
Bachelor Thesis

Web-scalable Named-entity Recognition and
Linking with a Wikipedia-backed Knowledge
Base

Chair of Algorithms and Data Structures
Albert-Ludwigs-University Freiburg

2018-07-17/10-17

Author: Niklas Baumert
Reviewer: Prof. Dr. Hannah Bast
Supervisor: Niklas Schnelle
Date of Submission: 2018-10-17

Declaration of Authorship
I hereby declare, that I am the sole author and composer of my thesis and that no
other sources of learning aids, other than those listed, haven been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work. I also hereby declare that my thesis has not been prepared for another
examination or assignment, either in its entirety or excerpts thereof.

Place, Date Signature

ii

Abstract
This thesis is about WiNERLi, a software to solve the named-entity recognition and the
entity linking tasks. It does so by utilizing a knowledge base built from Wikipedia. Its
major function is to provide input files for QLever1, another system at the department.
In the following I will define the named-entity recognition and entity linking tasks

and take a look at how other studies tackled the tasks. A central aspect of WiNERLi
is its Wikipedia-backed knowledge base. The knowledge base is built by extracting
page titles, links and infoboxes from Wikipedia pages. WiNERLi uses sub-sequences of
variable lengths to determine entities by querying those against the knowledge base. I
performed general tests in entity detection, entity categorization and entity linking with
two datasets. Its performance in those general tests is not particularly high. It has
F1-Scores of 0.3810–0.4768 in entity detection; 0.1712–0.3912 in entity categorization;
and 0.2857 in entity linking.

1https://github.com/ad-freiburg/QLever

iii

Zusammenfassung
Diese Bachelorarbeit beschäftigt sich mit WiNERLi, ein Programm, das Named-Entity-
Recognition und Entity-Linking durchführt. Dafür nutzt es eine auf Wikipedia basie-
rende Wissensdatenbank. Die Hauptfunktion ist es, Eingabedateien für QLever2, ein
anderes System des Lehrstuhls, zu erstellen.
Im Folgenden werde ich die Named-Entity-Recognition und Entity-Linking Proble-

me definieren und einen Blick auf den derzeitigen Forschungsstand werfen. Der zentrale
Aspekt von WiNERLi ist die Wikipedia basierende Wissensdatenbank. Diese basiert auf
Daten, die aus den Seitentiteln, Links und Infoboxen von Wikipediaseiten extrahiert
werden. WiNERLi nutzt Subsequenzen mit variabler Länge um Entitäten zu erkennen
indem diese Subsequenzen in der Wissensdatenbank abgefragt werden. Ich habe auf zwei
Datensätzen allgemeine Tests zur Entitäten Erkennung, Entitäten Kategorisierung und
Entitäten Verlinkung durchgeführt. Die erzielte Leistung ist nicht hoch, mit F1-Scores
von 0.3810–0.4768 bei Entitäten Erkennung; 0.1712–0.3912 bei Entitäten Kategorisie-
rung; und 0.2857 bei Entitäten Verlinkung.

2https://github.com/ad-freiburg/QLever

iv

Contents
1 Introduction 1

1.1 The Named-entity Recognition Task . 1
1.2 The Entity Linking Task . 2

2 Related Work 3

3 Wikipedia-backed Knowledge Base 4

4 Wikipedia Named-entity Recognition and Linking 10
4.1 Requirements . 10
4.2 Implementation . 12

4.2.1 Recognize Direct Mentions . 13
4.2.2 Recognize Partial Mentions . 13
4.2.3 Recognize Entities by Pronoun 14
4.2.4 Recognize Entities by Category 14
4.2.5 Entity Linking and Storing Results 15

5 Evaluation 16

6 Conclusion 21
6.1 WiNERLi . 21
6.2 Personal Conclusions . 22

References 23

v

1 Introduction
This thesis is about the Wikipedia Named-entity Recognition and Linking system (WiN-
ERLi) that I created. As the name suggests, it performs named-entity recognition (NER)
and entity linking (EL) with a knowledge base (KB) built from the Wikipedia1. NER
and EL are part of the field of natural language processing (NLP). Its main goal was to
produce files as input for QLever2, another system of the department, for that WiNERLi
parses the whole of Wikipedia.
This thesis is structured in six chapters. Chapter 1 is this introductory chapter in

which I further will define the NER and EL tasks. Chapter 2 is about related work
and how current state-of-the-art solutions solve the NER and EL tasks. In Chapter 3 I
describe what a KB is and what the KB does in regard to the NER and EL task and how
the KB for WiNERLi is created. Chapter 4 is about the requirements for WiNERLi and
how it solves the NER and EL problems. In Chapter 5 I present the testing methodology
and evaluate the performance of WiNERLi. Finally, Chapter 6 is the short conclusion.

1.1 The Named-entity Recognition Task
According to the definitions by Jurafsky and Martin [2009] and Zitouni [2014] the named-
entity recognition task is the problem of finding and categorizing entities in a given text.
An entity is simply anything that can be referred to by a proper noun. NER is used
in, and has improved the performance of, applications in Question Answering, Machine
Translation and Information Retrieval [Zitouni, 2014].
“Named entity recognition consists of the following two sub-problems: (1) recogni-

tion of named entity boundaries; (2) recognition of named entity categories (classes)”
[Zitouni, 2014].
The problem with NER is, that words are ambiguous. The same word can refer to

different entities of the same category [Jurafsky and Martin, 2009], this is common with
people’s names. Like in the case of “John F. Kennedy” where this could mean the
president or his son. But the same word can also refer to different entities of different
categories [Jurafsky and Martin, 2009]. The short-hand form “JFK” can stand for the
person John F. Kennedy (bringing us back to the case before) or the airport of the same
name.

1wikipedia.org
2https://github.com/ad-freiburg/QLever

1

1.2 The Entity Linking Task

1.2 The Entity Linking Task
According to the definitions by Raiman and Raiman [2018], Spitkovsky and Chang
[2012] and Ji and Grishman [2011] the entity linking task is the problem of mention-
disambiguation in documents and resolving ambiguity by “associating specific mentions
in text to [entities] in a knowledge base” [Spitkovsky and Chang, 2012]. The mention
“Washington” could mean either the entity “Washington D.C.” or “George Washington”
[Raiman and Raiman, 2018].
WiNERLi, by default, links entities to Wikipedia pages but has means to convert

resulting data to Freebase or Wikidata IDs (and back).

2

2 Related Work
Named-entity recognition and entity linking are relative old problems of natural language
processing, but according to Johnson [2009], the field was revolutionized when scientists
started transitioning from the typical grammar-based to statistical approaches (machine
learning).
Most recent papers, going back to the early 2000s, are using machine learning to

solve NER and EL tasks. The systems mostly differ by which underlying architecture
is used. Most use a combination of bidirectional long short-term memory (LSTM) and
convolution neural networks (CNN), like Santos and Guimarães [2015] and Chiu and
Nichols [2015]. Ma and Hovy [2016] and Lample et al. [2016] added conditional random
fields (CRF) to the bidirectional LSTM and CNN system. A graph-based system has
been proposed by Han et al. [2011], and a combination of hidden Markov models and
stochastic grammars proposed by Lafferty et al. [2001]
A similar design to WiNERLi has been proposed by Kazama and Torisawa [2007], as

they utilize a similarly built Wikipedia-backed knowledge base, but further utilize CRF.
Zhang and Ira [2009] expanded on this approach further.
For the entity linking aspect, a KB build from Wikipedia has been used by Ji and

Grishman [2011], Lin et al. [2012], Han et al. [2011], Kazama and Torisawa [2007] and
Zhang and Ira [2009].

3

3 Wikipedia-backed Knowledge
Base

In this chapter I will explain what a KB is, what its benefits are in regard to NER and
EL and how my KB is created.
As per definition from Section 1.2, a KB is required in the EL task to have something

to map the entities to.
In the NER task gazetteers, sometimes called entity dictionaries, are frequently used

to improve performance [Kazama and Torisawa, 2007; Zhang and Ira, 2009]. A gazetteer
is—simply speaking—a dictionary that contains a useful mapping for the task. Which
makes it similar to a knowledge base. For example, a gazetteer could contain mappings
like “London”→ “Location” or “Barack Obama”→ “Person”. “[B]uilding and maintain-
ing high-quality gazetteers is very time consuming” [Kazama and Torisawa, 2007]. Some
automatic methods have been proposed, but they “require complicated induction of pat-
terns or statistical methods to extract high-quality gazetteers” [Kazama and Torisawa,
2007]. One such automatic method has been proposed by Zhang and Ira [2009].
While I also use gazetteers as auxiliary information for the categories—holding a

mapping from Wikipedia page title to its corresponding category—and for the gender of
people—holding mapping from a persons name (which corresponds to its Wikipedia page
title, too) to the respective gender—this differs greatly from the task the KB performs.
As described in Chapter 2, most state-of-the-art NER systems work with some type

of machine learning. WiNERLi on the other hand works purely with a KB. This KB
contains a normalized mapping from strings (characters, words or phrases) to entities.
The entities are based on—and correspond to—Wikipedia pages. Which means that
WiNERLi can only identify entities which have a Wikipedia page. And therefore one
KB is used to solve NER (with the help of auxiliary gazetteers) and EL at the same
time.
Wikipedia is a great source for this, as it is build by a voluntary community and

therefore can contain pages for some rather obscure entities. There even exists a
collection of unusual articles1 with bizarre entries—that have questionable usefulness
for the KB—like: “World’s littlest skyscraper”, “Smallest House in Great Britain” or
“Weißwurstäquator”. The Wikipedia data is also available completely free of charge,
so it is easy to work with it and enables others to easily recreate this KB. The linked
inter-connectivity of the pages can be exploited, which is the topic of the rest of this
chapter: the creation of the knowledge base.
The KB was first created in and for my Bachelor project, a synonym finder. The cre-

1en.wikipedia.org/wiki/Wikipedia:Unusual_articles

4

3 Wikipedia-backed Knowledge Base

1 i nva l id_char s = [’ . ’ , ’ , ’ , ’ ’ , ’_ ’ , ’ (’ , ’) ’ , ’ [’ , ’] ’ ,
2 ’ { ’ , ’ } ’ , ’ : ’ , ’ ; ’ , ’ \ ’ ’ , ’ " ’ , ’ \ t ’ , ’ \n ’]
3 de f normal ize (t ex t) :
4 c lean_text = text . lower ()
5 c lean_text = clean_text . s t r i p ()
6 f o r char in inva l id_char s :
7 c lean_text = clean_text . r ep l a c e (char , ’ ’)
8 r e turn c lean_text

Listing 3.1: The normalization function

ation process is heavily based on Crosswikis by Spitkovsky and Chang [2012] but with
some slight tweaks. For the purpose of relevance I will only discuss the relevant part
of Crosswikis with regard to this thesis, but in practice the system is more complex.
Crosswikis is a dictionary from strings to concepts, i.e. Wikipedia pages. They scrape
“(i) English Wikipedia titles; (ii) anchor texts from English inter-Wikipedia links; (iii)
anchor texts into the English Wikipedia from non-Wikipedia web-pages; and (iv) anchor
texts from non-Wikipedia pages into non-English Wikipedia pages, for topics that have
corresponding English Wikipedia articles” [Spitkovsky and Chang, 2012]. This dictio-
nary has a scoring system to determine how relevant a concept is to a string. The scoring
functions are “essentially conditional probabilities” [Spitkovsky and Chang, 2012], in this
case “ratios of the number of hyperlinks into a Wikipedia URL having anchor text s
and [. . .] the total number of anchors with text s, S(URL|s), for going from strings to
concepts” [Spitkovsky and Chang, 2012].
In the case of WiNERLi the sources for information are (1) the page title; (2) links

inside the page; (3) the infoboxes; of English Wikipedia pages. The process is split into
two steps. In the first step, the raw data is scraped and stored in a temporary, raw
database. The raw data is processed and stored in the true KB, which is used for NER
and EL, in the second step.
In the following I will use examples for extracted mappings. For ease of read the

mapped words are written as-is, but in practice they are normalized. The code listing
3.1 shows how strings, which can be just one word (ex. “Germany”), multiple words (ex.
“Barack Obama”) or phrases (ex. “President of the United States”), are normalized. The
given examples would normalize as follows: “Germany”→ “germany”, “Barack Obama”
→ “barackobama” and “President of the United States”→ “presidentoftheunitedstates”.
The first source are the page titles themselves. A title is stored as a direct mapping

to the page itself. As an example, let’s take the page of Barack Obama. The mapping
“Barack Obama” → “Barack_Obama” is stored (do note the underscore on the right-
hand side, it is a wikilink that attached to the URL http://en.wikipedia.org/wiki/wikilink
will lead to a valid Wikipedia page).
The second source are links. In the Wikimedia Markup Syntax2 a link can be denoted

2mediawiki.org/wiki/Help:Formatting

5

3 Wikipedia-backed Knowledge Base

in two forms. In the first form as [wikilink], which displays a link titled “wikilink” to
the page “Wikilink”, or in the second form as [wikilink|Alternative Text], which
displays a link titled “Alternative Text” to the page “Wikilink”. If an alternative text is
given, the mapping “Alternative Text”→ “Wikilink” is stored in the raw database. Oth-
erwise, just “wikilink” → “Wikilink” is stored. Some links are ignored, mainly links to
special pages like media pages or meta pages like categories. Those links are prefixed with
“Image:”, “Category:” etc. Continuing the Barack Obama example, let’s take a look at
some links from his article. The link [[President of the United States]] will map
“President of the United States” → “President_of_the_United_States”. And the link
[[Democratic Party (United States)|Democratic Party]] will map “Democratic
Party” → “Democratic_Party_(United_States)”.
The third source are infoboxes. Infoboxes are Wikipedia-specific information con-

tainers on the right side of the page (see Figure 3.1). The infoboxes contain detailed
information in an easy readable display (see Figure 3.3 as an example). Infoboxes are
highly specialized. Figure 3.3 shows a President-infobox which inherits basic personal
information fields from the Person-infobox (like the “Born” field containing birth name,
date of birth and birth location). I use the type of the infobox to categorize the re-
spective page. This yields highly specific categories. Currently only minimal further
information is drawn from the infoboxes. One reason for this is, that for every infobox-
category the relevant information has to be added manually to a list of attributes that
will be extracted. And the second reason is, that most of the information is not relevant
enough to identify an entity (for example the birth date of a person can rarely be used
to uniquely identify a specific person).
Now any vivid Wikipedia user might ask why not use the categories that Wikipedia

provides on the bottom of each article? And this is a valid approach which Richman
and Schone [2008] and Sil and Florian [2014] have used. The problem with this in the
case of WiNERLi is best shown with an example: Figure 3.2 shows every category of
the Barack Obama Wikipedia page. Over 50 categories. Mapping these to any subset
by hand is time-consuming and was not feasible to do for me. But if such a mapping
exists, any Wikipedia page could be categorized, even if it doesn’t contain an infobox.
Richman and Schone [2008] are resolving this by building a hierarchy of categories which
gets followed until one category of a certain set of hand-picked, and already classified,
categories is reached.
After the extraction process, step one, is done for every valid Wikipedia page (a valid

page is an article page of some sort and no talk or media pages etc.) step two, the data
processing, is started.

6

3 Wikipedia-backed Knowledge Base

Figure 3.1: A screen cap of Barack Obama’s Wikipedia page with the infobox on the
right side of the text.

Figure 3.2: The full extend of the categories on Barack Obama’s Wikipedia page.

7

3 Wikipedia-backed Knowledge Base

Figure 3.3: The full extend of Barack Obama’s President-infobox

8

3 Wikipedia-backed Knowledge Base

Let w be a normalized string according to Listing 3.1 stored in the raw database. For
every w there exist a raw finite list of wikilinks Lw = {lw

1 , lw
2 , . . . , lw

n }, where duplicates
are possible—and very likely.

1. Take the total occurrence tow = |Lw|, which is the number of wikilinks that w
maps to.

2. There exist m ≤ n unique wikilinks in Lw. For every lw
i ∈ Lw calculate the

occurrence ow
i = |{lw

j |lw
j ∈ Lw ∧ lw

j = lw
i }|. This is how often lw

i occurs in Lw.

3. For every wikilink lw
i ∈ Lw calculate rw

i = ow
i

tow . This ratio is the relevance of the
wikilink with regard to w.

4. Add the entry for w to the knowledge base: KB(w) = {(lw
i , ow

i , rw
i)|i ∈ [1, m]}

ordered descending by rw
i .

5. Repeat for each w.

The relevance is the measure that decides which wikilink is retrieved. This means that
there are no further attempts to infer context; the most frequent wikilink is considered
the best match.
Although the creation process of the KB is simple in theory, I did find some exceptions

that made it difficult. First and foremost were the automatic redirects that Wikipedia
employs. A redirect usually connects a well-known but maybe unofficial term for some-
thing or someone to the correct term. For example: the wikilink “Prince_Charles”
redirects to the page “Charles,_Prince_of_Wales” (yes, with a comma). This problem
was resolved by saving a mapping from each redirecting page to its target page and using
this mapping to replace each redirection page with its target.
Another similar problem were disambiguation pages. A disambiguation page lists all

Wikipedia pages of all categories which can be referred to by the term). The disam-
biguation page “Prince_Charles_(disambiguation)” contains links to 17 people who are
or were named Prince Charles, two places and one ship. Those pages were bad results
for the synonym finder, because a disambiguation should never be the synonym to a
given term and they are bad results for NER and EL as they are not an entity. Luckily
they all have a “disambugation-template” in the page Markup, just looking for that in
the first step of the KB creation and storing those pages I was able to easily filter the
pages in the second step.
Similar to disambiguation pages are “given name”-pages. For some names they contain

etymology and historical usage of the name (like for Charles) while for others the page
acts just as list of people with that name (see Jackie (given name) as an example). Those
pages were not filtered, although they are very similar to disambiguation pages. The
reason for that is how the WiNERLi checks for entities (more on that in Chapter 4).
For that it needs to find an entry in the KB for partial names too, otherwise the name
is considered not an entity and skipped over.

9

4 Wikipedia Named-entity
Recognition and Linking

In this chapter I will define the requirements for WiNERLi and the ideas behind how
they are fulfilled and implemented.
WiNERLi is designed to produce files that can be used as the input for QLever1,

another system from the department. For this it outputs two sets of files, wordsfile and
docsfile.
The wordsfile contains four columns: word, isEntity, recordID and score. And

the docsfile contains just two columns: max record id and text. Table 4.1 shows an
example excerpt of a wordsfile. If isEntity is one, the word is enclosed in < > brackets
indicating an ID. In this case Wikipedia page titles. And Table 4.2 shows an excerpt of
a docsfile. The actual text is shortened, but this field contains the whole sentence. The
recordID field of the wordsfile corresponds to the max record id field of the docsfile,
meaning that the word is part of the corresponding sentence in the text field. Currently
WiNERLi creates these files from the complete Wikipedia data set. The score field
corresponds to the relevance of that entity (as described in Chapter 3).

4.1 Requirements
The following 4 requirements were given and are fulfilled by WiNERLi.

1. Recognize direct, literal mentions. This is the trivial case, where for example
“Barack Obama” is part of the text.

2. Recognize partial mentions of previously mentioned entities. Continuing the ex-
ample above, in following sentences “Barack” should refer to “Barack Obama”.

3. Recognize previously mentioned entities by their pronouns. “He” should refer to
“Barack Obama”, after he has been mentioned before.

4. Recognize mentions of the form “the Category”. For example “the president”
should refer to “Barack Obama”, if he was mentioned before.

1https://github.com/ad-freiburg/QLever

10

4.1 Requirements

word isEntity recordID score
Anarchism 0 1 1
<Anarchism> 1 1 0.9727
is 0 1 1
a 0 1 1
political 0 1 1
philosophy 0 1 1
<Philosophy> 1 1 0.9555
that 0 1 1
advocates 0 1 1
self 0 1 1
governed 0 1 1
societies 0 1 1
<Society> 1 1 0.7880
based 0 1 1
on 0 1 1
voluntary 0 1 1
institutions 0 1 1
<Institution> 1 1 0.7004

Table 4.1: An excerpt of the wordsfile created from Anarchism Wikipedia page.

max record id text
1 Anarchism is a political philosophy that advocates [...]
2 These are often described as [...]

Table 4.2: An excerpt of the docsfile created from Anarchism Wikipedia page showing
the beginnings of the first to sentences.

11

4.2 Implementation

4.2 Implementation
This section is about how WiNERLi implements solutions to the requirements discussed
in the previous section. Although WiNERLi does more on top of this (mainly storing
the results, converting results, a web interface) but that will not be discussed further.
WiNERLi is implemented in Python 32 with some functions written in Cython3. It uti-

lizes the excellent spaCy “industrial-strength natural language processing”4 framework
for Python. SpaCy does the heavy lifting regarding part-of-speech tagging to identify
words by their tag and the syntactic dependencies to easily split documents into sen-
tences. For obvious reasons I do not use the NER functionality of spaCy. The following
two paragraphs show one example of part-of-speech tagging. The words in the square
brackets are the respective part-of-speech tag that spaCy has assigned to the word.
“Barack Hussein Obama II is an American politician who served as the 44th President

of the United States from January 20, 2009, to January 20, 2017.”
“Barack[NOUN] Hussein[NOUN] Obama[NOUN] II[NOUN] is[VERB] an[DET] Amer-

ican[ADJ] politician[NOUN] who[NOUN] served[VERB] as[ADP] the[DET] 44th[ADJ]
President[NOUN] of[ADP] the[DET] United[NOUN] States[NOUN] from[ADP] January[NOUN]
20[NUM] ,[PUNCT] 2009[NUM] ,[PUNCT] to[ADP] January[NOUN] 20[NUM] ,[PUNCT]
2017[NUM] .[PUNCT]”.
WiNERLi works on a sentence-by-sentence basis where each sentence consists of to-

kens. For each sentence sub-sequences are intelligently created—trying to fail early and
skip forward as far as possible—and checked for entities. The following are two design
decisions that help the intelligent creation of the sub-sequences:

1. If the first token in the sub-sequence is a punctuation symbol, start a new sub-
sequence with the next token.

2. If the last token in the sub-sequence is an adposition (in, to, during, of, etc.)
expand the sub-sequence by the next token.

More design decisions are discussed in their respective contexts in the following sections.
Every time an entity has been found, it is stored in the temporary storage under the

respective pronoun and category, too (see the example below). If an entity has been
found but at least one token of it is part of a previously found entity the entity with
higher specificity (i.e. the entity with more words in it) will overwrite the previously
stored entity.
In the following I will list some examples. For each of them the emphasized parts

indicated detected entities and following them in square brackets are the corresponding
Wikipedia pages which the entities have been linked to.

2http://python.org
3http://cython.org
4According to their website http://spacy.io

12

4.2 Implementation

Example: Assume the entity “Barack Obama [Barack_Obama]” has been found. Now
the temporary pronoun database stores “he” → “Barack_Obama” and the temporary
category database stores “president” → “Barack_Obama”.

4.2.1 Recognize Direct Mentions
Direct mentions are the trivial case. The whole entity is part of the knowledge base.
Therefore, a simple query to the KB is enough.
WiNERLi checks if the latest token in the sub-sequence is a (proper) noun or a pronoun

(more on that in Section 4.2.3) and if it is, the KB is queried, otherwise a new sub-
sequence is started from the next token in the sentence. If the query doesn’t yield a
result, no entity was found and a new sub-sequence will be started. If the current sub-
sequence contains only one token, the new sub-sequence starts at the next token. This
means that the last token isn’t part of the KB. If the current sub-sequence is larger
than one token, the latest token will be the start of the new sub-sequence, because it
is possible for this token to be an entity in the KB on its own as it is a (proper) noun,
because otherwise the sub-sequence wouldn’t have been used to query the KB.

Example: “Barack Obama [Barack_Obama] is an American attorney and politician
[Politician] who served as President of the United States [President_of_the_United_States].”

4.2.2 Recognize Partial Mentions
This feature is only enabled for people and only works if the person was previously
directly mentioned by their full name. Then each part of their name is associated with
that entity until a new person with similar name(s) comes along and gets associated
with the name(s). This association prevents further queries to the knowledge base.
Having the entity previously mentioned directly is required as people are difficult

distinguished by just their first or last name alone.
For entities other than people wrong classifications could occur. Example (2) shows

the misclassification of the second mentions of Bank and Scotland not referring to the
generic financial institute and the country respectively.
WiNERLi checks all tokens of the sub-sequence against the temporary storage of

partial mentions before querying against the KB. If the token is in there, the stored
entity will be used and the KB will not be queried.

Example (1): “Barack Obama [Barack_Obama] was born in 1961 in Honolulu [Hon-
olulu], Hawaii [Hawaii]. Raised largely in Hawaii [Hawaii], Obama [Barack_Obama] also
spent one year of his childhood in the State of Washington [State_of_Washington].”

Example (2): “The Bank of Scotland [Bank_of_Scotland] is a bank [Bank_of_Scotland]
in Scotland [Bank_of_Scotland].”

13

4.2 Implementation

4.2.3 Recognize Entities by Pronoun
Pronoun recognition is limited to the three personal pronouns he, she and it. A gazetteer
containing the mapping between people’s names and their gender is used to resolve this.
Whenever an entity has been found, WiNERLi checks for the gender of the entity by
looking at the gazetteer. If the entity isn’t part of this gender gazetteer, the system
defaults the entity’s gender to neutral and associates the entity with the pronoun it.
The last entity mentioned for each of the three pronouns is stored temporarily. When

one of the three pronouns is mentioned in the text, WiNERLi refers back to the enitity
that has been stored for that pronoun.
This process is not flawless, as it only uses the last mentioned entity for each pronoun.

This can easily break for more complex sentences or sentences with poor grammar.
Example (2) shows one such sentence.
As mentioned in Section 4.2.1, WiNERLi checks if the latest token in the sub-sequence

is either a (proper) noun or a pronoun. If the token is indeed a pronoun the temporary
pronoun database is checked and the stored entity is retrieved. If none is stored, a new
sub-sequence is started at the next token.

Example (1): “In 1988, Barack Obama [Barrack_Obama] enrolled in Harvard Law
School [Harvard_Law_School], where he [Barrack_Obama] was the first black president
[President] of the Harvard Law Review [Harvard_Law_Review].”

Example (2): “Her doctorate [Doctorate] was in the field of quantum chemistry [Quan-
tum_chemistry]. It [Quantum_chemistry] was about...”

4.2.4 Recognize Entities by Category
For this feature I had the most freedom in the sense how to find the categories for
an entity. Compared to other solutions that utilize Wikipedia, which primarily use the
categories that can be found at the very bottom of a page and some further classification
to reduce those categories down to a smaller number [Richman and Schone, 2008; Sil
and Florian, 2014]. I use the infoboxes as described in Chapter 3. This means that
every article with an infobox has a category. A gazetteer containing this page-category-
mapping is created beforehand. At run time, when the gazetteer is loaded, a list of all
the unique categories is also created. This category list is used to identify categories
in the text. Once an entity has been found, it is stored as a reference in a temporary
mapping “category” → “entity”.
Every time a sub-sequence is in the temporary category mapping and specifically has

“the” in-front of it, the entity stored for this category is used and no further query to
the KB is required. If there’s no mapping for this category WiNERLi proceeds further.
Before the latest token in the sub-sequence is checked to be a (proper) noun or a

pronoun, WiNERLi checks if the first token of the sub-sequence is not the beginning of
a sentence and the token in-front the sub-sequence is literally the word “the”. If this
is the case, the sub-sequence is treated as a category and WiNERLi checks if anything

14

4.2 Implementation

is stored for this category in the temporary category database. If indeed something
is stored, the retrieved entity is associated with the sub-sequence, if not WiNERLi
continues and checks if the sub-sequence is a normal entity.

Example (1): “During Barack Obama’s [Barack_Obama] first two years in office, the
president [Barack_Obama] signed many landmark bills [Bill_(law)] into law [Law].”

Example (2): “The Matrix [The_Matrix] is a 1999 science fiction [Science_fiction]
action film [Action_film]. The film [The_Matrix] depicts a dystopian future [Future].”

4.2.5 Entity Linking and Storing Results
In the previous sections I illustrated the recognition step of WiNERLi. By default, it
does link all found entities to a corresponding Wikipedia page. Therefore, doing NER
and EL in one step. But WiNERLi also supports linking to Freebase and Wikidata IDs,
although in a secondary step. As of now, every sentence is processed as I described
in the previous sections, the resulting data is than stored on disk. Converting this
stored data from Wikipedia to Freebase or Wikidata is a second processing step, where
existing Wikipedia→Freebase or Wikipedia→Wikidata mappings are loaded and used
to translate the stored files to the desired format.

15

5 Evaluation
In this chapter I will discuss the evaluation methodology, the testing data sets and
present the results.
Finding a good data set to evaluate WiNERLi was a point of great discussion. Since

it isn’t built to solve the general NER and EL tasks, my supervisor and I discussed for
a while how I could test WiNERLi.
I use two data sets for my testing. The first one is from the website kaggle.com,

named Annotated Corpus for Named Entity Recognition—Feature Engineered Corpus
annotated with IOB and POS tags1 by the user Abhinav Walia. This data set is a subset
the Groningen Meaning Bank (GMB)2, developed at the University of Groningen, which
contains over 45000 sentences with parts-of-speech tags, entities and entity categories
where applicable. For simplicity I will refer to this data set as GMB-Walia from now
on.
The second data set is hand-crafted by myself. I took a handful opening paragraphs

of Wikipedia pages and annotated entities and the corresponding categories. It uses the
four categories Person (PER), Organization (ORG), Location (LOC) and Miscellaneous
(MISC). I tried to be as unbiased as possible, but the results for this data set have to be
considered with a grain of salt. Especially since Wikipedia is the base of my knowledge
base too.
In Table 5.1 and Table 5.2 the statistics are listed for the Wikipedia and the GMB-

Walia data set respectively. The mappings used to map the spaCy categories to the
relevant categories can be seen in Table 5.3 for the GMB-Walia data set and in Table 5.4
for the Wikipedia data set. The mapping for the Wikipedia categories is too large to
print in this thesis, it can be found in the category_map.ods file in the repository.
These mappings are required for comparisons as all systems use different categories in
the NER process.

Entities
Page Sentences Words PER ORG LOC MISC Total
Konrad_Zuse 12 227 13 14 2 43 72
Caesar_cipher 6 146 2 0 0 38 40
Binary_search_algorithm 10 294 0 0 0 77 77
Total 28 667 15 14 2 158 189

Table 5.1: Statistics of the hand-annotated Wikipedia data set.

1kaggle.com/abhinavwalia95/entity-annotated-corpus, Version 4
2gmb.let.rug.nl/

16

5 Evaluation

Category Occurrences
None 1146068
Geographical Entity 58388
Organization 48094
Person 44254
Geopolitical Entity 20680
Time indicator 34789
Artifact 867
Event 612
Natural Phenomenon 300
Total Words 1354052

Table 5.2: Statistics of the GMB-Walia data set.

spaCy Category GMB-Walia Category
PERSON Person
NORP Geopolitical Entity
FAC Geographical Entity
ORG Organization
GPE Geopolitical Entity
LOC Geographical Entity
PRODUCT —
EVENT Event
WORK_OF_ART —
LAW —
LANGUAGE —
DATE Time indicator
TIME Time indicator
PERCENT —
MONEY —
QUANTITY —
ORDINAL —
CARDINAL —
PER Person
MISC —

Table 5.3: The mapping from spaCy categories to equivalent GMB-Walia categories re-
quired to compare the results.

17

5 Evaluation

spaCy Category Category
PERSON person
NORP organization
FAC location
ORG organization
GPE organization
LOC location
PRODUCT misc
EVENT misc
WORK_OF_ART misc
LAW misc
LANGUAGE misc
DATE misc
TIME misc
PERCENT misc
MONEY misc
QUANTITY misc
ORDINAL misc
CARDINAL misc
PER person
MISC misc

Table 5.4: The mapping from spaCy categories to four categories used by the hand-
annotated Wikipedia data set required to compare the results.

18

5 Evaluation

I decided to do three tests: (1) entity detection; (2) entity categorization; (3) entity
linking. For each of those I calculate precision, recall and F1-score. Let’s quickly define
those three terms.
Let tp be the number of true-positive results, fp be the number of false-positive

results and fn be the number of false-negative results for any test. We then define
Precision = tp

tp+fp
, Recall = tp

tp+fn
and F1 = 2 · precision·recall

precision+recall . Depending on which test
the counting of tp, fp and fn slightly changes as follows:

1. Entity detection is the most basic functionality required to do NER. In this test
a true-positive result is one where the tested system retrieves any entity for the
same word as the gold solution. A false-positive result is a retrieved entity for a
word where the gold solution doesn’t retrieve one. And a false-negative result is
where the tested system doesn’t retrieve an entity but the gold solution does.

2. Entity categorization is the disambiguation process of an entity by categorizing it.
In this test a true-positive result is one where the tested system categorizes the
retrieved entity in the same category as the gold solution. A false-positive result
is categorizing an entity where the gold solution doesn’t have a category. And a
false-negative results is where the gold solution has a category for an entity but
the tested system doesn’t.

3. In Entity linking a true-positive result is a retrieved link that matches the one of
the gold solution. A false-negative result is when the tested system doesn’t retrieve
a link but the gold solution does. And a false-positive result is a retrieved link
where the gold solution doesn’t retrieve one.

Tests (2) and (3) are not independent from test (1). If the wrong entity is detected it
is likely that the category and link of this wrong entity will not match those of the gold
solution and therefore degrade the measured performance in those tests.
Tests (1) and (2) are done for both data sets, while test (3) is only done with the

Wikipedia data set. For test (2) I mapped spaCy’s and WiNERLi’s categories manu-
ally to the categories used by GMB-Walia and to the four categories Person, Location,
Organization and Misc for the hand-annotated Wikipedia data set.
Table 5.5, Table 5.6 and Table 5.7 present the results from each of the three tests. As

spaCy doesn’t perform entity linking only WiNERLi was tested for this. WiNERLi does
significantly outperform spaCy in the task of entity detection. While spaCy is better at
entity categorization. The best results in each row is marked in bold.
The reasons for the worse performance of WiNERLi at test (2) are twofold. Firstly

entities require an infobox to even have a category in WiNERLi, which is not always
the case. Secondly, as described earlier, I had to hand-craft a mapping that reduces the
over 2500 infobox categories to a comparable set. I believe that this mapping can be
drastically improved and further improve the performance of WiNERLi at least slightly.
I was a bit surprised by the relative poor performance of WiNERLi at test (3), as I

thought using Wikipedia both as basis for the KB and as test data would be cheating.

19

5 Evaluation

I think this performance is at least partially part of the problems I described in Sec-
tion 4.2.3 regarding overwriting pronouns with the latest entity instead of keeping the
correct one.

Entity Detection
Dataset System Precision Recall F1

Wikipedia WiNERLi 0.5746 0.4074 0.4768
spaCy 0.5 0.1111 0.1818

GMB-Walia WiNERLi 1.0 0.2353 0.3810
spaCy 1.0 0.0883 0.1622

Table 5.5: Results of the Entity Detection benchmark.

Entity Categorization
Dataset System Precision Recall F1

Wikipedia WiNERLi 0.5588 0.1011 0.1712
spaCy 0.4717 0.1330 0.2075

GMB-Walia WiNERLi 0.5258 0.3115 0.3912
spaCy 0.5001 0.5025 0.5013

Table 5.6: Results of the Entity Categorization benchmark.

Entity Linking
Dataset System Precision Recall F1

Wikipedia WiNERLi 0.4184 0.2169 0.2857
spaCy N/A

Table 5.7: Results of the Entity Linking benchmark.

20

6 Conclusion
In this final chapter I will firstly draw the conclusion on WiNERLi and secondly draw
some personal conclusions working on this project and what this project taught me
regarding future projects.

6.1 WiNERLi
WiNERLi as a named-entity recognition and entity linking system is still in its infancy.
Although it isn’t specifically build for the general NER, it can compete with spaCy. The
following is a list of the main problems I see in my current implementation.

Scalable Speed: For small texts WiNERLi is fast, but it scales poorly. This is a problem
as it has to work on large data sets like the whole of Wikipedia. To improve this, I
would invest more time into optimizing functions and methods and also implement
them in Cython. One example is the function that filters the Wikimedia Markup.
It is implemented using regular expressions, that have had a case of catastrophic
backtracking at least once.

Entity Recognition: It is hard to improve the NER functionality since most of the
groundwork comes from spaCy. But still, there are a few things I would change:
1. Infoboxes as categories. This was a novel idea, but as the sole way to define

categories for entities it is not sufficient for the general NER task. Many
Wikipedia pages simply don’t have them (yet), for example, some lesser
known people don’t even have the Person-infobox. While this will definitly
improve in the future, I would go with the flow of other NER systems and try
to retrieve the category from the broad Wikipedia categories or try to infer
it from the first couple sentences.

2. More pronouns. Using he, she and it is fine, but using more pronouns should
improve the performance further. This would be comparatively easy to imple-
ment, although a bit tedious. It would require to have a map of all handled
pronouns and what gender overwrites them and whenever an entity would
overwrite one of the same gender, all would be overwritten. This was not
implemented because of time constraints.

3. More context. SpaCy builds dependency trees, which link words together.
I didn’t have the time to look deeper into the dependency trees to deter-
mine their usefulness. But they could help with the problem of overwriting
pronouns wrongfully too.

21

6.2 Personal Conclusions

Specificity and Entity Overwrite: This needs some deeper research and testing. As
described in Chapter 4, WiNERLi does overwrite an entity when the new one
contains more words. I’m not sure if this is always the best decision, so I don’t
have ideas to improve this yet.

6.2 Personal Conclusions
Firstly, for my next project I want to make sure I have a way to evaluate performance as
early in development as possible. We struggled to find a good way to evaluate it, since
it is not a generic NER/EL system.
Secondly, using poorly supported tools is not worth the hassle. In my case that was

rocksDB. It was a really fast database when it worked, but in Python there is only one
up-to-date wrapper, maintained by one person. Therefore, many bugs where not fixed as
quickly as I hoped and that prompted my switch to SQLite, as it is natively supported
by Python.
And last but not least, I found once again that Pythons speed is a big limitation

for computation-heavy tasks. I was able to improve the speed with Cython, but my
knowledge of it is limited and so my Cython code was probably far from optimal. For
me that means, that I need to look more into Cython, refresh my C knowledge and do
more work with any compiled language, such that I can comfortably use that to solve
computational-heavy problems.

22

References
Chiu, J. P. and Nichols, E. (2015). Named entity recognition with bidirectional lstm-
cnns.

Han, X., Sun, L., and Zhao, J. (2011). Collective entity linking in web text: A graph-
based method. In Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval, pages 765–774. ACM.

Ji, H. and Grishman, R. (2011). Knowledge base population: Successful approaches and
challenges. In Proceedings of the 49th annual meeting of the association for computa-
tional linguistics: Human language technologies-volume 1. Association for Computa-
tional Linguistics.

Johnson, M. (2009). How the statistical revolution changes (computational) linguistics.
In Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and
Computational Linguistics: Virtuous, Vicious or Vacuous?, pages 3–11. Association
for Computational Linguistics.

Jurafsky, D. and Martin, J. H. (2009). Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.

Kazama, J. and Torisawa, K. (2007). Exploiting wikipedia as external knowledge for
named entity recognition. In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 698–707.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016).
Neural architectures for named entity recognition.

Lin, T., Mausam, and Etzioni, O. (2012). Entity linking at web scale. In Proceedings
of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale
Knowledge Extraction, pages 84–88. Association for Computational Linguistics.

Ma, X. and Hovy, E. (2016). End-to-end sequence labeling via bi-directional lstm-cnns-
crf.

Raiman, J. and Raiman, O. (2018). Deeptype: Multilingual entity linking by neural
type system evolution.

23

References

Richman, A. E. and Schone, P. (2008). Mining wiki resources for multilingual named
entity recognition. pages 1–9.

Santos, C. d. and Guimarães, V. (2015). Boosting named entity recognition with neural
character embeddings.

Sil, A. and Florian, R. (2014). The ibm systems for english entity discovery and linking
and spanish entity linking at tac 2014. In Text Analysis Conference (TAC), Gaithers-
burg, Maryland, USA.

Spitkovsky, V. I. and Chang, A. X. (2012). A cross-lingual dictionary for english
wikipedia concepts. In LREC, pages 3168–3175.

Zhang, Z. and Ira, J. (2009). A novel approach to automatic gazetteer generation
using wikipedia. In Proceedings of the 2009 Workshop on The People’s Web Meets
NLP: Collaboratively Constructed Semantic Resources. Association for Computational
Linguistics.

Zitouni, I. (2014). Natural Language Processing of Semitic Languages. Theory and
Applications of Natural Language Processing. Springer.

24

	Introduction
	The Named-entity Recognition Task
	The Entity Linking Task

	Related Work
	Wikipedia-backed Knowledge Base
	Wikipedia Named-entity Recognition and Linking
	Requirements
	Implementation
	Recognize Direct Mentions
	Recognize Partial Mentions
	Recognize Entities by Pronoun
	Recognize Entities by Category
	Entity Linking and Storing Results

	Evaluation
	Conclusion
	WiNERLi
	Personal Conclusions

	References

