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Abstract

The QLever SPARQL+Text query engine is an efficient application used for querying both
large-scale knowledge graphs and text corpus. Federated query is a feature of the SPARQL
query language that allows querying multiple data sources in a single query. In this thesis we
present an improved implementation of federated query processing in QLever, increasing both
their efficiency and robustness. By constraining the result size of federated queries based on
the query context, we were able to decrease their RAM usage in QLever significantly.
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1 Introduction

Knowledge bases are a popular way to represent structured data in a graph-like format. They
are used in various applications, such as search engines, question answering systems, and
recommendation systems.
Query engines such as QLever allow users to query these knowledge bases using the SPARQL
query language. SPARQL (SPARQL Protocol and RDF Query Language) is a powerful and
expressive query language designed for querying RDF (Resource Description Framework) knowl-
edge bases. However, while the SPARQL query language is powerful and well defined, the query
performance depends on the implementation of the query engine.
Federated queries are a key feature of SPARQL, enabling users to address multiple knowledge
bases with a single query.
In this thesis, we present several improvements to the implementation of federated queries in
the QLever query engine. We focused on enhancing their efficiency and correctness, while also
improving their usability to make it easier for users to query multiple knowledge graphs in a
single query.

1.1 Problem definition

Originally, the implementation of federated queries for the QLever SPARQL query engine was
in a work-in-progress state. While providing the base functionality, it did not work reliably in
some more specific cases. For example, QLever did not support all RDF types such as blank
nodes in the result of federated queries. Additionally, the implementation was not efficient in
terms of memory usage and performance.
To address these limitations, we focused our improvements on the following aspects:

• Support for all RDF Types: Ensuring support for blank nodes in order to make the use
of federated queries seamless.

• Optimized memory usage: Reduced memory usage by importing/exporting results lazily.
• Improved performance: Reduced computation time by improving federated queries based

on the query context.
• Enhanced usability: Allow users to debug federated queries more easily by providing

detailed runtime information.



2 Background

In this chapter, we provide the background information necessary to understand the topics
discussed in this thesis.

2.1 Resource Description Framework

The Resource Description Framework (RDF) is a model for data interchange on the web[4]. It
is a standard by the World Wide Web Consortium (W3C) and is used to represent information
in a machine-readable format. RDF data is stored as triples of subject, predicate, and object.
Each subject and object represents an information entity, and the predicate represents the
relationship between the two entities. Triples form a directed, labeled graph, where the subject
and object are nodes and the predicate is the arc between them:

subject object
predicate

Figure 2.1: RDF triple as directed graph

Both subjects and predicates are denoted by Uniform Resource Identifier (URI), while objects
can be either URIs or literal values. A URI has the same format as a URL, so e.g. the URI
of the city of Freiburg im Breisgau in Wikidata is https://www.wikidata.org/wiki/Q2833.
Unlike in this case, a URI does not necessarily have to point to an existing web resource. Their
main purpose is to uniquely identify a resource, allowing for interoperability of different RDF
datasets. Once someone wants to create a new resource identifier, they should create a new
URI, using a domain they own. To ensure readability, we will use a simplified notation for URIs
in this thesis. Instead of the full URI, we will use the name, such as <Freiburg im Breisgau>.
For example, key information about the city of Freiburg im Breisgau can be stored in a knowledge
base as follows:

subject predicate object
<Freiburg im Breisgau> <is-a> <city> .
<Freiburg im Breisgau> <population> ”237,244” .
<Freiburg im Breisgau> <country> <Germany> .
<Germany> <part-of> <Europe> .

Table 2.1: Example: RDF knowledge base

https://www.wikidata.org/wiki/Q2833
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<Freiburg im Breisgau>

”237,244”

<Germany> <Europe>

<population>

<country> <part-of>

Figure 2.2: Graph of the knowledge base example

2.2 SPARQL

To retrieve information from a knowledge base, we need a language to query the data. SPARQL
(SPARQL Protocol and RDF Query Language) is the most common query language for RDF
knowledge bases. Using the previous example (Listing 2.1), we can query the knowledge base
for the population and country of Freiburg using the following SPARQL query:

SELECT ?population ?country WHERE{

<Freiburg im Breisgau> <population> ?population .

<Freiburg im Breisgau> <country> ?country .

}

Listing 2.1: Simple SPARQL query

The query consists of a SELECT and WHERE clause. The SELECT clause specifies the variables to
retrieve, with each of them corresponding to a column in the result set. In the WHERE clause we
define the pattern to search for in the knowledge base. Here, we are looking for triples where the
subject is <Freiburg im Breisgau> and the predicate is <population>. By setting the object to
the variable ?population, we request all nodes that occur as an object in relation with the given
subject and predicate in the knowledge base. The result of a query consists of all combinations
of these variables that match the defined pattern in the knowledge base. A query like this can
be computed by a SPARQL query engine. In this case, the query results in a single row:

?population ?country
”237,244” <Germany>

Table 2.2: Result of query 2.1

2.3 QLever

QLever is an efficient SPARQL+Text query engine developed at the Chair of Algorithms and
Datastructures at the University of Freiburg since 2017 [1]. It is capable of handling large
datasets such as Wikidata (≈ 20 billion triples) efficiently. By allowing combined search on both
RDF datasets and text corpora, QLever can be used to answer queries on both RDF knowledge
bases and unstructured text data within the same query.
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Query Processing

QLever computes the result of a SPARQL query in three steps:
• Query Planning
• Computation
• Export of the result

In query planning, a query execution tree is created from the SPARQL query. Each node of
the graph is a basic operation, such as e.g. SCAN, SORT or SERVICE. Two subtrees with
common variables can be merged using a JOIN operation. The optimal query execution tree is
determined by comparing the cost estimate of different possible execution trees.

Figure 2.3: Query execution tree

In query execution, the operations given in the tree are computed in a bottom-up order. A
more detailed explanation of the query processing can be found in the QLever paper [1]. In
the final export step, the result of the query is sent to the requesting client using HTTP in the
requested format. QLever supports multiple output formats, such as TSV, JSON, and CSV.
In order to reduce memory usage and increase the speed of the query computation, QLever
recently started using a lazy computation approach. This means that operations may support
the import and computation of partial results. That also applies to the export of the final
result, which is streamed to the client in chunks. More information on QLevers transition to
lazy computation can be found in [2].
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Technical details

The QLever engine is implemented in modern C++ and supports both Linux and macOS
64-bit operating systems. For convenience, a regularly updated Docker image is available.
The free and open-source code can be obtained at https://github.com/ad-freiburg/qlever
under the Apache License 2.0. To get a quick first impression, users can try queries on a
couple of common knowledge bases like Wikidata at https://qlever.cs.uni-freiburg.de.
The web interface is called QLever UI and is also available on GitHub (https://github.com/
ad-freiburg/qlever-ui).

2.4 SPARQL Federated Queries

In the SPARQL 1.1 standard, a SPARQL Protocol service is defined as a server that processes
incoming SPARQL Protocol operations (such as queries) and returns their result1. A SPARQL
endpoint is further defined as the URI at which such a Protocol service listens for requests.
With a simple SPARQL query, we can retrieve data from one RDF dataset by sending it to a
SPARQL endpoint. If we want to extend our query with information from a dataset provided
by a different SPARQL endpoint, we can use a SERVICE clause to address that endpoint with a
federated query. A SERVICE clause consists of the URL of the SPARQL endpoint, the body of
the queries WHERE clause and an optional SILENT keyword.

SERVICE <SILENT(optional)> <URL> {

SPARQL pattern

}

Listing 2.2: SERVICE clause pattern

Consider the following example query, computing all TV series with over 100,000 votes on IMDb
ordered by their rating. It contains a SERVICE clause retrieving the IMDb id, votes and ranking
of all tv series from the IMDb database. Note that the variable ?imdb_id is common in both
the local- and Service query. It will be used to join the intermediate results of the two. It
is therefore crucial to make sure that the variable bindings are of matching format in both
datasets.

SELECT ?movie ?imdb_id ?title (MIN(YEAR(?start_date)) AS ?year) ?imdb_votes ←↩

?imdb_rating WHERE {

?movie <IMDb ID> ?imdb_id .

?movie <start-time> ?start_date .

?movie rdfs:label ?title FILTER (LANG(?title) = "en") .

SERVICE <https://qlever.cs.uni-freiburg.de/api/imdb> {

?movie_imdb imdb:id ?imdb_id .

?movie_imdb imdb:type "tvSeries" .

?movie_imdb imdb:numVotes ?imdb_votes .

?movie_imdb imdb:averageRating ?imdb_rating .

}

}

1https://www.w3.org/TR/sparql11-protocol/#terminology

https://github.com/ad-freiburg/qlever
https://qlever.cs.uni-freiburg.de
https://github.com/ad-freiburg/qlever-ui
https://github.com/ad-freiburg/qlever-ui
https://www.w3.org/TR/sparql11-protocol/#terminology
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GROUP BY ?movie ?title ?imdb_id ?imdb_votes ?imdb_rating

HAVING (?imdb_votes > 100000)

ORDER BY DESC(?imdb_rating)

Listing 2.3: Example query: TV series ordered by ImDb rating

To compute the result of the SERVICE clause, the engine creates a SELECT query from the body of
the SERVICE clause, capturing all included variables as columns using the * operator. The result
of this query is then requested from the SPARQL endpoint, by sending the query to the URL
specified in the SERVICE clause using a HTTP connection.

SELECT ?imdb_id ?movie_imdb ?imdb_votes ?imdb_rating WHERE{

?movie_imdb imdb:id ?imdb_id .

?movie_imdb imdb:type "tvSeries" .

?movie_imdb imdb:numVotes ?imdb_votes .

?movie_imdb imdb:averageRating ?imdb_rating .

}

Listing 2.4: Query sent to the service endpoint

If a SPARQL endpoint is not accessible, the execution of the SERVICE clause and, consequently,
the entire query will fail. We can ignore that by using the SILENT keyword. It will let the
SERVICE clause result in one result row with no bindings, preserving the intermediate result of
the subtree it is merged with.
SERVICE clauses can be nested, such that the result of one is used as input for another. This
requires that the service endpoint of the outer SERVICE clause supports basic federated queries.



3 Approach

In this chapter, the approach of this thesis is presented in detail.

3.1 Result format

To initiate the computation of a SERVICE query, the QLever Service operation sends a HTTP
request to the SPARQL endpoint. It mainly consists of

• the query itself
• and the format (mime-type) the result shall be responded in.

For the transmission of a SPARQL query result, multiple formats are defined by the W3C
consortium such as JSON, XML, TSV, and CSV. The previous implementation of the Service
operation used the TSV (tab-separated-values) format. As the previous implementation using
TSV as a result format led to incorrect representation of RDF data, we chose to replace it with
the more robust JSON format.

TSV

The TSV format represents data as a list of tab-separated values. This makes it one of the
simplest and human-readable formats for table-structured data. The SPARQL results TSV
format is specified with the first line to list the results variables, followed by one line for each
result row [5]. Each binding is encoded using the TURTLE (Terse RDF Triple Language)
language [3].

?athlete ?athlete_label ?count

<http://wallscope.co.uk/.../HeikeFriedrich> "Heike Friedrich"@en 4

<http://wallscope.co.uk/.../LauraLudwig> "Laura Ludwig"@en 2

<http://wallscope.co.uk/.../KarlNeukirch> "Karl Neukirch"@en 2

Listing 3.1: Example of a TSV result

JSON

JSON (JavaScript Object Notation) is another format frequently used for data-exchange on the
web. Unlike TSV, JSON allows for an intuitive and human-readable representation of nested
data structures. It also offers support for basic data types such as strings, numbers, booleans,
arrays, and objects.
The SPARQL 1.1 Query Results JSON Format specifies the structure of the JSON response
[6]. It consists of a head- and a results object. The head object contains metadata such as a
list of the results column names. Unlike in the TSV-format, the header may contain additional
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optional metadata such as links refering to further information. The results object contains a
bindings array, with each element representing one result row.

{
"head": {

"vars": ["athlete", "athlete_label", "count"]
},
"results": {

"bindings": [
{

"athlete": {
"type": "uri",
"value": "http://wallscope.co.uk/.../HeikeFriedrich"

},
"athlete_label": {

"type": "literal",
"value": "Heike Friedrich",
"xml:lang": "en"

},
"count": {

"datatype": "http://www.w3.org/2001/XMLSchema#integer",
"type": "literal",
"value": "4"

}
},

...
]

}
}

Listing 3.2: SPARQL 1.1 Query Results JSON Format example

Conclusion

While the TSV format is a valid choice for the correct representation of RDF data, the imple-
mentation of the QLever Turtle parser was not capable of parsing it correctly. We handled the
issue by requesting results in the more robust JSON format. Once the turtle parser is fixed,
returning to the TSV format is an option to be considered, as it is the less verbose format.
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3.2 Lazy processing of JSON results

Motivation

We have described in Chapter 2 that many operations in QLever use a lazy computation
approach. With its input being a data stream, the service operation is well-suited to use lazy
computation as well. The main processing done in the service operation involves writing each
result binding into a idTable data structure, which is used to handle (intermediate-) results
within the QLever engine. Before that the result has to be parsed from the incoming data stream.
With the previous result format TSV (Section 3.1), lazy computation was possible by breaking
the incoming data into rows at the most recently read newline character. In Section 3.1, we
have introduced SPARQL 1.1 Query Results JSON format[6] as the new result format requested
by the service operation. Because the JSON format structures data with more syntactical
complexity, we had to implement a parser allowing us to work with partial JSON results.
Given the example in Listing 3.2, we can see that the JSON format is structured in such a
way that each result row is represented as an element of an array. Therefore this array grows
linearly with the number of result rows, making it the part of the result object that we want to
split into smaller chunks for lazy computation.

Implementation

For this thesis, we have implemented the following single-pass parser named LazyJsonParser.
First of all, we define a few terms that are used in the following explanation:

• key-path: A list of keys that lead to a specific element in a JSON object.
• arrayPath: A key-path that leads to the main array of the JSON object.

The parser is initialized with the arrayPath expected in the input, for the SPARQL JSON result
format it is thus set to ["results", "bindings"].
In the implementation we distinguish the input in three sequential sections:

1. before,
2. within,
3. and after the arrayPath

The parser receives sequential parts of a raw JSON string cut at arbitrary positions. For each
part of the input, the parseChunk method (Listing 3.3) is called. At first, the input string is
appended to the remaining input from previous calls. Then, the parsing process is resumed in
the currently active section, with the option to fall through to the next one, once a section has
been finished. Finally, the parser tries to construct a partial result from the current input.
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std::optional<nlohmann::json> LazyJsonParser::parseChunk(

std::string_view inStr) {

size_t idx = input_.size();

absl::StrAppend(&input_, inStr);

// End-index (exclusive) of the current `input_` to construct a result.

size_t materializeEnd = 0;

// If the previous chunk ended within a Literal, finish parsing it.

if (inLiteral_) {

parseLiteral(idx);

++idx;

}

// Resume parsing the current section.

if (std::holds_alternative<BeforeArrayPath>(state_)) {

parseBeforeArrayPath(idx);

}

if (std::holds_alternative<InArrayPath>(state_)) {

materializeEnd = parseInArrayPath(idx);

}

if (std::holds_alternative<AfterArrayPath>(state_)) {

std::optional<size_t> optEnd = parseAfterArrayPath(idx);

if (optEnd) {

materializeEnd = optEnd.value();

}

}

return constructResultFromParsedChunk(materializeEnd);

}

Listing 3.3: parseChunk method

Sections

Literals

Independent of the section, literals are parsed separately to ignore syntactic elements such as
curly braces or brackets within them. Once a quotation mark is read, the inLiteral_ flag is
set. Until reading the next unescaped quotation mark, the parser ignores all syntactic elements
specific to the JSON format.

Before

Initially starting in the “before“ section, the main objective of the parser is to determine if the
arrayPath has been reached. In order to do so, the parser maintains a stack of the current path.
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Once the current path is equal to the arrayPath, the section is changed to “within the arrayPath“.

Within

Within the arrayPath, the current path no longer has to be maintained. In this section, the
parser only has to remember the last position of the most recently encountered element. JSON
elements, regardless of their type, have one thing in common: The number of opening and clos-
ing curly braces (with syntactical meaning) within them is equal. The same is true for opening
and closing brackets. Assuming that the input is valid JSON, we can maintain a combined
counter of the open brackets and curly braces. As elements in a JSON array are separated by a
comma, the parser checks if the counter is equal to zero at each comma. If it is, the position
can be saved as position after the latest element read. By also checking the counter at each
closing bracket, we can check if the end of the arrayPath has been reached. If so, the parser
switches to the “after the arrayPath“ section.

After

After parsing of the arrayPath is completed, the final task is to find the end of the JSON object.
This was implemented using a counter of the remaining curly braces to be closed. It is initialized
with the size of the arrayPath. Once the parser reaches the end, we can yield the last partial
result and return from the coroutine.

Invalid input

As the parser does not check whether the input is valid JSON before constructing a partial
result, we had to cover the case of invalid JSON input. Given that the input is invalid JSON,
the parser might read a string of arbitrary size without noticing. To prevent that, we have
limited the maximum input string size that can yield a partial result to 1,000,000 characters.
If this threshold is exceeded, the parser will stop parsing and return an error message. This is
sufficient for our use case, as both the header and each element in the arrayPath are relatively
small.

Partial result construction

The parseChunk method returns a partial result if one of the following two conditions is met:
• The end of an element in the arrayPath

• or the end of the entire JSON object has been reached
Returning a partial result means that the input string (since yielding the last partial result)
until the materializeEnd index is returned. Additionally, the prefix and suffix of the input string
have to be reconstructed in order to form a valid JSON object. Both are precomputed during
the initialization of the parser, based on the arrayPath. Given e.g. the SPARQL JSON format,
the prefix would be {"results": { "bindings": [ and the suffix ]}}.
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When yielding the first partial result, the prefix is already contained in the input string. Subse-
quent results have to be prepended with the precomputed prefix of the arrayPath. Analogue to
that, the suffix has to be appended to the result string for each but the final partial result.
To ensure the correctness of the partial result, we additionally parse the result string using the
nlohmann/json library[7].

3.3 Lazy export of JSON results

In Section 3.2, we introduced the LazyJsonParser, which enables the lazy import of JSON results
for the service operation. Similar to it, we have also implemented the lazy export of results
for both the SPARQL JSON and QLever JSON (used by QLever UI) formats for this thesis.
Previously, the entire result set was materialized in JSON format in memory before being sent
to the client, leading to high RAM usage during the export step of query evaluation. Now,
QLever transmits the result to the client in small chunks.
With lazy import and export, federated queries between QLever instances can now be executed
in a fully lazy manner.

3.4 Efficient Federated Queries

Motivation

Given a SERVICE clause, we have previously described that its query is sent to and computed by
the given SPARQL endpoint.
When creating a query, users tend to target the SPARQL endpoint with the dataset that can
provide the most information. Another common use case would be to extend an existing query
with information missing in the current dataset. This sometimes results in a large result of
the service query, while the result of the rest of the query is more concise. Depending on the
operation used to merge the two, most of the service queries result might not be relevant for
the end result.
To give an example, suppose we want to know which movies Ethan Coen has directed. The
movies, their imdb_id, and the director, Ethan Coen, can be found in the Wikidata dataset.
Additionally, we want the votes and rating in the IMDb database for each of the movies. We
can add them by joining a SERVICE clause on the ?imdb_id variable, which is present in both
datasets.
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SELECT ?movie ?title ?year ?imdb_id ?imdb_votes ?imdb_rating WHERE {

{ SELECT ?movie (YEAR(MIN(?date)) AS ?year) WHERE {

?movie <instance-of> <film>; <publication-date> ?date } GROUP BY ?movie

}

?movie <IMDb ID> ?imdb_id .

?movie <director> <Ethan Coen> .

?movie <label> ?title FILTER (LANG(?title) = "en") .

SERVICE <https://qlever.cs.uni-freiburg.de/api/imdb> {

?movie_imdb imdb:id ?imdb_id .

?movie_imdb imdb:type "movie" .

?movie_imdb imdb:numVotes ?imdb_votes .

?movie_imdb imdb:averageRating ?imdb_rating .

}

}

ORDER BY DESC(?imdb_votes)

Listing 3.4: Query for the movies directed by Ethan Coen

The query returns the expected result, but in the runtime information we can see, that the
intermediate result of the service query consists of ≈ 315, 000 rows (Figure 3.1). This is due
to the fact that the query sent to the service endpoint asked for the rating and votes of every
movie in the database. As the result of the service query is joined with the rest of the query in
a 1:1 relation (implied by the id), only 21 rows of the service result are actually used for the end
result. The unused rows only waste computation time and memory on both SPARQL endpoint
and QLever instance. The serialization and deserialization of the result for network transfer, as
well as the transfer itself, take a lot of time.

Figure 3.1: Runtime information of the query in 3.4
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Workaround

For queries with only one SERVICE clause, there is a workaround. As the query consists of two
parts depending on different datasets, we can choose the one we expect the smaller result from
as our service query. In the example query 3.4, we could have chosen the IMDb dataset as
the main dataset and Wikidata as the service dataset. While that reduces the runtime of the
service- and thus the entire query, the unnecessary computation is still performed on the main
endpoint. However, there are several reasons why this is not always practical:

• More complex queries might contain nested SERVICE clauses
• The user might not know which part of the query will result in the smaller result
• Reduced convenience for the user
• New users might not be aware of the problem

Improvement

The intuitive way to handle this problem is to provide the SPARQL endpoint with more
information, such that it is able to compute only the relevant part of its intermediate result.
In the Query execution tree, we define the operation merging a service operation as "parent",
and the operation it is merged with as its "sibling". Sort operations in between service and
parent or sibling and parent operation are ignored, as they only change the order of the result
rows, not the result set itself.

Parent operations

Given a parent operation with two operands, A and B (left and right), we define a result row
in either one of the operands as relevant if they influence the computation, and thus the result
of the parent operation. The SPARQL standard defines four operations that can merge two
subtrees: Join, Optional, Minus and Union.

• The Join operation combines two result sets on their common variables. The result
consists of all combinations of rows from A and B, where the values of the common
variables are equal. This means that rows in A are relevant if they have matching values
for the common variables with at least one row in B and vice versa.

• The Optional join operation (also known as left join) combines two result sets by including
all rows from the left operand A. For each row in A, a row with matching common variables
from B is included in the result. If no matching row in B is found, the variables from B
are unbound (null) in the result. Therefore, rows from B are only relevant if they have
matching values with rows in A.

• The Minus operation subtracts all rows from A that have matching values in the common
variables with a row in B. This results in all rows from A that do not have any matching
rows in B. Thus, rows in B are only relevant for the computation of the parent operation,
if there is a matching row in A subtracted due to it.

• The Union operation combines two result sets by including all rows from both A and B
without any conditions on the common variables. It results in the union of the the two
result sets. Therefore, all rows of A and B are relevant and part of the result.
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In summary, this means that we can reduce the result of an operand to the relevant rows, if it
is either a child of a Join operation or the right child of a Optional- or Minus operation. This
can be done by joining it with the common variables of the other operands result.

Application

If we precompute the result of the sibling operation, we can use the bindings of the common
variables to directly constrain the service query sent to the SPARQL endpoint. As suggested by
the W3C consortium, we can use a VALUES clause to join them with the pattern of the service
query1.
For the example query 3.4, this means that we add a VALUES clause with the 21 imdb_ids to the
service query. This results in the following query sent to the SPARQL endpoint:

SELECT ?imdb_id ?imdb_votes ?imdb_rating {

VALUES (?imdb_id) {("tt0477348") ("tt0118715") ... } .

?movie_imdb imdb:id ?imdb_id .

?movie_imdb imdb:type "movie" .

?movie_imdb imdb:numVotes ?imdb_votes .

?movie_imdb imdb:averageRating ?imdb_rating .

}

Listing 3.5: Resulting service query (VALUES clause truncated for readability)

Figure 3.2: Runtime information for query 3.4, using the improvement

Comparing the Runtime information before (3.1) and after (3.2) adding the presented im-
provement, we can see a drastic reduced time consumption of the Service operation. While
it previously took around 6,800ms to compute and transfer ≈ 315, 000 rows, we were able to
reduce the result to the relevant 21 rows taking only 71ms.
A more detailed evaluation can be found in the Benchmarks chapter.

1https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/#values

https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/#values
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Figure 3.3: Runtime information of an optimized Service operation

final implementation

While constraining the service query with the precomputed sibling result worked well in the
presented example, there are some limitations to be considered for a general implementation.
As the sibling operation has to be precomputed, the improvement is only applicable if the sibling
result is smaller than the service result. If the service result is smaller, the improvement would
not have any effect. However, we can not estimate the service operations result size ahead of
time. Therefore we have to define a threshold for the maximum size of the sibling result to be
considered. By default, it is set to 10,000 rows.
With all that in mind, we have modified the computation of the mentioned parent operations
as follows:

• Join: If exactly one of the operands is a Service operation, we precompute its sibling.
Precomputing a Service operation as sibling would not be feasible, as we can not estimate
the size of its result.

• Optional: If the right operand is a Service operation, we precompute its sibling.
• Minus: If the right operand is a Service operation, we compute the left operand first.

If the sibling operation supports lazy computation, we stop the precomputation once its size
exceeds the threshold. This way, we can avoid unnecessary delay for the computation of the
Service operation.
Otherwise, we have to precompute the entire sibling operation.
Additionally, we have added a runtime information detail to both the service and its sibling
operation (Figure 3.3). This way, we can visualize the usage of the presented optimization to
the user.

3.5 Runtime added blank nodes

Blank nodes

As described in the introduction, the interoperability of different RDF datasets is possible, due
to the definition of nodes as URIs. A blank node, however, is a node for which neither a URI
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or a literal is given. Both subjects and objects can be blank nodes. Each blank node is an
identifier for a particular thing, such that they can be understood as anonymous resources. The
scope of a blank node identifier is limited to the serialization of a given RDF graph, such that
for example, a node _b23 does not represent the same resource when appearing in datasets of
different knowledge graphs.

Blank nodes in QLever

Internally, QLever keeps an index of all blank nodes. The Indexbuilder creates this index for a
given RDF dataset. It is then loaded during startup of the QLever query engine. Apart from
blank nodes introduced by the dataset the query engine operates on, queries might introduce
additional blank nodes at runtime. As the result of a service query is based on a different
dataset, the labels of its blank nodes are too. Therefore, the blank nodes of the service query
result cannot be immediately represented using the existing index.

Implementation

To support the usage of blank nodes added at runtime, we have implemented the BlankNodeManager.
It allows to represent both internal and external blank nodes using the same index. It is initial-
ized during the startup of QLever provided with the number of blank nodes contained in the
local dataset. As it is populated in sequential order, we can determine the range of available
indices. Given that the dataset contains a total of k blank nodes, the remaining range of blank
node indices available at runtime can be computed as [k, maxIndex].
Since blank nodes introduced by a query can only be used for its own computation, we have
to manage them on a per-query basis. Each query context has its own LocalBlankNodeManager

instance. Operations of the query can retrieve new blank node indices from it. Because a query
likely introduces more than one blank node at a time, we manage their indices in blocks. The
size of these blocks is constant and is set during the initialization of the BlankNodeManager.

LocalBlankNodeManager

New blank node indices can be requested from the LocalBlankNodeManager using the getId()

function (Listing 3.6). It returns the next free index of the last allocated block. If no block has
been allocated yet, or all indices of the current block are in use already, a new block is allocated
first.

1 uint64_t BlankNodeManager::LocalBlankNodeManager::getId() {

2 if (blocks_->empty() || blocks_->back().nextIdx_ == idxAfterCurrentBlock_) {

3 blocks_->emplace_back(blankNodeManager_->allocateBlock());

4 idxAfterCurrentBlock_ = blocks_->back().nextIdx_ + blockSize_;

5 }

6 return blocks_->back().nextIdx_++;

7 }

Listing 3.6: LocalBlankNodeManager getId() function
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Using this approach, the (temporary) fragmentation a single LocalBlankNodeManager can cause
is limited to a single block with only one index actually in use. Once the query is removed,
the allocated blocks are freed from the BlankNodeManager, allowing them to be used by other
queries.

BlankNodeManager

Given that a blank node index is represented as a 64-bit unsigned integer, the number of blocks
the BlankNodeManager can manage is limited to 264−k

blockSize . We also define a block index B,
where Bi represents the block starting at blank node index k + i · blockSize.
For the allocation of a new block, we decided to use a random selection algorithm in order to
ensure constant time complexity. We generate a random block index and check if it is already
in use. If not, we add it to the set of used blocks and return the block. Otherwise we retry
until we are successful. Because multiple instances of the LocalBlankNodeManager might call the
function at the same time, we had to guarantee a thread-safe access to the usedBlocksSet_.

BlankNodeManager::Block BlankNodeManager::allocateBlock() {

// The Random-Generation Algorithm's performance is reduced once the number of

// used blocks exceeds a limit.

auto numBlocks = usedBlocksSet_.rlock()->size();

AD_CORRECTNESS_CHECK(

numBlocks < totalAvailableBlocks_ / 256,

absl::StrCat("Critical high number of blank node blocks in use: ",

numBlocks, " blocks"));

auto usedBlocksSetPtr = usedBlocksSet_.wlock();

while (true) {

auto blockIdx = randBlockIndex_();

if (!usedBlocksSetPtr->contains(blockIdx)) {

usedBlocksSetPtr->insert(blockIdx);

return Block(blockIdx, minIndex_ + blockIdx * blockSize_);

}

}

}

Listing 3.7: Block allocation

complexity

The time complexity of the allocation function depends on the number of already allocated
blocks as follows: Given that n blocks are already allocated and we have a total of t available
blocks. Then the probability of choosing the index of a free block is P = t−n

t . As each
trial is indepent with the same probability, we have a Bernoulli process following a geometric
distribution. The expected number of trials therefore amounts to E[trials] = 1

P . Therefore the
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average time complexity of the algorithm is:

O(n) = 1
P

= t

t − n

In order to prevent reaching the worst case scenario where most blocks are in use and the
complexity approaches O(n), we have added a check limiting the number of blocks in use. By
setting it to 1

256 of the total available blocks, we can ensure that the worst case of the algorithm
is O( 256

255 ) ≈ O(1).
The blank node index is implemented as 64-bit unsigned integer, theoretically allowing for 264

blank nodes. Ignoring the indices reserved for internal blank nodes and assuming a block size
of 1024, this would result in 264

1024 = 254 blocks, and therefore 254

256 = 246 blocks useable at the
same time. This is more than sufficient, as storing only one index for each of these blocks would
result in an unfeasible memory cost of 8 bytes · 246 ≈ 563 TB. This means, that the allocation
of new Blocks will always happen in constant time.

3.6 Runtime Information for Federated Queries

Runtime Information in QLever

During computation of a query, QLever collects detailed information about the query execution,
referred to as Runtime Information.
For each operation of the query execution tree, the following information is collected (including
but not limited to):

• execution time
• status of the operation
• result size
• whether the result was computed or read from cache
• additional operation-dependent details

A QLever endpoint assigns a UUID (Universally Unique Identifier) to each incoming query
before computing its result. It can be set by the client and passed with the initial query
request as HTTP header Query-Id, otherwise it is randomly generated by the QLever engine.
To obtain the runtime information, QLever provides a websocket endpoint, which can be
queried using the UUID of the query. Given e.g. the QLever Wikidata endpoint at https:
//qlever.cs.uni-freiburg.de/api/wikidata, our websocket client has to be connected to
https://qlever.cs.uni-freiburg.de/api/wikidata/watch/<query-id> to receive updates
on the runtime information of the query with id <query-id>.
The QLever UI webinterface uses this functionality to display the runtime information to the
user. It allows users to identify possible bottlenecks in their queries, enabling them to optimize
execution time and general efficiency.
However, previously a detailed runtime information of federated queries was not available for
the QLever engine, as the service query runs on a different endpoint than the main query. The
runtime inflicted by the query execution on the remote endpoint was therefore implicitly added
to the Service operation.

https://qlever.cs.uni-freiburg.de/api/wikidata
https://qlever.cs.uni-freiburg.de/api/wikidata
https://qlever.cs.uni-freiburg.de/api/wikidata/watch/<query-id>
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Figure 3.4: Runtime information of a service query, visualized in the QLever UI

Implementation

For this thesis, we have implemented a WebSocket client allowing us to fetch the runtime infor-
mation of federated queries run on remote QLever endpoints. Because the runtime information
is not standardized for SPARQL endpoints, the implementation is specific to the QLever engine.
The WebSocket connection, or at least the retrieval of runtime information will fail and be
silently ignored, if the remote endpoint is not a QLever instance.
The result computation of the Service operation was extended using the WebSocket client in
the following way:

1. generate a random query-id
2. connect WebSocket client to the endpoint with the given query-id
3. request result from endpoint over HTTP with set query-id

At first, a query ID is randomly generated. Then the WebSocket Client is connected to the
endpoint with the given query ID. In order to not delay the retrieval of the actual result, the
WebSocket client is run in a separate thread. The Service operation then requests the result
from the endpoint over HTTP with the set query-id. During the computation of the result
on the remote endpoint, the WebSocket client receives updates on the runtime information of
the service query. It is then added as a child to the Service operations runtime information,
resulting in a detailed runtime information of the whole query.



4 Benchmarks

This chapter contains benchmarks for two of the presented implementations, the LazyJsonParser
and the efficient federated queries.

4.1 Setup

The following benchmarks were conducted on a machine with the following specifications:
• CPU: AMD Ryzen 5 2600 (12 cores) @ 3.400GHz
• RAM: 16GB
• OS: Ubuntu 22.04.5 LTS

Each benchmark was run ten times, and the average time was calculated.

4.2 LazyJsonParser

For the LazyJsonParser, we have tested the performance against parsing an entire JSON object
at once. As input data, we have used a JSON results object with 10,000,000 bindings with a
total file size of 1020 MB ≈ 1 GB. The JSON object is structured as shown in Listing 4.1.
We have tested the parser with different sized chunks of the input data (in bytes), and the
results are shown in Table 4.1.
With the LazyJsonParser parsing the JSON object essentially twice, once to determine the
struture and once to extract the data, the time taken is expected to be longer than parsing
the entire object at once. Compared to parsing the JSON object at once, the LazyJsonParser
is slightly slower. The results show that the runtime of the LazyJsonParser depends on the
chunk size, with a chunk size of 2000 bytes being the most efficient. However, there is not a big
difference between them, therefore a non-optimal chunk size will not have a big impact on the
performance. With the main improvement due to the LazyJsonParser being the reduced RAM
usage, a minimal difference in runtime is acceptable. While parsing the given input data at once
results in a nlohmann::json object of ≈ 5GB, the LazyJsonParser only requires e.g. ≈ 12MB
when parsing with the optimal chunk size of 2000 bytes.
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Parser chunk size (bytes) execution time
nlohmann/json - 19,935ms
LazyJsonParser 100 37,490ms

1000 22,173ms
1500 21,421ms
2000 21,084ms
2500 21,321ms
3000 21,858ms
4000 23,065ms
8000 23,034ms

16000 22,986ms
32000 23,051ms
64000 23,222ms

Table 4.1: Benchmark of the LazyJsonParser for different chunk sizes

{
"head": {

"vars": ["index"]
},

"results": {
"bindings": [

{
"index": {

"type": "literal",
"datatype": "http://www.w3.org/2001/XMLSchema#int",
"value": "1"
}

},...
{

"index": {
"type": "literal",
"datatype": "http://www.w3.org/2001/XMLSchema#int",
"value": "10000000"
}

}
]

}
}

Listing 4.1: Structure of the input data



4 Benchmarks 23

4.3 Efficient Federated queries

For the following benchmarks, we have sent the given queries to a QLever instance running
on the previously mentioned setup. The service queries where computed on the respective
endpoints at https://qlever.cs.uni-freiburg.de/api/. We provide the execution time of
the Service operation available in the runtime information.
At first, we have tested the performance of the Query 3.4 which retrieves all movies directed by
Ethan Coen. With the small local and large Service result, the optimization of the constraint
service query shows in a significantly reduced runtime.
Next, we tested the JOIN of a small Service with a large sibling result. To do so, we have
switched the subqueries of query 3.4 such that the service queries result is the smaller one. To
simulate different thresholds for the size of the VALUES clause, we have limited the result size of the
sibling query using a LIMIT with the respective threshold size. For the constraint/unconstraint
measurements, we have set the threshold for the VALUES clause size to 50,000 and 0 resepectively,
in order to use/reject the optimization. This is the worst case for the constraint service query,
as it already computes its result in a reasonable time without the optimization. Adding a VALUES

clause with only 10,000 values increases the runtime by ≈ 2250ms. The results show, that
the runtime of the constraint service query increases linearly with the number of values in the
VALUES clause. Therefore, the current threshold set to 10,000 is a good compromise between the
best and worst case scenario.

Query unconstraint constraint
Movies directed by Ethan Coen (3.4) 13,150ms 103ms
JOIN of small Service with large sibling result (4.2) 253ms -

VALUES clause size: 10000 - 2522ms
VALUES clause size: 20000 - 5203ms
VALUES clause size: 30000 - 7701ms
VALUES clause size: 40000 - 10200ms

https://qlever.cs.uni-freiburg.de/api/
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PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX schema: <http://schema.org/>
PREFIX imdb: <https://www.imdb.com/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX p: <http://www.wikidata.org/prop/>
SELECT ?movie ?title ?year ?imdb_id ?imdb_votes ?imdb_rating WHERE {
{
SELECT * WHERE {
?movie_imdb imdb:id ?imdb_id .
?movie_imdb imdb:type "movie" .
?movie_imdb imdb:numVotes ?imdb_votes .
?movie_imdb imdb:averageRating ?imdb_rating .

}
LIMIT 10000

}
SERVICE <https://qlever.cs.uni-freiburg.de/api/wikidata> {
{
SELECT ?movie (YEAR(MIN(?date)) AS ?year) WHERE {
?movie wdt:P31 wd:Q11424 ;

wdt:P577 ?date
}
GROUP BY ?movie

}
?movie wdt:P345 ?imdb_id .
?movie wdt:P57 wd:Q13595531 .
?movie rdfs:label ?title FILTER (LANG(?title) = "en") .

}
}
ORDER BY DESC(?imdb_votes)

Listing 4.2: Small service, large sibling result modification of query 3.4



5 Conclusion

We have presented several improvements to the implementation of federated queries in the
QLever query engine. First, we have ensured that all valid RDF results can be handled as
input to the Service operation, allowing seamless use of federated queries. We introduced the
LazyJsonParser, allowing us to significantly reduce memory usage during the import of JSON
results. We also presented a more efficient implementation of the Service operation, which
simplifies federated queries using the query context. Finally, we have extended the Service
operation with a WebSocket client to retrieve the runtime information of federated queries run
on remote QLever endpoints.

5.1 Future Work

During the development of the presented improvements, several ideas for further improvements
have come up.

5.1.1 SERVICE variables

Due to the SPARQL standard, the URI of the SPARQL endpoint in a SERVICE clause can also
be given as a variable1. This requires the computation of the Service operation to be delayed
until the value for the variable is computed.

5.1.2 WebSocket client

The WebSocket client described in Section 3.6 could be extended beyond the retrieval of a
queries Runtime information from a QLever endpoint. Due to the WebSocket endpoint being
a QLever specific feature, a successful connection already implies that the endpoint is QLever.
We could however check that explicitly, and provide the following functionality if it is:
If the computation of the query is cancelled (either manually by the user or due to an error), the
WebSocket client can be used to notify the endpoint such that it can cancel the computation of
the service query aswell. The server-side functionality for this is already implemented in QLever
and is currently used by QLever UI.
We could also request the query result in a custom format, which is more efficient than the
SPARQL standard.

1https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/#variableService

https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/#variableService
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