
Query Auto-Completion using
an Abstract Language Model
BACHELOR THESIS BY NATALIE PRANGE, 02.11.2016

Introduction to query auto-completion
• Query auto-completion (QAC): suggesting completions for a query prefix

entered by a user

• Objective:

• Reduce the user‘s effort to enter a query

• Prevent spelling mistakes

• Assist in formulating a query

 A QAC-algorithm must suggest the desired query after a minimal amount of
keystrokes at a high rank

A common solution
• Suggest the most popular queries from a query log that match the given prefix

• Problems with this approach:

• Recent and large enough query logs are hard to get

• Queries which are asked for the first time are not suggested

A language-model-based solution
• Focus in this work is on whole questions

 possible solution: use a language model

• Language model = probability distribution learned over sequences of words

• Can be used to predict the word most likely to follow a given sequence

• Typical problem: data sparsity

This approach
• Use an abstract language model: specific entities are replaced by abstract types

• E.g.: „Who played Gandalf in The Lord of the Rings ?“

 „Who played [fictional character] in [film] ?“

• When the language model predicts a type, entities are inserted again

• A prominence score and word vector similarity are used to rank suggestions

Basic pipeline of the Auto-Completion algorithm.

Building the abstract language model
• Choosing a type for each entity:

• Out of a list of types of an entity, choose the most general but still meaningful type

• E.g.: Albert Einstein: [Person, Astronomer, Diet Follower, Topic, …]  Person

• Choose a type according to a hand-picked list of preferred types

Building the abstract language model
• The training set consists of questions in which recognized entities are replaced by

their type

• An n-gram language model is learned on these questions

• N-gram model:

• Estimate the probability of a word given it‘s (n-1) predecessors:

• 𝑃(𝑤𝑚|𝑤1, … , 𝑤𝑚−1) ≈ 𝑃(𝑤𝑚|𝑤𝑚−(𝑛−1), … , 𝑤𝑚−1) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑚− 𝑛−1 ,…,𝑤𝑚−1,𝑤𝑚)

𝑐𝑜𝑢𝑛𝑡(𝑤𝑚− 𝑛−1 ,…,𝑤𝑚−1)

Building the Word2vec model
• Word2vec uses a neural network to learn vector representations of words

• The more common context two words share, the higher the cosine similarity of their
word vectors

 can be used to compute semantic similarity between words

• E.g.: vector(Berlin) – vector(Germany) + vector(France) ≈ vector(Paris)

Predicting possible next words
• Normally:

• last (n-1) complete words = n-gram context

• last incomplete word = prefix of the next word

• Here: a predicted type can correspond to multiple words typed by the user

• E.g.: „Who played [Fictional Character|Iron Man] in the first A“

• Which words are part of an entity name and which are normal words?

• Get predictions for all possible prefixes and their corresponding n-gram context

Inserting entities for types
• Insert entities for every type predicted by the n-gram model

• Entities need to match the given type and match the given prefix

• Prefix trees are used for retrieval of entities

Prefix tree, built from the words [to, too, tool, tour, see, fee]

Rating and ranking
• 1st scenario: the question prefix does not contain any entity

• Use a prominence score to rate entities

• Normalize score

• 𝑠𝑓𝑖𝑛𝑎𝑙 = 𝑝𝑛−𝑔𝑟𝑎𝑚 ∗ (𝑠𝑛𝑜𝑟𝑚)
0.3

• 2nd scenario: the question prefix contains at least one entity

• Compute word vector similarity between the contained, and the suggested entity

• Fill in the word vector similarity for 𝑠𝑛𝑜𝑟𝑚

• Normal words are assigned a fixed score in both approaches

Filling up the completion suggestions
• Use words that were not predicted by the n-gram model

• Use the prominence score and word count for rating the fill-up words

• Always append completely typed entities to the completion suggestions

Evaluation: Metrics
• User Interaction:

•
(total keystrokes + total selections)

(total number of characters in question)

• Mean Reciprocal Rank (MRR):

• 𝑞𝑐: matching completion suggestion, 𝑆: completion suggestions

• 𝑅𝑅 𝑞𝑐 , 𝑆 =
1

𝑟𝑎𝑛𝑘(𝑞𝑐,𝑆)

• RR is computed after typing the first letter of a word

• MRR is the mean of the RR‘s of every word / entity name in every question

• Percentage of unidentified entities

Evaluation: Tested algorithm versions
• Baseline:

• Without filling up completion suggestions

• Without appending complete words

• 2nd Version: Without appending complete words

• 3rd Version: Only prominence score for rating (no word vectors)

• 4th Version: Complete algorithm as described

Evaluation: Results

Evaluation: Results

Completion suggestions using the Word2vec model:

Completion suggestions using only an entity prominence score:

Future work
• Integrate proper entity recognition

• E.g.: USA  United States of America

• Robustness against spelling mistakes

• Multiple-word suggestions

