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Abstract

TransitRouter is a tool for generating high quality shape files for GTFS feeds. We

solve the following map-matching problem: given an ordered sequence of stations

and the underlying network, find the most likely route of a public transit vehicle.

TransitRouter provides two map-matching approaches that are based on a hidden

Markov Model: the GraphHopper Map-Matching library (GHMM ) and our own

TransitRouter Map-Matching (TRMM ) with support for (inter-hop) turn restrictions.

We evaluate TransitRouter on real-world data and compare the results against

pfaedle.

Zusammenfassung

TransitRouter ist eine Applikation zur Generierung akkurater shape Dateien von

GTFS Feeds. Hierfür lösen wir das folgende map-matching Problem: Anhand der

Stationspositionen eines ÖPNV-Fahrzeugs wollen wir die möglichst korrekte Route

durch einen Graphen finden. TransitRouter bietet hierfür zwei verschiedene Ansätze: 1.

die GraphHopper Map-Matching library (GHMM ) und 2. unsere eigene TransitRouter

Map-Matching Implementierung (TRMM ). Beide Ansätze basieren auf einem hidden

Markov Model. TRMM unterstützt zudem noch (inter-hop) Abbiegebeschränkungen.

Wir evaluieren TransitRouter mit den GTFS Feeds von Stuttgart und Victoria-Gasteiz

und vergleichen unsere Ergebnisse mit pfaedle.
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1 Introduction

Consider a map service like Google where you want to find a way from A to B

using public transport. Ideally the correct geographical course is shown on the map

but for many areas one gets only a straight line connection. Map services get their

public transit information from GTFS (General Transit Feed Specification) feeds.

The geographical courses or the shape data as its called in GTFS is optional and

therefor missing in some feeds. With the TransitRouter application our goal is to

automatically generate the accurate shape data of a GTFS feed from a sequence of

stations positions and a geographic network graph. Figure 1 shows an example of

two generated shapes. Our problem is a specialization of the map-matching problem

where we want to find the most likely path through a network from a sequence of

positions.

Map-matching is a well researched problem but there exists only little work on map-

matching of schedule data. The main challenge in our work is the notion of sparseness.

Having only the station positions available which might be several kilometers apart

we have to be more thoughtful when finding a path between stations. In typical map

matching approaches we have a high sampling rate, meaning that the GPS positions

are very close to one another.

For schedule data [7] introduces a shortest-path-search algorithm to map bus stations

to a road network but does not care about the generation of a correct path. In [4] an

iterative shortest-path search for generating shape data of GTFS feeds is presented.
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A global approach based on a Hidden Markov Model is described in [3] but leaves

(inter-hop) turn restrictions as an open problem. The paper [2] shows a global HMM

approach with support for (inter-hop) turn restrictions and provide the CLI tool

pfaedle for generating shape files for GTFS feeds.

Figure 1: Example shapes of a bus trip (top) and a train trip (bottom). Black:
route without shape data; Blue: shape generated by TransitRouter ; Red:
station positions

TransitRouter provides two implementations for generating shape data. First the

GraphHopper Map-Matching library (GHMM ) [5] and second, our own TransitRouter

Map-Matching (TRMM ) with support for (inter-hop) turn restrictions. Both imple-

mentations are based on the Hidden Markov Model map-matching approach described

in [9]. We compare the quality our results with pfaedle[1] a similar tool for generating

shape data for GTFS feeds.
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For evaluation we use three different metrics described in the map-matching literature.

The average Fréchet distance first mentioned in [3] measures the similarity between

original and generated shapes. The overall accuracy is measured by aN and aL

described in [8]. We compare the quality of the generated shapes with pfaedle on the

GTFS feeds of Stuttgart(DE) and Victoria-Gasteiz(ES).

1.1 TransitRouter web application

With TransitRouter we provide a nice looking web application for generating and

evaluation GTFS feeds. It allows you to upload a GTFS feed as a preset from which

you can generate feeds with new shapes and compare their quality with each other.

You can filter and search the trips of a feed and view the original and generated

shapes on a map.

For basic feed generation TransitRouter provides a CLI tool with a limited set of

configurations.
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2 Theoretical Background

This chapter give a basic introduction to the data formats an algorithms used in our

work.

2.1 General Transit Feed Specification - GTFS

GTFS was originally developed by Google in 2005 and is now the de facto standard

format for public transit data. A GTFS feed is a zip file containing multiple comma

separated text files. The specification [6] lists 17 files of which 7 are required. We

will briefly cover the parts relevant for our problem.

routes.txt Contains the transit routes, e.g. "bus line 11 from A to B". Required

attributes: route_id , route_short_name , route_long_name , route_type . The

route_type indicates the transportation type e.g. tram(0), subway(1), rail(2) and

bus(3). For each route we usually have hundreds of trips.

trips.txt Trips for each route. A trip is a sequence of two or more stops that

occur during a specific time period. Relevant attributes: route_id , trip_id ,

shape_id .
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stops.txt Stops or stations where vehicles pick up or drop off passengers. Required

attributes: stop_id , stop_name , stop_lat , stop_lon .

stop_times.txt Times that a vehicle arrives at and departs from stops for each

trip. Required attributes: trip_id , arrival_time , departure_time , stop_id ,

stop_sequence

shapes.txt A shape consists of a sequence of points and describes the path of

a vehicle. A shape can be referenced by multiple trips. Attributes: shape_id ,

shape_pt_lat , shape_pt_lon , shape_pt_sequence , shape_dist_traveled .

2.2 Open Street Map - OSM

Open Street Map is an open-source project that provides geographic data of the

world. The OSM specification defines the three element types node, way and relation.

Each element has a unique id and can contain a list of key value pairs also known as

tags.

Node A node is a geographical point. They can either represent single features

such as a tree or a telephone box or they can be used in combination with ways to

represent junctions or traffic lights on a road.

Way A way consists of a ordered list of nodes. Ways are used to model e.g. highways,

rail roads or areas.
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Relation A relation is a group of elements. It can contain ordered lists of nodes,

ways and/or relations. They are used to define relations between other elements (e.g.

turn restrictions). A member of a relation can have a role to describe its part in the

relation.

Figure 2 shows an example of an XML osm file. For TransitRouter we use the binary

format pbf for osm files.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <osm version="0.6" generator="CGImap 0.0.2">
3 <bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900" maxlon="

12.2524800"/>
4 <node id="298884269" lat="54.0901746" lon="12.2482632" />
5 <node id="261728686" lat="54.0906309" lon="12.2441924" />
6 <node id="1831881213" lat="54.0900666" lon="12.2539381" >
7 <tag k="name" v="Neu Broderstorf"/>
8 <tag k="traffic_sign" v="city_limit"/>
9 </node>

10 ...
11 <node id="298884272" lat="54.0901447" lon="12.2516513"/>
12 <way id="26659127" visible="true">
13 <nd ref="292403538"/>
14 <nd ref="298884289"/>
15 ...
16 <nd ref="261728686"/>
17 <tag k="highway" v="unclassified"/>
18 <tag k="name" v="Pastower Strasse"/>
19 </way>
20 <relation id="56688">
21 <member type="node" ref="294942404" role=""/>
22 ...
23 <member type="node" ref="364933006" role=""/>
24 <member type="way" ref="4579143" role=""/>
25 ...
26 <tag k="name" v="Kuestenbus Linie 123"/>
27 <tag k="network" v="VVW"/>
28 <tag k="operator" v="Regionalverkehr Kueste"/>
29 <tag k="ref" v="123"/>
30 <tag k="route" v="bus"/>
31 <tag k="type" v="route"/>
32 </relation>
33 ...
34 </osm>

Figure 2: OSM XML example
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2.3 GraphHopper

GraphHopper [5] is an open-source high performance routing engine for OpenStreetMap

written in Java. GraphHopper provides several routing algorithms such as Dijkstra,

A* and its bidirectional variants as well as modern routing optimization such as

Contraction Hierarchies and landmarks. With vehicle profiles GraphHopper allows

fine grained routing customization. In Chapter 4 we will take a deep dive into how

we use vehicle profiles for realistic routing of buses, trams, subways and trains.

GraphHopper also provides an implementation of map-matching approach described

[9] which we will use to solve our problem. In Chapter 3 we will explain how the

GraphHopper Map-Matching (GHMM ) implementation works.

Dijkstra’s Algorithm

Given a graph G = (V,E) and a weight function w : E → R+ we want to find an

optimal path P = (e1, e2, ..., en | ei ∈ E) between two nodes s, t ∈ V . Optimal

meaning that the path weight w(P ) =
∑
w(ei) is minimal.

Two typical weighting strategies are shortest path (taking path with the smallest

distance) and fastest path (taking the path with the fastest travel time).

Dijkstra is a greedy algorithm for finding the optimal path between two nodes in a

graph. It was first designed by Edsger W. Dijkstra in 1956. Algorithm 1 shows an

implementation in pseudo code. The running time of Dijkstra is O(|E| · log |V |)

Bidirectional Dijkstra We can speed up Dijkstra by searching the graph from s and

t simultaneously. For this we maintain the structures from the normal algorithm for a

forward search starting from s and a backward search starting from t. We have found
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Algorithm 1 Dijksta’s algorithm
dist[s] = 0
dist[v] =∞ ∀v ∈ V \ {s} . tentative distances
prev[s] = NULL . So we can backtrack the path
create priority queue Q based on dist
add s to Q
while Q is not empty do

u = get_min(Q) . settle u
foreach neighbor v of u do . expand u

d = dist[u] + w(u, v) . relax (u, v)
if d < dist[v] then . we found a shorter path

dist[v] = d
prev[v] = u

end if
end for

end while
return path build from prev[t]

a optimal path from s to t if we have a node v that is settled in both the forward

and backward search.
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2.4 Markov Chain and Hidden Markov Model

A Markov Chain is a probabilistic model for describing the probability of a sequence

of random variables which we denote as states. Consider the following example:

Given a set of States S = {happy,neutral, sad} with initial probabilities

Pr(h) = 0.6, P r(n) = 0.3, P r(s) = 0.1

and a transition probabilities between states

Pr(h→ h) = 0.6, P r(h→ n) = 0.2 Pr(h→ s) = 0.2

Pr(n→ h) = 0.4, P r(n→ n) = 0.4 Pr(n→ s) = 0.2

Pr(s→ h) = 0.5, P r(h→ n) = 0.2 Pr(s→ s) = 0.3

We can compute the probability of a sequence of states:

Pr(h→ n→ h→ s) = Pr(h) · Pr(h→ n) · Pr(n→ s) · Pr(s→ h)

= 0.6 · 0.2 · 0.2 · 0.5

= 0.012

Pr(s→ h→ h→ h) = Pr(s) · Pr(s→ h) · Pr(h→ h) · Pr(h→ h)

= 0.1 · 0.5 · 0.6 · 0.6

= 0.018

From the transition probabilities we can see, that the probability distribution for the

current state only depends of previous state. This is called Markov Property.

10



Hidden Markov Model

Given a Markov Chain we can now easily compute the probability of sequence of

observable states. But what if we cannot directly observe the states we are interested

in. For example if we want to find out if a person ate candy or not based on their

mood. We can do this by using a Hidden Markov Model (HMM ).

Given a set of hidden states H = {c+(candy), c−(no candy)} and a set of observable

states O = {happy,neutral, sad}.

We assume a Markov Chain for our hidden states:

Pr(c+) = 0.5, P r(c−) = 0.5

Pr(c+ → c+) = 0.4, P r(c+ → c−) = 0.6

Pr(c− → c+) = 0.7, P r(c− → c−) = 0.3

Our observed states a conditional on our hidden states. We call these the emission

probabilities:

Pr(h | c+) = 0.7, P r(n | c+) = 0.2, P r(s | c+) = 0.1

Pr(h | c−) = 0.3, P r(n | c−) = 0.3, P r(s | c−) = 0.4

The probability of a given sequence of observations and hidden states is given by

Pr(o1, ..., on, h1, ..., hn) = Pr(o1, h1) · Pr(o2, h2 | o1, h1) · . . . · Pr(on, hn | on−1, hn−1)

= Pr(h1) · Pr(o1 | h1) · Pr(h2 | h1) · Pr(o2 | h2) · . . .

· Pr(hn | hn−1) · Pr(on | hn)

=

n∏
i=1

Pr(hi | hi−1) · Pr(oi | hi)
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To find the most likely sequence of hidden states we need to solve the following

optimization problem.

max
h1,...,hn

n∏
i=1

Pr(hi | hi−1) · Pr(oi | hi)

A naive approach would be to try out all possible assignments of h1, . . . , hn but with

|H|n different assignments this is not a feasible solution.

Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm to compute the most

likely sequence of a Hidden Markov Model in O(n · |H|2) time. The recursive formula

is constructed as follows:

Pn(hn) := max
h1,...,hn−1

n∏
i=1

Pr(hi | hi−1) · Pr(oi | hi)

= max
h1,...,hn−1

{
Pr(hn | hn−1) · Pr(on | hn) ·

n−1∏
i=1

Pr(hi | hi−1) · Pr(oi | hi)

}

= Pr(on | hn) ·max
hn−1

{Pr(hn | hn−1)} · max
h1,...,hn−2

{
n∏
i=1

Pr(hi | hi−1) · Pr(oi | hi)

}

= Pr(on | hn) ·max
hn−1

{Pr(hn | hn−1), Pn−1(hn−1)}
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3 Approach

In this section we describe the two different map-matching approaches that can

be used with TransitRouter. The first one is the map-matching implementation of

GraphHopper. We will refer to this as GHMM. The second one is a modified version of

GHMM that supports (inter-hop) turn restrictions which we will refer to as TRMM.

Both GHMM and TRMM are based on the Hidden Markov Model approach described

in [9].

Given a trip T with a ordered sequence of station positions S = (s0, s1, s2, ..., sn) and

a street graph G = (V,E) we want to find the most likely path P trough G.

In practice we do not generate a shape for each trip. Most trips of a route visit the

same stations in the same sequence and only differ in their time. We combine all

trips of a route with the same station sequence in one group and compute and store

the shape only once per group.

3.1 Finding Candidates

Our station positions might not be accurate due to general GPS measurement error or

mismatch with the OSM data. We have to map the station positions to the underlying

road network. A naive approach would be to map the station to its nearest node in

the road network. Consider the following example in Figure 3. We have two stations

s0, s1 in green, the actual station positions in red and the nodes of the road network
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in black. If we map a station directly to its closest node in G we get an incorrect

solution.

s0

s1

Figure 3: Imprecise station positions leads to wrong path

Generally we cannot map a station to a single node as we cannot guarantee the

correctness. Instead we select a set of possible candidate nodes Ci = {c0i , c1i , ...} for

every stations si.

For every edge e ∈ E within a radius r around si, we insert a candidate node at the

projection of si on e. We use r = 10m as a default value.

With multiple candidate nodes per stations we compute the path from each candidate

node in Ci to each candidate node in Ci+1. Here we use either shortest or fastest

routing. In Chapter 4 we will take a closer look at path finding with Graphhopper

and in Chapter 5 we will see the differences between shortest and fastest routing.

As a last step we find the most likely candidate sequence as shown in the next section.

The final path can be obtained by combining the path segments between the selected

candidates. Figure 4 shows an example of a bus trip.
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Figure 4: Example of a bus trip of a GTFS feed. Green: possible imprecise station
positions s0, ..., s6. Red: candidate nodes within a radius r. Blue: path
of the bus.

3.2 Finding the optimal candidate sequence

To find the most likely sequence of candidates we use the Hidden Markov Model

(HMM ) approach presented in [9]. We construct a HMM with our stations si as

observations and the candidate nodes Ci as hidden states. We use the emission

probabilities as initial probabilities for the hidden states.

C0 C1 C2

S

c00

c10

c01

c11

c21

c02

c12

E

Pr(s0|c00)

Pr(s0|c10)

Pr(c10 → c21)
×Pr(s1|c12)

Pr(c21 → c12)
×Pr(s2|c12)

1

1

Figure 5: Hidden Markov Model for finding the most likely sequence.
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Emission probability The emission probability p(si|cki ) describes the likelihood that

we observe si given that our vehicle drives through the candidate node cki . We assume,

that candidates closer to a station are more likely to be correct. We further assume

that the measurement errors have a zero-mean normal distribution with σ as the

standard deviation of the GPS measurements.

d = ‖si − cki ‖great circle

p(si|cki ) =
1√
2πσ

e−0.5(
d
σ
)2

Transition probability The transition probability p(cki → cji+1) describes the likeli-

hood that cki and cji+1 are matching candidates. This probability should depend on

the path between the two candidates. A transition with a complicated / long path is

more unlikely than a transition with a direct path. Experiments in [9] have shown,

that the distance between the stations ‖si− si+1‖great circle and the length of the road

path ‖cki − c
j
i−1‖route are very close to one another. For the transition probability we

use their proposed exponential distribution with tuning parameter β:

dt = |‖si − si+1‖great circle − ‖cki − c
j
i−1‖route|

p(cki → cji+1) =
1

β
e
− dt
β

Final solution Given an optimal sequence of candidate nodes we construct the final

path P by combining the path segments found by GraphHopper.
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3.3 GraphHopper Map-Matching Implementation -

GHMM

The GraphHopper Map-Matching library is a one to one implementation of [9]. For

our problem we need to make some minor adjustments.

Filtering of close observations Chapter 4.2 in [9] describes the filtering of obser-

vations. Observation that are within distance of 2σ of the previous observation are

removed because the apparent movement might be due noise instead of actual vehicle

movement. In our scenario every observation is a station that we need to visit so

removing an observation will yield a wrong solution. Therefore we removed the

filtering in GHMM

We further made the implementation thread safe to allow parallel computation of

shapes made some cosmetic changes to the return types and interfaces to accommodate

our needs.

3.4 TransitRouter Map-Matching Implementation -

TRMM

Our TransitRouter Map-Matching Implementation (TRMM ) is based on GHMM but

takes a different path finding approach to enable turn restrictions and prevent inter

hop turns.

Turn Restrictions

GraphHopper supports routing with OSM turn restriction relations. Enabling turn

restrictions can improve the quality of the generated shapes. Figure 6 shows an
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example of a route with and without turn restrictions enabled.

Figure 6: Left: without turn restrictions. Right: with turn restrictions

Inter Hop Turns

With turn restrictions enabled we prevent illegal turns for the path segments between

candidates but in the final path we might still have illegal or highly unlikely turns at

candidate nodes.

Let c be a candidate node and a, b two edges of c with a turn restriction meaning

we are not allowed to travel along a, b through c. Let P1 = (e1, e2, ..., a) be the path

segment from a previous candidate node to c and P2 = (b, e1, e2, ...) the path segment

from c to a next candidate. On their own P1 and P2 are valid paths but when we

connect them in our final solution we violate the turn restriction.

Even if no turn restriction is violated we still might have unlikely turns at candidate

nodes. Consider the following example in Figure 7. On the left we have the most

likely route calculated by our algorithm with a full U-turn at c01 which is allowed but

in reality highly unlikely (a bus usually does not make a full U-turn at a station).

On the right we have the correct path of the trip.

18



c00

c01

c02

→ →
←

→ ←

↓

c00

c01

c02

→ →
←

→
→

←
←↓

Figure 7: Example of inter hop turns

Directed Candidates To prevent inter hop turns we need to know on which edge

we arrived at a candidate node. TRMM solves this by using directed candidates. We

create a candidate for each node and connecting edge. cki = (u ∈ V, e ∈ E)

c c1 c2

Figure 8: Left: orientation less candidate node c. Right: directed candidates c1, c2

Path finding with directed candidates GraphHopper allows us to set an outgoing

edge for the start node and an incoming edge for the end node.

u1

...
u2 v

P ′1
P1

e1 a e2

Figure 9: Path finding with directed candidates

Given two candidates c1 = (u1, e1), c2 = (u2, e2). Let v be the neighbor of u2

connected by e2. We calculate the path P ′1 from u1 leaving on edge e1 to v arriving

through e2. For the final solution we construct the path P1 from P ′1 by removing

the last edge. To punish full U-turns (i.e. a = e2) that are not forbidden by turn

restrictions we increase the length of the path P by the length of the last edge.
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Fallback With turn restrictions enabled we sometimes run in to the problem that

we cannot find any path between two sets of candidates Ci, Ci+1 resulting in a broken

sequence. If this happens for a trip we restart the process with turn restrictions

disabled. We tried to investigate the problem but could not find any reason as to

why GraphHopper is not able to find a path.
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4 GraphHopper Routing

GraphHopper allows fine grained routing customization through profiles, weightings

and flag encoders.

Flag encoders define the basic rules for a vehicle. GraphHopper provides encoders for

car, bike, foot routing. For TransitRouter we implemented specialized encoders for

bus and rail vehicles. A flag encoder controls which nodes and ways are accessible, in

which direction a way can be traversed and at what speed.

With a weighting we can set the weight of edges in the graph to define path finding

strategy. TransitRouter uses the fastest and shortest weighting from GraphHopper.

At last we use profiles to combine vehicles and weighting and allow further config-

uration of the GraphHopper routing engine. TransitRouter provides the following

profiles:

Key Description flag encoder weighting additional properties
bus_fastest bus bus fastest turn costs
bus_shortest bus bus shortest turn costs
rail tram, subway and trains rail shortest -

Table 1: Available profiles in TransitRouter

At startup GraphHopper creates an optimized graph for every profile from the OSM

file.
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4.1 Represent vehicles with flag encoders

A flag encoder has two processing steps. In the first step we filter out all ways

that our vehicle is not allowed to access based on the OSM tags of a given way

(FlagEncoder.getAccess). In the second step we set the speed and direction of a

way (FlagEncoder.handleWayTags) and check if we can access the nodes on a way

(FlagEncoder.handleNodeTags).

For our flag encoders we extend GraphHoppers AbstractFlagEncoder that handles

some of the work for us. The AbstractFlagEncoder provides the following collections

used for access rules:

Restrictions Ordered list of OSM tags that might restrict access. Only
the first existing tag is considered.

Restricted Values List of values for the restriction tag that are not allowed.
Intended Values List of values for the restriction tag that are allowed.
Potential Barriers List of barrier values that might restrict access.
Absolute Barriers List of barrier values that restrict access.

Table 2: Predefined collections for access rules

For the restrictions the order is important because we might have a way where access

is generally allowed but forbidden for a certain vehicle type or generally forbidden

except for a certain type. Consider a pedestrian zone where motor vehicles are not

allowed ( motor_vehicle=no ) but a bus is ( bus=yes ). We use only the first tag

existing tag.

Filter Nodes - AbstractFlagEncoder.handleNodeTags By default we allow access.

We deny access if a node has a barrier tag that is a absolute barrier. If a node

has a barrier tag that is a potential barrier we loop trough the restrictions. If no

restriction is present deny access. If the restriction is a restricted value deny access.

If the restrictions is a intended value and the node does not have a locked=yes tag

allow access.
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4.2 Bus Flag Encoder - (bus)

Public transit and bus vehicles often have special traffic rules. For example they

are allowed to travel roads that forbidden for private motor vehicles or are allowed

to travel in the opposite direction of a one-way street. So to get a realistic routing

we need a specialized bus vehicle and cannot use the car vehicle from GraphHopper.

Table 3 lists the access rules for our bus vehicle. In addition we keep a collection of

allowed highway values with their default travel speed.

Restrictions bus, psv, motorcar, motor_vehicle, vehicle, access
Restricted Values no, agricultural, forestry, restricted, delivery,

military, emergency, private, customers
Intended Values yes, permissive, designated
Potential Barriers block, gate, lift_gate, swing_gate
Absolute Barriers fence, bollard, stile, turnstile, cycle_barrier,

motorcycle_barrier, sump_buster
Allowed highways motorway(100), motorway_link(70), trunk(70)

trunk_link(65), primary(65), primary_link(60),
secondary(60), secondary_link(50), tertiary(50),
tertiary_link(40), unclassified(30), residential(30),
living_street(5), service(20), road(20), platform(50),
bus_guideway(50)

Table 3: access rules for the BusFlagEncoder

Filter ways - BusFlagEncoder.getAccess

First we check if the way has a highway tag and if we can access this highway type. If

not, we skip this way. Otherwise we get the first restriction tag an check if it forbids

access. Listing 4.1 shows the function in pseudo code.

1 public Access getAccess(ReaderWay way) {

2 highway = way.getTag("highway");

3 firstRestriciton = way.getFirstPriorityTag(restrictions);

4

5 if (highwayValue == null

6 || !allowedHighways.contains(highway)) {
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7 return Access.CAN_SKIP;

8 }

9

10 if (restrictedValues.contains(firstRestriciton)) {

11 return Access.CAN_SKIP;

12 }

13

14 return Access.WAY;

15 }

Listing 4.1: BusFlagEncoder.getAccess

BusFlagEncoder.handleWayTags

Travel speed By default we use the speed predefined for the specific highway type.

If the way has a valid value for the maxspeed tag we use max speed instead.

Travel direction and one ways A way is a one-way if it has one of the following

tags: oneway , vehicle:forward , vehicle:backward , motor_vehicle:forward ,

motor_vehicle:backward , junction=roundabout , junction=circular . If the

way has one of the following tags onway=-1 , vehicle:forward=no , motor_vehicle:forward=no

we can access the way backwards, otherwise forward.

Some one-ways have additional lanes for public transit vehicles that allow ac-

cess in both directions. If a one-way contains one of the following tags busway ,

oneway:psv=no , onway:bus=no we allow access on both directions.

Another special case we have to look at are ways that are restricted to local access

only (meaning "except for access" (UK) / "no thru traffic" / "local traffic only"

(USA), "Anlieger frei (DE)"). We encounter those ways a lot in downtown areas

and one-lane roads that are usually used for agriculture or forest vehicles. So in

general we should not allow these ways and already filter them in the getAccess
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step. Allowing access drastically reduces the quality for the generated shapes in

Stuttgart(DE) while restricting access reduces the quality in Victoria-Gasteiz(ES).

Many of these ways in downtown areas allow access for public transport vehicles but

are missing this information in the OSM tags. To handle this problem we look at

the relations of these ways. If a way has one of the tags vehicle=destination or

motor_vehicle=destination we allow access only if it is part of a relation with

the tag route=bus .

4.3 Rail Flag Encoder - (rail)

The RailFlagEncoder used for tram, subway and train routes is quite simple. We

leave the collections of the AbstractFlagEncoder empty.

Filter ways - RailFlagEncoder.getAccess

We can access a way if it contains the railway tag with one of the following values:

tram , subway , rail , light_rail .

RailFlagEncoder.handleWayTags

We set an arbitrary default speed and allow access in both directions.

Limitations for rail vehicles

For rail vehicles we only support shortest routing as we do not have enough information

in the OSM data about speed restrictions. Turn restrictions are also not supported

because there are no turn restrictions for railways in OSM.
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5 Evaluation

In this chapter we will first introduce the different metrics used to measure the quality

of our generated shape files. Then we will compare the results of TransitRouter with

pfaedle on the GTFS feeds of Stuttgart(DE) and Victoria-Gasteiz(ES). Both feeds

contain high a quality shape file that we can use as a base line.

5.1 Evaluation Method

Let P be the path of a generated shape and Q the path of the ground truth. We

measure the quality of P in three metrics: average Fréchet distance δaF , percentage

of unmatched hop segments AN and percentage of length of unmatched hop segments

AL.

Fréchet distance δF

The Fréchet distance δF measures the similarity between two curves. For an intuitive

understanding one can imagine a person walking a dog on a leash. Both traverse

their own curve at varying speed while never moving backwards. During the walk

the leash is sometimes longer (e.g. dog walks ahead) and sometimes shorter (e.g. dog

and person walk side by side). The Fréchet distance is the shortest length of the

leash needed for the person and the dog to walking their separate paths from start to

end.
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Let A,B : [0, 1]→ R2 to curves in the metric space R2. Let α, β : [0, 1]→ [0, 1] be

two continuous, non decreasing mapping functions for A,B with α(0) = β(0) = 1

and α(1) = β(1) = 1. The continuous Fréchet distance is defined as:

δF (A,B) := inf
α,β

max
t∈[0,1]

‖A(α(t))−B(β(t))‖

In practice we compute an approximation of the continuous Fréchet distance. For

this we only look at fixed sampling points of A and B.

Let 0 = i1 < i2 < . . . < iM = 1 the sampling point for A and 0 = j1 < j2 < . . . <

iN = 1 the sampling points for B. A coupling P between A and B is a sequence

P = 〈(in0 , jm0), (in1 , jm1), . . . , (inp , jmp) | (ink , jmk) ∈ {i1, . . . , iN} × {j1, . . . jM}〉

with n0 = m0 = 0 and np = N , mp =M as well as nk+1 = nk or nk+1 = nk + 1 and

mk+1 = mk or mk+1 = mk + 1. The set of all possible couplings is denoted as P.

A coupling P assigns every sampling point in A at least one sampling point in B.

One can think of a coupling as a sequence of movements. To get back to our dog

walking example with A as the dog owner and B as the dog. For every element of a

coupling we have three cases:

1. nk+1 = nk and mk+1 = mk + 1: Dog walks forward

2. nk+1 = nk + 1 and mk+1 = mk: Owner walks forward

3. nk+1 = nk + 1 and mk+1 = mk + 1: Both walk forward

For the approximation we define the Fréchet distance as:

δF = min
P∈P

max
k=1...|P |

‖A(ink)−B(jmk)‖
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Average Fréchet distance δaF

The Fréchet distance is strongly affected by single outliers as it takes the maximum

of a set of distances. This punishes long shapes with a single outlier harder than

short shapes. To achieve a more fair comparison we use average the Fréchet distance

that takes the sum of all distances and divides them by the length of the shape.

δintF (A,B) := inf
α,β

∫
α,β

‖A(α(t))−B(β(t))‖dt

= inf
α,β

1∫
0

‖A(α(t))−B(β(t))‖ ·

∥∥∥∥∥
α̇(t)
β̇(t)

∥∥∥∥∥dt

δsumF (A,B) := min
P∈P

|P |∑
k=2

‖A(ink)−B(jmk)‖ ·

∥∥∥∥∥
 ink − ink−1

jmk − jmk−1

∥∥∥∥∥
To get the average Fréchet distance we divide the summed Fréchet distance by the

length of the optimizing coupling P

‖P‖ :=
|P |∑
k=2

∥∥∥∥∥
 ink − ink−1

jmk − jmk−1

∥∥∥∥∥
δaF (A,B) :=

δsumF (A,B)

‖P‖

Accuracy by number aN describes the percentage of unmatched hop segments of a

trip. A hop segment is unmatched if its Fréchet distance δF > 20m

aN =
#unmachted hop segmets

#hop segments
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Summed accuracy a is the percentage of trips aN below a given threshold. a(0.2) =

0.6 means that 60% of all trips have an aN ≤ 0.2

Accuracy by length aL The accuracy by length aL compares the length of the

unmatched hop segments of a trip with its total length.

aL =
lenght of umatched segments

total length

5.2 Evaluation results

We evaluate quality for TransitRouter on the GTFS feeds of Stuttgart (DE) and

Victoria-Gasteiz (ES). Both feeds already contain high quality shape files that we

can use as ground truth. Additionally we compare our results with pfaedle [1].

For both feeds we generate shapes using GHMM and TRMM with both shortest and

fastest routing. We use the default tuning parameters σ = 10 and β = 1.

The metrics for TransitRouter and pfaedle are computed by shapevl a CLI tool

developed by Patrick Brosi at the chair of Algorithms and Data Structures at the

University of Freiburg.

The evaluation results for Stuttgart are shown in Figure 12 with separate graphs

for bus and rail trips in Figure 13 and Figure 14. Figure 15 shows the results for

Victoria-Gasteiz. TransitRouter produces almost perfect shapes for both feeds with

most trips having an δaF ≤ 20m. Both TRMM and GHMM slightly outperform

pfaedle. For Stuttgart the quality of TRMM and GHMM are almost identical while

for Victoria-Gasteiz GHMM is slightly better. For Stuttgart fastest routing produces

the best results while for Victoria-Gasteiz shortest routing is clearly more accurate.

This might be due the average distance between the stations. In Stuttgart the bus
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stops have an average distance of 715m. For Victoria-Gasteiz the average distance

is 380m. For large distances the shortest path often includes minor roads that are

usually not meant for drive through traffic.

For some trips we have a very large δaF . This might happen when two stations with

a large distance have several plausible routes and TransitRouter picks the wrong one

(see Figure 10). We might solve this problem by using additional OSM meta data

about transit routes. Another reason are errors in the ground truth were some shapes

are wrong (see Figure 11) or where the shapes are not complete i.e. end in the middle

of the route.

Figure 10: Two possible routes

Figure 11: Error in ground truth
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Figure 12: Evaluation results for Stuttgart
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Figure 13: Evaluation results for bus routes of Stuttgart
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Figure 14: Evaluation results for rail routes of Stuttgart
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Figure 15: Victoria-Gasteiz: average Fréchet distance δaF
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6 Current Problems and Future Work

Use OSM relation meta data OSM contains valuable information about public

transit routes. In our BusFlagEncoder we already use the route relation to determine

if a highway with access restriction destination can be accessed. We could this

information to prioritize ways during path finding that are part of a route relation.

This might improve the overall quality of the generated shapes.

Turn restrictions based on turn angle For trains we might have turns that are

not full U-turns or forbidden by turn restrictions but are impossible due to physical

limitations. For example changing lanes / direction through a zick zack course (we

usually cannot drive backwards). This could be prevented by punishing turns over

45°.

Non-optimal transition probability distribution We use the probability distribution

described in [9]. In their experiments they showed, that the difference between the

distance of the stations and the length of the road segment are close to 0. This is

not the case for our data. Figure 16 shows the histogram of the differences for the

bus trips of Stuttgart. As a result the transition probabilities for any two transitions

might be almost identical. A different probability distribution might lead to better

results.
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Figure 16: Histogram of distance difference between stations and road path for the
bus trips of Stuttgart

Path finding difficulties with turn restrictions With turn restrictions enabled for

some trips GraphHopper is not able to find any path between the candidates of two

stations. If this happens we disable turn restrictions for that particular trip. For

Stuttgart this affects around 10% of all trips. For Victoria-Gasteiz none of the trips

are affected.

We were not able to find the reasons why GraphHopper is not able to find any path

yet. This issue requires further investigation.
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