Query Auto-Completion using
an Abstract Language Model

BACHELOR THESIS BY NATALIE PRANGE, 02.11.2016

Introduction to query auto-completion

* Query auto-completion (QAC): suggesting completions for a query prefix
entered by a user

* Objective:
* Reduce the user’s effort to enter a query
* Prevent spelling mistakes
e Assist in formulating a query

- A QAC-algorithm must suggest the desired query after a minimal amount of
keystrokes at a high rank

A common solution

* Suggest the most popular queries from a query log that match the given prefix

* Problems with this approach:

* Recent and large enough query logs are hard to get

* Queries which are asked for the first time are not suggested

A language-model-based solution

* Focus in this work is on whole questions

- possible solution: use a language model
* Language model = probability distribution learned over sequences of words
* Can be used to predict the word most likely to follow a given sequence

* Typical problem: data sparsity

This approach

* Use an abstract language model: specific entities are replaced by abstract types

* E.g.: ,Who played Gandalf in The Lord of the Rings ?“
- ,Who played [fictional character] in [film] ?“

* When the language model predicts a type, entities are inserted again

* A prominence score and word vector similarity are used to rank suggestions

Preprocessing

Abstract Language Model Word2vec Model

Completion

Suggestions

Prepare Predict Insert Rate & Fill Up
User Input = Words - Entities = Rank = Suggestions

Query Auto-Completion

Basic pipeline of the Auto-Completion algorithm.

Building the abstract language model

* Choosing a type for each entity:

* QOut of a list of types of an entity, choose the most general but still meaningful type

* E.g.: Albert Einstein: [Person, Astronomer, Diet Follower, Topic, ...] = Person

* Choose a type according to a hand-picked list of preferred types

Building the abstract language model

* The training set consists of questions in which recognized entities are replaced by
their type

* An n-gram language model is learned on these questions

* N-gram model:

* Estimate the probability of a word given it’s (n-1) predecessors:

count(Wpy—(n—1)r--Wm-1,Wm)

count(Wiy,—(n—1),-+-Wm-1)

© P(Wp|wy, ., Win—1) = P(Wi|Win—(n—1), - Win—1) =

Building the Word2vec model

* Word2vec uses a neural network to learn vector representations of words

The more common context two words share, the higher the cosine similarity of their
word vectors

— can be used to compute semantic similarity between words

* E.g.: vector(Berlin) — vector(Germany) + vector(France) = vector(Paris)

Predicting possible next words

* Normally:

* last (n-1) complete words = n-gram context

* last incomplete word = prefix of the next word

* Here: a predicted type can correspond to multiple words typed by the user
* E.g.:,Who played [Fictional Character[lron Man] in the first A“

* =2 Which words are part of an entity name and which are normal words?

* Get predictions for all possible prefixes and their corresponding n-gram context

Inserting entities for types

* Insert entities for every type predicted by the n-gram model

* Entities need to match the given type and match the given prefix

* Prefix trees are used for retrieval of entities

Prefix tree, built from the words [to, too, tool, tour, see, fee]

Rating and ranking

e 1st scenario: the question prefix does not contain any entity

* Use a prominence score to rate entities

* Normalize score
— 0.3
Sfinal — pn—gram g (Snorm)
* 2nd scenario: the question prefix contains at least one entity

* Compute word vector similarity between the contained, and the suggested entity

* Fill in the word vector similarity for s,,5-m

* Normal words are assigned a fixed score in both approaches

Filling up the completion suggestions

* Use words that were not predicted by the n-gram model

e Use the prominence score and word count for rating the fill-up words

* Always append completely typed entities to the completion suggestions

Evaluation: Metrics

e User Interaction:

(total keystrokes + total selections)
(total number of characters in question)

* Mean Reciprocal Rank (MRR):

q.: matching completion suggestion, S: completion suggestions

1
rank(qc,S)

¢ RR(QC: S) =

* RRis computed after typing the first letter of a word

* MRRis the mean of the RR’s of every word / entity name in every question

* Percentage of unidentified entities

Evaluation: Tested algorithm versions

Baseline:

* Without filling up completion suggestions

* Without appending complete words

2nd Version: Without appending complete words

3rd Version: Only prominence score for rating (no word vectors)

4th Version: Complete algorithm as described

Evaluation: Results

All questions

Algorithm Version MRR | User Interaction | Unid. Entities Time
Basecline 0.376 0.64 38.9% | 0.027 secs
w/o complete entities || 0.469 0.49 11.1% | 0.047 secs
w /o Word2vec model || 0.449 0.49 6.3% | 0.040 secs
Complete algorithm || 0.457 0.49 6.3% | 0.047 sccs

Evaluation: Results

Questions containing one entity

Algorithm Version MRR | User Interaction | Unid. Entities Time
Baseline 0.373 0.64 33.2% | 0.028 sccs
No complete entities || 0.469 0.49 10.2% | 0.048 sccs
w/o Word2vec model | 0.449 0.50 6.2% | 0.041 secs
Complete algorithm 0.457 0.50 6.2% | 0.047 sccs

Questions containing two or more entities

Algorithm Version MRR | User Interaction | Unid. Entities Time
Basecline 0.385 0.66 50.4% | 0.025 secs
No complete entities || 0.465 0.49 15.7% | 0.046 sccs
w/o Word2vec model || 0.444 0.47 6.7% | 0.037 secs
Complete algorithm 0.452 0.48 6.8% | 0.046 sccs

Completion suggestions using the Word2vec model:

who played [fictional_character|Gollum] in th]

who played [fictional_character|Gollum] in the

who played [fictional_character|Gollum] in [film|The Lord of the Rings: The Fellowship of the Ring]

who played [fictional_character|Gollum] in [film|The Lord of the Rings: The Return of the King]

who played [fictional_character|Gollum] in [film|The Doctor]

who played [fictional _character|Gollum] in [netflix_title| The Beast]

Completion suggestions using only an entity prominence score:

who played [fictional_character|Gollum] in th|

who played [fictional_character|Gollum] in the

who played [fictional_character|Gollum] in [film|The Hunger Games (Science Fiction Film)]

who played [fictional_character|Gollum] in [film|The Corporation]

who played [fictional_character|Gollum] in [film|The Queen]

who played [fictional_character|Gollum] in [tv_program|The Today Show]

Future work

* Integrate proper entity recognition

* E.g.: USA =2 United States of America

* Robustness against spelling mistakes

* Multiple-word suggestions

