PublicTransitSnapper: Dynamic Map-Matching To Public Transit Vehicles

Robin Wu

Examiner: Prof. Dr. Hannah Bast Adviser: Patrick Brosi

University of Freiburg
Faculty of Engineering
Department of Computer Science
Chair of Algorithms and Data Structures

September $25^{\text {th }}, 2022$

Writing Period
25.07.2022-25.10. 2022

Examiner
Prof. Dr. Hannah Bast
Adviser
Patrick Brosi

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no other sources or learning aids, other than those listed, have been used. Furthermore, I declare that I have acknowledged the work of others by providing detailed references of said work.
I hereby also declare that my Thesis has not been prepared for another examination or assignment, either in its entirety or excerpts thereof.

[^0]Signature

Abstract

PublicTransitSnapper is an application for matching a user to the public transit vehicle the user is currently traveling on. We base the matching to a public transit vehicle on a sequence of timestamped locations. Public transit vehicles travel along a specific path at a specific time within their public transit network. Since location measurements are noisy, only "snapping" to the closest road might not work. Mapmatching can be used to match a sequence of locations to the most probable path in a static road network. For map-matching to a public transit vehicle we need to find a vehicle that follows a similar path to the locations and the vehicle must be at these locations at the measured times. In this thesis we present a solution to this dynamic map-matching problem. Similar to conventional map-matching, we utilize a Hidden Markov Model. Furthermore, we include time information from the schedule to find the most likely public transit vehicle.

Zusammenfassung

PublicTransitSnapper ist eine Anwendung, um zu bestimmen, in welchem öffentlichen Verkehrsmittel ein Benutzer gerade unterwegs ist. Hierfür verwenden wir eine Liste an zeitgestempelten Standorten. Öffentliche Verkehrsmittel fahren in ihrem Verkehrsnetz entlang eines bestimmten Weges zu einer bestimmten Zeit. Da Standortmessungen verrauscht sein können, genügt es nicht, jeden Standort auf die nächstgelegene Straße zu projizieren. Map-Matching kann verwendet werden, um mit einer Liste von Standorten den wahrscheinlichsten Weg in einem statischen Straßennetz zu bestimmen. Für das Map-Matching auf ein öffentliches Verkehrsmittel müssen wir ein Fahrzeug finden, das einen ähnlichen Weg zu den gemessenen Standorten zurücklegt und zusätzlich zu den gemessenen Zeiten an den Orten ist. In dieser Arbeit stellen wir eine Lösung für dieses dynamische Map-Matching-Problem dar. Ähnlich wie beim herkömmlichen Map-Matching verwenden wir ein Hidden Markov Modell. Darüber hinaus beziehen wir Zeitinformationen aus dem Fahrplan mit ein, um das wahrscheinlichste öffentliche Verkehrsmittel zu finden.

Contents

1 Introduction 1
2 Related Work 3
3 Background 5
3.1 Public Transit Network 5
3.2 Network Graph 5
3.3 GTFS Data Set 6
3.3.1 Missing Shapes 7
3.3.2 GTFS Realtime Extenstion 7
3.4 Hidden Markov Model 10
3.5 GPS Location and Great-Circle Distance 10
4 Approach 13
4.1 Problem Definition 13
4.2 Dynamic Map-Matching Idea 13
4.3 Close Edges 14
4.4 Active Edges 15
4.5 Hidden Markov Model 18
4.5.1 HMM Probabilities 19
4.5.2 Matching to a Specific Trip 20
4.5.3 Adding Time Data 20
4.5.4 Including GTFS Realtime in Map-Matching 22
4.6 Getting All Information About the Matched Trip 23
4.7 User Application 23
4.8 Linking Backend and Frontend 25
4.9 Storage of Data 26
5 Evaluation 31
5.1 Evaluation Method 31
5.1.1 Generating Test Data 31
5.1.2 Accuracy Measure 32
5.1.3 Evaluation Data Sets 33
5.1.4 Evaluation Algorithms 33
5.2 Evaluation Results 34
6 Conclusion 39
6.1 Future Works 39
7 Acknowledgments 41
Bibliography 44

List of Figures

1 Illustration of map-matching to a static road network 1
2 Example GTFS Realtime update 9
3 Illustration of close($p t$) 14
4 Illustration of trip segments 17
5 Example Hidden Markov Model 18
6 Visualization of minimal time difference for an edge 21
7 Determining the next stop with two trip segments 24
8 Screenshot of the different pages in the frontend 25
9 Example request by the frontend with the response by the backend 26
10 Example for trips that cannot be distinguished 36
11 Accuracy in SWEG data set with a different number of stops 37

List of Tables

1 Route types in each evaluation data set 33
2 Average accuracy and run-time of baseline algorithms 34
3 Average accuracy for ActiveEdges without time slack 35
4 Average accuracy of our dynamic map-matching algorithms 35
5 Memory and storage usage of our backend 37
6 Average run-time of our dynamic map-matching algorithms 38

1 Introduction

Imagine sitting in a public transit vehicle and you want to know more information about the current vehicle on your mobile phone. This could be the name of the route, the next stop or transfer possibilities at the next stop. In order to correctly display any relevant information, we need to determine in which public transit vehicle you are currently traveling on. Our application PublicTransitSnapper can run on your mobile phone and collect location information on your device. Based on the last collected locations, we try to determine the current vehicle you are on.

This problem can be solved with map-matching. Figure 1 shows map-matching of a sequence of locations to a most likely path in a static road network. The main challenge is that location measurements are not infinitely accurate and may contain measurement noise. Simply "snapping" every location to the closest street may not be the best possible solution. Solving this kind of map-matching problem is a well-researched topic.

Figure 1: Illustration of map-matching to a static road network.
In contrast to map-matching to a static road network, public transit vehicles are highly dynamic. Public transit vehicles follow a specific path at a specific time. We
cannot simply map-match the sequence of location measurements to the roads of a public transit network. Instead, we need to check for active public transit vehicles and only allow matching onto those.

Our project PublicTransitSnapper serves as a solution to this dynamic map-matching problem. PublicTransitSnapper is split into a backend and a frontend part. The backend performs a dynamic map-matching, that matches timestamped locations onto the most likely public transit vehicle. Most of the backend is implemented in Python ${ }^{1}$. The frontend is an application that runs on a mobile device. The frontend collects timestamped locations on the mobile device and sends these to the backend for processing. Once a public transit vehicle is matched, more information about the current vehicle is displayed to the user. Moreover, we provide a group chat for users sitting in the same vehicle. The frontend is built with the Flutter framework ${ }^{2}$ which uses the Dart ${ }^{3}$ programming language.

We provide PublicTransitSnapper as a public open-source project ${ }^{4}$. In the repository, there is a detailed readme for installation and running both the backend and frontend. Additionally, we provide a tool for simulating locations of a public transit vehicle to test the matching of our application.

[^1]
2 Related Work

Map-matching tries to determine a most likely path through a road network given a sequence of location measurements. Our work is closely related to this problem.

In order to solve map-matching to a static road network a Hidden Markov Model (HMM) can be used. It was first introduced to map-matching in [1]. In [2], the authors improved the HMM approach, by tuning the emission and transition probability of the HMM. This was done by taking the measurement noise and the underlying road network into consideration. Their approach produced accurate results up to a sampling rate of 30 seconds. Since we are collecting location measurements with a mobile phone, we can expect modern devices to have a similar or higher sampling rate.

Our work is also closely related to map-matching based on schedule data.
With the stops of a public transit vehicle and the underlying road network, determining the most likely path a vehicle has taken was described in [3]. Depending on the type of vehicle the stops can have a high distance between each other. This leads to a highly sparse map-matching problem. In this case a HMM was used with additional inter hop turn restrictions based on [4].

Since we want to provide a responsive experience to the user, we require a fast calculation of the dynamic map-matching. Typically, the Viterbi algorithm [5] is used to calculate the sequence of states with the highest probability in a HMM. In [6], instead of using the Viterbi algorithm the probabilities were determined with a single execution of Dijkstra's algorithm [7] to reduce the run-time. With [8], an alternative using bidirectional Dijkstra was introduced. In most cases only a fraction of all nodes needs to be visited for finding the shortest path [9]. Therefore, we adapt the approach with bidirectional Dijkstra.

In our approach, the main difference to existing work in map-matching is the added dynamic element of public transport vehicles. Added to possible noise of location measurements and the road network of a public transit network we need to consider the schedule data of a public transit network.

In September 2018 Google launched Pigeon ${ }^{1}$ for generating crowd-sourced real-time data. The idea was that users are able to report delays, incidents, "crowdedness", condition of vehicles or facilities and other information for other users to see. The

[^2]expectation was that the crowd-sourced real-time data is more accurate than real-time data provided by public transport agencies. Moreover, information can be updated faster with many users. The app was launched as a test in six major cities across the USA. Unfortunately, the Pigeon project was canceled in 2020.

Another application for public transit vehicles is transit ${ }^{2}$. It provides many services, such as finding location of nearby public transport vehicles, finding transfer options and "rider-powered locations", which seems to be similar to crowd-sourced real-time data. In Germany it is only available in Berlin, Hamburg and Ulm. Thus, we were not able to try the features of this app.

Both pigeon and transit do not have publications available. Thus, we do not have any information about how these applications work in detail.

PublicTransitSnapper was developed together with G. Freiwald. His thesis [10] covers further aspects of PublicTransitSnapper, especially details related to the frontend part.

[^3]
3 Background

In this chapter we introduce a representation of a public transit network. Moreover, we introduce the GTFS standard that describes a public transit network. Lastly, we briefly describe location data and calculating distances.

3.1 Public Transit Network

A public transit network (PTN) provides transportation for passengers. It is intended to be used by the general public. Most PTNs operate based on a repeating weekly schedule and service routes according to this schedule. A public transit vehicle (PTV) that services a route follows a specific course of the road and stops at predetermined stops for passengers to board or get off. We refer to the course of the road as the shape of a PTV. There can be different kinds of PTVs within a PTN such as trains, buses, trams or ferries.

3.2 Network Graph

PTVs follow a shape which we can intuitively represent in a directed Graph. A directed Graph $G=(V, E)$ consists of a set of vertices $V=\left\{v_{1}, \ldots, v_{m}\right\}$ and a set of directed edges $E=\left\{\left(v_{i}, v_{j}\right) \mid v_{i}, v_{j} \in V\right\}=\left\{e_{1}, \ldots, e_{n}\right\}$. The shape of a PTV is a sequence of locations on a map. Each of the locations is represented as a vertex. We connect the vertices of consecutive locations in the shape with a directed edge in direction of travel. This way, we can construct $G_{\text {PTN }}$ for a given PTN. In a PTN some shapes can have the same edge. We want to avoid duplicate edges in $G_{\text {PTN }}$. Therefore, we annotate each edge with the names of the shapes they are contained in. A weighted graph assigns a weight to every edge with weight function $w: E \rightarrow \mathbb{R}$. A path from vertex v_{i} to v_{j} in a graph is a finite sequence of edges $\operatorname{path}\left(v_{i} \rightarrow v_{j}\right)=\left(e_{1}, \ldots, e_{n}\right), e_{i} \in E$ with e_{1} starting from v_{i} and e_{n} ending at v_{j}. Shortest path algorithms find a path that minimizes the sum of edge weights. In our Python implementation we use the NetworkX ${ }^{1}$ library for handling graphs.

[^4]
3.3 GTFS Data Set

The General Transit Feed Specification (GTFS) [11] is an open standard released by Google in 2006. It is used for the distribution of geographic data and schedules of PTVs. It is the de facto standard that public transport agencies around the wold use to publish data $D_{\text {PTN }}$ about their PTN.

A GTFS data set is a ZIP file with information stored in multiple comma-separated values (CSV) files. Currently there are 22 files with different content specified in the standard. At least six of these files are required for a minimal data set. For our application not all files in the GTFS standard are used. In the following, we briefly describe necessary files and the relevant attributes of their content.

- routes.txt

Defines the transit routes. A route is a collection of trips, that display the same information to the user.
Attributes: route_id, route_short_name, route_color, route_text_color and route_type.

- trips.txt

Describes the trips for each route. A trip is defined as a sequence of at least two stops, that is active at specific time.
Attributes: trip_id, route_id, service_id and shape_id.

- stops.txt

The individual stops trips stop at.
Attributes: stop_id, stop_name, stop_lat and stop_lon

- stop_times.txt

Arrival and departure time of trips at every stop is stored. A time can be greater than 24 hours. This is needed for trips that start on a particular day, but finish after midnight on the next day. If this happens, we refer to this as overtime.
Attributes: trip_id, stop_id, stop_sequence, arrival_time and
departure_time

- calendar.txt

The weekdays a service is active on in a weekly schedule.
Attributes: service_id, start_date, end_date, monday, tuesday, wednesday, thursday, friday, saturday and sunday

- calendar _dates.txt

Contains any exceptions to the weekly schedule. These exceptions dates can be added or removed services for a date.
Attributes: service_id, date and exceptions_type

- shapes.txt

A shape describes the course of the road a PTV takes. A shape consists of a sequence of locations and only has one direction of travel. Multiple trips may follow the same shape.
Attributes: shape_id, shape_pt_lat, shape_pt_lon and shape_pt_sequence.
In the following we first assume, that this data is all available in D_{PTN}. In section 4.9 we describe how we store all necessary data in detail.

3.3.1 Missing Shapes

The shapes.txt contains the locations for building $G_{\text {PTN }}$. According to the GTFS standard, the shapes.txt file is optional. During our work, most data sets we have used, did not include the shapes.txt. In his thesis [10], G. Freiwald examined GTFS data sets for different PTN in Germany more closely in this regard.

As described in the related work section, in [3], the authors provide an approach to generate the shape given the stops and underlying road network of a PTN. An implementation pfaedle ${ }^{2}$ is provided as an open-source project. With GTFS files and OpenStreetMap data, pfaedle generates a fitting shapes.txt.

3.3.2 GTFS Realtime Extenstion

The GTFS data set described above is a static schedule data. Even with some PTNs releasing weekly updated GTFS data sets, we do not get accurate time information for every trip. This is because PTVs can vary from the schedule caused by external factors. Our map-matching is highly dependent on accurate time information. Therefore, in addition to the static GTFS data set we can incorporate real-time data.

Public transport agencies publish real-time data with different standards. GTFS has an extension GTFS Realtime specified in the GTFS standard. In Germany some transport agencies (e.g., Hamburg/HVV, Berlin/VBB) use "HaCon Fahrplan-Auskunft-System" (HAFAS) ${ }^{3}$. The structure of HAFAS is different to GTFS. We found a project ${ }^{4}$ that enables polling a HAFAS endpoint and then publishing a GTFS Realtime feed by matching the HAFAS information to the GTFS data set. Since GTFS Realtime is an open standard that is compatible with the static GTFS data set, we are going to use GTFS Realtime for fetching real-time updates. In the following, we are going to cover relevant parts of the GTFS Realtime standard for our approach.

[^5]The GTFS Realtime data is provided as a feed in a format that is defined with protocol buffers ${ }^{5}$. Protocol buffers is a standard provided by Google, that is used for serializing data independent of programming languages or platforms. The protocol buffer for GTFS Realtime data is defined here ${ }^{6}$. Bindings are provided for many different programming languages. For fetching a GTFS Realtime in Python, a module is provided here ${ }^{7}$. To access the data more easily, we found a project ${ }^{8}$ that converts the feed into a Python dictionary. This way we can easily access the real-time information. Thus, we introduce the GTFS Realtime data as a dictionary.

First the converted dictionary represents a FeedMessage. A FeedMessage requires a header and can have a list of entitys.

The header contains the GTFS Realtime version. Currently there are version 1 and version 2. The main difference between version 1 and 2 is that in version 2 some fields have been converted from optional to required.

Each entity contains a unique id and a trip_update.
The trip_update contains real-time information of a specific trip. It has an entry trip and a list of stop_time_updates. The trip should contain enough information to distinctly identify a trip. In most cases, a trip_id is sufficient. Optionally, the start_date of the trip can be specified. This is necessary in cases where trips have enough delay to collide with a scheduled trip on the next day. For instance, if a trip has service on two consecutive days, but on the first day the trip has 24 hours of delay, then on the second day there are two trips at the same time. We can unambiguously distinguish between them with the start_date.
A trip_update also contains a list of stop_time_updates. A stop_time_update identifies a stop of a trip by either a stop_sequence or a stop_id. The delay of a trip is split into arrival and departure. They do not have to be specified at the same time. The delay can either be specified as a delay in seconds or as an absolute time.

In order keep an update message as small as possible, if a stop of a trip has a delay, then this delay applies to all following stops on the trip until the next stop that has a delay. For this next stop, the delay before will not be added. Figure 2 contains an example FeedMessage.

Some transport agencies publicly provide their real-time feed. With a link to the feed, we can fetch the real-time data with a HTTP GET request. Other transport agencies limit access and require authentication. For Switzerland we can create an account on their website (full explanation with access to API described here ${ }^{9}$). To access their

[^6]```
{
 "header": {
 "gtfs_realtime_version": "1.0"
 },
 "entity": [
 {
 "id": "1.T0.10-46-I-j22-1.2.H",
 "trip_update": {
 "trip": {
 "trip_id": "1.T0.10-46-I-j22-1.2.H",
 "start_date": "20220816"
 },
 "stop_time_update": [
 {
 "stop_sequence": 1,
 "arrival": {
 "delay": 0
 },
 "departure": {
 "delay": 5
 },
 "stop_id": "de:08311:6508:3:14"
 },
 {
 "stop_sequence": 12,
 "arrival": {},
 "departure": {
 "delay": 10
 },
 "stop_id": "de:08311:30065:0:1"
 }
]
 }
 }
]
}
```

Figure 2: Example GTFS Realtime update for a single trip as a Python dictionary.
real-time feed, we need to pass a generated API-key in the header of the HTTP GET request. The server will respond with the real-time feed data only if the request is correct. Other transport agencies may have different requirements. Therefore, we currently cannot support fetching an arbitrary GTFS real-time feed. A function that fetches the feed must be implemented first if it differs from the two options described above.

Some transport agencies limit the amount of allowed requests within a certain time frame. In Switzerland it is twice every minute. Therefore, the update rate of the real-time data can be limited in a configuration file.

### 3.4 Hidden Markov Model

A Markov chain describes a sequence of possible events. Each event is modeled as a state and only depends only on the previous state. The probability of changing from one state to another state is the transition probability. If we assume that a process can be modeled by a Markov chain, but we do not know the states, we use a Hidden Markov Model (HMM). A HMM has observable events and hidden states. We are only able to perceive observable events and try to find the states that caused the observable event to happen. For every observable event we create hidden states. We give them a probability of generating the observable event. This is the emission probability. The transition probability measures the likelihood of transition from a hidden state to another hidden state. With the HMM, we can determine the most likely sequence of hidden states for the solution to our problem.

### 3.5 GPS Location and Great-Circle Distance

The location of a mobile phone is provided by the location services of the operating system. Most commonly the Global Positioning System (GPS) is used. GPS uses satellites around the globe to determine the location of a mobile phone. The satellites constantly broadcast a signal with their time and position. A mobile phone is able to accurately calculate the distance to satellites with the current time and the speed of light. Using signals from multiple satellites a mobile device can accurately determine latitude, longitude and altitude with trilateration. Typically, locations measured with GPS is accurate to about a few meters. In addition to the measurement noise, the signal of GPS satellites can be blocked or reflected from the environment of a mobile device. This can greatly reduce the accuracy of location measurements using GPS. For indoor environments, modern mobile phones are able to include further sources, such as Wi-Fi based positioning systems.

In the following, the tuple of latitude and longitude is referred to as location tuple $p=(l a t, l o n)$. With the location tuple we can describe any point on earth's surface.

If we want to measure the shortest distance between two location tuples, we cannot simply take the distance as in a Cartesian coordinate system. We need to account for the curvature of earth's surface. Instead, we can approximate the shortest distance which is called the great-circle distance with the haversine formula. The haversine formula assumes that the earth is a perfect sphere. Since earth is not a perfect sphere, we can expect errors for distances smaller than a few meters. For more accurate distance calculation, the computationally heavier vincenty formula can be used. For our application the precision of the haversine formula will suffice and we prefer the faster computation with the haversine formula. In the following, we denote the great-circle distance between two location tuples $p_{1}$ and $p_{2}$ as $\left\|p_{1}, p_{2}\right\|_{\text {gcd }}$.

## 4 Approach

### 4.1 Problem Definition

Our goal is to match a sequence of location time tuples collected from a mobile device to a PTV in $D_{\text {PTN }}$. A location time tuple pt contains the location as latitude, longitude, and a timestamp at which the measurement was taken $p t=$ (lat, lon, time). Let $g$ be a list of $n$ location time tuples ordered by time $g=\left[p t_{1}, \ldots, p t_{n}\right]$, time $_{1}<\ldots<$ time $_{n}$. Every trip in $D_{\text {PTN }}$ is identified by a unique trip_id and contained in the list $T=\left[\right.$ trip_id $\left.{ }_{1}, \ldots\right]$. Let $P($ trip_id $\mid g)$ be the probability that the trip with trip_id fits to $g$. We can formulate our dynamic map matching problem as the following maximization problem:

$$
\operatorname{trip}_{-} \mathrm{id}^{*}=\underset{\text { trip_id } \in T}{\arg \max } P(\text { trip_id } \mid g)
$$

After matching trip_id* we can look up any additional information about the trip in $D_{\text {PTN }}$. To get an estimate for the current location of the user, we project the location of the last location tuple in $g$ onto the shape of the trip.

### 4.2 Dynamic Map-Matching Idea

First, we briefly present the main steps of our approach. Similar to map-matching in [2], we use a HMM for calculating $P$ (trip_id $\mid g)$. In order to reduce the number of edges in the HMM we want to discard as many edges as possible. This is equivalent to assigning the probability 0 . Thus, we can design the following algorithm.

Given a list of location time tuples $g$ and the edges $E$ in $G_{\mathrm{PTN}}$ :

1. For every $p t_{i} \in g$ find the following two sets:

- $\operatorname{close}\left(p t_{i}\right)$, find all edges $e \in E$ that are close to $p t_{i}$.
- active_close $\left(p t_{i}\right)$, for every close edge $e \in \operatorname{close}\left(p t_{i}\right)$ check if there are any vehicles currently active according to the schedule at the time of the timestamp.

2. Build a HMM with all edges in active_close $\left(p t_{i}\right), p t_{i} \in g$. Then, calculate the sequence of edges that has the highest probability.
3. Find the trip that fits best to sequence of edges. Fetch and provide any relevant information about this trip.

With a general overview on the algorithm, we will go more into detail of how to solve every step.

### 4.3 Close Edges

For any location time tuple $p t$ we need to find all edges in $E$ that are within a distance $d$ in meters to $p t$. We use a value of $d=100 \mathrm{~m}$. Since we do not need time information for this step $p=($ lat, lon $)$ is the latitude and longitude from $p t$. All close edges are contained in the set close $(p t):=\left\{e \in E \mid\|e, p\|_{\operatorname{gcd}}<=d\right\}$. Figure 3 visualizes getting the close edges.


Figure 3: Illustration of $\boldsymbol{c l o s e}(\boldsymbol{p} \boldsymbol{t})$. All edges within distance $d$ to a $p t$ are fetched.

We have already build $G_{\text {PTN }}$ that contains all edges from the shapes file. Unfortunately, a graph does not support spatial queries. Therefore, we cannot easily find any edges that are within a distance $d$ to $p$, without checking the distance of every edge to $p$ in the $G_{\text {PTN }}$.

In 1984, A. Guttman proposed R-Trees [12] as a data structure for efficient spatial queries. In R-Trees, the leaf nodes contain a list of tuples. The tuple contains the smallest rectangle that contains a stored geometric object and a reference to the stored geometric object. In our case, the geometric objects are the edges from $E$. The non-leaf nodes have a list of tuples. Each tuple contains a reference to a child node and the smallest rectangle that contains all the rectangles of the child node. The R-Tree can be used to find any edge, that intersects the point $p$. For this we need to traverse the R-Tree starting from the root. At every node we need to check all the rectangles stored in the node. If a rectangle contains $p$, then we need to check the child node as well. If a rectangle does not intersect $p$ we can skip it. Once we arrive at a leaf node, we can retrieve the edge with the reference and check if the edge intersects with the point $p$.

Traversing the tree is on average proportional to the depth of the tree. Therefore, a lookup has an average time complexity of $\mathcal{O}(\log n)$ with $n$ edges stored in the R-Tree. In the worst case we can expect $\mathcal{O}(n)$, because we might need to check every entry in the list at a node. Thus, if the tree is not split optimally, we might need to check every edge for intersection.

For our project we use the Python library Shapely ${ }^{1}$ for handling any geometric objects, such as edges or points. Conveniently, shapely provides an interface for the STR packed R-tree (STRtree) from the GEOS library ${ }^{2}$. We can insert all edges $e \in E$ into an STRtree.

In our approach we want to find any edges that are within distance $d$ to $p$. Instead of querying the STRtree with point $p$ we can create a circle. This circle $C_{p, d}$ has its center in $p$ and a diameter of $d$. The STRtree checks for any edges, that intersect the area of the circle $C_{p, d}$. Therefore, we get all edges within distance $d$ to $p$.

### 4.4 Active Edges

After getting $\operatorname{close}(p t)$ for a location time tuple $p t$, we need to determine which of the edges have vehicles on them at the timestamp $t$ of the location time tuple. Only edges, that have a vehicle on them are considered active and are added to active_close $(p t)$.

[^7]In $G_{\text {PTN }}$ every edge is annotated with the shapes $s h p_{e}=\left[s_{1}, s_{2}, \ldots\right]$ they belong to. For any given edge $e$, we only need to check trips that follow a shape in $s h p_{e}$.

The time data for any trip is split into two categories in the GTFS dataset. The service contains the weekdays on which a trip is active. Moreover, it contains any dates with an exception. Secondly, there are arrival and departure times for every stop in a trip.

To check if a trip is active on a date, we can extract the date from $t$. Then, we need to check if the date is an exception date in the service. Exception dates can either be removed or additional dates. In case of a removed date there is no service. We discard the trip in this case. In case of an additional date there is a service on this date. We can skip the weekday check of the service. Otherwise, we continue with the weekday check.

Since the service contains the weekdays on which a trip is active, we only need to get the weekday of $t$ and check if it is in the active weekdays.

Unfortunately, this approach does not work due to overtime trips. For instance, a trip only has service on Mondays and is running from 23:35:00 until 25:30:00 (translates to Tuesday $01: 30: 00$ ). In the weekdays of the service only Monday is an active weekday. If the user is at a time of 00:30:00 on Tuesday, simply checking the weekday fails. Similarly, the exceptions dates check can fail, e.g., if a Monday is in the removed dates.

Instead, we introduce active-weekday-hours (awh). Awh is a set that contains weekday-hour-tuples $\mathrm{wh}=($ weekday, hour, overtime $)$, $\mathrm{awh}=\left\{\mathrm{wh}_{1}, \ldots, \mathrm{wh}_{n}\right\}$. The first entry is an integer that represents a weekday (Monday $\rightarrow 0$, Tuesday $\rightarrow 1, \ldots$ ). The second entry is the hour information of a time. Hence, each weekday is split into 24 segments. The third entry is a flag that shows if the time is in overtime ( $\geq 24: 00: 00$ ). The sample trip that runs on Mondays from 23:25:00 until 25:30:00 has awh $=\{(0,23$, False $),(1,0$, True $),(1,1$, True $)\}$. We convert the user time $t$ into both possible weekday-hour-tuples and check if any of them is in awh of a trip. If the weekday-hour-tuple without overtime is in awh, then the date of $t$ can be used for the exception dates check. If the weekday-hour-tuple with overtime is in awh, then the date of the previous day of $t$ can be used for the exception dates check. If none of the weekday-hour-tuples are contained, the trip is not active. For the example above the user time on Tuesday 00:30:00 is converted into (1, $0, \mathrm{False}$ ) and $(1,0$, True). Here ( 1,0, True) is in the awh set of the sample trip. We need to check the exception dates with the date of the day prior to the user time.

With this data structure, we reduce the amount of trips that need to be checked. Instead of checking trips that are active on a whole weekday, we only need to check trips that are active in the given hour. After that, we need to determine if the edge is active for any trip with a more exact time.


Figure 4: Illustration of trip segments. A trip segment is between two stops and begins/ends at a stop position projected onto the shape.

The time information is available for every stops of a trip as a tuple of arrival and departure time. The location of a stop does not have to be exactly on an edge or a vertex in $G_{\text {PTN }}$. Thus, we need to project the stop onto the closest edge. A stop can be projected onto an edge and there can be multiple edges between stops. Thus, it can be difficult to determine the time of an edge. We can solve this with trip segments, which are the segments between two consecutive stops of a trip. Figure 4 visualizes trip segments. Every trip has len(stops) -1 trip segments. We identify each trip segment with an id $t s$. We create a dictionary edge_to_ts $=\left\{e:\left[t s_{1}, t s_{2}, \ldots\right]\right\}$ that maps every edge to trip segments that contain this edge. Due to the fact, that the stops do not have to be exactly on the shape of trip projecting a stop onto the shape, the projected point can be on an edge. Moreover, multiple stops can be projected onto the same edge. Thus, an edge can be in multiple trip segments.

In order to create edge_to_ts, we have to project the stops onto the edges of a shape. Projecting every stop to the closest edge does not work on all shapes. For instance some shapes have loops and some shapes traverse a street more than once. In these cases the wrong part of the shape can be projected onto. Instead of matching the stop to the closest edge, we also include information about how far a trip has progressed along the shape. If a street is used twice, during the first pass, we match to the edge that is closest to the beginning of the shape.

With the dictionary edge_to_ts we can easily find the trip segment numbers $t s$ for a given edge. The arrival and departure times of stops in a trip is stored in a list stop_times $=\left[\left(\operatorname{arr}_{1}, d e p_{1}\right), \ldots,\left(\operatorname{arr} r_{m}, d e p_{m}\right)\right]$. The start_time of a trip segment is the departure time of the $t s^{\text {th }}$ entry in stop_times. Similarly, the end_time of a trip segment is the arrival time of $(t s+1)^{\text {th }}$ entry in stop_times. Then, we check if the user timestamp $t$ is within the start and end time of the trip segment start_time - earliness $<=t<=$ end_time + delay. We can add some slack to the time with earliness and delay. This is important if the the trip has any delay. Without slack the trip would not be able to match properly.

To sum up, for every trip we store stop_times, the set awh and the dictionary edges_to_ts that maps edges to trip segments. To add an edge $e$ to active_close $(p t)$, we first check the service with the weekday-hour-tuples and then extra dates. Then, we find the trip segments $e$ is on and check if there is vehicle at the user time. Only
then an edge $e$ is active. All other non active edges are discarded for the HMM step.

### 4.5 Hidden Markov Model

With active_close $(p t)$ for all $p t \in g$, we want to determine the sequence of edges with the highest probability of fitting to the sequence of location time tuples. To find the highest probability, we can use a HMM. If every edge of the close active edges is a state node, we can model the HMM as a directed acyclic graph $G_{\mathrm{HMM}}$ :

1. Add a start node to the vertices $V=\{$ start $\}$. The edges are empty $E=\emptyset$. In each step, we remember the nodes created in the last step $L=\{$ start $\}$.
2. For every $p t \in g$, add a state node for every edge in active close edges to the vertices $V \leftarrow V \cup$ active_close $(p t)$. For the edges, we connect newly created state nodes to the state nodes created in the last step $E \leftarrow E \cup\{(u, v) \mid u \in$ $L, v \in \operatorname{active}$ _close $(p t)\}$. For the next iteration set $L \leftarrow \operatorname{active\_ close}(p t)$.
3. Add an end node to the vertices $V \leftarrow V \cup\{$ end $\}$. Connect edges to the previous active close edges $E \leftarrow E \cup\{(u$, end $) \mid u \in L\}$.

Figure 5 shows a Hidden Markov Build from the close edges in Figure 3.


Figure 5: Example Hidden Markov Model. The HMM has two observed events $p t_{1}$ and $p t_{2}$. The hidden states use $\operatorname{close}\left(p t_{1}\right)$ and $\operatorname{close}\left(p t_{2}\right)$ from Figure 3.

Typically, the Viterbi algorithm [5] is used to determine the sequence of states in the HMM with the highest probability. Alternatively, we convert finding the path with highest probability into a shortest path problem as described in [8]. In order to find
the most probable path path match , we must find a path in $G_{\text {HMM }}$ from the start to the end node with the highest probability. The probability of path is the product of the probabilities of all edges on that path.

Shortest path algorithms find the path through a graph from a given start to an end node by minimizing the sum of weights on the edges in a path. In $G_{\text {HMM }}$, the weights are the probabilities. Therefore, we convert the transition probabilities to transition cost and perform all calculations in log-space. In this case, minimizing the sum of transition cost is the same as maximizing the product of transition probabilities.

We use Dijkstra's algorithm [7] to solve the shortest path problem. Dijkstra's algorithm is not guaranteed to be optimal in a graph with negative weights. Therefore, the transition cost should never be less than 0 . We can speed up the calculation by using bidirectional Dijkstra.

### 4.5.1 HMM Probabilities

In a HMM, the probabilities are typically split into emission and transition probability. The emission probability is dependent on the current state and the observed event. The transition probability is only dependent on the previous state.

As mentioned before, we convert the emission and transition probability in to a emission and transition cost.

## Emission Cost

The emission probability $P_{\text {emission }}(e \mid p t)$ is the likelihood that edge $e$ is part of the shape of the public transit vehicle. We take the distance of the location tuple to the edge as a cost. Hence, edges that are closer to $p t$ are considered more likely.

$$
C_{\mathrm{emission}}(e \mid p t)=\|e, p t\|_{\mathrm{gcd}}
$$

## Transition Cost

The transition probability $P_{\text {transition }}\left(e_{1} \rightarrow e_{2}\right)$ is the likelihood that starting on edge $e_{1}$ a PTV transitions to $e_{2}$.

First, we want to measure whether two edge are on the same shape. We assume that it is unlikely that users changes the PTV during transit. Moreover, we want the matched edges to follow the overall direction of the locations tuples as best as possible. This can be done by including the distance in $G_{\text {PTN }}$ from $e_{1}$ to $e_{2}$. We can try find a shortest path from the end of $e^{1}$ to the start of $e^{2}$ in $G_{\text {PTN }}$. If a path exists,
we can add the sum of the length of the edges to the transition cost. Otherwise, we can just add a penalty cost. In this way we can avoid matching to any detours.

$$
C_{\text {transition }}^{1}\left(e_{1} \rightarrow e_{2}\right)=\left\|e_{1}\right\|_{\text {gcd }}+\left\|e_{2}\right\|_{\text {gcd }}+\| \text { shortest_path }\left(\left(\operatorname{end}\left(e_{1}\right), \operatorname{start}\left(e_{2}\right)\right) \|_{\text {gcd }}\right.
$$

With this simple transition cost, it is possible to match a shape that follows the opposite direction. Due to the inaccuracy of location measurements, the shape of the opposite direction can be closer that the actual direction. Thus, we want to add a cost for travelling into the wrong direction.

$$
C_{\text {transition }}^{2}=C_{\text {transition }}^{1}+\text { direction_penalty }\left(e_{1}, e_{2}\right)
$$

The direction can be calculated if we store the shape with a shape_sequence number for every edge. If we have $e_{1}$ and $e_{2}$, we can compare the shape_sequence and if it is ascending, we add no cost. In contrast, we can penalize a descending shape_sequence.

### 4.5.2 Matching to a Specific Trip

In the previous section, our matching only matched $g$ to the edges of $G_{\text {PTN }}$. We still need to find the most likely trip trip_id*. Each edge in path $_{\text {match }}$ can be contained in multiple shapes, since we merged duplicated edges in different shapes. We can count the occurrence of every shape in the edges of path match and take the most frequent one as the matched shape. Unfortunately, different trips can have the same shape. In our application, the goal is to match to a specific and single PTV, or to be more specific, a single trip. Especially in crowded areas, such as city centers, there can be more than one trip active on a given edge. We need a way to choose a trip out of the possible ones for our matched path. We can use the following steps to determine trip_id* for our matched path:

1. We get the most common shape in the matched edges in path $h_{\text {match }}$.
2. Since there is a list of trips for every shape, we can count the occurrences for every trip that belongs to a most common shape and select the most common trip. If multiple trips have the same occurrence, we randomly pick one. This is trip_id*.

If multiple trips have the same occurrence, and thus same probability $P($ trip_id $\mid g)$, randomly choosing one can yield the wrong trip.

### 4.5.3 Adding Time Data

We used a very broad time window for filtering close edges by the active time. This can be improved by calculating a more exact time for a PTV location. When matching
to a specific trip we can also try to match a trip that fits best in terms of time. We calculate the average time difference from the time in the location time tuples to a time a trip would presumably have at that location. Figure 6 shows the time difference for a single location time tuple $p t$ to two possible trips. We pick the trip with the least amount of average time difference. Therefore, we want to solve the following problem efficiently: given a location time tuple and a trip, calculate a time at which the trip is at that given location according to the schedule.


Figure 6: Visualization of minimal time difference for an edge. The blue and the green trip are both active on the same edge. We measure the time difference from $p t$ to the blue and the green trip according to the schedule. Here, we would prefer the blue trip.

In order to calculate such information, we need to modify our data. To calculate which trip is closest on average to $g$, we measure the average time difference between the time from a location time tuple to the time the vehicle of a trip is at that location according to the schedule. In order to calculate such a time difference, we first need to calculate a time $t$ for any given point $p$ on the shape of a trip. The only time information we have is included in the stops of the trip. Therefore, we split the shape of a trip by the stops into trip segments. In contrast to the trip segments in section 4.4, we split the polyline of the shape into a list of trip segments. Each trip segment is between two consecutive stops of a trip. We split the polyline of the shape by first projecting the location of the stop onto the polyline, and then split at the projected point. Now onto calculating a time for the vehicle at point $p$ on the shape:

1. Find the trip segment $p$ is on and project $p$ onto the trip segments which gives us the closest point $t s_{p}$ on the trip segment to $p$.
2. Calculate the distance $d_{p}=\left\|t s_{\text {start }}, t s_{p}\right\|_{\text {gcd }}$ along the trip segment from $p$ to the start of the trip segment.
3. Take $t p=\frac{d_{p}}{\|t s\|_{\text {gcd }}}$ as the progression along the trip segment. Calculate a predicted time as the percentage of the total duration of the trip segment and add it to the start time of trip segment:

$$
\operatorname{time}(p)=\operatorname{time}(\operatorname{start})+(\operatorname{time}(\text { end })-\operatorname{time}(\text { start })) \cdot \operatorname{tp}
$$

This approach assumes that a vehicle travels at a constant speed at a given trip segment. In reality this is unlikely. We expect a vehicle to accelerate or decelerate when starting or stopping at a stop. Moreover, we expect that vehicles to have a higher speed on straight lines, than in curves. Additionally, vehicles might need to stop during the journey at traffic lights or due to traffic.

With a time estimation of the point $p$ we can measure the time difference of the location time tuple $p t$ to $\operatorname{time}(p)$ for every location time tuple in $g$. We can compare the average time difference for multiple trips. Then, we just select the trip with the smallest average time difference.

We can add the time difference during matching to a specific trip. If there are multiple possible most likely trips, instead of randomly choosing one, choose the trip with the least average variation from the schedule.

### 4.5.4 Including GTFS Realtime in Map-Matching

In our dynamic map-matching approach, we try to find trips that are as close as possible from an ideal schedule. If a user is in a PTV with delay, the user can be matched to another trip. We can mitigate this by adding real-time updates with GTFS Realtime. As described in section 3.3.2, we can get the delay of a trip at any stop. We need to apply this delay when working with the stop times of a trip and with ahw.

With awh, a delayed trip can be active in another weekday-hour-tuple. If this weekday-hour-tuple is not within the awh of a trip, this trip will not be considered active. To mitigate this, we can apply the negative delay as an offset to the user time and then generate a weekday-hour-tuple. For example, if a trip has one hour of delay, then we subtract one hour from the user weekday-hour-tuple. This way, the delayed trip is considered active.

The arrival and departure time of a stop also have to be adapted when using real-time data. Here, we must add the delay to any time during look-up.

### 4.6 Getting All Information About the Matched Trip

After matching a trip, our frontend should display further relevant information to the user. Therefore, we need to fetch any relevant information.

In the map-matching step we determined a most probable path path match of edges and trip_id*. We can predict the current location of a user by projecting the last location tuple in $g$ onto the last edge in $p a t h_{\text {match }}$. We get a predicted user location, that is on the shape of the matched trip trip_id*.

Further relevant data is included in $D_{\text {Ptn }}$. Every trip_id has a route_id which contains the route_short_name, route_color, route_text_color and route_type. Additionally, every trip_id also has a list of stops. We can look up the destination of the trip by taking the name of the last stop in the list. If we take the last edge of the matched path, we can determine on which trip segment the user is currently on with edge_to_ts of the trip. The trip segment with id $t s$ corresponds to the segment of the $t s^{\text {th }}$ stop until the $t s+1^{\text {th }}$ stop. If an edge only has a single trip segment id $t s$, the next stop is the $t s+1^{\text {th }}$ stop in the list of stops. If an edge has multiple trip segment ids, then we need to determine, which of the stops is the next. We know that the stop must be on the last matched edge $e$. We can take $p$, the last location tuple of $g$, and project it onto the edge $p_{e}$. Then, we project the stop $s$ onto the edge $s_{e}$. We measure both $d_{p, e}=\left\|p_{e}, \operatorname{start}(e)\right\|_{\text {gcd }}$ and $d_{s, e}=\left\|s_{e}, \operatorname{start}(e)\right\|_{\mathrm{gcd}}$. If $d_{p, e}$ is greater than $d_{s, e}$ we have already passed the stop and check for the next stop. If not, then the stop $s$ is the next stop. Figure 7 illustrates both cases. With the next stop we can also gather possible transfer options from $D_{\text {PTN }}$.

### 4.7 User Application

A PublicTransitSnapper user only sees our frontend on their mobile phone. Thus, all necessary information is displayed in our frontend. The frontend is written with the Flutter framework. The advantage of using this framework is, that we can build different mobile and web apps from a single code base. Currently, we only support Android $10+$ with our native application. Additionally, we offer a web app that can be used through a browser. With Flutter it is possible to generate an iOS build. Due to the lack of an iOS device, we were not able to try it out.

The frontend measures the location of a mobile phone by accessing the location services. We store a list of the last locations with a timestamp. The frontend sends the list of location time tuples to an API on a server where the backend runs. The backend processes any incoming request. It performs a dynamic map-matching and calculates a most probable solution. It responds to the frontend by sending the matched trip_id with additional information about the trip.

(a) $d_{s, e}>d_{p, e}$

(b) $d_{s, e}<d_{p, e}$

Figure 7: Determining the next stop with two trip segments. In (a), s is the next stop. In (b), the stop after $s$ is the next stop.

Our frontend does not store and information about the GTFS data set. It only displays information provided by the backend. A user can choose between three pages in the application. The first page displays information about the PTV the user has been matched to. Such as the vehicle type, the route number and terminal station. It also shows the name of the upcoming stop. The second page contains a map. An icon that fits to the vehicle type is displayed at the currently matched position. Moreover, the shape and stops of the currently matched trip are displayed in the route_color of the route. Thus, the user can easily see the previous and upcoming course of the road. On the third page, we display possible transfer options at the next stop for the user. It shows the type of vehicle, with their route number, destination and the departure time at the next stop. We use the route_color and the route_text_color for easier identification of the route by the user. Figure 8 shows the three pages.

Next to the three pages, the user can open a chat overlay in any of the three pages. We provide a group chat feature, where all users that are matched onto the same trip are able to communicate with each other. If a user enters a trip, all messages that have been sent since the beginning of the trip can be seen. The chat messages are only stored for the duration of the trip and are deleted after the trip has reached the destination stop.

For more details about the frontend application with user feedback see G. Freiwald's thesis about this project [10].


Figure 8: Screenshot of the different pages in the frontend.

### 4.8 Linking Backend and Frontend

In the previous chapters we have described how to solve the dynamic map-matching in the backend part of our project. Moreover, we have described the design and features of the frontend application. In this chapter, we describe the communication between frontend and backend. The frontend does not store any schedule data from the GTFS data set. Thus, all necessary information must be fetched from the backend.

In our backend, we handle any incoming requests with our API. The API is created with the Python package Flask ${ }^{3}$. We have created multiple endpoints for the different features of our frontend. The shape and connections contain a lot of data, but they only have to be fetched if the matched shape or the next stop changes. If we only request this information when needed, we can reduce the amount of data that needs to be sent over the network.

- /map-match This endpoint takes a list of location time tuples. After the mapmatching is calculated information about the matched trip is returned for the frontend to display. Note that the shape and connections are not included.
- /shape Here the frontend can fetch all location tuples in a shape, so that the shape of a matched trip can be drawn on the map page. Moreover, the locations of each stop in the matched trip are returned as well.
- /connections Given a stop_name and a timestamp return the next transfer possibilities at that stop.

[^8]- /chat With a matched trip the frontend can use this to send and fetch any chat messages for a trip.

In every endpoint of our API, we need to exchange data between the frontend and the backend. We use the JavaScript Object Notation (JSON) ${ }^{4}$ for interchanging data between the Dart frontend and Python backend. A sample request and reply for the /map-match endpoint can be found in Figure 9. For the other endpoints we use a similar JSON structure.

```
request = {
 "coordinates": [
 "47.984554414717,7.893493406577,1663594021401",
 "47.984396141097,7.894909945709,1663594032515",
 "47.985218134608,7.894933737771,1663594054057"
],
 "trip_id": ""
}
response = {
 "location": (47.9852057074915, 7.8949523500852),
 "next_stop": "Freiburg, Heinrich-Heine-Str.",
 "route_color": "646363",
 "route_dest": "Freiburg, Langmatten",
 "route_name": "18",
 "route_type": "3",
 "shape_id": "shp_3_233",
 "trip_id": "352.T0.10-18-I-j22-1.6.R"
}
```

Figure 9: Example request by the frontend with the response by the backend.

### 4.9 Storage of Data

In the previous sections we assumed that all data about a specific public transit network is stored in $D_{\text {PTN }}$. We assumed, that we can retrieve any information, that we need from it.

In this chapter we introduce a Python class called GTFSContainer which contains all data necessary for the dynamic map-matching and API requests. Our main design goals are a quick lookup of information and a small memory consumption.

[^9]As described before, we already have the graph $G_{\text {PTN }}$ that contains all edges. Each edge has a list of tuples with shape_id and shape_sequence number. Additionally, we need a STRtree with edges from $G_{\text {PTN }}$ for quick spatial queries.

For the other lookups we use Python lists, dictionaries and sets. The time complexity of all possible operations is described in here ${ }^{5}$. We only focus on lookup time complexity.

We use a list if we have elements that are ordered and we know the index for look-up. In this case, the average and amortized worst case is $\mathcal{O}(1)$. If we do not know the index we get $\mathcal{O}(n)$, because we need to possibly check all $n$ elements in a list. We use a set, if we want to quickly check for membership, such as the active-weekday-hours. In the average case we get $\mathcal{O}(1)$, but in amortized worst case we get $\mathcal{O}(n)$. We use a dictionary if we have keys and want to associate values with the key. In the average case we get $\mathcal{O}(1)$, but in worst case we get $\mathcal{O}(n)$.

For the active edges we need to find edges that have trips active on them. Since edges are only annotated with shape_ids, we need to find candidate trips given a shape_id. Moreover, we need all location tuples in a shape for /shape. We do not have the shapes stored separately, which are already contained in $G_{\text {PTN }}$. Instead, we store the starting edge of every shape. Then, we can use $G_{\text {PTN }}$ to find all edges of a given shape. Since $G_{\text {PTN }}$ is a directed graph, we start at the starting edge. Then, we repeatedly examine all outgoing edges for the annotated list of shape_ids and shape_sequence and follow the edge containing the same shape_id and the next higher shape_sequence. This way, we can find all edges of a given shape, without introducing a new dictionary with look up time of $\mathcal{O}(n)$.

```
{
 shape_id: [
 ((lat, lon), (lat, lon)),
 [(trip_id, serivce_id, route_id), ...]
],
 ...
}
```

Given a trip, we need to determine the service information and arrival and departure time to determine if the trip is active at a given user time.

The service information is represented by the service_id. Multiple trips can have the same service_id. Thus, we use the service_id as a reference for the trip and only store the information for a service_id once. A service has a set of removed_dates, a set of extra_dates, a start_date and an end_date. With the set for removed_dates and extra_dates we can quickly determine if a given date is an exception. A service also has active_weekdays. We do not store this, since we created the awh.

[^10]```
{
    service_id: [
        start_date, end_date, {removed_dates}, {extra_dates}
    ] ,
}
```

Since the stop times vary from trip to trip, we store the stop times individually for every trip. This is just a list of the stop times. For the same reason, each trip has its own awh. If we know the trip segment id $t s$, we can quickly look up stop time information in a list with $\mathcal{O}(1)$. The $t s^{\text {th }}$ stop is the stop at the start of a trip segment. The $t s+1^{\text {th }}$ stop is the stop at the end of a trip segment. We determine the trip segment id for an edge with the dictionary edge_to_ts, that maps edges to trip segment ids. With edge_to_ts we can quickly determine trip segment ids and thus the start and end times.

The dictionary edge_to_ts does not need to be stored for every trip. For trips with the same shape_id and stops, the edge_to_ts is identical. Since multiple trips can have the same shape_id and stops, we can remove the duplicates by storing edge_to_ts in another dictionary. The trips then refer to the correct entry in this new dictionary.

For calculating a predicted time for a trip given a point, we need to determine which trip segment a point belongs to. Unfortunately, the edge_to_ts dictionary cannot provide this information. Therefore, we store a list of trip segment polylines. The trip segment polylines are again only depended on the shape and stops of the trip. Thus, we can store them together with the edge_to_ts for reduced storage.

```
{
    trip_id: [
        [[[arrival_time, depature_time], stop_id], ...],
        active_weekday_hours,
    route_id,
    service_id,
    hash_value
    ] ,
}
```

```
{
    hash_value: [
        edge_to_ts,
        [trip_segment_polyline, ...]
    ],
}
```

In the frontend application, we want to display information to the current user about the current vehicle. Moreover, we use the colors and type of a vehicle, to make the information more appealing. This information is mainly contained by the route information. Since the active edges also return the route_id we need to quickly look up any information related to the route.

```
{
    route_id: [
        route_short_name, route_type,
        route_color, route_text_color
    ],
}
```

For /shape, we also need the location of the stops to display. We can look at the information we saved for a trip_id. It contains all stop_ids in a trip. Thus, we need a new dictionary, that given a stop_id returns location of a stop. We also store the stop_name, so that this can be displayed to the user as the next stop.

```
{
    stop_id: [stop_name, stop_lat, stop_lon],
}
```

In the frontend we display possible connections for the next stop. Multiple stops can be grouped together. For example a central station can have a tram, a train and a bus station all with the same name. Thus, given a stop_name we need a list of stop_ids to determine which stops we need to examine.

```
{
    stop_name: [stop_id, ...],
    ...
}
```

Now with a number of possible stop_ids, we still need to find trips that stop at the next stop after a given timestamp. For every stop_id we store of list of trip_ids with
the departure_time. We can check if the departure_time is after the timestamp and only then check if the trip is active on the date of the timestamp. This gives us a list of possible transfer options at the next stop for a user.

```
{
    stop_id: [[trip_id, departure_time], ...],
    ...
}
```

Most of the information in GTFSContainer is stored similarly to the GTFS data set. We can precalculate most of the data structures described above. For the $G_{\text {Ptn }}$ and the STRtree we store all edges as a list in JSON format. On startup the server loads all precalculated data as dictionaries and generates the $G_{\text {PTN }}$ and the STRtree from the list of edges. We have written the precalculation part in C++. A library for parsing CSV in C++ is available here ${ }^{6}$. All the precalculated data is stored in JSON format with the library from here ${ }^{7}$.

[^11]
5 Evaluation

In order to measure the performance of our dynamic map-matching, we need a test data set. Ideally, we want to capture data from the real world. Unfortunately, we are not able to take a high amount of public transit vehicles, in order to capture location time tuples for all possible public transit vehicles from a public transit network. Therefore, we decided to generate own test data based on $D_{\text {PTN }}$. We try to mimic data captured from the real world as closely as possible. Then, with the generated test data, we can evaluate the performance of our dynamic map-matching approach.

5.1 Evaluation Method

5.1.1 Generating Test Data

Our map matching algorithm works with a list of n location time tuples g. In our case we use $n=10$. We can generate test data $t d_{\text {trip_id }}$ which contains location time tuples for a particular trip, that follows the shape of a trip. For any given trip, we need the stops and shape of a trip to generate test data $t d_{\text {trip_id }}$. First we generate m test location tuples $g_{\text {test }}=\left[p_{1}, \ldots, p_{m}\right]$ along the shape. Then, we try to mimic the inaccuracy of location measurements by applying some noise onto every generated test location tuple. We are using normally distributed noise in meters $\mathcal{N} \sim(0,16)$. In the test data, a user always travels the same number of stops s. s does not include the stop the user gets onto a PTV. We assume that $s=4$ is a realistic value. For each trip we generate a test instance for each possible four-stop journey. Thus, a trip with a total of 6 stops gets two test instances. One starting at stop 1 and ending at stop 5 and another one starting at stop 2 and ending at stop 6 . For any trips that do not have enough stops for a test instance or if the shape is too short $(n>m)$, we simply generate a single test instance, with the available stops or locations in $g_{\text {test }}$. We have already generated $g_{\text {test }}$ for the whole shape. For a test instance, we randomly select n location tuples that lie between the start and end stops for the given test instance.

Next to a location tuple we need a fitting timestamp to complete a location time tuple for our map-matching algorithm. In order to calculate a fitting timestamp, we use the same approach as in section 4.5.3. For generating test data, this approach has a major drawback. We assumed that vehicles have a constant speed between stops. This is not true for most vehicles. Therefore, we also add noise to the timestamp to
simulate varying speeds of the vehicle. For every stop we assume, that public transit vehicles can have delay, but if they arrive to early, they will wait until the scheduled departure time. We add a normally distributed delay in seconds but map all negative values to $0 \max (0, \mathcal{N} \sim(0,60))$. Every timestamp between this stop and the next stop will have this delay added. Additionally, we add a delay to each timestamp in seconds independent of the stop $\mathcal{N} \sim(0,30)$. This simulates vehicles having varying speed on each route.

The GTFS data sets describe the weekly schedule of PTVs. We test a single day from the schedule, due to high number of trips that need to be tested. Dynamic map-matching to a tight time schedule is more challenging because there are more trips active around the same time. On weekends there are typically less trips than on weekdays. Hence, we chose a Wednesday that is not a public holiday for our testing. We only generate a test data set for trips that are active on this day.

5.1.2 Accuracy Measure

Our main goal is to find the correct public transport vehicle a user is in. Moreover, we want to provide a responsive user experience. Therefore, we can measure the following three aspects in order to evaluate the performance of our dynamic map-matching.

First, we want to match the correct trip_id, given any test $t e s t_{\text {trip_id }} \in t d_{\text {trip_id }}$.
For each test we check if the trip matched by our map-matching algorithm is the same as the original trip the test was generated for with an indicator function:

$$
\mathbb{1}\left(\text { test }_{\text {trip_id }}\right)= \begin{cases}1, & \text { if trip_id }=\text { match }\left(\text { test }_{\text {trip_id }}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Trips can have vastly different lengths of shapes and number of stops. Thus, the number of tests for each trip can vary. To avoid prioritizing longer trips over shorter trips in our accuracy measurement we take the average over all test instance in a test data set for trip. Then we take the average over all test data sets.

$$
\text { accuracy }=\frac{1}{\mid \text { Test Data } \mid} \sum_{t d \in \text { Test Data }}\left(\frac{1}{|t d|} \sum_{\text {test } \in t d} \mathbb{1}(\text { test })\right)
$$

With random elements included in each test data, we generate three test data sets and run the evaluation on each test data set. Then we take the average of the resulting average.

Moreover, we measure the memory and storage consumption of our backend. This is due to the large amount of precalculated data that need to be stored in memory for a fast map-matching during run-time.

The last measure is the run-time of our map matching algorithm. The run-time in this evaluation only measures the performance of the map-matching algorithm. The performance of the frontend, network latency and of our API are not included. The total latency can be higher than the measured value and might be highly dependent on network latency and hardware.

5.1.3 Evaluation Data Sets

We evaluate PublicTransitSnapper with different GTFS data sets Freiburg, Zürich and SWEG. The Freiburg GTFS data set is provided by Freiburger Verkehrs $A G^{1}$. For Zürich, we filtered the GTFS data set Switzerland ${ }^{2}$ for any trips by the Züricher Verkehrsverbund. For SWEG we filtered the GTFS data set SPNV Baden-Württemberg ${ }^{3}$ for any trips by the Südwestdeutsche Landesverkehrs-AG.

In Table 1 we provide more detailed information about each data set. Freiburg contains an almost equal number of buses and trams. Zürich almost exclusively contains buses and contains more trips than Freiburg. The SWEG data set exclusively contains trains.

Dataset	total trips	tram	bus	funicular	train
Freiburg	19,153	9,063	10,090	-	-
SWEG	733	-	-	-	733
Zürich	33,178	-	31,971	1,206	-

Table 1: Route types in each evaluation data set.

5.1.4 Evaluation Algorithms

For the evaluation we use four different algorithms: Baseline, BaselineHMM, ActiveEdges, TimeAfter.

The Baseline algorithm takes the last location tuple from g and gets the closest edge in $G_{\text {PTV }}$ with the STR-tree. Then it selects a trip, that fits to the edge. If there are multiple trips, that fit to this edge, randomly take one. This does not include any time information.

[^12]The BaselineHMM algorithm gets the close edges for every location tuple in g and performs a map-matching with HMM. With the most probable path calculated, it takes a trip that fits to the path. If there are multiple trips, that fit to this path, randomly take one. This does not include any time information.

The ActiveEdges algorithm is similar to the BaselineHMM algorithm. The only difference is that, after getting the close edges, ActiveEdges also filters for edges that have a trip on them at the given time.

The TimeAfter algorithm is similar to the ActiveEdges algorithm. After calculating the most probable path, we do not randomly select a trip. If there are multiple trips, that fit to this path, we take the trip, that has the least amount of average deviation from the schedule.

5.2 Evaluation Results

For the evaluation results all tests were run on the same test system with an AMD Ryzen $556006 \mathrm{C} / 12 \mathrm{~T} 3.50 \mathrm{GHz}$ and 32 GB RAM. In order to decrease the total time needed for testing, we ran a backend instance on each of the 6 cores and split the test data equally among them.

In Table 2 we evaluate the performance of the two baseline algorithms Baseline and BaselineHMM. BaselineHMM outperforms Baseline with about double average accuracy. Both algorithms are not able to match a correct trip in most cases, due to many trips using the same shape at different times. The Baseline algorithm has a fast run-time since only the closest edge to the last location tuple is considered. With BaselineHMM, we get a high run-time. Without filtering edges that do not have trips on them at the user time, there are many edges that are inserted into the HMM. Thus, calculating the shortest path in the $G_{\text {HMM }}$ takes much longer. With a high number of trips the likelihood of trips being close is higher thus the accuracy suffers. SWEG has a low run-time since the individual shapes of trains do not have a high overlap.

	Average Accuracy		Average Run-Time	
Dataset	Baseline	BaselineHMM	Baseline	BaselineHMM
Freiburg	0.4%	0.8%	0.06 s	0.67 s
SWEG	0.8%	1.6%	0.002 s	0.037 s
Zürich	0.2%	0.4%	0.06 s	0.70 s

Table 2: Average accuracy and run-time of baseline algorithms.

Table 3 shows the ActiveEdges algorithm run on the three data sets. Unfortunately, the average accuracy is at less than 22%. It is higher than the two baseline algorithms, but not enough to match a user to the correct trip in most cases. Interestingly, the added time data seems to benefit data sets with more dense trips.

Dataset	ActiveEdges
Freiburg	15.8%
SWEG	5.3%
Zürich	21.6%

Table 3: Average accuracy for ActiveEdges without time slack.

Examining our approach, we found that the accuracy is low due to no slack in the time checking for the active edges step. In Table 4, we are able to achieve much higher results if we introduce one minute of allowed earliness and five minutes of allowed delay. In the following we always allow this time slack.

	No time noise		Time noise	
Dataset	ActiveEdges	TimeAfter	ActiveEdges	TimeAfter
Freiburg	91.6%	92.4%	91.2%	91.3%
SWEG	34.9%	34.2%	32.5%	32.3%
Zürich	92.4%	95.7%	92.3%	94.8%

Table 4: Average accuracy of our dynamic map-matching algorithms.
In Table 4, we evaluate the average accuracy of our two dynamic map-matching approaches. In Freiburg and Zurich we are able achieve an average accuracy of over 90%. In both cases we notice an increase in average accuracy with the TimeAfter approach compared to ActiveEdges. In Freiburg the increase is much smaller. In the Freiburg data set, there are trams and buses that run on the same streets. Thus, there are multiple shapes very close together with different edges. With the noise added to the location measurements, we cannot easily determine which of the shapes is correct with our approach. Moreover, in the Freiburg GTFS data set we found trips, that that run at the same time for a number of stops. Figure 10 shows two example trips, that have this issue. In this case, we are not able to correctly determine the trip, since both have the same likelihood. We notice a lower average accuracy after adding time noise to the location time tuples. This is expected, since in our approach, we assume that trips perfectly follow the GTFS schedule. If a trip has delay, the probability that g gets matched to a later trip is higher. For the ActiveEdges approach, the accuracy drop is smaller compared to TimeAfter, since we allowed slack. In this case a small
delay has less impact due to still being in the time frame with slack.

```
Trip: 573.T0.11-3-I-j22-1.6.R
Trip active on: ['monday', 'tuesday', 'wednesday', 'thursday', 'friday']
Freiburg, Munzinger Straße arrival time: 06:22:00 departure time: 06:22:00
Freiburg, VAG-Zentrum arrival time: 06:23:00 departure time: 06:23:00
Freiburg, Am Lindenwäldle arrival time: 06:25:00 departure time: 06:25:00
Freiburg, Bugginger Straße arrival time: 06:26:00 departure time: 06:26:00
Freiburg, Rohrgraben arrival time: 06:27:00 departure time: 06:27:00
Freiburg, Bissierstraße arrival time: 06:29:00 departure time: 06:29:00
Freiburg, Runzmattenweg arrival time: 06:31:00 departure time: 06:31:00
Freiburg, Rathaus im Stühlinger arrival time: 06:32:00 departure time: 06:32:00
Freiburg, Eschholzstraße arrival time: 06:34:00 departure time: 06:34:00
Freiburg, Hauptbahnhof arrival time: 06:35:00 departure time: 06:35:00
Trip: 586.T0.11-3-I-j22-1.3.R
Trip active on: ['monday', 'tuesday', 'wednesday', 'thursday', 'friday']
Freiburg, Am Lindenwäldle arrival time: 06:25:00 departure time: 06:25:00
Freiburg, Bugginger Straße arrival time: 06:26:00 departure time: 06:26:00
Freiburg, Rohrgraben arrival time: 06:27:00 departure time: 06:27:00
Freiburg, Bissierstraße arrival time: 06:29:00 departure time: 06:29:00
Freiburg, Runzmattenweg arrival time: 06:31:00 departure time: 06:31:00
Freiburg, Rathaus im Stühlinger arrival time: 06:32:00 departure time: 06:32:00
```

Figure 10: Example for trips that cannot be distinguished. Both trips share a number of stops with the same arrival and departure times on the same weekdays.

Running our dynamic map-matching on the SWEG data set, we notice a much lower average accuracy compared to Freiburg and Zurich. The main difference in the data sets is that SWEG exclusively contains trains. The distance between stops in a train network is higher than for trams or buses. In Figure 11 we reduce the number of stops s a user takes for a test while keeping $n=10$. With less stops, and thus smaller distances between each sample location tuple, we get a higher accuracy. We conclude that our map-matching approach does not work well with big distances between each sample location tuple. Moreover, using the TimeAfter approach does not seem to have an advantage compared to ActiveEdges.

The memory and storage requirements can be found in Table 5 . For the precomputed files, we need about 1.3 times the storage compared to the GTFS size. Since we are able to reduce the amount of look-ups and calculations needed during run-time, we assume that this a reasonable amount of storage being used. For the memory usage, we take the memory usage of the docker container, where our whole backend runs. Comparing the precomputed files to the memory usage, for Freiburg and Zurich we

Figure 11: Accuracy in SWEG data set with different number of stops.
need about 11 times of memory. For the SWEG this is much higher. This is because the SWEG data set contains trains with long shapes and thus many edges. We store the edges of a shape in multiple data structures. We have $G_{\text {PTN }}$, a STRtree and also the trip segments. This leads to a high amount of duplicates. Hence, our memory usage does not scale well with the shapes.

Dataset	GTFS size	precomute size	precompute time	docker memory usage
Freiburg	28.3 MB	36 MB	1.65 s	384 MiB
SWEG	4.58 MB	5.6 MB	0.27 s	148.1 MiB
Zürich	45.5 MB	58 MB	2.47 s	626.6 MiB

Table 5: Memory and storage usage of our backend.
Table 6 shows the average run-time of our two dynamic map-matching approaches. Similar to the two baseline algorithms, SWEG has a low run-time due to low shape overlap. For Freiburg and Zürich we measure an average run-time of $210-250 \mathrm{~ms}$. For an interactive user experience, we aimed for a run-time of 500 ms or lower. Therefore, our expectations were met.

	No time noise		Time noise	
Dataset	ActiveEdges	TimeAfter	ActiveEdges	TimeAfter
Freiburg	0.248 s	0.230 s	0.246 s	0.241 s
SWEG	0.018 s	0.018 s	0.018 s	0.018 s
Zürich	0.217 s	0.219 s	0.233 s	0.238

Table 6: Average run-time of our dynamic map-matching algorithms.

6 Conclusion

PublicTransitSnapper is able to match a user to a public transit vehicle. It extends map-matching to a static road network with the dynamic element of public transit vehicles. We notice that our approach works well with buses and trams but has low accuracy when working with trains. In order for our map-matching to be accurate, we need a high sampling rate with low distances between each location measurement. Additionally, delays of PTVs decrease the performance of our map-matching. When matching to buses and trams, we are able to match to the correct PTV in most cases. Moreover, the application can provide information about the currently matched trip to the user. In the following, we suggest further improvements.

6.1 Future Works

In our approach we have used a fixed balance of parameters in the emission and transition cost functions. We are currently only using distance based emission and transition cost functions. It might be beneficial to add a time based cost to either emission or transition cost. Although, this might be more sensitive to delay. Moreover, we noticed that due to the time deviation based metric for selecting the final trip, delays can cause the map-matching to have a lower accuracy. Adding real-time data can mitigate some of the issue. Further research is needed in order to determine if adding parameters to emission and transition cost can make dynamic map-matching more robust to such delays. Due to different possible types of PTVs and varying size and density of PTNs it can be difficult to find a perfect balance. Therefore, we estimate that this could take half a year to a year.

For selecting the correct trip, we tried to predict the time at which a public transit vehicle is at any given time given any point on the shape. We assumed that vehicles travel at a constant speed between consecutive stops. This is highly unlikely in the real world. Due to factors such as traffic lights or corner public transit vehicles have varying speed. From the shapes, curves and straight can already be extracted. Further parameters such as traffic lights need additional sources. Adding of such information, e.g. from OpenStreetMap data might be possible. With a better estimate of positions, we expect an increase in accuracy. Solving this needs a lot of testing in the real world, thus we expect this to take up to half a year to complete.
Our map-matching approach requires much information stored in the memory. This can be become a limiting factor for increasing sizes of GTFS data sets. More efficient
data structures may be used to store the data to further reduce memory usage. Currently, we have duplicates when storing all edges from all shapes. Further research is needed to reduce the memory consumption of our stored look up data. Much restructuring of our stored data is needed, therefore we expect this to take at least half a year.

Moreover, run-time is a crucial for a smooth user experience with the frontend. We expect significant performance gains when switching the backend from Python to a faster programming language such as C++. As a first step the active edges and HMM part that take the most computation time could be build as a C++module for python. We estimate, that rewriting part of our approach C++takes a few weeks. Since our precalculation is already done in $\mathrm{C}++$ some the code base can be transferred.

Further improvements can also be made to the frontend of our project. We included real-time data in the backend, but no information is displayed to the user. Once matched to a public transit vehicle, we could display how much delay the vehicle has compared to the schedule. Next to delays further information can also be published with real-time data, such as warnings or network outages. This involves mostly adding features to the frontend. Designing a simple interface for real-time updates can be done in one to two weeks. Designing an intuitive and user friendly interface might take much longer.

Moreover, we could use our program in the future to create crowd-sourced real-time data. If there is a sufficient number of users matched onto a PTV, we could measure their delay to the schedule and generate our own real-time feed. This might be useful for cities that do not have any real-time feed available. The main difficulty is matching multiple people to an already delayed PTV. Therefore, we estimate that this could take about half a year to complete.

7 Acknowledgments

First and foremost, I would like to thank my adviser Patrick Brosi. His supervision and meetings filled with suggestions and discussions were essential during my work. I also want to thank Prof. Dr. Hannah Bast for enabling me to work on this project and examining this thesis. I thank Gerrit Freiwald for working together on this project and the many hours of debugging. I want to thank my friends and family for supporting me throughout my studies. Lastly, I want to thank everyone who took time for proofreading my thesis.

Bibliography

[1] B. Hummel, "Map matching for vehicle guidance," in Dynamic and Mobile GIS, pp. 211-222, CRC Press, 2006.
[2] P. Newson and J. Krumm, "Hidden markov map matching through noise and sparseness," in Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp. 336-343, 2009.
[3] H. Bast and P. Brosi, "Sparse map-matching in public transit networks with turn restrictions," in Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 480-483, 2018.
[4] R. Geisberger and C. Vetter, "Efficient routing in road networks with turn costs," in International Symposium on Experimental Algorithms, pp. 100-111, Springer, 2011.
[5] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE transactions on Information Theory, vol. 13, no. 2, pp. 260-269, 1967.
[6] H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan, "Fast viterbi map matching with tunable weight functions," in Proceedings of the 20th international conference on advances in geographic information systems, pp. 613-616, 2012.
[7] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.
[8] H. Koller, P. Widhalm, M. Dragaschnig, and A. Graser, "Fast hidden markov model map-matching for sparse and noisy trajectories," in 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 2557-2561, IEEE, 2015.
[9] T. A. J. Nicholson, "Finding the shortest route between two points in a network," The computer journal, vol. 9, no. 3, pp. 275-280, 1966.
[10] G. Freiwald, "PublicTransitSnapper: Working with GTFS in Germany to match Mobile Phones to Public Transit Vehicles," Bachelor's Thesis, 2022.
[11] "General Transit Feed Specification." https://gtfs.org/.
[12] A. Guttman, "R-trees: A dynamic index structure for spatial searching," in Proceedings of the 1984 ACM SIGMOD international conference on Management of data, pp. 47-57, 1984.

[^0]: Place, Date

[^1]: ${ }^{1}$ https://www.python.org/
 ${ }^{2}$ https://flutter.dev/
 ${ }^{3}$ https://dart.dev/
 ${ }^{4}$ https://github.com/RobDaNub/PublicTransitSnapper

[^2]: ${ }^{1}$ https://www.blog.google/technology/area-120/pigeon-transit-app-new-cities/

[^3]: ${ }^{2}$ https://transitapp.com/

[^4]: ${ }^{1}$ https://networkx.org/

[^5]: ${ }^{2}$ https://github.com/ad-freiburg/pfaedle
 ${ }^{3}$ https://www.hacon.de/en/portfolio/information-ticketing
 ${ }^{4}$ https://github.com/derhuerst/hafas-gtfs-rt-feed

[^6]: ${ }^{5}$ https://developers.google.com/protocol-buffers
 ${ }^{6}$ https://gtfs.org/realtime/proto/
 ${ }^{7}$ https://github.com/MobilityData/gtfs-realtime-bindings/blob/master/python/README. md
 ${ }^{8}$ https://github.com/kaporzhu/protobuf-to-dict
 ${ }^{9}$ https://opentransportdata.swiss/de/cookbook/gtfs-rt/

[^7]: ${ }^{1}$ https://shapely.readthedocs.io/
 ${ }^{2}$ https://libgeos.org/doxygen/classgeos_1_1index_1_1strtree_1_1STRtree.html

[^8]: ${ }^{3}$ https://flask.palletsprojects.com/en/2.2.x/

[^9]: ${ }^{4}$ https://www.json.org/json-en.html

[^10]: ${ }^{5}$ https://wiki.python.org/moin/TimeComplexity

[^11]: ${ }^{6}$ https://github.com/ben-strasser/fast-cpp-csv-parser
 ${ }^{7}$ https://github.com/nlohmann/json

[^12]: ${ }^{1}$ https://www.vag-freiburg.de/fileadmin/gtfs/VAGFR.zip
 ${ }^{2}$ https://opentransportdata.swiss/dataset/00811070-1b51-43da-87af-b1901e906323/ resource/d97dedca-4e9e-454b-b7ad-5188b85f075f/download/gtfs_fp2022_2022-06-22_ 04-15.zip
 ${ }^{3}$ https://www.nvbw.de/fileadmin/user_upload/service/open_data/fahrplandaten_ohne_ liniennetz/bwspnv.zip

