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Abstract

In recent years, query auto-completion has become a common feature of search en-
gines. While typing a query into a search engine’s input field, the user receives
suggestions as to how his query could be completed or extended. Most approaches
towards this issue rely on query logs in order to provide meaningful completion sug-
gestions. Sufficiently large and recent query logs, however, might not be available
for researchers or search engines with a small user base. Moreover, purely rely-
ing on query logs means that queries which have not been seen before will not be
suggested. In this bachelor thesis, we propose a novel approach using an abstract
language model in which specific entities have been replaced by abstract categories.
When at some point during query completion the language model suggests such
a category as the most likely word to follow, it is replaced by an entity assigned
to the same category. The possible entities are ranked using an entity prominence
score and word vector similarity. The top k completions are offered to the user
as completion suggestions. We analyzed our approach on three datasets. For each
dataset, we compared different versions of our query auto-completion algorithm to a
baseline given by a basic version of our algorithm. The results illustrate the role of
different components of our algorithm and indicate a high quality of our completion
suggestions.

1



Zusammenfassung

In den letzten Jahren hat Query Auto-Completion bei Suchmaschinen weite Verbre-
itung gefunden. Gibt ein Benutzer eine Suchanfrage in das Eingabefeld einer Such-
maschine ein, werden ihm sofort Vorschläge geliefert, wie er seine Anfrage vervoll-
ständigen oder erweitern könnte. Eine herkömmliche Herangehensweise ist die Ver-
wendung von Query Logs um sinnvolle Vervollständigungen liefern zu können. Für
Forscher oder Suchmaschinen mit einem kleinen Nutzerkreis kann es jedoch prob-
lematisch sein, Zugriff auf aktuelle und ausreichend große Query Logs zu bekommen.
Das bloße Verwenden von Query Logs hat außerdem den Nachteil, dass Suchanfra-
gen, die zum ersten Mal auftreten, meist nicht korrekt vervollständigt werden kön-
nen. Die in dieser Bachelorarbeit vorgestellte Methode, benutzt ein abstrahiertes
Sprachmodell, in dem spezifische Entitäten durch abstrakte Typen ersetzt wurden.
Wenn das Sprachmodell einen solchen Typ als nächstes Wort vorschlägt, wird dieser
mit einer Entität des entsprechenden Typs aufgefüllt. Die so gewählten Entitäten
werden daraufhin mithilfe eines Prominenz-Scores und ihrer Wortvektor-Ähnlichkeit
zu zuvor eingegebenen Entitäten sortiert. Die am höchsten bewerteten Entitäten
werden dem Benutzer als mögliche Vervollständigungen der Suchanfrage vorgeschla-
gen. Wir evaluieren unsere Methode auf verschiedenen Datensätzen. Dabei vergle-
ichen wir verschiedene Versionen unseres Algorithmus mit einer Baseline, die durch
eine einfache Implementierung unseres Algorithmus gegeben ist. Die Ergebnisse
veranschaulichen die Bedeutung einzelner Komponenten unseres Algorithmus und
lassen auf eine hohe Qualität unserer Vervollständigungen schließen.
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1. Introduction

All major web search engines nowadays provide query auto-completion (QAC), a
feature which tries to predict the user’s query and offers its predictions to the user
as completion suggestions. The main purpose of this feature is to reduce the user’s
effort when inputting a query. This is done by minimizing the amount of required
keystrokes, preventing spelling mistakes and assisting in formulating the query. To
fulfill its objective, QAC must try to suggest the desired completion after a minimal
amount of keystrokes at the highest position of the offered completion suggestions.
A more formal description of the problem is given in section 1.1. In section 1.2 we
explain the motivation behind this work. Section 1.3 gives a short overview over our
approach.

1.1. Problem Description

A QAC algorithm receives an input string qp typed by a user. This is the prefix
of the query the user has in mind. Let Qs be the set of possible query completion
suggestions. Typically, the QAC algorithm then ranks the completion suggestions
q ∈ Qs before offering the top k completions to the user. A completion is a match if
it matches the query the user intended to type. It depends on the algorithm which
completions are being included in Qs. Some approaches - and most major web search
engines - are robust against spelling mistakes. That is to say, that for example the
prefix "Barak O" would still lead to the completion suggestion "Barack Obama".
Other approaches require qp to be a prefix of q. Some algorithms also support mid-
string completion which means that for example "Albert Einstein" would be a valid
completion for the user input "Einst". While spelling correction is not a feature of
the QAC algorithm described in this work, mid-string completion is.

1.2. Motivation

Most research done in this field focuses on QAC on the basis of query logs. These
datasets, such as the publicly available AOL query log, are collections of anonymized
user queries. If the query logs are large enough, they allow reasonable conclusions
about the popularity of queries and can therefore be used to predict future queries
of a user.
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Chapter 1 Introduction

Sufficiently large query logs, however, are not always readily available for researchers
or search engines with a small user base. Additionally, publicly available query logs
tend to be outdated and therefore might not represent the popularity of a query
correctly. Another restriction of QAC with query logs is that users often submit
queries which have never been asked before and therefore cannot be predicted by
just suggesting popular queries from a query log. In 2012, allegedly 16 to 20% of
Google queries were asked for the first time1.
The possibility of providing query completion suggestions independent of query logs
is therefore an interesting topic to explore and subject of this work.

1.3. Our Approach

The objective of this bachelor thesis is to build a system for query auto-completion
based on an abstract language model. Our focus is on whole questions instead of
typical search engine queries, which are often just fragments of the question a user
has in mind and lack proper sentence structure.
In our approach, we use a language model to predict which word a user will type next,
given the words he has typed so far. A language model is a probability distribution
learned over a set of word sequences. It can be used to assign a probability to a
sequence of words or, as is the case here, to predict which word is most likely to follow
a given word sequence. For example, given the word how a language model would
typically assign a high probability to the words many or much. A more detailed
description of what a language model does, is given in section 3.1. A problem that
is frequently encountered when working with language models is data sparsity. This
problem manifests itself in two ways:

1. A word sequence has not been observed in the training data. The language
model therefore can not make any reasonable predictions for words following
this sequence.

2. A word occurs infrequently in the training data and has never been observed
following a certain word sequence. This word will not be predicted by the
language model given the particular sequence.

As an example for case 1, consider the question prefix "When did Jerry Maguire".
Most likely, the language model can provide only few predictions for words following
such a specific context. For case 2 consider the word sequences "who played" or
"why did". In both situations, the language model will most likely provide several
suggestions for the next word, however, specific words such as Nemo or Angelina
Jolie might not have been observed following this context and would therefore not
be predicted.

1http://readwrite.com/2012/02/29/interview_changing_engines_mid-
flight_qa_with_goog/#awesm=%7EoiNkM4tAX3xhbP
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1.3 Our Approach

We tackle these issues by using an abstract language model. In this language model,
specific entities have been replaced by abstract types. The question "Who played
Dory in Finding Nemo ?" for example would translate to "Who played [fictional
character] in [film] ?"
In order to learn such a language model, we use a set of questions in which Freebase
entities have been identified. Freebase was an online database containing semantic
data. It was shut down in May 2016, but data dumps are still available. For
this work, the Freebase Easy [2] data dump was used. Freebase stores a variety of
information for each of its entities. Yet, relevant for this work are besides the name
of an entity only its unique machine identifier (MID) and its types. The entity White
House for instance has the MID m/081sq and the types Location, Building, Tourist
attraction, Topic among others. It is important to note, that although Freebase
names are not necessarily unique, Freebase Easy names are. This is achieved by
adding disambiguating suffixes to Freebase names if two or more entities share the
same name. Freebase Easy names - which are used in this work - can therefore differ
from the original Freebase names.
In the training questions for our language model we replaced identified Freebase
entities with one of their types. Here, the type which is considered the most general
but still meaningful categorization was chosen. An abstract language model, in
which all entities have been replaced by the type Topic for instance would obviously
be too general. On the other hand, a model in which Wolfgang Amadeus Mozart is
assigned the type Animal Owner or Albert Einstein the type Diet Follower would
hardly be meaningful. In the following, we will refer to these selected types as an
entity’s category to avoid ambiguity.
Our QAC algorithm uses the abstract language model to predict the words most
likely to be typed, given a question prefix. If the predicted word is a category, the
QAC algorithm selects the best matching entity out of all entities assigned to that
category. This selection is done by using either a Freebase Easy prominence score
or word vector similarity. Which of the two criteria is used depends on whether
there exists enough context in the question typed so far to put word vectors to
reasonable use. We built a demo web application for our approach. See Figure 1.1
for a screenshot of our demo.
We did an exhaustive empirical analysis of our approach. For this analysis, we
evaluated the quality of the completion suggestions produced by our system on
three different datasets. We tested several versions of our algorithm and compared
the results to a baseline provided by a basic version of our algorithm. The results
show a high quality of our completion suggestions. Even if the user has only entered
one letter of the next word, our algorithm can often provide the desired word or
entity on a high rank among its completion suggestions.
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Chapter 1 Introduction

Figure 1.1.: Our demo web application in action.
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2. Related Work

In this section, we introduce some of the work that has been done in the field of
QAC in recent years. Most approaches to QAC make use of query logs. Some of
these approaches are summarized in section 2.1. An outline of the relatively little
research that has been done on QAC without using query logs is given in section 2.2.

2.1. Query Auto-Completion using Query Logs

Most approaches to QAC are based on the exploitation of information provided by
query logs. A common approach is to suggest queries on the basis of how often they
have been observed in a query log. Context- or time-related information are then
added to improve on the QAC results.
Whiting and Jose [12], for example, describe an approach in which they address the
problem of providing query suggestions for both consistently and recently popular
queries. To tackle this issue, they propose a variety of different algorithms. These
include a sliding window approach where they only consider the popularity of queries
over the last N days, a similar approach in which they vary the length N of the
sliding window depending on how common the entered prefix is, and an approach
in which they use short-range popularity trends in order to predict the current
popularity of a query.
Bar-Yossef and Kraus [1] use recent queries of a user to produce more relevant
completion suggestions. Their proposed algorithm suggests those queries from a
query-log as completions for a user input, which are most similar to the user’s
previously typed queries. In order to measure similarity, they expand each query
by adding related terms. Queries are then represented as term vectors and their
similarity is computed as the cosine similarity.

2.2. Query Auto-Completion without Query Logs

Relatively few researchers so far have explored the possibilities of query-log-independent
QAC. Among them are Bast and Weber [3, 4] who developed a search engine that
features instant auto-completion. Completion suggestions are offered for the last
incomplete word (as opposed to offering completion suggestions for the entire query
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Chapter 2 Related Work

the user might have in mind). The completion suggestions are terms occurring in
the documents that their search algorithm yields, when searching for the preceding
complete words of the query.
Bhatia et al. [5] propose a method that relies on an n-gram model built from the
documents of the corpus that is being searched. N-grams extracted from these
documents are used to complete a query prefix typed by a user. By using an n-gram
model, this approach comes closest to what we are proposing in this thesis. A key
difference is, however, that we use an abstract language model in which we insert
specific entities. Moreover, the objective of the auto-completion is a different one:
both approaches mentioned last aim mainly at finding certain information rather
than predicting the user’s input, as is the case in this work.
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3. Components of the System

In this section, we discuss the basic functionality of the main components that
make up our system. Along with that, we give a short description as to how these
components were applied in our system and which libraries were used to integrate
them into our implementation.

3.1. The Language Model

One of the main components of the system is an n-gram language model. As men-
tioned earlier, a language model is a probability distribution over a set of word
sequences. A language model allows us to estimate the probability of a sequence of
words

P (W ) = P (w1, w2, ..., wm)

or to estimate the probability of an upcoming word, given its predecessors

P (wm|w1, w2, ..., wm−1)

The latter is how the language model is being used in this work. There exist various
language models which use different methods to estimate these probabilities. One
of the most commonly used models is the n-gram model. This model makes the
simplifying assumption that the probability of a word in a word sequence does not
depend on all prior words, but only on its preceding n−1 words. In an n-gram model
the probability of a word wm following the sequence (w1, ..., wm−1) would therefore
be approximated as

P (wm|w1, ..., wm−1) ≈ P (wm|wm−n, ..., wm−1)

In our system, we use an n-gram model to predict which word the user is about to
enter next. The implementation of our approach is entirely Python-based, hence, we
use a Python library to include an n-gram model into our system. A popular Python
library when it comes to processing natural language is the open source library NLTK
(Natural Language Toolkit) [6]. Although the n-gram model implementation is not
part of the official NLTK package at the time of writing this thesis, the code can be
obtained via GitHub1.

1https://github.com/nltk/nltk/tree/model/nltk/model (22.07.2016)
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Chapter 3 Components of the System

NLTK builds an n-gram model by first dividing training sentences into n-grams,
that is, word sequences of size n. Sentences are padded from both ends with n− 1
padding symbols. For example, the 3-grams of for the sentence "Who is Kappa ?"
would be
($, $, who), ($, who, is), (who, is, kappa), (is, kappa, ?), (kappa, ?, $), (?, $, $).
The padding at the sentence start and end is necessary in order to make predic-
tions about the first word(s) in a sentence and about when a sentence is complete,
respectively. The first n − 1 words of the n-grams are in the following called the
n-gram context and form the keys for an NLTK ConditionalFreqDist object. This
dictionary-like object maps each n-gram context to a frequency distribution of the
words succeeding it. Using this data structure, a list of the words most likely to
succeed a given n-gram context can be obtained in constant time. The probability
for each word is then computed as the relative frequency of this word, given its
n-gram context. This means, given the n-gram context c, each word w is assigned
the probability

P (w|c) = count(c, w)
count(c)

where count(·) denotes the number of appearances of a given word sequence in
the training data. This probability can be easily computed using the frequency
distribution of the given n-gram context.

3.2. The Word Vectors

Word2vec [8] is a system which uses a two-layer neural network to learn vector rep-
resentations of words. Word2vec takes a large text corpus as input and outputs a
set of vectors, where each vector corresponds to one specific word. The more com-
mon context two words share, the more similar their vectors are in terms of cosine
similarity. The learned word vectors can be used to compute semantic similarity
between two words. A Word2vec model can therefore solve a variety of word asso-
ciation tasks. Consider for example a task such as "man is to king as woman is to
x". Word2vec solves this kind of task by simply computing

vector(king)− vector(man) + vector(woman)

In a properly trained Word2vec model, the vector with the highest cosine similarity
to the resulting vector will be vector(queen).
In our system, we use a Word2vec model to decide which entity should be inserted
for an abstract category predicted by our language model. In order to do so, we
compute the similarity between entities already occurring in the question prefix and
the entities of the predicted category. We use the Python library Gensim [9] to
build the Word2vec model and to compute the cosine similarities.

10



3.3 The Tries

3.3. The Tries

Efficiency is an important topic in QAC. It is essential that the user receives comple-
tion suggestions for his input instantaneously. Otherwise, one of the main objectives
of QAC - reducing time and effort for inputting a query - can not be fulfilled. Typi-
cally, there are thousands of possibilities of how a user input can be completed. The
QAC algorithm has to decide which of these possibilities are appropriate comple-
tions, rank them and return them - all within a fraction of a second. In our approach,
the possible completions are limited to the predictions of the n-gram model. As soon
as the user enters the prefix of the next word, the number of possible completions is
further reduced to the number of predicted words or entities starting with the given
prefix. However, if the n-gram model predictions include for example the category
Location, there are more than 38,000 possible entities that have to be checked for
prefix equivalence. For the category Person the number of possible entities is more
than 64,000. Often, the n-gram model predictions include more than one category.
In order to perform efficient QAC, we therefore need a data structure that allows
fast retrieval of all its elements that start with a given prefix.
A trie, also known as prefix tree or radix tree, is such a data structure. Each edge in
a trie is assigned a single letter. The accumulation of letters on each path from the
root to a leaf node is a word from which the trie was built. That way, each path in
the trie represents a prefix. Nodes which share a common parent node, also share a
common prefix. The following is a trie built from the words to, too, tool, tour, see
and fee:

ε

t

to

too

tool

tou

tour

s

se

see

f

fe

fee

t

o

o

l

u

r

s

e

e

f

e

e
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Chapter 3 Components of the System

Complete words, that is, words that were used to build the trie, are marked by a
double circle. Note, that a complete word does not necessarily have to be a leave
node (see the words to and too in the example trie). If every node has access to a
list of its successive complete words, all words that start with a given prefix can be
retrieved in time O(M), where M is the maximum length of any inserted word.
In this work, we use tries for two different purposes. The first purpose is the efficient
retrieval of entities of a given category whose names start with a given prefix. For
this, we use a dictionary which maps each category to a trie that contains all entities
assigned to this category. See section 4.6 for a more detailed description. The second
purpose is the retrieval of normal words (that is, non-entities) that start with a given
prefix. Here, we use a single trie containing all normal words of the n-gram language
model vocabulary. More on this in section 4.8. We use the trie implementation of
the Python package datrie2 to integrate the tries into our algorithm.

2https://pypi.python.org/pypi/datrie
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4. Query Auto-Completion using an
Abstract Language Model

In this chapter, we illustrate our approach in detail. First, we provide an intuition
for what our system does by outlining the user experience of our system in action.
We then discuss the various steps that are necessary in order to achieve the described
user experience. We start by explaining the necessary preprocessing, namely build-
ing the abstract language model and the Word2vec model. This is followed by a
comprehensive description of the QAC algorithm itself. Figure 4.1 gives an overview
of the basic pipeline of our algorithm. Each element of the pipeline will be described
in the following sections.

Figure 4.1.: The basic pipeline of our algorithm.

4.1. User Experience

We built a web application for demonstrative purposes. After each key-stroke, the
user immediately receives a predefined number of completion suggestions. The com-
pletion suggestions can either be suggestions for the next word or entity name, or
suggestions for the current word or entity name. The former is the case if the last
entered character is a space and the last fully typed word(s) are not expected to be
part of an entity name. An example for this is shown in Figure 4.2. The latter ap-
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Chapter 4 Query Auto-Completion using an Abstract Language Model

Figure 4.2.: Completion suggestions for the next word.

plies if the character entered last is not a space and the word is therefore expected to
be incomplete (Figure 4.3). It also applies if the word(s) which have been typed last

Figure 4.3.: Completion suggestions for the current word or entity name.

are likely to be part of an entity name (Figure 4.4). As can be seen in the examples,
entities are suggested in the format [<category>|<name>]. Consequently, entities
are only recognized as such by the algorithm if they appear in that same format
in the question prefix. If for example the user enters the question prefix "Why did
Angela Merkel" and does not select the offered completion suggestion "Why did [per-
son|Angela Merkel]" but instead keeps on typing, Angela Merkel will not be treated
as an entity in the resulting question prefix.

4.2. Building the Abstract Language Model

In order to build an abstract language model, a training set is needed that consists
of questions in which Freebase Easy Entities have been identified and marked. In the
training set we use, identified entities appear in the form [<MID>|<original_word>].
To create an abstract language model, each entity has to be assigned to a single cat-
egory.

14



4.2 Building the Abstract Language Model

Figure 4.4.: Completion suggestions for the next word and current entity name.

Choosing Categories. The first step in choosing a category for each entity, was to
connect each Freebase Easy entity name with a list of types assigned to the entity.
The files facts.txt and freebase-links.txt from the Freebase Easy data dump were
used for this purpose. The freebase-links file provides a mapping from Freebase Easy
entity names to Freebase links. These links contain the MID of the corresponding
entity. Therefore this file can be used to extract a mapping from Freebase Easy
names to MIDs. The facts file provides, among other information, a mapping from
Freebase Easy names to their types via an is-a relation. Since Freebase Easy names
are unique, these two mappings are sufficient to connect each MID with a list of
corresponding types.
The second, and more challenging task, was to choose one out of all the types con-
nected with an entity. The objective was to select a type which is as general as
possible while still providing meaningful, distinguishing information about the spe-
cific entity. For example, a collection of types of the Freebase entity Albert Einstein
would be Astronomer, Diet follower, Literature Subject, Person and Topic. Clearly,
there are some types which are better suited as category than others. Astronomer is
a meaningful, but not very general categorization. Literature Subject and Topic on
the other hand are quite general, but don’t provide meaningful information about
the entity. And finally, Diet follower is neither meaningful nor general. In this case,
Person would be the category of choice, as it is the most general category which
still provides meaningful information.
The initial approach to this issue was to make a choice solely dependent on type
frequencies. First, for each type, the number of total occurrences in entity type
lists was counted. Then, for each entity, the type with the most occurrences was
chosen out of the entity’s type list. One further adjustment was made by exclud-
ing the type Topic from the type lists, as nearly all entities have this type. This
approach is a fairly good guarantor of generality, however, meaningfulness is often
not achieved. Using this way of categorization, the entity Facebook, for instance,
is assigned the category Award Nominee instead of e.g. Website, and JavaScript
becomes a Literature Subject instead of a Programming Language.
The second approach was to use a hand-picked, sorted list of preferred types that
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Chapter 4 Query Auto-Completion using an Abstract Language Model

would be chosen if they existed in an entity’s type list. If more than one of the
preferred types occurred in a type list, the type with the higher preference would
be chosen. Only if none of the hand-picked types existed in a type list, the initial
approach of using type frequencies was used. Additionally, we used a hand-picked,
sorted list of undesired types. Types in that list would not be chosen, even if they
had a higher frequency than other types, unless they were the only type in an
entity’s type list. The two lists of preferred and undesired types can be found in the
appendix.

Learning the Language Model. In order to learn the abstract language model, the
identified entities in the training questions are replaced by the category assigned to
them. Some MIDs in the training questions can not be assigned to a Freebase Easy
name. In these cases, the entities are replaced by an unknown-tag. Nonetheless,
the questions are not excluded from the dataset since they can still provide valuable
information about general sentence structure. The resulting questions are prepared
for the learning process by dividing them into a list of words and removing special
characters such as brackets and quotation marks. Additionally, all words are cast to
lower case. An n-gram model is then learned using NLTK as described in section 3.1.
The best results have been achieved using a 4-gram model.

4.3. Building the Word2vec Model

The Word2vec model was built using Gensim as discussed in section 3.2. The train-
ing had to be done on a text corpus in which Freebase Easy entities have been
identified and marked and which is large enough to have a sufficient amount of
occurrences of most prominent entities. We used a recent Wikipedia dump with
identified entities for this purpose.

This concludes the necessary preprocessing for our system. In the following sections,
we will take a closer look at the algorithm that generates the completion suggestions.

4.4. Preparing the User Input

The first step of the QAC algorithm is the tokenization of the question prefix entered
by the user. Here, the question prefix is split into single words and entities. At the
same time, special characters are filtered out and words are transformed to lower
case. Entities are being excluded from this process, since otherwise, entities that
contain special characters can not be identified correctly. The resulting list of tokens
is padded from the left with n− 1 padding symbols.
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4.5 Predicting Words

4.5. Predicting Words

The next step is the prediction of the n-gram model. Predictions are made for the
next or current word, given an n-gram context and a (possibly empty) prefix of
that word. All identified entities in the n-gram context, that is, all tokens of the
form [<category>|<name>], are replaced by their category, as only the categories
and not the entity names appear in the n-gram model. The prediction itself would
be straight forward if we did not have to identify entities. The n-gram context
would consist of the last n − 1 fully typed words and the prefix would be the last
word not followed by a space character. The n-gram model would then predict the
words that are most likely to succeed the n-gram context and that start with the
given prefix. In our case, however, a single word in the n-gram model, e.g. [film]
can correspond to multiple words typed by the user, e.g. "the lord of the rings".
In order to identify such multi-word entities correctly, it is not sufficient to just
consider the last n − 1 complete words as n-gram context for the predictions and
the last word not followed by a space character as the prefix. Instead, it is required
to make predictions for each previous n− 1-word context, where the concatenation
of the following words is possibly an entity prefix. We assume this holds true for
each prefix which does not contain a recognized entity and whose n-gram context
does not contain an entity as the last word. This is because in any question an
entity does rarely ever directly precede another one. Normal word predictions can
be excluded from the predictions for previous n-gram contexts, as normal words
per definition never consist of multiple words. All steps described in the following
sections are performed separately for each n-gram context and corresponding prefix.
The predicted words are sorted by their n-gram probability. This is, as discussed in
section 3.1

P (w|c) = count(c, w)
count(c)

Where w is the predicted word and c is its n-gram context. Unknown words such
as the unknown-tags for unknown categories are omitted from this and any further
processing.

4.6. Inserting Entities

In the next step, we insert entities for all categories predicted by the language model.
In order to qualify as a possible insertion entity, an entity has to be assigned to the
predicted category and match the given prefix. For efficient retrieval of matching
entities, we use a dictionary which maps each category to a trie. This trie holds all
entities assigned to the specific category that have a Freebase Easy prominence score
of at least 1,000. The Freebase Easy prominence score is a combination of entity
occurrences in the ClueWeb’12 Corpus 1 and Freebase relation in- and out-degree

1http://lemurproject.org/clueweb12/
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Chapter 4 Query Auto-Completion using an Abstract Language Model

counts. To get a feeling for the dimensions: the highest score - held by the entity
United States of America - is 81,032,073.1196. Entities with a score of less than
1,000 are expected to be rarely typed by a user. Excluding them therefore saves
computation time and does not significantly impair the quality of the completion
suggestions.
Since we want to provide mid-string completion for entities ("Einst" should lead
to the completion suggestion "Albert Einstein"), we insert all rotations of an entity
name into the corresponding trie. For the above example we would add Albert
Einstein and Einstein Albert into the trie for the category Person.

4.7. Rating and Ranking

The inserted entities and the predicted normal words are then rated. The rating
can be done in two different ways, depending on the question typed by the user so
far. In the first scenario, the question prefix does not contain any entity. Consider
for example the prefix "Where did" or "Why are so many". Such sentences rarely
provide any information about the specific entity the user has in mind other than
its category. The rating is therefore done using the Freebase Easy prominence score.
The score of each entity that matches a predicted category is first normalized to
take on a value between 0 and 1. This is done by applying the formula

snorm = s− smin

smax − smin

where s is the original Freebase Easy score, smin = 1, 000, the lowest score of any
suggested entity, and smax = 81, 032, 073.1196, the highest entity score. The final
score is computed in the following way:

sfinal = pngram ∗ (snorm)0.3

where pngram is the probability computed by the n-gram model. Normal words are
assigned a score s = 100, 000 and then treated like entities. This way of computing
the final score has been found to, in many cases, lead to better results than a
logarithmic approach. The specific values for the exponent and the normal word
score have been determined by experimentation.
In the second scenario, the question prefix contains at least one entity. This one
entity can already provide important information about the second entity to be
typed. Consider for example the prefix "Who played [fictional_character|Gollum]
in " and the n-gram model prediction [film]. Anyone who is familiar with the
Lord of the Rings trilogy will know that the movie The Lord of the Rings: The
Return of the King is much more likely to be the required entity than Quentin
Tarantino’s Inglourious Basterds. To rate possible next entities, some formal way
of measuring similarity between the already typed entities and the possible next
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entity is needed. The Word2vec model provides such a similarity estimate. For each
predicted category, the algorithm does the following: For every entity of the category
it computes the Word2vec similarity between the entity name and the names of the
entities in the question prefix. The final score is then computed in the same way as
in the first scenario. The only difference is that snorm is replaced by the Word2vec
similarity:

sfinal = pngram ∗ (ssimil)0.3

Normal words are assigned a similarity ssimil = 0.7.
Entities and words are then ranked by their score.

4.8. Filling Up the Completion Suggestions

If there are less than k matching entities and words, where k is the number of
completions that should be offered to the user, the completion suggestions are filled
up. For this fill-up, we use normal words and entities that match the given prefix
but which (whose categories) have not been predicted by the language model. Here,
too, tries are used. This time, however, not only for the entities but also for normal
words. Otherwise the whole n-gram vocabulary would have to be inspected instead
of just the words which match the given prefix. The scoring for the fill-up entities
is done using the normalized Freebase Easy score. For normal words, we use a
normalized frequency count. The normalization is similar to that of Freebase Easy
scores:

cnorm =
(

c− cmin

cmax − cmin

)0.5

where c denotes the number of occurrences of the word in the training data, cmin

is the count of the least common word in the training data, and cmax the count of
the word with the most occurrences. These fill-up words and entities are sorted by
their score and appended to the completion suggestions.
Entities whose names have been typed completely, such that the current prefix is
the entity name, are always added to the completion suggestions offered to the user.
This is to ensure that entities are reliably recognized by the algorithm. Recall, that
an entity in the question prefix is only recognized by the algorithm, if it appears in
the format [<category>|<name>]. It can be difficult for a user to enter an entity
in this format by hand as he might not know which category an entity was assigned
to. Hence, an entity which is not suggested by the algorithm, even after its entire
name was typed, will not be recognized as an entity in the question prefix. This has
typically a big influence on the quality of any following completion suggestions. The
importance of proper entity recognition is best illustrated by an example. Consider
the question prefix "When did Bill Clinton become ". In this case, the n-gram context
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for a 4-gram language model would be (bill, clinton, become). This context, however,
will most likely never appear in the training data, where the question prefix would
translate to "When did [person] become ". The language model would therefore
be unable to provide useful predictions for the next word. The same holds true
for all n − 1 words succeeding the unidentified entity. Appending an entity to the
completion suggestions once its name has been typed completely, plays an important
role in reducing the number of unrecognized entities.
Once the completion suggestions have been selected, ranked and filled-up the top k
completions are offered to the user.
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We conducted a thorough evaluation of our system. For this evaluation, we trained
a language model on over one million abstract questions and learned a Word2vec
model on a recent Wikipedia dump. The training process and the resulting models
are described in section 5.1. We tested our system on three different datasets, one
containing 100,000 questions and the other two containing 10,000 questions each. A
detailed description of the test sets is given in section 5.2. We compare four different
versions of our algorithm which are discussed in section 5.3. The evaluation metrics
used to compare our results are described in section 5.4. The results are discussed
in section 5.5.

5.1. Training Sets

The same abstract language model was used for every evaluation. The training set
for building the language model consists of 1,407,979 questions extracted from the
ClueWebb12 Facc1 corpus [7]. This corpus comprises 456,498,584 English web pages
in which Freebase entities have been identified and marked. The precision of the
entity recognition is estimated in [7] to be around 80-85% and the recall around
70-85%. Each question in the training set starts with one of the question words
what, where, when, who, why, how and ends with a question mark. Moreover, each
question contains at least one entity and not more than 50 words. In the training
questions, identified Freebase entities were replaced by their category. Learning
the language model takes on average 3.4 minutes. The learned model has a space
consumption of 2.4GB.

We used the same Word2vec model for every evaluation. The model was trained
on a recent Wikipedia dump. This Wikipedia dump contains 140,879,947 sentences
of articles from the English Wikipedia in which Freebase Easy entities have been
identified and marked. We assigned a size of 200 to the layers of the neural network
that was used to train the the Word2vec model. During training, only words which
occurred at least 20 times in the training data were considered. Entity names were
treated as one single word. The training took 10.3 hours using 5 workers on a
machine with 8 processing units available. The resulting Word2vec model consists
of 2,240,478 200-dimensional word vectors. Loading the learned Word2vec model
into RAM takes on average 15.1 seconds where it uses 4.9GB of memory.
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Building the tries takes 19 seconds on average. Their space consumption is with less
than 50MB negligible. Additionally, some indices have to be build. All in all, the
initialization phase of our system takes on average 4.1 minutes, if the necessary files
exist. After this initialization phase, the system is fully operable. The system then
uses 7.4GB of RAM.

5.2. Test Sets

The test questions were taken from the ClueWebb12 Facc1 dataset described in
section 5.1 and match the same conditions as the training questions for the abstract
language model. In the test questions however, identified entities were replaced by
their name. Questions containing an MID which could not be assigned to any entity
were not included in the test sets. The test questions were transformed to lower
case and special characters were removed. Entity names were excluded from this
process. We created three test sets to conduct our experimentation on. They differ
in terms of the number of entities appearing in each question. Test set 1 comprises
100,000 questions with varying numbers of entities. The test sets 2 and 3 both
contain 10,000 questions each. Test set 2 consists of questions, containing exactly
one entity. Test set 3 consists of questions, containing at least two entities. This
differentiation has been made mainly to examine the influence of word vectors on
completion suggestions, as the Word2vec model is only used if a question contains
more than one entity.

5.3. Tested Versions of the Algorithm

We tested three different versions of our algorithm against a baseline. The goal
of this comparison was to identify the importance of some of the features of our
algorithm. The baseline is given by a basic version of our algorithm. This basic
version differs from the algorithm explained in chapter 4 in two aspects: 1) it does
not add completely typed entities to the completion suggestions, and 2) it does not
fill up the completion suggestions with normal words and entities that have not been
suggested by the n-gram model. The second version of our algorithm that is tested
against this baseline fulfills 1) but does fill up the completion suggestions. The third
version differs from the final algorithm in that it does not use the Word2vec model
in order to rate entities. Instead, it only uses the Freebase Easy prominence score
for that purpose. The fourth and final tested version is the algorithm as described
in chapter 4.

For every evaluation, we used a 4-gram language model and provided 5 completion
suggestions to choose from.
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5.4. Evaluation Metrics

We use two different methods to evaluate our system. With the first method we
measure how much user interaction is needed in order to get the desired output.
We assume that the user selects the correct completion as soon as it is offered to
him as a completion suggestion. Both, typing a letter and selecting a matching
completion suggestio,n equally account for the number of user interactions. The
resulting amount of user interaction is given as percentage over the length of the
question. For this method, we also count entities as completion suggestion matches,
which have not been recognized as such, but whose name is properly completed by
normal words. If for example the words brad and pitt are both suggested before
the entity [person|Brad Pitt] is, they are considered a match. We do, however, keep
track of the number of unidentified entities and present the percentage of unidentified
entities over all entities in the test set in the results.

The second method takes into account at which rank a matching completion sug-
gestion is presented to the user. Mean Reciprocal Rank (MRR) is a measure com-
monly used to evaluate retrieval which aims at a single relevant item. In query
auto-completion, MRR finds particularly wide-spread application as for example in
[1, 10, 11, 12]. The idea behind MRR is that a higher ranked item is more helpful to
the user than a lower ranked item, but the importance of the order decreases with
lower ranks. This means, that the difference between an item being ranked at for
example the 1st or 2nd position is bigger than the difference of it being ranked at
the 4th or 5th position. Given an ordered list of completion suggestions S that are
offered to a user and the completion qc the user has in mind, the reciprocal rank
RR is computed as follows:

RR(qc, S) = 1
rank(qc, S)

where rank(qc, S) denotes the rank that qc occupies in S. If qc does not appear in
S at all, the reciprocal rank is defined as RR(qc, S) = 0. We compute the reciprocal
rank for each word of a question after having typed its first letter. The MRR is
then computed as the mean over the reciprocal rank of every word of each question
in the test set. Note that a small increase in MRR can be due to a large increase
in completions with an RR > 0. To a user, however, even showing a matching
completion suggestion at a low rank will be helpful as opposed to not offering any
matching completion suggestion at all. Therefore, even small changes in the MRR
should be considered.
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5.5. Results

Table 5.1 shows the evaluation results for test set 1, which contains 100,000 questions
with varying numbers of entities. As expected, the baseline algorithm performs
worse than all other versions of the algorithm in terms of MRR, user interaction
and the number of unidentified entities. Only the completion time is reduced by
43% compared to the second and fourth version of the algorithm. Since the impact
on MRR and user interaction made by adding complete entities is rather small, the
baseline results show that filling up entities has a big influence on the quality of the
completion suggestions. This suggests, that data sparsity is still to some extent an
issue in our approach.

Interestingly, while the MRR and the user interaction results of the baseline do not
differ much on the two other datasets, the number of unidentified entities does. This
is shown in Table 5.2 and Table 5.3. For questions containing only one entity, the
number of unidentified entities is reduced by 34.1% compared to questions contain-
ing at least two entities. A possible explanation for this phenomenon is that the
already high number of unidentified entities leads to even more unidentified entities
in the same question. This is because the language model can rarely provide reliable
predictions with an unidentified entity in the n-gram context.

Note, that in general the results between test set 1 and test set 2 vary less than
those between 1 and 3. This is because 80% of all questions in test set 1 contain
only one entity. The data in the first test set is therefore more similar to test set 2
than it is to test set 3.

All questions
Algorithm Version MRR User Interaction Unid. Entities Time
Baseline 0.376 0.64 38.9% 0.027 secs
w/o complete entities 0.469 0.49 11.1% 0.047 secs
w/o Word2vec model 0.449 0.49 6.3% 0.040 secs
Complete algorithm 0.457 0.49 6.3% 0.047 secs

Table 5.1.: The evaluation results for test set 1, containing questions with varying
numbers of entities per question. Shown are the MRR, the average user interaction
required per question, the percentage of unidentified entities and the average
completion time for four different versions of the algorithm.

When comparing version 2 of our algorithm (no appending of complete entities) with
the complete algorithm, one can see that the MRR and the user interaction do not
vary much. In fact, the version 2 algorithm even performs slightly better regarding
the MRR. A big difference however, is notable in the number of unidentified entities.
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This number is considerably lower when adding complete entities to the completion
suggestions. A slight reduction of the MRR in turn for a significantly lower number
of unidentified entities seems justifiable.

Questions containing one entity
Algorithm Version MRR User Interaction Unid. Entities Time
Baseline 0.373 0.64 33.2% 0.028 secs
No complete entities 0.469 0.49 10.2% 0.048 secs
w/o Word2vec model 0.449 0.50 6.2% 0.041 secs
Complete algorithm 0.457 0.50 6.2% 0.047 secs

Table 5.2.: The evaluation results for test set 2, containing only questions with one
entity.

Questions containing two or more entities
Algorithm Version MRR User Interaction Unid. Entities Time
Baseline 0.385 0.66 50.4% 0.025 secs
No complete entities 0.465 0.49 15.7% 0.046 secs
w/o Word2vec model 0.444 0.47 6.7% 0.037 secs
Complete algorithm 0.452 0.48 6.8% 0.046 secs

Table 5.3.: The evaluation results for test set 3 which contains only questions with
two or more entities.

A somewhat surprising result is, how little difference the MRR and the user inter-
action show between using Word2vec similarity and purely relying on the Freebase
Easy prominence score for the rating of entities. Intuitively, one tends to expect
considerably better results using Word2vec similarity. Especially when looking at
the completion suggestions of both versions for the same question prefix as shown in
Figure 5.1. We closely examined the completion suggestions of both versions for the
same question prefix. We identified two scenarios in which using Word2vec similarity
can be inferior to using the prominence score. In scenario 1, there is no strong cor-
relation between the entities contained in the question prefix and the desired entity.
Consider for example a question such as "When will Linkin Park finally come to the
Philippines ?". In this case, the Word2vec similarity between the two entities Linkin
Park and Philippines is rather low. It is therefore likely, that the approach using the
prominence score will yield the matching completion suggestion Philippines before
the Word2vec approach does. In scenario 2, the desired entity is quite general and
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there are more specific entities which have a higher Word2vec similarity to the en-
tities in the question prefix. An example for this scenario is the question "What did
Angela Merkel do for Germany ?". Using Word2vec similarity, entities such as West
Germany or Federal Constitutional Court of Germany are suggested long before the
desired entity Germany is. Overall, however, using Word2vec similarity does still
lead to better results than using only the Freebase Easy prominence score.

Figure 5.1.: Top: Completion suggestions using Word2vec similarity. Bottom:
Completion suggestions on the basis of the Freebase Easy prominence score.

We changed several more aspects of our algorithm, all of which had little influence
on the MRR and the required user interaction. One of these aspects concerned how
the completion suggestions are being filled up with entities and normal words. In the
current implementation, the fill-up only depends on the entity score and the normal
word count. We tested an approach in which we used predictions of an (n− i)-gram
model (∀i ∈ 1, .., n − 1) if the (n − i + 1)-gram model did not yield enough results
to fill the number of requested completion suggestions. This did not significantly
improve the MRR or the user interaction. It did, however, result in a considerably
longer completion time and was thus not considered further.
We also tested different versions of computing the Word2vec similarity. In the most
promising version, we computed the Word2vec similarity between a predicted entity
and all entities contained in the question prefix plus all non-stop-words. Neither the
MRR, nor the user interaction or number of unidentified entities varied significantly
from the results of the complete algorithm. Only the completion time was slightly
higher for this version of computing the Word2vec similarity.
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6. Conclusion

We introduced a novel approach to query auto-completion in which we use an ab-
stract language model to create completion suggestions for the current or next word,
given a question prefix. By making use of a language model, our QAC algorithm is
independent of query logs. We tackle the issue of data sparsity by replacing specific
entities in our language model with abstract categories. During auto-completion,
entities are inserted for these categories on the basis of their Word2vec similarity
with previously entered entities or their Freebase Easy prominence score. We evalu-
ated our approach on three different datasets and compared the results of different
versions of our algorithm. We thereby illustrated the importance of certain compo-
nents of our algorithm, such as filling up the completion suggestions with normal
words and entities that have not been predicted by the language model. The re-
sults show, that the completion suggestions produced by our algorithm are of a high
quality, even if the prefix for the next word does only contain one letter.

6.1. Future Work

In our approach, the user has to type the exact entity name or a rotation of the
entity name to ensure that the entity is identified correctly. However, the user might
not know what the correct name of an entity is or might not be aware of the fact,
that a specific entity name is required. The user might therefore enter a synonym
or an abbreviation of the actual entity name, as for example Irish for Republic of
Ireland or SPD for Social Democratic Party of Germany. Integrating a proper entity
recognition algorithm into our system, could therefore improve the user experience.

Similarly, making our QAC algorithm more robust against spelling mistakes would
most likely contribute to a better user experience. This extension would result in
a much higher number of possible completions that have to be processed. A more
efficient implementation might be necessary in order to keep the completion process
fast.

In our evaluation we showed, that using Word2vec similarity to rate entities, can
in some cases lead to results which are inferior to those obtained by only using the
Freebase Easy prominences score for this task. Using a combination of both the
Word2vec similarity and the Freebase Easy score of an entity could improve the
quality of the completion suggestions in these cases. First tests in that direction
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yielded promising results. A thorough evaluation is needed to analyze whether this
approach can improve the quality of the completion suggestions in general.
So far, our system only provides completions for the current or next word. Sug-
gesting whole questions is expected not to be feasible, since questions, in contrast
to typical queries, tend to be rather lengthly. Moreover, the first few words usually
provide relatively little information about how the question should be completed.
Completion suggestions for the entire question would rarely be a match after the
first few typed letters and even words. Therefore, the user would have to enter a
relatively long input string in order to get a matching completion suggestion and
would most likely have to type even more than if he was provided with single-word
completions. Additionally, entities which the user is typing early on in the question
prefix would not be suggested, unless the completion suggestions already contained
the matching completion for the whole question. These entities would therefore not
occur in the proper entity format and would not be recognized as entities by our
current algorithm. This, in turn, would impair the quality of any further completion
suggestions. However, providing completion suggestions with a variable number of
words could possibly improve the performance of our system. Analyzing this is left
for future research.
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A. Lists for Choosing Categories

A.1. List of Preferred Types

Person
Film
Fictional Character
Ethnicity
Religion
Celestial Object
Unit
Event
Animal
Plant
Disease or medical condition
Holiday
Recurring event
Programming Language
Human Language
Religious Text
Media Genre
Sports Team
Political ideology
Film series
Software
Website
Profession
Business Operation
Organisation
Brand
Structure
Building complex
Location
File Format
Consumer Product
Industry
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A.2 List of Undesired Types

A.2. List of Undesired Types

Freebase Data Task
Thing (m/0cgyc3f)
Type/domain equivalent topicInfluence Node
Namesake
Ranked Item
Issuer
Author
Quotation Subject
Film subject
Radio subject
TV subject
Art Subject
Award Nominee
Award-Nominated Work
Award Winner
Award-Winning Work
Adapted Work
Published Work
Literature Subject
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