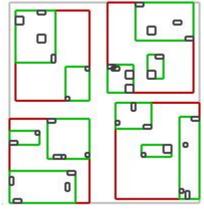
An efficient external R-tree for very large datasets

Bachelor's Thesis

Noah Nock 31.03.2025

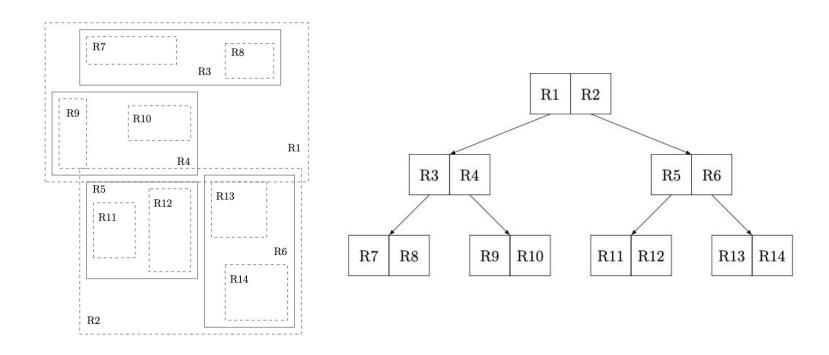
Spatial indexing and querying

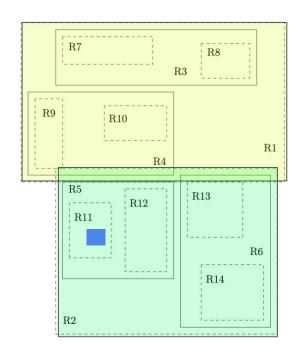
Idea to include spatial indexing into SPARQL engine Qlever

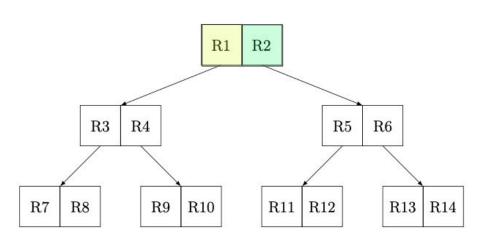


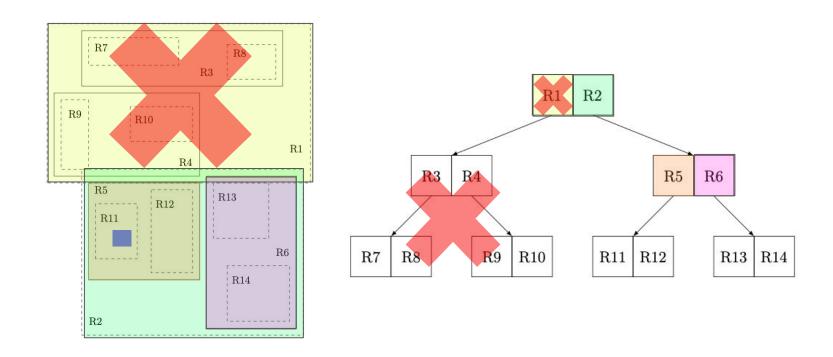
R-tree

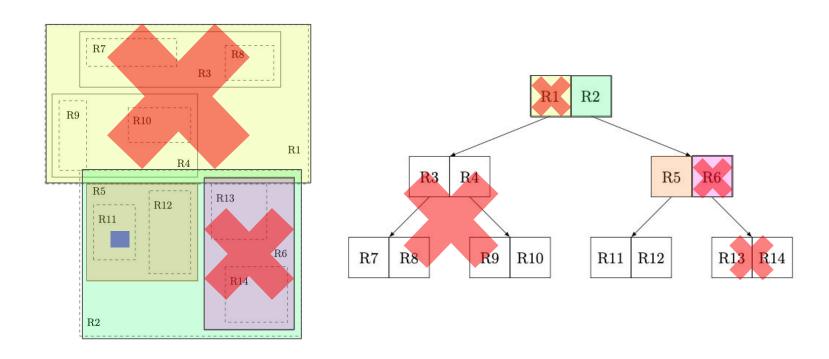
(https://www.boost.org/doc/libs/1_84_0/ libs/geometry/doc/html/img/index/rtree/r star.png)

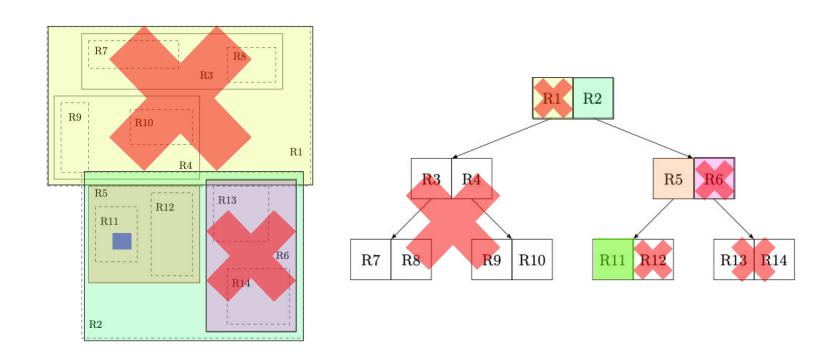






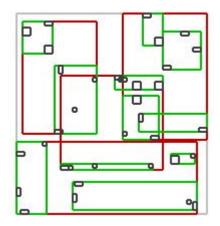




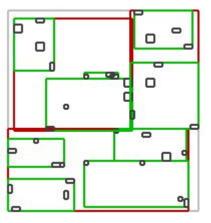


R-tree building

- Can be built one entry at the time -> possibly bad structure
- Know all entries beforehand -> Optimal solution can be found (Bulk loading)



Linear Algorithm
(https://www.boost.org/doc/libs/1 84 0/libs/geometry/doc/html/img/index/rtree/linear.png)



Packing Algorithm

(https://www.boost.org/doc/libs/1_8
4_0/libs/geometry/doc/html/img/ind
ex/rtree/bulk.png)

Problem with common R-tree implementations

- Bulk loading requires all entries to be known -> all entries get loaded in RAM
 e.g. in the C++ Boost library
- Lack of serialization
- Bad memory usage in building and searching

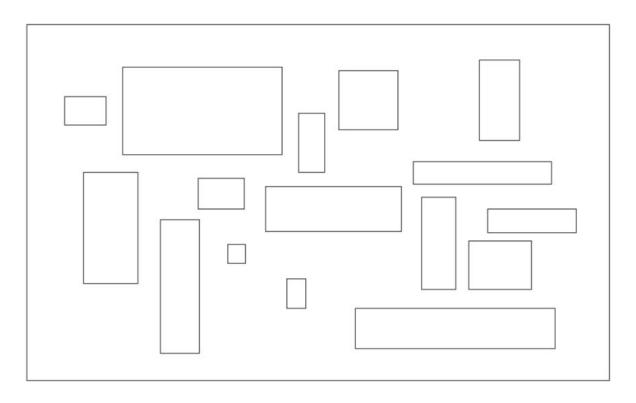
-> Most implementations do not scale well with very large data sets

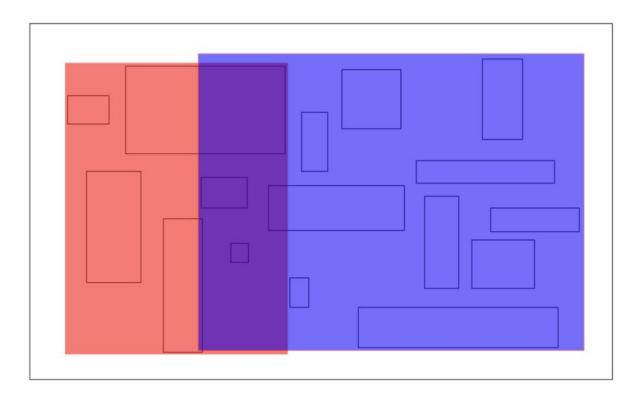
My goals

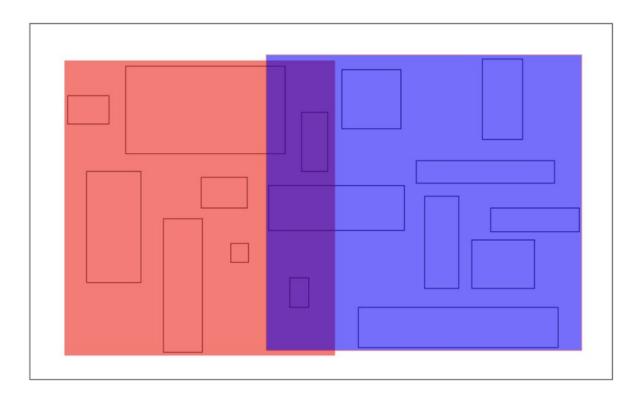
- Developing an efficient R-tree building algorithm and its implementation
 - building a R-tree in respect to a given memory limit
- Instant querying without loading in a whole R-tree
- Evaluate its performance

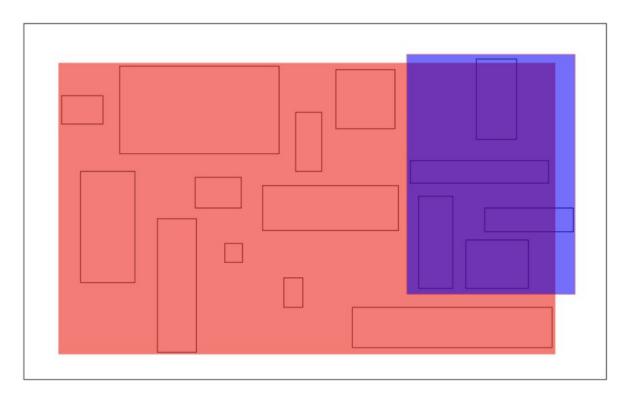
TGS Algorithm

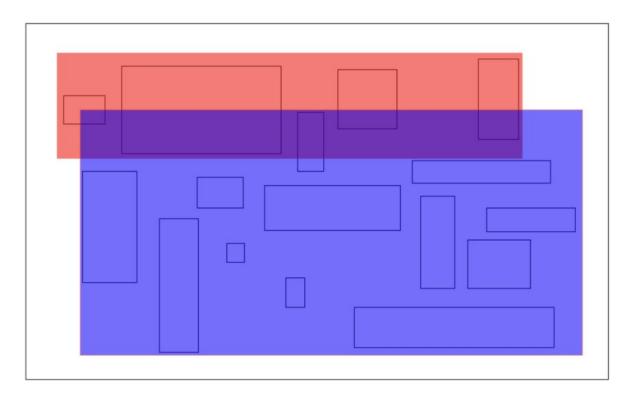
- Top-down greedy splitting algorithm (1997)¹
- Used to bulk load R-trees
- Splits the search space into two subspaces at the time

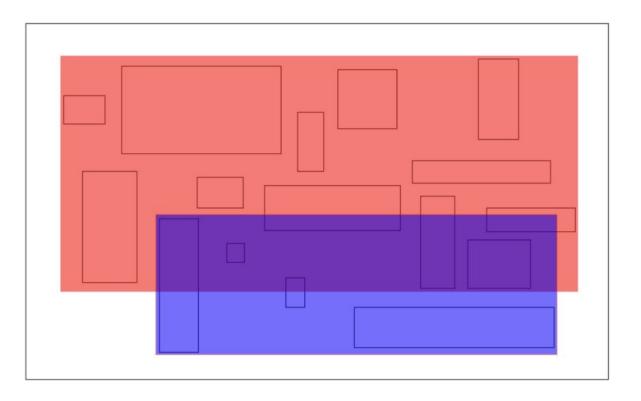


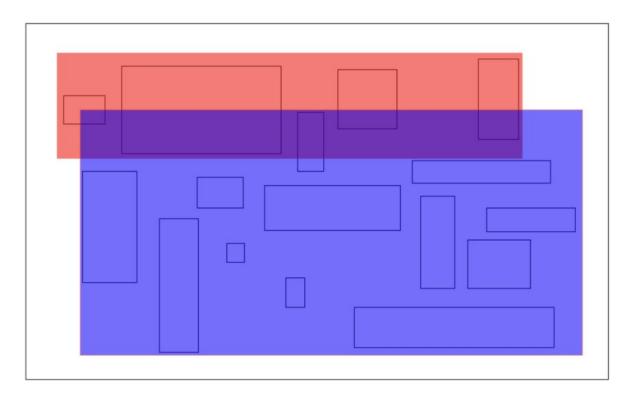


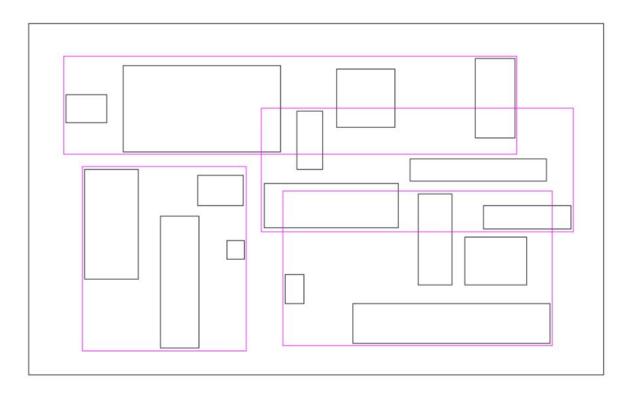












Challenges and improvements of TGS

- Elements have to be sorted by both dimensions for every split
 - Fix the sorting after each split in linear time and O(1) memory consumption
- Not every element is needed for the split checks
 - Only elements at a multiple of #elements_per_node and the boundingboxes of the splits
- Building the tree in a depth first approach

- How to keep both splits of a list sorted after splitting at a specific element?
 - trivial for the ordering in the same dimension as the split
 - non trivial for the other ordering
- Solution: each element keeps track of its position in both orderings

centerX	centerY	$\operatorname{order} X$	orderY
2.3	4.6		
2.7	1.4		
4.3	3.8		
5.6	5.5		
5.9	2.3		

centerX	centerY	$\operatorname{order} X$	orderY
2.3	4.6	1	
2.7	1.4	2	
4.3	3.8	3	
5.6	5.5	4	
5.9	2.3	5	

centerX	centerY	$\operatorname{order} X$	orderY
2.7	1.4	2	
5.9	2.3	5	
4.3	3.8	3	
2.3	4.6	1	
5.6	5.5	4	

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

centerX	centerY	order X	orderY
2.3	4.6	1	4
2.7	1.4	2	1
4.3	3.8	3	3
5.6	5.5	4	5
5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

C	centerX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

\mathbf{c}	enterX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

C	enterX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

C	enterX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

C	enterX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

C	enterX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

C	enterX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

C	enterX	centerY	order X	orderY
	2.3	4.6	1	4
	2.7	1.4	2	1
	4.3	3.8	3	3
	5.6	5.5	4	5
	5.9	2.3	5	2

centerX	centerY	order X	orderY
2.7	1.4	2	1
5.9	2.3	5	2
4.3	3.8	3	3
2.3	4.6	1	4
5.6	5.5	4	5

Precomputing all possible split locations

- For branching factor m and element size n in the current node, there are S elements per child with $S = \left\lceil \frac{n}{m} \right\rceil$
- Each possible split location is at a multiple of S
- While iterating through the lists to perform the splits -> record the current boundingbox at each Sth position
- Results are m possible splits per dimension -> used for TGS algorithm
 - Results are two lists possibleSplitsX and possibleSplitsY

-> very little information needed in memory to decide the splits

R-tree building - Start to finish

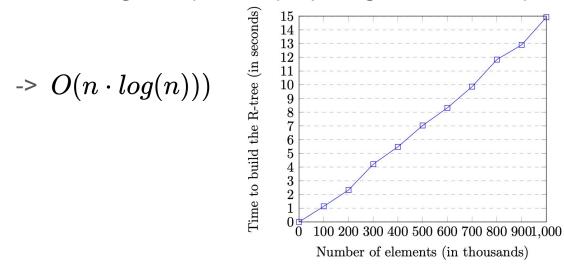
- 1. Create the initial x- and y-sorting
 - a. Loop through both sortings and create possibleSplitsX and possibleSplitsY
- 2. Look for the best split based on possibleSplitsX and possibleSplitsY with TGS
- 3. Perform the splits while maintaining the sorting
 - a. Keep track of the new possibleSplitsX and possibleSplitsY lists
 - b. Recursively split both splits until msplits of equal size are found -> all mthild nodes
- 4. Choose one child node and repeat 2-4 until leaf nodes are reached
 - a. Save each finished node on disk -> serialization of the R-tree
- 5. Repeat 4 until all nodes are finished

Internal and External data

- While splitting: algorithm processes one element at the time
 - does not matter if elements are stored on disk or loaded in RAM
- Internal data: elements are loaded in RAM -> faster access
- External data: elements are stored on disk and loaded one at the time -> suitable for low memory applications
- Dynamic combination of internal and external data
 - Split the elements externally until remaining elements fit in memory -> switch to internal

Runtime complexity

- Initial sorting runs in $O(n \cdot log(n))$
- Deciding a split only relies on possibleSplitsX and possibleSplitsY -> O(1)
- Performing the split and preparing for the next splits at each tree level -> O(n)



Space complexity

- Initial sorting: highly depends on sorting algorithm and implementation
 - can be done externally with a memory limit e.g. stxxl²
- Finding and performing a split $\rightarrow O(1)$
- Keeping track of the depth-first expansion of the R-tree -> O(log(n))
 - $\rightarrow O(log(n))$

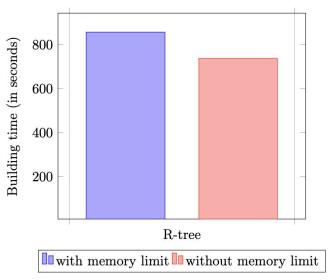
Runtime Analysis - Data samples

Use of three different datasets:

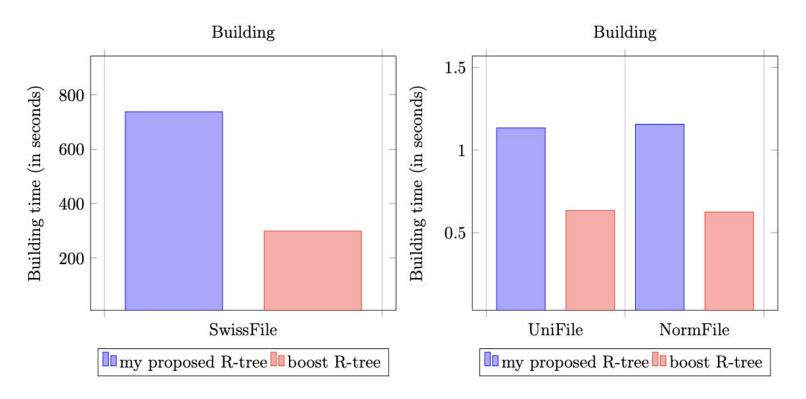
- 1. SwissFile: Real data of the boundingboxes of all objects in switzerland recorded by OpenStreetMap³. Consists of 33266131 entries.
- 2. NormFile: Synthetic data of 1,000,000 randomly generated boundingboxes over the area of switzerland. The generation is normally distributed.
- 3. *UniFile*: Synthetic data of 1,000,000 randomly generated boundingboxes over the area of switzerland. The generation is uniformly distributed.

Runtime Analysis - Internal vs. External Building

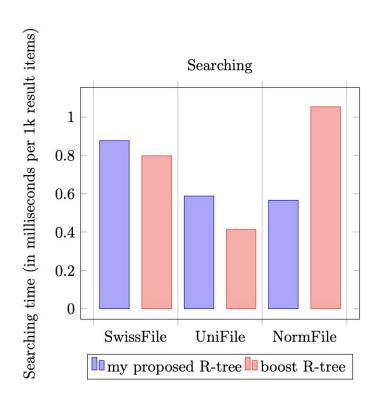
- Comparison between the building time of a R-tree based on *SwissFile* for:
 - No memory limit: The Algorithm used up to 5.32GB of RAM
 - Memory limit of 500MB



Runtime Analysis - Comparison to Boost



Runtime Analysis - Comparison to Boost



Conclusion

- Proposed an efficient and external R-tree building algorithm
- Able to respect given memory limit while building a R-tree
- Scales well with large data sets
- Increase in building time compared to Boost
- Maintaining reasonable querying time in comparison to the Boost R-tree
 - -> Usable for computing spatial indices on very large datasets

Sources

- Y. J. García R, M. A. López, and S. T. Leutenegger, "A greedy algorithm for bulk loading r-trees," pp. 163–164, 1998.¹
- B. Gehrels, B. Lalande, M. Loskot, A. Wulkiewicz, and L. Simonson, "Boost r-tree algorithm." https://www.boost.org/doc/libs/1_87_0/libs/geometry/doc/html/geometry/spatial_indexes/introduction.html (Accessed: 25.03.2025).
- B. Gehrels, B. Lalande, M. Loskot, and A. Wulkiewicz, "Boost r-tree documentation." https://beta.boost.org/doc/libs/1_82_0/libs/geometry/doc/html/geometry/reference/spatial_indexes/boost_geometry_index_rtree.html (Accessed: 25.03.2025).
- Stxxl documentation². https://stxxl.org/tags/1.4.1/index.html (Accessed: 26.03.2025).
- OpenStreetMap³. https://www.openstreetmap.org/ (Accessed: 26.03.2025).