Query Auto-Completion using an Abstract Language Model

BACHELOR THESIS BY NATALIE PRANGE, 02.11.2016

Introduction to query auto-completion

- Query auto-completion (QAC): suggesting completions for a query prefix entered by a user
- Objective:
 - Reduce the user's effort to enter a query
 - Prevent spelling mistakes
 - Assist in formulating a query
 - → A QAC-algorithm must suggest the desired query after a minimal amount of keystrokes at a high rank

A common solution

- Suggest the most popular queries from a query log that match the given prefix
- Problems with this approach:
 - Recent and large enough query logs are hard to get
 - Queries which are asked for the first time are not suggested

A language-model-based solution

- Focus in this work is on whole questions
 - → possible solution: use a language model
- Language model = probability distribution learned over sequences of words
- Can be used to predict the word most likely to follow a given sequence
- Typical problem: data sparsity

This approach

- Use an abstract language model: specific entities are replaced by abstract types
 - E.g.: "Who played Gandalf in The Lord of the Rings?"
 - → "Who played [fictional character] in [film] ?"
- When the language model predicts a type, entities are inserted again
- A prominence score and word vector similarity are used to rank suggestions

Basic pipeline of the Auto-Completion algorithm.

Building the abstract language model

- Choosing a type for each entity:
 - Out of a list of types of an entity, choose the most general but still meaningful type
 - E.g.: Albert Einstein: [Person, Astronomer, Diet Follower, Topic, ...] → Person
 - Choose a type according to a hand-picked list of preferred types

Building the abstract language model

- The training set consists of questions in which recognized entities are replaced by their type
- An n-gram language model is learned on these questions
- N-gram model:
 - Estimate the probability of a word given it's (n-1) predecessors:
 - $P(w_m|w_1, ..., w_{m-1}) \approx P(w_m|w_{m-(n-1)}, ..., w_{m-1}) = \frac{count(w_{m-(n-1)}, ..., w_{m-1}, w_m)}{count(w_{m-(n-1)}, ..., w_{m-1})}$

Building the Word2vec model

- Word2vec uses a neural network to learn vector representations of words
- The more common context two words share, the higher the cosine similarity of their word vectors
 - → can be used to compute semantic similarity between words
- E.g.: vector(Berlin) vector(Germany) + vector(France) ≈ vector(Paris)

Predicting possible next words

- Normally:
 - last (n-1) complete words = n-gram context
 - last incomplete word = prefix of the next word
- Here: a predicted type can correspond to multiple words typed by the user
 - E.g.: "Who played [Fictional Character | Iron Man] in the first A"
 - → Which words are part of an entity name and which are normal words?
- Get predictions for all possible prefixes and their corresponding n-gram context

Inserting entities for types

- Insert entities for every type predicted by the n-gram model
- Entities need to match the given type and match the given prefix
- Prefix trees are used for retrieval of entities

Prefix tree, built from the words [to, too, tool, tour, see, fee]

Rating and ranking

- 1st scenario: the question prefix does not contain any entity
 - Use a prominence score to rate entities
 - Normalize score
 - $S_{final} = p_{n-gram} * (S_{norm})^{0.3}$
- 2nd scenario: the question prefix contains at least one entity
 - Compute word vector similarity between the contained, and the suggested entity
 - Fill in the word vector similarity for s_{norm}
- Normal words are assigned a fixed score in both approaches

Filling up the completion suggestions

- Use words that were not predicted by the n-gram model
- Use the prominence score and word count for rating the fill-up words
- Always append completely typed entities to the completion suggestions

Evaluation: Metrics

- User Interaction:
 - (total keystrokes + total selections)
 (total number of characters in question)
- Mean Reciprocal Rank (MRR):
 - q_c : matching completion suggestion, S: completion suggestions
 - $RR(q_c, S) = \frac{1}{rank(q_c, S)}$
 - RR is computed after typing the first letter of a word
 - MRR is the mean of the RR's of every word / entity name in every question
- Percentage of unidentified entities

Evaluation: Tested algorithm versions

- Baseline:
 - Without filling up completion suggestions
 - Without appending complete words
- 2nd Version: Without appending complete words
- 3rd Version: Only prominence score for rating (no word vectors)
- 4th Version: Complete algorithm as described

Evaluation: Results

All questions							
Algorithm Version	MRR	User Interaction	Unid. Entities	Time			
Baseline	0.376	0.64	38.9%	$0.027 \mathrm{\ secs}$			
w/o complete entities	0.469	0.49	11.1%	$0.047~{\rm secs}$			
w/o Word2vec model	0.449	0.49	6.3%	$0.040~{\rm secs}$			
Complete algorithm	0.457	0.49	6.3%	$0.047~{\rm secs}$			

Evaluation: Results

Questions containing one entity						
Algorithm Version	MRR	User Interaction	Unid. Entities	Time		
Baseline	0.373	0.64	33.2%	$0.028 \mathrm{\; secs}$		
No complete entities	0.469	0.49	10.2%	$0.048~{\rm secs}$		
w/o Word2vec model	0.449	0.50	6.2%	$0.041~{\rm secs}$		
Complete algorithm	0.457	0.50	6.2%	$0.047~{\rm secs}$		

Questions containing two or more entities						
Algorithm Version	MRR	User Interaction	Unid. Entities	Time		
Baseline	0.385	0.66	50.4%	$0.025~{\rm secs}$		
No complete entities	0.465	0.49	15.7%	$0.046~{\rm secs}$		
w/o Word2vec model	0.444	0.47	6.7%	0.037 secs		
Complete algorithm	0.452	0.48	6.8%	$0.046 \mathrm{\ secs}$		

Completion suggestions using the Word2vec model:

```
who played [fictional_character|Gollum] in the
who played [fictional_character|Gollum] in the
who played [fictional_character|Gollum] in [film|The Lord of the Rings: The Fellowship of the Ring]
who played [fictional_character|Gollum] in [film|The Lord of the Rings: The Return of the King]
who played [fictional_character|Gollum] in [film|The Doctor]
who played [fictional_character|Gollum] in [netflix_title|The Beast]
```

Completion suggestions using only an entity prominence score:

```
who played [fictional_character|Gollum] in the

who played [fictional_character|Gollum] in the

who played [fictional_character|Gollum] in [film|The Hunger Games (Science Fiction Film)]

who played [fictional_character|Gollum] in [film|The Corporation]

who played [fictional_character|Gollum] in [film|The Queen]

who played [fictional_character|Gollum] in [tv_program|The Today Show]
```

Future work

- Integrate proper entity recognition
 - E.g.: USA → United States of America
- Robustness against spelling mistakes
- Multiple-word suggestions