
Bachelor thesis at the institute of computer science
of the Albert-Ludwigs-University of Freiburg

Context-Aware Search Spaces
for Queries with Spatial

Relations

presented by Rick Gelhausen

on the 27th of august 2015

Chair

Algorithmen und

Datenstrukturen

Supervisor

Dr. Sabine Storandt

Chairholder

Prof. Dr. Hannah Bast

Processing Time

1.06.2015 - 1.09.2015

DECLARATION

I hereby declare, that I am the sole author and composer of my Thesis and
that no other sources or learning aids, other than those listed, have been
used. Furthermore, I declare that I have acknowledged the work of others by
providing detailed references of said work.
I hereby also declare, that my Thesis has not been prepared for another ex-
amination or assignment, either wholly or excerpts thereof.

Ort, Datum Unterschrift

Zusammenfassung

Online-Kartendienste, wie Google Maps, erlauben Anfragen in natürli-
cher Sprache, wie ”Hotels Freiburg”. Diese Anfragen werden dann als
”Hotels in Freiburg” oder ”Hotels in der Nähe von Freiburg” interpretiert.
In dieser Arbeit stellen wir zwei neue räumliche Relationen vor,
”zwischen” und die Himmelsrichtungen, welche Anfragen wie ”Tank-
stellen zwischen Freiburg und Stuttgart” oder ”Hotels nördlich von
Freiburg” erlauben. Wir analysieren viele verschiedene Anfragen und
entscheiden welche davon in einem gewissen Kontext Sinn ergeben.
So macht es Sinn nach ”Städten zwischen Städten” zu suchen, nicht
aber nach ”Städten zwischen Ländern”. Dann erstellen wir eine Tool-
box die für jede kontextbezogene Anfrage ein Suchpolygon zurückgibt.
In einem letzten Schritt vergleichen wir die Resultate der Toolbox
mit unseren Erwartungen. Wir zeigen dass in fast all unseren Anfra-
gen sinnvolle Resultate herauskommen und geben abschließend einige
Möglichkeiten die die Zukunft bietet.

Abstract

Web-mapping services, like Google Maps, allow natural language queries,
like “Hotels Freiburg”. These queries are interpreted as “Hotels in
Freiburg” or “Hotels near Freiburg”. In this thesis, we introduce the
two new spatial relation “between” and the compass directions, al-
lowing queries like “Gas stations between Freiburg and Stuttgart” or
“Hotels north of Freiburg”. To achieve this, we analyse many differ-
ent queries and decide whether they make sense in a given context.
It might make sense to search for “cities between cities”, whereas it
makes less sense to search for “cities between countries”. Then, we
create a toolbox that returns a search polygon for every context-aware
query. In a last step, we compare the results from our toolbox with
our expectations. We show that nearly all of our queries return useful
results and conclude what possibilities are open for future work.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 1

2 New Spatial relations 2
2.1 The “between” relation . 2

2.1.1 Sensible Search Queries between Countries 2
2.1.2 Sensible Search Queries between Cities 5
2.1.3 Sensible Search Queries between Streets 9

2.2 The Compass Directions . 12
2.2.1 Sensible Queries for Countries in a Compass Direction 12
2.2.2 Sensible Searches for Cities in a Compass Direction . . 13
2.2.3 Sensible Search Queries for Streets in a Compass Di-

rection . 14
2.3 Overview . 15

3 Implementation 16
3.1 Realizing Queries with “between” Relations 16

3.1.1 A Toolbox for Search Queries between Countries 16
3.1.2 A Toolbox for Search Queries between Cities 17
3.1.3 A Toolbox for Search Queries between Streets 20

3.2 Realizing Queries with Compass directions 20
3.2.1 A Toolbox for Queries regarding Countries in a Com-

pass Direction . 20
3.2.2 A Toolbox for Queries regarding Cities in a Compass

Direction . 21
3.2.3 A Toolbox for Queries regarding Streets in a Compass

Direction . 23

4 Results 24
4.1 The “between” Relation . 24

4.1.1 Results for Queries between Countries 24
4.1.2 Results for Queries between Cities 27
4.1.3 Results for Queries between Streets 30

4.2 The Compass Directions . 32
4.2.1 Results for Queries with Countries in a Compass Di-

rection . 32
4.2.2 Results for Queries with Cities in a Compass Direction 34
4.2.3 Results for Queries with Streets in a Compass Direction 35

5 Conclusion 37

ii

Introduction

1 Introduction

1.1 Motivation

Nowadays web mapping services like Google Maps [5] and similar services
from Microsoft and Apple have become an indispensable part of our daily
lives. These services allow natural language queries like “Hotels Freiburg”.
Users can search for hotels, supermarkets, train stations, restaurants and
more. The spatial relations used are limited to “near” or “in”. “Hotels
Freiburg” is interpreted as “Hotels in Freiburg” or “Hotels near Freiburg”.
For Google Maps these spatial relations are implemented by setting the zoom
to a certain level and showing all the hotels. Many spatial relations cannot
be used in any of these services. For example “gas stations between Freiburg
and Offenburg”, “hotels north of Stuttgart” or “playgrounds inside Central
Park” are not viable queries in any mapping service.
In this thesis, we introduce two new spatial relations, “between” and the
compass directions. To realize this, we use the open-source project Open
Street Map (OSM) [3] which offers a vast amount of data that developers
can use to create new map based content. Our goal is to use this data to
create context-aware search-spaces represented by polygons. These search-
spaces can be used to limit the results of a natural language query. The new
spatial relations allow users to further customize their queries and thereby
improve the user-experience.
In the following, we describe which queries on the new spatial relations are
context-aware by analysing the most logical queries for each spatial relation.
Then, we show how we implemented most of the queries presented in the
first part. In a last step, we compare the results to the initial ideas and draw
conclusions.

1.2 Related Work

In their paper “A splitting line model for directional relations”, Kevin Buchin
et al. [2] introduce a method to describe directions using splitting lines. This
method could be used to describe the compass directions in our work. One
disadvantage of this method is the missing boundary condition regarding the
distance. Queries, like ”countries west of Germany”, would return countries
like Mexico. This is technically true, but as we will explain later-on this
result would not be context-aware. Furthermore, this method goes into too
much detail for many different shapes. We try to create a method that works
well for most countries regardless of their shape.

1

New Spatial relations

2 New Spatial relations

In order to show possible new spatial relations that could find use in every-
day applications, we chose the spatial relations “between” and “direction of”.
Both of these spatial relations will be analysed throughout this thesis and
used to show what kind of queries will return useful context-aware search
spaces and which queries need special cases or do not return any useful in-
formation at all. All human behaviour described throughout this thesis is
based on assumptions from a survey of a small group of people. To further
improve the queries, a large-scale survey could be conducted to understand
how other people think about the queries presented in this thesis.

2.1 The “between” relation

The spatial relation “between” is the most interesting of both presented
spatial relations regarding the diversity of the possible queries. In this context
“between” describes a polygonal search field enclosed by certain points of
interest. There are many useful objects that can be searched for between
two points, polygons or poly-lines, for example countries, gas stations, hotels,
supermarkets, bus stops, public restrooms or mailboxes. Despite the fact that
all these queries are useful, most of them are only viable in a certain context.
This means that looking for mailboxes between two streets inside a city might
be a great idea, whereas looking for mailboxes between two countries is not.
In this chapter we will give an overview over possible queries and we will
analyse the context-awareness of these queries.

2.1.1 Sensible Search Queries between Countries

Finding queries that fit the requirements for context-awareness “between two
countries” is no easy task. The only queries that come to mind would be
other countries, bodies of water or cities.

Bodies of water Even though checking for lakes or seas “between two
countries” can be realized, there are several problems with this query. Many
countries are not connected to seas or lakes and even if they are connected
to seas, it does not imply that there is a sea between two of these countries.
Germany and Italy are both connected to seas but there is only landmass
between them.
Due to this query being a special case and the limited usefulness of the
results, we do not consider this query to be viable.

2

New Spatial relations

Cities Cities, Hotels, Supermarkets and other similar objects are hard to
place in a useful context regarding the query “between two countries”. We
could maybe interpret it as “on the border between two countries” for coun-
tries that share a common border. But most borders are very long and we
cannot see any real usage for such a query, as we can see in Figure 1.

Figure 1: Hotels on the common border of Ger-
many and Luxembourg.
This figure was taken from Google Maps and
edited with Inkscape.

Countries Searching for countries “between countries” is the most obvious
thing to do. There are several ways how to interpret “between” in the con-
text of countries. It could mean that we draw horizontal or vertical lines and
consider everything in between, like we did in figure 2a. This would mean
that Egypt is between Germany and Ukraine. This is of course true but not
in the context we would consider useful.
A better approach would be to consider the location of the countries to
one-another and use certain points of both countries to create a polygon
structure that represents the result set. For example Germany lies west of
Belarus, combining the northernmost and the southernmost points of both
countries forms a polygon containing Poland, Lithuania, the Czech republic,
Slovenia, Austria and Denmark. Several of these countries are only partly
contained in the polygon, as shown in Figure 2b. There are two ways to

3

New Spatial relations

refine the result set, calculating the centroid of each country and check if it
is contained in the polygon or check if a country is inside the polygon by a
certain percentage of area.

(a) (b)

Figure 2: (a) Trivial method using vertical lines. (b) Method using the
orientation of countries

If one of the countries is giant in area and the other country small, for example
Luxembourg and Russia, the result set becomes large but it still represents
what we consider “between”. See Figure 3

Figure 3: Countries between Luxembourg and Russia

There are several problems with this method. There are queries that do not
make sense, for example “countries between USA and Vatican”. This query
is uninformative as both countries are far away from each-other, they are
split by an ocean and their size difference is gigantic.

4

New Spatial relations

Another problem is that there are always two distances to consider because
the earth is round. America and Russia are a lot closer to each-other when
turning east from Russia, but due to the coordinate systems used in maps
this would require a conversion of the coordinates. Fortunately, the line of
coordinates where the negative and the positive coordinates meet is located
in the ocean between Russia and America. The only country in the world
that oversteps this coordinate line is Russia. As Russia is gigantic we can
ignore the negative longitude coordinates for Russia without loss of precision.
Due to this, there is no useful query that would require the conversion of the
coordinates, as there is no country in between, see Figure 4.

Figure 4: Line where positive and negative longitude values meet.

2.1.2 Sensible Search Queries between Cities

The polygon resulting from the search for something “between two cities”
can vary depending on what we want to search for and on the distance be-
tween both cities.

Gas stations If somebody intends to look for gas stations “between two
cities”, it is likely that this person intends to drive from one city to another
and wants to refuel on his way. Therefore it is best not to make a large area
search. It is far more context-aware to calculate the shortest path between
both cities and search around this path. To achieve this, it is possible to
create a buffer around the points of the shortest path. This creates a tube

5

New Spatial relations

like polygon as represented in Figure 5.
If there are no gas stations in the result set, it is still possible to consider
alternative routes to the other city.

Figure 5: Gas stations between Freiburg and
Offenburg.
This figure was taken from Google Maps and
edited with Inkscape.

Cities Searching for cities “between two cities” can be realized in two dif-
ferent ways. The first way would be to consider the city area. This method is
similar to the method used to solve the query “countries between countries”
and it would be the straightforward way to solve this query. Unlike country
borders, city borders shapes are arbitrary, see Figure 6. For this reason it is
probably better to have a method that works independent of the city borders.

(a) (b)

Figure 6: (a) City area of Kenzingen. (b) City area of Freiburg.
This pictures show how arbitrary the city borders can be and how they differ
from the built-up area.

6

New Spatial relations

The second way is to ignore the city area and consider only one point of the
built-up area of each city, preferably the city center. The city centres are
then used to create an ellipse, where the city centres are the two points that
are the furtherest away from the ellipse center, see Figure 7. Most people
consider a city to be the built-up area and this ellipse approach describes
this in a better way than the first approach.

Figure 7: Cities between Stuttgart and Karlsruhe

Regardless of the method used, further restrictions are needed to ensure
context-awareness. If the distance between two cities becomes too large, es-
pecially for cities that are not even on the same continent, this query becomes
useless. If the distance between two cities is only 10 kilometres for example,
we would include every city in the result set. The further the cities are away
from one-another the larger the result set becomes. Depending on the situ-
ation, it might be a good idea to remove smaller cities or villages from the
result set.

Hotels For hotels, there are two cases
for searching “between cities” based
on distance. For cities close to each-
other, like Basel and Freiburg, it is
more likely that you want to stay in
the vicinity of those cities to stay in a
hotel for a few days due to an event or
just for sightseeing. This query is eas-
ily solved by using the ellipse method
for cities, see Figure 8.

Figure 8: Hotels between Freiburg and
Basel

This is not the case for cities that lie
thousands of kilometres away from
each-other, as shown in Figure 9a.
The distance could easily be covered

7

New Spatial relations

in a one day trip. But it is advised to make an intermediate stop. If someone
searches for hotels between two cities distant from each-other, they intend to
drive there and have an intermediate stop somewhere along the road.
The ellipse method does not work here because the result set would contain
tens of thousands hotels. A method to solve this would be to check for hotels
along the street as we did for gas stations. To further improve this method
we can check for cities along the path and include the hotels from those
cities to the result set. We can describe this by using a set of circles. We can
describe bigger cities with bigger circles to include all hotels. There is also
a zone where search is irrelevant. Hotels that are too close to the starting
city or the destination are both redundant as it is unlikely that people make
stops early and nobody would stop driving when they are about to reach the
destination, see Figure 9b.

(a)

(b)

Figure 9: (a) Shortest way between Brest and Saarbrucken. (b) Highlighted
result set for this query.

8

New Spatial relations

Landmarks and historical buildings For historical buildings and land-
marks it is best to use the ellipse method to cover a large area. Many
interesting landmarks are often a bit of the streets and therefore it is better
to search in a larger area. This query is only useful when searching between
cities that are close to each-other. Figure 10 shows all historical buildings
between London and Portsmouth. Both cities are at a perfect distance from
one-another. The result-set is not too crowded and all the results are reach-
able when driving from London to Portsmouth. Some of the results might
need a small detour, but this is acceptable as the point is to visit historical
places in the vicinity.

Figure 10: Historical buildings between
Portsmouth and London

2.1.3 Sensible Search Queries between Streets

Streets are a complex dataset. There is an infinite amount of different shaped
streets, some streets are long, some are short, some cross and others do not.
There are distinctions between ways, highways, streets and many more.
The different types of streets are not really compatible. It makes no sense
to look for something between a highway and a street. This is mainly due
to the large amount of things that can be queried between two streets. You
can look for buildings, like hotels or supermarkets, public transportation,
mailboxes or public restrooms. Open Street Map [3] offers a large amount of
different objects. It is best to search only between two streets of the same
type. Streets of different types can have enormous differences in size, which
leads to unreasonable result polygons. Ways are excluded for the most part
as they are too small to lead to notable results.
There may be applications for search between highways for example “cities
between highways”. For this work we focus mainly on streets inside a city
because they allow the most interesting queries.
We can distinguish between two main types of roads. Roads that cross at

9

New Spatial relations

some point and roads that do not cross. For streets, the main focus is not to
find different methods for different queries. It is about determining whether
the streets cross or not and use different approaches for both cases.

Non-intersecting streets For non-intersecting streets the notion of “be-
tween” is easy to describe with a polygon. A simple method is to combine
the endpoints of both streets. This forms a quadrilateral containing all the
important objects, see Figure 11.

Figure 11: Hotels between two streets that do not intersect

The formed quadrilateral can take different shapes depending on the length
and orientation of both streets.

10

New Spatial relations

Intersecting streets If two streets intersect, it is harder to define the no-
tion of “between”. Connecting the endpoints of the streets, without taking
the other points into account, forms a quadrilateral that describes the notion
best, see Figure 12a.
One special case are streets that intersect in one point. This special case
can be solved by connecting the endpoints that are not part of the common
corner. This forms a triangular shape representing the result set, see Fig-
ure 12b.

(a) (b)

Figure 12: (a) Hotels between two intersecting streets. (b) Hotels between
two streets that have a common corner.

11

New Spatial relations

2.2 The Compass Directions

In this thesis, we will focus on “north of” as the main compass direction. All
other compass directions, including North-west, South-west, North-east and
South-east, can be created using rotation.
Compass directions need several restrictions. The query “hotels north of
Freiburg” for example needs to be restricted to a particular region. Some-
one using this query does not want hotels from Norway in his result set,
even though they are technically “north of Freiburg”. This means that there
has to be a rule for every query that determines exactly how far a search is
context-aware.
For most people, “north” is not strictly restricted to 90 degrees from the
equator. We situate “north” between 67.5 and 112.5 degrees.

2.2.1 Sensible Queries for Countries in a Compass Direction

For queries “north of countries” there is a variate of methods that can be
used. The only useful queries in this particular case are countries. The first
method is to draw a horizontal line through the northern-most point of a
country considering everything above as “North”.
The second method is to determine the western-most and eastern-most points
of the country and find points at a certain distance to the north of these
points. Then we rotate the new points around the initial points to form a
trapeze structure, see Figure 13.

Figure 13: Countries north of Germany

The last method is a special method regarding the other methods used in
this paper. We do not form a polygon but check for neighbouring countries
using a dependency tree. This method has the advantage that we can decide
by how many countries we move north.

12

New Spatial relations

2.2.2 Sensible Searches for Cities in a Compass Direction

There are again two ways to describe a city, either we take the built-up area
or the real area of the city as our reference data. This might be dependant
on the query but for the most part, people usually consider the built-up area
as “the city”.

Cities One way to determine “cities north of cities” is to use a similar
method than the one used for countries.
The other method would be to create half of an ellipse and rotate it, Fig-
ure 14 shows half of an ellipse that was rotated by 90 degrees.

Figure 14: Hotels north of Berlin.

For both methods the search-radius should be determined by the area of the
city. This is easy to understand when comparing Freiburg with New York
City. Looking for cities north of New York City should yield a lot more re-
sults than for Freiburg.

Gas stations Looking for “gas stations north of a city” is a redundant
query. If we want to drive somewhere to refuel, we also know our destination
and we can check for “gas stations between two cities” instead. If we just

13

New Spatial relations

want to refuel inside a city, we can just use the existing spatial relation “near”
used by many map services.

Landmarks, Hotels and Supermarkets For landmarks, Hotels and Su-
permarkets the idea is the same. We want to know if there is anything
interesting in the north of this city. This leads to a large search area. These
queries can be solved by applying the ellipse method introduced for the cities.
For several cases especially for cities with huge built-up areas it might be bet-
ter to use the city area.

2.2.3 Sensible Search Queries for Streets in a Compass Direction

For streets the orientation plays a role in eliminating useless queries. If a
street is oriented from North to South the resulting polygon might not de-
scribe what is north of that street, see Figure 15a.
As for the spatial relation “between”, streets will be inside cities and allow for
many different queries. There are no major differences between the queries
regarding the resulting polygon. We have to determine a useful search area.
For streets this can be made dependent on the street length.
A method to create the result polygon is to find a point in the respective
direction for both endpoints of the street, combining these points will form
a quadrilateral polygon, see Figure 15b.

(a) (b)

Figure 15: (a) Street that creates useless results for the query ”north of a
street”. (b) Polygon describing everything ”north of a street”

14

New Spatial relations

2.3 Overview

In this section, we give an overview over the context-aware queries and by
which polygon they will be represented. These are the results of what we
analysed in the second chapter. The entries marked with an “x” are queries
that are not considered context-aware. The first entry means that looking
for a country between countries is context-aware and returns a quadrilateral.

“between” country city street

country quadrilateral x x
city special case ellipse x
hotel special case ellipse or tube structure polygon structure
supermarkets x ellipse polygon structure
gas stations x tube structure polygon structure
restrooms x x polygon structure

compass directions country city street

country quadrilateral x x
city x semi-ellipse x
hotel x semi-ellipse polygon structure
supermarkets x x polygon structure
gas stations x x polygon structure
restrooms x x polygon structure

15

Implementation

3 Implementation

In this chapter, we will give a more detailed description of how we imple-
mented most of the queries introduced in the first chapter. This chapter
does not contain every query from the first chapter. It only contains the
queries that were declared useful. Most of the data used in this chapter was
extracted from Arcmap [1] using shape-files from Geofabrik [4]. Some data
was taken directly from OSM [3].

3.1 Realizing Queries with “between” Relations

The spatial relation “between” offers clear boundary conditions which make
the implementation easier than the compass direction queries. There are less
variables like the search radii that have to be chosen manually or need a lot
more information to determine.

3.1.1 A Toolbox for Search Queries between Countries

Country The first step is to determine the orientation of one country to
the second country. To do this we calculate the centroid of both countries and
determine their angle towards the latitude axis, as seen in Figure 16. Using
the resulting angle, it is possible to distinguish eight cases, one for every com-
pass direction. For each of the cases, different points of the given countries
are needed. For example if one country is north-east of the other country,
then we need the north-westernmost and the south-easternmost point of both
countries to form the result polygon.

Figure 16

Once the orientation is clear, we determine the points we need. The south-
ernmost point is the point with the lowest latitude, the northernmost point is

16

Implementation

therefore the one with the highest latitude. The same works for the western
and easternmost points using the longitude. The trickier part is to determine
for example the north-westernmost point. To determine these special points
we subtract or sum up latitude and longitude of every point. The point
with the lowest difference in latitude and longitude is the north-westernmost
point, the one with the highest difference is the south-easternmost point.
The south-westernmost and north-easternmost points are determined by us-
ing the sum of longitude and latitude.
The last step consists of combining the points. Here we combine the two
points with the same compass direction, then we combine the points from
the country and repeat this one more time. This forms the quadrilateral
result set, see Figure 17.

Figure 17

3.1.2 A Toolbox for Search Queries between Cities

Gas station This query requires the shortest path between two cities. We
use a server running Open Street Route Machine(OSRM) [6] to achieve this.
OSRM [6] provides a huge variety of functions. We mainly use the “viaroute”
function, that returns the coordinates of the streets that form the shortest
path between two given coordinates.
The goal is to create a tube structure. Our first approach was to always check
the orientation between the next two points of the shortest path. Then we
determine two points equidistant of the first point rotated towards the second
point. We use the second point to determine the first point, see Figure 18a.

17

Implementation

The downside of this method is that it can be hard to create a tube structure
out of the result points. If the search-radius is bigger than the distance be-
tween two points the result points can overlap. Unfortunately, this happens
often when working with streets, see Figure 18b.

(a) (b)

Figure 18: (a) Tube structure formed by combining points determined by
the first method. (b) Errors created by the first method.

The method we apply now uses both a variation of the old method for dis-
tant points and circle intersections for points that are close to each-other.
Instead of checking only the orientation towards the next point, we also take
into account the orientation towards the last point and use the mean angle.
Points that are too close to each-other are skipped as they do not change
anything regarding the tube structure, see Figure 19.
This method also ignores the endpoints of the path. This does not matter as
we are only interested in the gas stations between both cities and due to the
large amount of points OSRM [6] delivers, the cities will still be represented
in the result set.

Figure 19

City For this query, we created an ellipse by using the distance between
both city points. The distance is used as the major axis of the ellipse. We
took half the distance as the minor axis. In a next step, we rotated the ellipse

18

Implementation

using a rotation matrix.
This means that the city points will be the endpoints of the major axis, see
Figure 20.

Figure 20: The structure of the rotated ellipse.
Both cities are the endpoints of the major axis.
d represents the distance between both cities. a
is half of the distance and represents the length
of the minor axis. b is half of a. Both variables
a and b are then used to build the ellipse. This
is how we imagined a nice ellipse, the variables
can easily be changed to create different ellipse
structures.

x2

a2
+
y2

b2
= 1 (1)

Equation (1) represents the equation of an ellipse, where a is the length of
the semi-major axis and b is the length of the semi-minor axis.

y =

√
(1 − x2

a2
) ∗ b2 (2)

The ellipse equation can then be transformed to equation (2). This allows us
to determine the y coordinates of the ellipse by using several x coordinates.

x′ = x ∗ cos(θ) − y ∗ sin(θ) (3)

y′ = x ∗ sin(θ) + y ∗ cos(θ) (4)

Using equation (3 & 4), every point is rotated by angle θ . θ represents the
angle between both cities.

Hotels If the two cities are close to each-other, this query uses the ellipse
function used for the cities. For cities further away from each-other, a method
similar to the gas station method is used. It takes all cities on the shortest
path between both cities into account. To accomplish this, we use a city grid.
All cities are sorted into grid cells delimited by latitude and longitude values.
As the street coordinates returned by OSRM [6] are very dense, we only use
every tenth point to reduce the run-time and the amount of duplicates. Some

19

Implementation

cities will be added more than once. These duplicates will be removed later
on.
The city grid used should not contain small villages, they usually do not have
hotels and are overloading the result-set. The result-set is represented by a
set of circles, we could change their radius according to the city area.

3.1.3 A Toolbox for Search Queries between Streets

In chapter two we discussed the different types of streets. The first thing to do
is to find out what type of streets are used. The two types were intersecting
and non-intersecting streets. To determine which type of street is used, we
implemented a function that determines if two lines intersect, inspired by a
work from Martin Thoma [7].

Non-intersecting streets In the case of non-intersecting streets, we com-
bine the endpoints of both streets to form a quadrilateral, including the
points of both streets to maintain their shape. To ensure that the points
are combined in the right order to form a quadrilateral, we would have to
determine in which direction the street points of both streets are ordered.
A simpler approach is to combine the endpoints in both possible ways and
check whether they would intersect. If they do not intersect they are com-
bined correctly.

Intersecting streets If the streets intersect, we simply combine the streets
endpoints by alternating between both streets. This forms a quadrilateral,
ignoring the street points.

3.2 Realizing Queries with Compass directions

Queries about compass directions leave a lot of open variables, like the search-
radius and the opening angle of the search polygon.

3.2.1 A Toolbox for Queries regarding Countries in a Compass
Direction

The target for this query is a trapeze structure. For the example query “north
of Germany”, we determine the eastern and westernmost points, as well as
the northernmost point of Germany. We do this by using the methods used
for the queries “between two countries”. Then we calculate the midpoint be-
tween the eastern and westernmost points and determine the distance from

20

Implementation

this point to the northernmost point. See Figure 21a. This represents the
length of the trapeze structure that will lie inside the country. We wanted
to ensure that this distance does not influence the search-radius. The excess
distance will be added to the search-radius.
The next step is the creation of the trapeze. It will be created by combining
the eastern and westernmost points with two points in the north that will
be calculated using the search-radius. In order to determine these points,
we added the search-radius to the longitude of both points. See Figure 21b.
Then these new points are rotated around the original points. The first
point is rotated by 90 degrees plus an additional 15 degrees to create a typ-
ical trapeze shape. Analogous to the first point, the second point is rotated
by 90 degrees minus 15 degrees, see Figure 21c.
Combining the points will form the result polygon, see Figure 21d.

3.2.2 A Toolbox for Queries regarding Cities in a Compass Direc-
tion

For this query, we chose to create half of an ellipse to describe the result
polygon. We achieved this by using the ellipse function introduced for the
queries “between cities”. The search-radius could be set manually but there
is a huge difference in size between many cities. The search-radius should
therefore be determined using the city area.
We calculate the area of the cities using the city shapes extracted from OSM
Boundaries [8]. The search area (radius) is then determined using the fol-
lowing formula.

radius =
area ∗ numberOfCities ∗ λ

α
(5)

The variable area represents the normalized area of the city we are inter-
ested in. In this case we normalized by dividing each area through the sum
of every area. The variable numberOfCities represents the number of cities
in our dataset. We apply this variable because the area decays fast with an
increasing number of cities. This should help to slow the decay a bit to make
the search for λ easier. λ is a constant. For our small test set, we used a λ
of 400 to create acceptable results. Multiplying all these variables we get the
search-radius in kilometres. To transform this to a distance on the map we
divide it by α. In this case, α is 111.13, which means that 111.13 kilometres
represent one unit on the map in terms of coordinates. The value used here
is the average value for our planet.

21

Implementation

(a) (b)

(c) (d)

Figure 21: (a) Determine the excess distance using the extrema points of the
country. (b) Determine two points that will be rotated to form a trapeze.
(c) New points determined by rotating around the initial points. (d) The
resulting trapeze structure.

22

Implementation

3.2.3 A Toolbox for Queries regarding Streets in a Compass Di-
rection

The method we use for the streets is similar to the one introduced for coun-
tries. The search-radius can be defined using the street length. We again find
two points east of the two endpoints of the street and rotate them around the
old points to create a quadrilateral. The orientation of every street makes
several compass directions return useless results. We could add further re-
strictions, but due to the arbitrary shapes of streets this could exclude useful
results. Our method includes all results.

23

Results

4 Results

This chapter is a comparison between the last two chapters. We compare the
ideas from the first chapter with the results from the implementation. As
stated in the second chapter, our expectations are derived from a small sur-
vey. We asked the opinion of ten people, thus a large scale survey would be
needed to verify our results. We tested each toolbox with about ten queries.
We also tested special cases for each toolbox and show example results in
this chapter.
In this work, our toolbox returns polygons as results. These polygons can
then be used to create new applications. Google Maps [5], for example, seems
to set a view-port and a zoom-level to describe their spatial relations, with-
out creating a polygon.

4.1 The “between” Relation

The results for the “between” relation are generally good as it offers straight-
forward boundaries for most queries.

4.1.1 Results for Queries between Countries

Country The results for countries are very satisfying. The intended result
was a polygon that contains countries that are considered to be “between
two countries”.

(a) (b)

Figure 22: (a) How we imagined countries between Germany and Belarus.
(b) The output of the implementation

As we can see in Figure 22a, the result we imagined contains the Czech Re-
public, Poland, Lithuania, Denmark, Slovakia, Austria, Ukraine and Russia.
Only the Czech Republic, Poland and Lithuania would pass the area or cen-
troid test. The rest of the countries do not have enough landmass contained

24

Results

in the polygon.
The result from the implementation contains the same countries and looks
exactly how we imagined it.
The method also works for countries that are separated by a body of water or
queries between a small and a huge country. Even though the results might
seem a bit strange for some queries, they are still valid for the most part and
there is no reason to block such queries.

(a)

(b)

Figure 23: (a) Countries between Luxembourg and Russia. (b) Countries
between Mexico and Algeria.

25

Results

The result for “countries between Luxembourg and Russia” contains many
countries and all of them can be considered “between” both countries, but
there are some countries, like Romania, that may or may not be considered
“between” Luxembourg and Russia, see Figure 23a.
The result for “countries between Mexico and Algeria” returns Cuba, Do-
minican Republic, Mauricio, Western Sahara and Morocco. These are all
correct countries but it is questionable whether the query is useful with both
countries being so distant from each other and split by the ocean, see Fig-
ure 23b.

26

Results

4.1.2 Results for Queries between Cities

Gas stations The result for “Gas stations between cities” is a tube struc-
ture.

(a) (b)

Figure 24: (a) Gas stations between Freiburg and Stuttgart (b) Gas stations
between Leipzig and Stuttgart

The goal was to create a tube-like structure around the shortest path be-
tween both cities, as most people who would ask this query want to go from
the first to the second city. This could even be improved to allow for several
paths using the “alternative path” feature of OSRM [6]. Like this the user
could choose his favourite path and check for gas stations on that path. The
results we got from this query are represented in Figure 24.

27

Results

Cities The intended result for “cities between cities” is an ellipse. The
results we received from our method are satisfying. The only flaw is a small
inaccuracy created by rotating the coordinate points on the map. The ratio
difference between latitude and longitude causes a small distortion, see Fig-
ure 26.

(a) (b)

Figure 25: (a) Cities between Karlsruhe and Stuttgart (Expectation)(b)
Cities between Karlsruhe and Stuttgart (Implementation)

(a) (b)

Figure 26: (a) Cities between Freiburg and Stuttgart (Expectation) (b) Cities
between Freiburg and Stuttgart (Implementation)

Open Street Map [3] offers many different types of cities like village, settle-
ment, city or county. This allows us to further refine the result depending on
the distance between both cities. The result set for “cities between Karlsruhe
and Stuttgart” would not be too large if we except all kinds of cities, like

28

Results

counties, villages and settlements, see Figure 25b.
Whereas the result set for “cities between Freiburg and Bremen” would be
astronomical in size. Therefore we could only include major cities in the
result set, see Figure 27.

Figure 27: Cities between Freiburg and Bremen

Hotels The results for “hotels between two cities” are mixed. The results
for cities close to each other are satisfying, apart from the small distortion,
as we use the ellipse method, see Figure 28.

Figure 28

29

Results

For cities that are distant from each-other, we applied a method to determine
the cities along the shortest-path between two cities. In Figure 29a, we can
see that our result looks a bit crowded. We used a data-set containing that
contains all villages and cities of Germany. A data-set without small villages
would be preferable.

(a) (b)

Figure 29: (a) Results we got for “hotels between Stuttgart and Berlin”. (b)
Results we could get for “hotels between Stuttgart and Berlin”.

In Figure 29b, we can see how the result could look in the future. Not every
village is taken into account and the search-areas are dependent on the size
of each individual city.

4.1.3 Results for Queries between Streets

The results for “queries between streets” return the results we hoped for. The
non-intersecting streets are taking the shapes of both streets into account.
See Figure 30. Picture (a) and (b) show the results for non-intersecting
streets. Picture (c) and (d) show the result for intersecting streets, where
(c) is the special case with only three corner points. This method takes the
areas between the street segments into account.
The “Berliner Allee” used in Figure 30b is already a very large street. But as
it is still limited to the city, the results should still be useful for some people.

30

Results

(a) (b)

(c) (d)

Figure 30: (a) Hotels between Eisenbahnstraße and Rosastraße. (b) Hotels
between Berliner Allee and Eisenbahnstraße. (c) Hotels between Egonstraße
and Tellstraße. (d) Hotels between Eschholzstraße and Egonstraße.

31

Results

4.2 The Compass Directions

The results for compass directions have one common distortion due to the
ratio difference between latitude and longitude. This leads to minor rotation
errors and length differences. Those differences are less prominent for the
cities and especially for streets. The smaller the result polygon, the smaller
the mistake due to the distortion.

4.2.1 Results for Queries with Countries in a Compass Direction

The results for “countries north of countries” are not very satisfying when
using the polygon method. For some countries and some direction it works
fine, but due to the arbitrary shapes of the countries and the small distortion
in the rotation it is hard to find relevant data in the average case.
See Figure 31. The main problem with this queries is that the results are ar-
bitrary. For some directions it yields no results, for some directions there are
many countries clumped together, and for some directions the search-space
contains only a part of a country.
As mentioned in the chapters before, it would be better to use another ap-
proach for this queries. Using a neighbourhood-tree for the countries, it
would be possible to have general results for every directions. We would not
have to use distances using this method, we could use layers of countries
instead.

32

Results

(a) North (b) North-west (c) West

(d) South-west (e) South (f) South-east

(g) East (h) North-east

Figure 31: Compass Directions of Germany

33

Results

4.2.2 Results for Queries with Cities in a Compass Direction

The results for queries in a direction of a city are satisfying. The size of the
search-result increases with the size of the city, See Figure 32. The size of the
result-set is only dependant on one constant λ. This allows us to customize
it easily when we change the data set. One problem with this method is that
we are using the administrative city borders. Some cities have a bigger area
than others but the built-up area can still be bigger for the city with the
smaller area. A better way to handle this would be to use the built-up area
of the cities or to use a mix of our method and the number of inhabitants of a
city. The built-up area has two downsides, it is hard to get data to calculate
this area and unlike the administrative borders for cities the built-up area
can change very quickly over the course of a year.

(a) (b) (c)

Figure 32: (a) North of Freiburg. (b) North of München. (c) North of Berlin.
All the pictures were taken at the same zoom level to show the difference in
size

The hardest part about these queries is to decide which λ gives us the most
accurate representation of what we call “north of”.

34

Results

4.2.3 Results for Queries with Streets in a Compass Direction

The results for streets are how we imagined them. It is not hard to define
a direction with streets. For each street there are several directions that do
not make sense. We allow for these directions anyway because for some cases
they return some useful results and it could be that the user is interested in
these results, as he decided to ask this query.

Figure 33 shows us several possible queries. Figure 33a and 33b show two
directions on a normal street. Figure 33c shows the result of a questionable
query. The “Rosastraße” is directed in a way that looking west of the street
does not make that much sense. But as we can see in the picture it, is still
possible that there is a hotel or supermarket in the result-area and that the
user searched for that particular thing. Figure 33d shows a query on a large
street. It shows that the search-area changes with the street length. We
used a ratio of 1.5 times the street-length to generate the figures. This ratio
seemed the best to describe what we understood as “North of a street”. If
the ratio is too large, it makes no sense because no-one would walk several
kilometres to get to a “supermarket north of a street”, for example, and if
the ratio becomes too small, the result-set may be empty.

35

Results

(a) (b)

(c) (d)

Figure 33: (a) North of Egonstraße. (b) North-east of Egonstraße. (c) West
of Rosastraße (d) North of Berliner Allee

36

Conclusion

5 Conclusion

Throughout this work, we described two new spatial relations, “between”
and the compass directions. We first analysed the usefulness of several sub-
queries, then we implemented the most useful ones using OSM [3] and OSRM
[6]. Finally, we described our results.
The spatial relation “between” yielded interesting results. The experiments
with our toolbox showed that the search polygon returned by the toolbox
matches our expectations in close to every case. Especially streets and coun-
tries offer many useful results that could be used to improve web-mapping
services. Some improvements could still be done for queries that involve
the calculation of shortest paths. We could, for example, include alternative
paths to offer more possible results.
The compass directions proved a harder challenge than expected. There are
many boundary conditions that have to be “guessed”, mainly the search-
radius. Nevertheless, we have useful results for streets and cities. As stated
in this work, the results for countries are usable but not great. It would be
better to use a non-polygon method to solve these queries.
An overall improvement would be to remove the small distortion due to the
earth shape, described in the results. As our work is a proof of concept, the
performance can be further improved using e.g. databases. Furthermore,
new spatial relations like “inside”, “along” or “around” can be created to
further improve the possibilities a user has when using a web-mapping ser-
vice.
As there is close to no research going into this field, regarding spatial rela-
tions for web-mapping services, we find it important to create new spatial
relations. This is a way to create a new user-experience for web-mapping
services.

37

REFERENCES

References

[1] Esri ArcGIS. Arcmap, 2002. URL http://www.esri.com/software/

arcgis.

[2] Kevin Buchin, Vincent Kusters, Bettina Speckmann, Frank Staals, and
Bogdan Vasilescu. A splitting line model for directional relations. In Pro-
ceedings of the 19th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, pages 142–151. ACM, 2011.

[3] Open Street Map Foundation. Openstreetmap, 2004. URL http://www.

openstreetmap.org/.

[4] Geofabrik. Openstreetmap data extracts, 2011. URL http://download.

geofabrik.de/.

[5] Google. Google maps, 2004. URL https://www.google.com/maps/.

[6] Karlsruhe Institute of Technology. Open street route machine, 2011. URL
http://project-osrm.org/.

[7] Martin Thoma. How to check if two line seg-
ments intersect, 2013. URL http://martin-thoma.com/

how-to-check-if-two-line-segments-intersect/.

[8] TODO. Osm boundaries 3.2, 2015. URL https://osm.

wno-edv-service.de/boundaries/.

38

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://download.geofabrik.de/
http://download.geofabrik.de/
https://www.google.com/maps/
http://project-osrm.org/
http://martin-thoma.com/how-to-check-if-two-line-segments-intersect/
http://martin-thoma.com/how-to-check-if-two-line-segments-intersect/
https://osm.wno-edv-service.de/boundaries/
https://osm.wno-edv-service.de/boundaries/

	Introduction
	Motivation
	Related Work

	New Spatial relations
	The ``between" relation
	Sensible Search Queries between Countries
	Sensible Search Queries between Cities
	Sensible Search Queries between Streets

	The Compass Directions
	Sensible Queries for Countries in a Compass Direction
	Sensible Searches for Cities in a Compass Direction
	Sensible Search Queries for Streets in a Compass Direction

	Overview

	Implementation
	Realizing Queries with ``between" Relations
	A Toolbox for Search Queries between Countries
	A Toolbox for Search Queries between Cities
	A Toolbox for Search Queries between Streets

	Realizing Queries with Compass directions
	A Toolbox for Queries regarding Countries in a Compass Direction
	A Toolbox for Queries regarding Cities in a Compass Direction
	A Toolbox for Queries regarding Streets in a Compass Direction

	Results
	The ``between" Relation
	Results for Queries between Countries
	Results for Queries between Cities
	Results for Queries between Streets

	The Compass Directions
	Results for Queries with Countries in a Compass Direction
	Results for Queries with Cities in a Compass Direction
	Results for Queries with Streets in a Compass Direction

	Conclusion

