from here7.

6https://github.com/ben-strasser/fast-cpp-csv-parser
7https://github.com/nlohmann/json

30

https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/nlohmann/json


5 Evaluation

In order to measure the performance of our dynamic map-matching, we need a test
data set. Ideally, we want to capture data from the real world. Unfortunately, we
are not able to take a high amount of public transit vehicles, in order to capture
location time tuples for all possible public transit vehicles from a public transit
network. Therefore, we decided to generate own test data based on DPTN. We try
to mimic data captured from the real world as closely as possible. Then, with the
generated test data, we can evaluate the performance of our dynamic map-matching
approach.

5.1 Evaluation Method

5.1.1 Generating Test Data

Our map matching algorithm works with a list of n location time tuples g. In our
case we use n = 10. We can generate test data tdtrip_id which contains location time
tuples for a particular trip, that follows the shape of a trip. For any given trip, we
need the stops and shape of a trip to generate test data tdtrip_id. First we generate
m test location tuples gtest = [p1, . . . , pm] along the shape. Then, we try to mimic the
inaccuracy of location measurements by applying some noise onto every generated
test location tuple. We are using normally distributed noise in meters N ∼ (0, 16).
In the test data, a user always travels the same number of stops s. s does not include
the stop the user gets onto a PTV. We assume that s = 4 is a realistic value. For each
trip we generate a test instance for each possible four-stop journey. Thus, a trip with
a total of 6 stops gets two test instances. One starting at stop 1 and ending at stop 5
and another one starting at stop 2 and ending at stop 6. For any trips that do not
have enough stops for a test instance or if the shape is too short (n > m), we simply
generate a single test instance, with the available stops or locations in gtest. We have
already generated gtest for the whole shape. For a test instance, we randomly select n
location tuples that lie between the start and end stops for the given test instance.

Next to a location tuple we need a fitting timestamp to complete a location time
tuple for our map-matching algorithm. In order to calculate a fitting timestamp, we
use the same approach as in section 4.5.3. For generating test data, this approach has
a major drawback. We assumed that vehicles have a constant speed between stops.
This is not true for most vehicles. Therefore, we also add noise to the timestamp to

31



simulate varying speeds of the vehicle. For every stop we assume, that public transit
vehicles can have delay, but if they arrive to early, they will wait until the scheduled
departure time. We add a normally distributed delay in seconds but map all negative
values to 0 max(0,N ∼ (0, 60)). Every timestamp between this stop and the next
stop will have this delay added. Additionally, we add a delay to each timestamp in
seconds independent of the stop N ∼ (0, 30). This simulates vehicles having varying
speed on each route.

The GTFS data sets describe the weekly schedule of PTVs. We test a single day
from the schedule, due to high number of trips that need to be tested. Dynamic
map-matching to a tight time schedule is more challenging because there are more
trips active around the same time. On weekends there are typically less trips than on
weekdays. Hence, we chose a Wednesday that is not a public holiday for our testing.
We only generate a test data set for trips that are active on this day.

5.1.2 Accuracy Measure

Our main goal is to find the correct public transport vehicle a user is in. Moreover, we
want to provide a responsive user experience. Therefore, we can measure the following
three aspects in order to evaluate the performance of our dynamic map-matching.

First, we want to match the correct trip_id, given any test testtrip_id ∈ tdtrip_id.

For each test we check if the trip matched by our map-matching algorithm is the
same as the original trip the test was generated for with an indicator function:

1(testtrip_id) =

{
1, if trip_id = match(testtrip_id)

0, otherwise

Trips can have vastly different lengths of shapes and number of stops. Thus, the
number of tests for each trip can vary. To avoid prioritizing longer trips over shorter
trips in our accuracy measurement we take the average over all test instance in a test
data set for trip. Then we take the average over all test data sets.

accuracy =
1

|Test Data|
∑

td∈Test Data

(
1

|td|
∑

test∈td
1(test)

)

With random elements included in each test data, we generate three test data sets and
run the evaluation on each test data set. Then we take the average of the resulting
average.

Moreover, we measure the memory and storage consumption of our backend. This is
due to the large amount of precalculated data that need to be stored in memory for
a fast map-matching during run-time.

32



The last measure is the run-time of our map matching algorithm. The run-time in
this evaluation only measures the performance of the map-matching algorithm. The
performance of the frontend, network latency and of our API are not included. The
total latency can be higher than the measured value and might be highly dependent
on network latency and hardware.

5.1.3 Evaluation Data Sets

We evaluate PublicTransitSnapper with different GTFS data sets Freiburg, Zürich
and SWEG. The Freiburg GTFS data set is provided by Freiburger Verkehrs
AG1. For Zürich, we filtered the GTFS data set Switzerland2 for any trips by
the Züricher Verkehrsverbund. For SWEG we filtered the GTFS data set SPNV
Baden-Württemberg3 for any trips by the Südwestdeutsche Landesverkehrs-AG.

In Table 1 we provide more detailed information about each data set. Freiburg contains
an almost equal number of buses and trams. Zürich almost exclusively contains buses
and contains more trips than Freiburg. The SWEG data set exclusively contains
trains.

Dataset total trips tram bus funicular train

Freiburg 19,153 9,063 10,090 − −

SWEG 733 − − − 733

Zürich 33,178 − 31,971 1,206 −

Table 1: Route types in each evaluation data set.

5.1.4 Evaluation Algorithms

For the evaluation we use four different algorithms: Baseline, BaselineHMM, Ac-
tiveEdges, TimeAfter.

The Baseline algorithm takes the last location tuple from g and gets the closest edge
in GPTV with the STR-tree. Then it selects a trip, that fits to the edge. If there are
multiple trips, that fit to this edge, randomly take one. This does not include any
time information.

1https://www.vag-freiburg.de/fileadmin/gtfs/VAGFR.zip
2https://opentransportdata.swiss/dataset/00811070-1b51-43da-87af-b1901e906323/
resource/d97dedca-4e9e-454b-b7ad-5188b85f075f/download/gtfs_fp2022_2022-06-22_
04-15.zip

3https://www.nvbw.de/fileadmin/user_upload/service/open_data/fahrplandaten_ohne_
liniennetz/bwspnv.zip

33

https://www.vag-freiburg.de/fileadmin/gtfs/VAGFR.zip
https://opentransportdata.swiss/dataset/00811070-1b51-43da-87af-b1901e906323/resource/d97dedca-4e9e-454b-b7ad-5188b85f075f/download/gtfs_fp2022_2022-06-22_04-15.zip
https://opentransportdata.swiss/dataset/00811070-1b51-43da-87af-b1901e906323/resource/d97dedca-4e9e-454b-b7ad-5188b85f075f/download/gtfs_fp2022_2022-06-22_04-15.zip
https://opentransportdata.swiss/dataset/00811070-1b51-43da-87af-b1901e906323/resource/d97dedca-4e9e-454b-b7ad-5188b85f075f/download/gtfs_fp2022_2022-06-22_04-15.zip
https://www.nvbw.de/fileadmin/user_upload/service/open_data/fahrplandaten_ohne_liniennetz/bwspnv.zip
https://www.nvbw.de/fileadmin/user_upload/service/open_data/fahrplandaten_ohne_liniennetz/bwspnv.zip


The BaselineHMM algorithm gets the close edges for every location tuple in g and
performs a map-matching with HMM. With the most probable path calculated, it
takes a trip that fits to the path. If there are multiple trips, that fit to this path,
randomly take one. This does not include any time information.

The ActiveEdges algorithm is similar to the BaselineHMM algorithm. The only
difference is that, after getting the close edges, ActiveEdges also filters for edges that
have a trip on them at the given time.

The TimeAfter algorithm is similar to the ActiveEdges algorithm. After calculating
the most probable path, we do not randomly select a trip. If there are multiple trips,
that fit to this path, we take the trip, that has the least amount of average deviation
from the schedule.

5.2 Evaluation Results

For the evaluation results all tests were run on the same test system with an AMD
Ryzen 5 5600 6C/12T 3.50 GHz and 32 GB RAM. In order to decrease the total time
needed for testing, we ran a backend instance on each of the 6 cores and split the
test data equally among them.

In Table 2 we evaluate the performance of the two baseline algorithms Baseline
and BaselineHMM. BaselineHMM outperforms Baseline with about double average
accuracy. Both algorithms are not able to match a correct trip in most cases, due
to many trips using the same shape at different times. The Baseline algorithm has
a fast run-time since only the closest edge to the last location tuple is considered.
With BaselineHMM, we get a high run-time. Without filtering edges that do not
have trips on them at the user time, there are many edges that are inserted into the
HMM. Thus, calculating the shortest path in the GHMM takes much longer. With a
high number of trips the likelihood of trips being close is higher thus the accuracy
suffers. SWEG has a low run-time since the individual shapes of trains do not have a
high overlap.

Average Accuracy Average Run-Time

Dataset Baseline BaselineHMM Baseline BaselineHMM

Freiburg 0.4% 0.8% 0.06s 0.67s

SWEG 0.8% 1.6% 0.002s 0.037s

Zürich 0.2% 0.4% 0.06s 0.70s

Table 2: Average accuracy and run-time of baseline algorithms.

34



Table 3 shows the ActiveEdges algorithm run on the three data sets. Unfortunately,
the average accuracy is at less than 22%. It is higher than the two baseline algorithms,
but not enough to match a user to the correct trip in most cases. Interestingly, the
added time data seems to benefit data sets with more dense trips.

Dataset ActiveEdges

Freiburg 15.8%

SWEG 5.3%

Zürich 21.6%

Table 3: Average accuracy for ActiveEdges without time slack.

Examining our approach, we found that the accuracy is low due to no slack in the
time checking for the active edges step. In Table 4, we are able to achieve much
higher results if we introduce one minute of allowed earliness and five minutes of
allowed delay. In the following we always allow this time slack.

No time noise Time noise

Dataset ActiveEdges TimeAfter ActiveEdges TimeAfter

Freiburg 91.6% 92.4% 91.2% 91.3%

SWEG 34.9% 34.2% 32.5% 32.3%

Zürich 92.4% 95.7% 92.3% 94.8%

Table 4: Average accuracy of our dynamic map-matching algorithms.

In Table 4, we evaluate the average accuracy of our two dynamic map-matching
approaches. In Freiburg and Zurich we are able achieve an average accuracy of over
90%. In both cases we notice an increase in average accuracy with the TimeAfter
approach compared to ActiveEdges. In Freiburg the increase is much smaller. In the
Freiburg data set, there are trams and buses that run on the same streets. Thus, there
are multiple shapes very close together with different edges. With the noise added to
the location measurements, we cannot easily determine which of the shapes is correct
with our approach. Moreover, in the Freiburg GTFS data set we found trips, that
that run at the same time for a number of stops. Figure 10 shows two example trips,
that have this issue. In this case, we are not able to correctly determine the trip, since
both have the same likelihood. We notice a lower average accuracy after adding time
noise to the location time tuples. This is expected, since in our approach, we assume
that trips perfectly follow the GTFS schedule. If a trip has delay, the probability that
g gets matched to a later trip is higher. For the ActiveEdges approach, the accuracy
drop is smaller compared to TimeAfter, since we allowed slack. In this case a small

35



delay has less impact due to still being in the time frame with slack.

Figure 10: Example for trips that cannot be distinguished. Both trips share
a number of stops with the same arrival and departure times on the
same weekdays.

Running our dynamic map-matching on the SWEG data set, we notice a much lower
average accuracy compared to Freiburg and Zurich. The main difference in the data
sets is that SWEG exclusively contains trains. The distance between stops in a train
network is higher than for trams or buses. In Figure 11 we reduce the number of
stops s a user takes for a test while keeping n = 10. With less stops, and thus smaller
distances between each sample location tuple, we get a higher accuracy. We conclude
that our map-matching approach does not work well with big distances between each
sample location tuple. Moreover, using the TimeAfter approach does not seem to
have an advantage compared to ActiveEdges.

The memory and storage requirements can be found in Table 5. For the precomputed
files, we need about 1.3 times the storage compared to the GTFS size. Since we are
able to reduce the amount of look-ups and calculations needed during run-time, we
assume that this a reasonable amount of storage being used. For the memory usage,
we take the memory usage of the docker container, where our whole backend runs.
Comparing the precomputed files to the memory usage, for Freiburg and Zurich we

36



Figure 11: Accuracy in SWEG data set with different number of stops.

need about 11 times of memory. For the SWEG this is much higher. This is because
the SWEG data set contains trains with long shapes and thus many edges. We store
the edges of a shape in multiple data structures. We have GPTN, a STRtree and also
the trip segments. This leads to a high amount of duplicates. Hence, our memory
usage does not scale well with the shapes.

Dataset GTFS size precomute size precompute time docker memory usage

Freiburg 28.3 MB 36 MB 1.65 s 384 MiB

SWEG 4.58 MB 5.6 MB 0.27 s 148.1 MiB

Zürich 45.5 MB 58 MB 2.47 s 626.6 MiB

Table 5: Memory and storage usage of our backend.

Table 6 shows the average run-time of our two dynamic map-matching approaches.
Similar to the two baseline algorithms, SWEG has a low run-time due to low shape
overlap. For Freiburg and Zürich we measure an average run-time of 210-250ms. For
an interactive user experience, we aimed for a run-time of 500ms or lower. Therefore,
our expectations were met.

37



No time noise Time noise

Dataset ActiveEdges TimeAfter ActiveEdges TimeAfter

Freiburg 0.248s 0.230s 0.246s 0.241s

SWEG 0.018s 0.018s 0.018s 0.018s

Zürich 0.217s 0.219s 0.233s 0.238

Table 6: Average run-time of our dynamic map-matching algorithms.

38



6 Conclusion

PublicTransitSnapper is able to match a user to a public transit vehicle. It extends
map-matching to a static road network with the dynamic element of public transit
vehicles. We notice that our approach works well with buses and trams but has low
accuracy when working with trains. In order for our map-matching to be accurate,
we need a high sampling rate with low distances between each location measurement.
Additionally, delays of PTVs decrease the performance of our map-matching. When
matching to buses and trams, we are able to match to the correct PTV in most cases.
Moreover, the application can provide information about the currently matched trip
to the user. In the following, we suggest further improvements.

6.1 Future Works

In our approach we have used a fixed balance of parameters in the emission and
transition cost functions. We are currently only using distance based emission and
transition cost functions. It might be beneficial to add a time based cost to either
emission or transition cost. Although, this might be more sensitive to delay. Moreover,
we noticed that due to the time deviation based metric for selecting the final trip,
delays can cause the map-matching to have a lower accuracy. Adding real-time data
can mitigate some of the issue. Further research is needed in order to determine if
adding parameters to emission and transition cost can make dynamic map-matching
more robust to such delays. Due to different possible types of PTVs and varying
size and density of PTNs it can be difficult to find a perfect balance. Therefore, we
estimate that this could take half a year to a year.

For selecting the correct trip, we tried to predict the time at which a public transit
vehicle is at any given time given any point on the shape. We assumed that vehicles
travel at a constant speed between consecutive stops. This is highly unlikely in the
real world. Due to factors such as traffic lights or corner public transit vehicles have
varying speed. From the shapes, curves and straight can already be extracted. Further
parameters such as traffic lights need additional sources. Adding of such information,
e.g. from OpenStreetMap data might be possible. With a better estimate of positions,
we expect an increase in accuracy. Solving this needs a lot of testing in the real world,
thus we expect this to take up to half a year to complete.

Our map-matching approach requires much information stored in the memory. This
can be become a limiting factor for increasing sizes of GTFS data sets. More efficient

39



data structures may be used to store the data to further reduce memory usage.
Currently, we have duplicates when storing all edges from all shapes. Further research
is needed to reduce the memory consumption of our stored look up data. Much
restructuring of our stored data is needed, therefore we expect this to take at least
half a year.

Moreover, run-time is a crucial for a smooth user experience with the frontend. We
expect significant performance gains when switching the backend from Python to a
faster programming language such as C++. As a first step the active edges and HMM
part that take the most computation time could be build as a C++module for python.
We estimate, that rewriting part of our approach C++takes a few weeks. Since our
precalculation is already done in C++some the code base can be transferred.

Further improvements can also be made to the frontend of our project. We included
real-time data in the backend, but no information is displayed to the user. Once
matched to a public transit vehicle, we could display how much delay the vehicle has
compared to the schedule. Next to delays further information can also be published
with real-time data, such as warnings or network outages. This involves mostly adding
features to the frontend. Designing a simple interface for real-time updates can be
done in one to two weeks. Designing an intuitive and user friendly interface might
take much longer.

Moreover, we could use our program in the future to create crowd-sourced real-time
data. If there is a sufficient number of users matched onto a PTV, we could measure
their delay to the schedule and generate our own real-time feed. This might be
useful for cities that do not have any real-time feed available. The main difficulty is
matching multiple people to an already delayed PTV. Therefore, we estimate that
this could take about half a year to complete.

40



7 Acknowledgments

First and foremost, I would like to thank my adviser Patrick Brosi. His supervision
and meetings filled with suggestions and discussions were essential during my work. I
also want to thank Prof. Dr. Hannah Bast for enabling me to work on this project
and examining this thesis. I thank Gerrit Freiwald for working together on this
project and the many hours of debugging. I want to thank my friends and family for
supporting me throughout my studies. Lastly, I want to thank everyone who took
time for proofreading my thesis.

41





Bibliography

[1] B. Hummel, “Map matching for vehicle guidance,” in Dynamic and Mobile GIS,
pp. 211-222, CRC Press, 2006.

[2] P. Newson and J. Krumm, “Hidden markov map matching through noise and
sparseness,” in Proceedings of the 17th ACM SIGSPATIAL international confer-
ence on advances in geographic information systems, pp. 336-343, 2009.

[3] H. Bast and P. Brosi, “Sparse map-matching in public transit networks with
turn restrictions,” in Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 480-483, 2018.

[4] R. Geisberger and C. Vetter, “Efficient routing in road networks with turn costs,”
in International Symposium on Experimental Algorithms, pp. 100-111, Springer,
2011.

[5] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE transactions on Information Theory, vol. 13, no. 2,
pp. 260-269, 1967.

[6] H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan, “Fast viterbi map matching
with tunable weight functions,” in Proceedings of the 20th international conference
on advances in geographic information systems, pp. 613-616, 2012.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[8] H. Koller, P. Widhalm, M. Dragaschnig, and A. Graser, “Fast hidden markov
model map-matching for sparse and noisy trajectories,” in 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, pp. 2557-2561,
IEEE, 2015.

[9] T. A. J. Nicholson, “Finding the shortest route between two points in a network,”
The computer journal, vol. 9, no. 3, pp. 275-280, 1966.

[10] G. Freiwald, “PublicTransitSnapper: Working with GTFS in Germany to match
Mobile Phones to Public Transit Vehicles,” Bachelor’s Thesis, 2022.

[11] “General Transit Feed Specification.” https://gtfs.org/.

43

https://gtfs.org/


[12] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in
Proceedings of the 1984 ACM SIGMOD international conference on Management
of data, pp. 47-57, 1984.

44




	1 Introduction
	2 Related Work
	3 Background
	3.1 Public Transit Network
	3.2 Network Graph
	3.3 GTFS Data Set
	3.3.1 Missing Shapes
	3.3.2 GTFS Realtime Extenstion

	3.4 Hidden Markov Model
	3.5 GPS Location and Great-Circle Distance

	4 Approach
	4.1 Problem Definition
	4.2 Dynamic Map-Matching Idea
	4.3 Close Edges
	4.4 Active Edges
	4.5 Hidden Markov Model
	4.5.1 HMM Probabilities
	4.5.2 Matching to a Specific Trip
	4.5.3 Adding Time Data
	4.5.4 Including GTFS Realtime in Map-Matching

	4.6 Getting All Information About the Matched Trip
	4.7 User Application
	4.8 Linking Backend and Frontend
	4.9 Storage of Data

	5 Evaluation
	5.1 Evaluation Method
	5.1.1 Generating Test Data
	5.1.2 Accuracy Measure
	5.1.3 Evaluation Data Sets
	5.1.4 Evaluation Algorithms

	5.2 Evaluation Results

	6 Conclusion
	6.1 Future Works

	7 Acknowledgments
	Bibliography

