
Bachelor’s Thesis

Generating Low-Voltage Grid
Benchmarks with OpenStreetMap

Metty Kapgen

Examiner: Prof. Dr. Hannah Bast
Advisers: M.Sc. Matthias Hertel

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair of Algorithms and Data Structures

October 13th, 2022

Writing Period

13. 07. 2022 – 13. 10. 2022

Examiner

Prof. Dr. Hannah Bast

Advisers

M.Sc. Matthias Hertel

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Freiburg, 13.10.2022

Place, Date Signature

i

Abstract

This bachelor’s thesis documents an implementation of a benchmark generation

tool to evaluate low-voltage grid expansion algorithms. This is achieved through

generating test grids with the help of OpenStreetMap. In a time in which the

supply and expansion of energy infrastructure becomes more and more pressing it is

especially important to develop efficient and correct expansion plan algorithms.

The emphasis of this thesis lies in the ability to customize such grids to fit the

user’s specialized needs. We provide the user of this benchmark tool, among other

things, with a set of forest algorithms which can be selected to generate different

states/scenarios on the same grid. Those grids can then be used to test, compare and

verify different expansion plan algorithms on real-world scenarios. This implementa-

tion will return a dataset which can be digested by expansion planning algorithms

that use PyPSA[1].

ii

Zusammenfassung

Diese Bachelorarbeit dokumentiert die Implementierung eines Benchmark-Tools zur

Erstellung und Evaluierung von Niederspannungsnetzausbau-Algorithmen. Dies wird

durch die Generierung von Testnetzen mit Hilfe von OpenStreetMap erreicht. In einer

Zeit, in der die Versorgung und der Ausbau der Energieinfrastruktur immer dringender

wird, ist es besonders wichtig, effiziente und korrekte Ausbauplanungsalgorithmen zu

entwickeln.

Der Schwerpunkt dieser Arbeit liegt darin, solche Netze an die speziellen Bedürfnisse

des Nutzers anzupassen. Wir stellen dem Benutzer dabei unter anderem eine Reihe

von Waldalgorithmen zur Verfügung, die ausgewählt werden können, um verschiedene

Zustände/Szenarien auf dem gleichen Netz zu erzeugen. Diese Netze können dann

verwendet werden, um verschiedene Ausbauplanungsalgorithmen auf realen Szenarien

zu testen, zu vergleichen und zu verifizieren. Diese Implementierung wird einen

Datensatz ausgeben, der von Ausbauplanungsalgorithmen, die PyPSA[1] verwenden,

verarbeitet werden kann.

iii

Contents

1 Introduction 1

2 Related Work 3

3 Background 5

3.1 Low-Voltage Grid Expansion . 5

3.2 OpenStreetMap Data . 6

4 Approach 8

4.1 Problem Definition . 8

4.2 OSM Data Extraction . 9

4.3 Grid Configuration . 13

4.4 CI-Grid Generation . 14

4.4.1 Shortest Paths SB-Forest . 15

4.4.2 Random SB-Forest . 19

4.4.3 Minimum SB-Forest and Maximum SB-Forest 21

4.5 Generating Output Files . 25

5 Evaluation 28

5.1 Tests . 28

5.1.1 Standard Deviation for Buildings per Substation 30

5.1.2 Weight Coverage . 31

5.1.3 Runtimes . 33

iv

5.2 ANTPOWER on Wieden . 33

6 Conclusion 36

7 Acknowledgments 37

Bibliography 39

v

List of Figures

1 Merging the street graph and the powerline graph of Bad Krozingen 11

2 Adding consumers and substations to the grid of Bad Krozingen . . 12

3 Shortest Paths SB-Forest of Bad Krozingen 18

4 Random SB-Forest of Bad Krozingen 22

5 Minimum SB-Forest of Bad Krozingen 25

6 Maximum SB-Forest of Bad Krozingen 26

7 Other Villages . 29

8 Example of constraint violations . 34

9 Zoomed in example of constraint violations 35

vi

List of Tables

1 Evaluation villages . 28

2 Average standard deviation for buildings per substation 30

3 Average weight coverage . 32

4 Average overall grid weight . 32

5 Average runtime . 33

vii

List of Algorithms

1 Shortest path sb-forest algorithm(grid=(V,E)) 16

2 Random spanning forest algorithm(grid=(V,E)) 20

3 Traceback forest algorithm(grid=(V,E)) 20

4 Minimum spanning forest algorithm(grid=(V,E,w)) 23

5 Grid smoothing algorithm . 27

viii

1 Introduction

Most European villages and cities have a low-voltage grid to feed residential and

commercial buildings with electricity. Due to the rising demand of energy and the

expansion of villages, grid operators have to regularly expand and improve their

coverage. This development of expansion plans is a critical and difficult task, as many

electrical grid norms must be respected while also finding the cheapest extensions

possible. Usually this job is done by experts who manually develop such plans using

their knowledge and experience.

However, in the past years more and more algorithms[2][3] are being designed in order

to solve this same problem. Such algorithms can largely differ in time complexity,

efficiency, price and quality of their proposed solution. Those different factors make

it hard for operators to identify suited algorithms. Thus raising the essential question

on how to compare and benchmark these different algorithms. The most intuitive

approach would be to request grid data from different grid operators and manually

generate a benchmark. This sensitive data, however, is usually not publicly available

and thus difficult to get.

Therefore, we have to fall back on an open and publicly available source. The

OpenStreetMap dataset enables us to extract not only roads and transmission lines,

but also substations which usually feed villages by converting higher-voltage into

low-voltage current and buildings which act as the consumers in the grid. With the

OpenStreetMap data, some electrical configuration values and a specialized forest

algorithm we can simulate a low-voltage grid of any given village. Our code will

1

return a set of CSV files which is directly compatible with the Python for Power

System Analysis (PyPSA) library[1]. At last, a set of such village grids can be used to

benchmark and compare different expansion plan algorithms against each other.

2

2 Related Work

OpenStreetMap data in modelling the urban energy infrastructure: a first

assessment and analysis[4]

This paper states, that the OpenStreetMap data can be used to develop electrical

grids. Additionally, it states that even though some OpenStreetMap data features

are missing, it can still be useful for sustainable and transparent grid modelling.

OSMnx: New methods for acquiring, constructing, analyzing, and

visualizing complex street networks[5]

OSMnx is an extremely powerful python library capable of turning OpenStreetMap

data into NetworkX[6] objects. Its main goal lies in providing an easy to use,

automated and reliable library for the extraction and processing of street networks.

Open Data in Power Grid Modelling: New Approaches Towards

Transparent Grid Models[7]

In this paper, the authors developed two different methods of modelling power grids.

One of them makes use of the powerlines in OpenStreetMap. However, low-voltage

cables are mainly placed below the ground, which are not stored in the OSM dataset.

In contrast to this paper, we will additionally make use of other village components

(roads, buildings, etc.) to generate our grids.

3

Expansion Planning of Low-Voltage Grids Using Ant Colony

Optimization[2]

This master thesis provides the reader with a low-voltage grid expansion planning algo-

rithm called ANTPOWER. This algorithm uses the so-called ant colony optimization

process to find cheap solutions for a grid expansion.

Testing and improving Antpower on the Simbench networks[8]

This blog post tests the above-mentioned ANTPOWER code on a synthetic set of

low-voltage grids, called the SimBench networks[9]. The article states that it would

like to have the ability to test the algorithm on a larger set of grids with more than

one substation. Moreover, it would also like the grid to have new lines as candidates

which are currently not installed on the grid for further potential expansions.

Generating low-voltage grid proxies in order to estimate grid capacity for

residential end-use technologies: The case of residential solar PV[10]

This paper gives us an interesting approach on how to estimate the low-voltage

grid capacity from photovoltaic generators. In future works it may be interesting

combining such methods with those of this thesis, to get an even more accurate

simulation/benchmark grid, by properly estimating generator and even grid values.

4

3 Background

3.1 Low-Voltage Grid Expansion

A low-voltage grid can be interpreted as a graph consisting of nodes and edges with

attributes. Edges represent all available lines, meaning the lines that are currently

part of the low-voltage grid and candidate lines that may be used for a potential

expansion. Every line is described by a cable type which can have different electrical

properties. Not every line must be part of the currently installed grid, as topological

constraints restrict certain lines from being installed.

The topological constraints are:

1. A grid can not have circles

2. A grid can not have a path between transformers

In the following, a ”ci-grid” will stand for the currently installed grid. The weight of an

edge represents the physical distance of its two connected nodes. A node represents

a so-called ”bus” and can have different characteristics. It can be a generator,

transformer, load/consumer or a simple intersection between lines. Sometimes a bus

can be a consumer and generator at the same time. In the real world this could,

for example, be interpreted as a residential building that has a photovoltaic system.

Consumers and generators are connected to the grid, by a so-called ”private line”.

Such a ”private line” is ignored in the process of expansion planning, as it represents

the line that is setup on the private property of its consumer. Thus, it can and

5

should not be upgraded by the grid operators. The lines that are part of the ci-grid

can be upgraded by expansion planning and are called ”public lines”.

The main task of a low-voltage grid is to connect consumer and generator buses

to transformers, without violating the above-mentioned electrical constraints. A

village can have several transformers and generators to guarantee a sufficient supply

to a grid. A correct ci-grid should additionally sustain load simulations through a

grid-library like PyPSA’s[1] powerflow. It is, however, up to the benchmark’s user to

determine a threshold when a line or node violates the constraints of the grid. The

return values of PyPSA’s powerflow should be used to determine which components

violate the constraints of the grid. Moreover, PyPSA’s powerflow can be run on

several snapshots. A snapshot is a point of time for the feed and load values of every

building. Snapshots usually represent the extreme cases on which the grid should be

tested.

The expansion planning process of these grids can be defined as the process of improv-

ing the grid stability and capability by replacing and/or upgrading the currently used

lines, while also minimizing its overall cost. In short, an expansion planning algorithm

tries to find the cheapest expansion that does not provoke any grid violations. If a

ci-grid does not contain any violations, it generally does not need to be upgraded.

Throughout this paper we will use the term buildings for both consumer and generator

nodes. Additionally, substations will be a synonym for transformers.

3.2 OpenStreetMap Data

OpenStreetMap (OSM) is a large and open dataset containing streets, buildings,

locations, and territories of the entire planet. The raw data can be processed with

the help of many libraries and is freely available on the web. The OSM data consists

of three main types.

6

A node is the simplest form of data, as it can be interpreted as a simple point with

several attributes. It contains a node ID, coordinates and several other tags. For

example node 5212856530 has coordinates 47.9953250, 7.8575591 (Freiburg i. Br.,

Germany) and has a tag ”power = transformer”.

Another important OSM element is the way datatype. It consists of a list of nodes

and can also contain informational tags. It can be used among other things to

define shapes like buildings and roads. Way 143746749, for example, represents the

”Umspannwerk Freiburg - Schlossbergring” which is a building that also contains the

”power = substation” tag.

The last important OSM element is the relation tag, this tag is used to unify different

nodes into groups. This datatype, however, is not of great importance for this

thesis.

7

https://www.openstreetmap.org/node/5212856530

4 Approach

4.1 Problem Definition

Expansion planning is algorithmically a very challenging task. Thus deciding on

which solvers to pick for different scenarios is of crucial importance. If you want to

upgrade a heavily violated grid, some algorithms may perform much better than

others. The same is also true for a scenario with much fewer violations. This raises

the essential question, on how to test and verify the capabilities of those algorithms.

Our OSM low-voltage grid benchmark tries to solve this exact problem. This tool

enables developers to test grid expansion planning algorithms on real world scenarios.

The benchmark aims to provide as much flexibility as possible by splitting up the

problem generation process into four sequential steps, which are explained next.

Step 1: User picks a city or village

Step 2: User defines electrical grid configuration

Step 3: User defines physical grid configuration

Step 4: User picks a sb-forest algorithm

In the first step, the user is asked to select the city or village the grid should be

originated from. This input must be a municipality in OSM as it is specifically used

by OSMnx[5]. If this condition is not met, the benchmark may have trouble to find

the proper location. After that, the user should define a set of electrical constants

8

that are necessary to properly configure the grid. Those variables are especially

important for the PyPSA’s[1] built-in powerflow function, which is indirectly used by

the expansion planning algorithm to determine whether a certain grid is overloaded

or not.

Next, we need the user to define several boundaries for the physical properties of

grid. The benchmark wants to know, how many substations the grid should have

at least, how many consumers it should have at most, and what the ratio between

generators and consumers should be.

Lastly the benchmark will request the user to select between a set of modified forest

algorithms, which will individually produce a different ci-grid. This selection enables

the user to generate different expansion scenarios on the same grid. They can choose

between a shortest paths, a random, a minimum and a maximum variant.

The code used to implement the benchmark is written in Python. This was done for

two main reasons. On one hand, it is a widely used language thus already containing

some OSM related libraries helping us with the extraction of data. On the other

hand, we want expansion planning algorithms to fit PyPSA’s[1] built-in methods,

which are also based on Python.

4.2 OSM Data Extraction

In this part we are going to present how we extracted the OSM data that was needed

to generate the grids from the user’s input of a village or city name. To start off we

need to mention that we used two main libraries, which both played a significant

role in the development of the code. Firstly we used the OSMnx[5] library, which

is able to generate a street grid in the NetworkX[6] format. A large percentage of

low-voltage grid cables in villages and cities are placed below public roads, therefore

this NetworkX street graph can be used as a foundation for the simulated electrical

grid. This graph can be generated with the help of the OSMnx graph_from_place

9

method, with the network type set to ”drive”. This method will guarantee that the

generated graph will always be connected, as the ”retain_all” variable is set to false

by default.

This simple graph, however, does not take into account the overhead powerlines.

Note that they should not be confused with high-voltage lines. Generally the OSM

powerlines are an electrical equivalent to street cables. To get this data we can

once again make use of OSMnx by generating another graph with the custom

filter ”[”power” = ”line”]”. Uniting both graphs will give us a good estimate where

low-voltage cables should be situated in the real world.

To connect both graphs to each other we firstly identified the endpoint nodes of

the overhead powerline graph, by checking for the nodes of degree 1. After that we

simply connected those nodes to their closest neighbor node in the street graph. The

result will be used as the foundation for our grid.

In Figure 1 we can see the unification of the both graphs on the village ”Bad

Krozingen” near Freiburg im Breisgau. Black lines represent cables that are placed

below the streets, while the green lines represent the ones above the ground. The

orange lines represent the connecting cables between both graphs.

To turn our merged graphs into a grid, the next step is to add substations and

buildings that will later act as consumers or generators or even both. OSMnx,

however, is not properly suited to help us with this problem. Thus, we need a second

more powerful OSM library, which is called PyOsmium[11]. PyOsmium is a Python

derivative of the Osmium Library which runs in C++. This library enables us to read

from an OSM file by directly filtering and returning specific OSM objects. Thus, we

can look up specific infrastructure such as residential and commercial buildings and

substations. Unfortunately the OSM dataset is not always properly standardized,

resulting in several infrastructures being defined as ways instead of nodes. This

forced us to take both into consideration. As we can not directly add ways to our

simulated grid, we must first reduce said ways to their first node before adding them.

10

Figure 1: Merging the street graph and the powerline graph of Bad
Krozingen

Having identified all the interesting nodes for this grid, the next step will be to

connect them to the grid. Connecting a building to the grid will be done with the

help of the private lines. They are usually connected to the grid in the shortest way

possible as private entities aim to minimize their cable cost when initially linking

up to the grid. Thus finding the closest, right-angled connection between a grid

line and the individual buildings seems like the most reasonable approach. This is

done by iterating over all the existing edges and computing the closest point on the

nearest edge to the building’s node. When we have identified that point we will

split the belonging edge with the help of said point and connect it to the building

node by a private line. The substations, on the other hand, can be connected to

the grid in a much simpler way. Firstly we need to determine which substations

could really take part in our low-voltage grid. We start of by calculating the distance

between every OSM substation and the center of the village we want to simulate. If

that distance falls within a certain threshold, we will connect it to the closest node

of the grid. If none of the OSM substations is close enough to the village to fall

within that threshold, we will choose the closest as the only substation of the grid.

11

Figure 2: Adding consumers and substations to the grid of Bad Krozingen

In Figure 2 we can see the buildings that were connected to the grid in blue, while

the substations are colored in red.

Lastly, we will determine the weights of the edges by applying basic Pythagoras on the

coordinates of the connected nodes, by calculating weight =
√

(x2 − x1)2 + (y2 − y1)2,

where the two nodes have coordinates (x1, y1) and (x2, y2) respectively.

In general, the data extraction part of the benchmark is a time-consuming task.

The extraction of Bad Krozingen for example can take up to ten minutes on an

i7-7700HQ (mobile) processor with the OSM file being stored on a SSD. OSMnx will

directly request the necessary data from an API. PyOsmium on the other hand will

have to receive an OSM file to properly work. This library will iterate through every

node and way of the OSM file resulting in large runtimes, depending on the size and

spectrum of the files. Fortunately, there are many shrunk down versions for different

districts. In this thesis we used the ”Regierungsbezirk Freiburg” file.

Usually the extraction process must only be done once to retrieve the general grid

for each village, thus it is useful to compress and separately store the grid with the

12

https://download.geofabrik.de/europe/germany/baden-wuerttemberg/freiburg-regbez.html

gpickle methods, which is part of the NetworkX library. In the next steps, such

gpickle files will be unpacked for further processing.

4.3 Grid Configuration

In the second step of using the benchmark tool we will ask the user to configure

several electrical variables. Those variables can be set through a configuration

file. This configuration was derived from the inputs PyPSA’s powerflow will need.

Through this file we will be able to define a large quantity of component properties.

On startup this file is filled with a set of default values derived from ANTPOWER’s

test input. We introduce two different PyPSA snapshots, which represent different

extreme scenarios in the grid. Either the grid can have an abundance of power

with little consumer need(feedcase), or a lack of power with a large request for

energy(loadcase).

Apart from the electrical configuration the user will also have to determine several

limiting bounds for the amount of substations, buildings and generators.

Sometimes the OSM data can be incomplete and does not provide a realistic scenario

for the amount and positioning of substations. Thus, the benchmark generation tool

provides the user with the capability to determine a lower bound for the amount of

substations the grid must have. This functionality was implemented by counting the

actual amount of substations currently in the grid, and converting random buildings

to substations if the requested quantity is not met.

Secondly, the user can determine an upper bound for the amount of buildings. This

method was mainly added to give the user the freedom to reduce the complexity

of the generated grid. The function was implemented by randomly deleting a set

amount of building nodes and their private lines from the grid.

13

Lastly, the user is able to select a value for the ratio between consumers and generators.

Every building in the grid will be a consumer, however the probability of it also

being a generator is determined through that variable.

4.4 CI-Grid Generation

Now that we have the complete grid and its configuration data, we need to determine

which lines are currently part of the actual ci-grid and which lines are available as

upgrade options. The ci-grid can be seen as a specialized forest, that respects the

above-mentioned topological constraints.

Note that we are not directly looking for spanning forests as results from our

algorithms. Generating a spanning forest on the grid, would return us a result, that

will contain every node. However, we are actually looking for a forest, that connects

every building to exactly one substation. In this case, we will usually still end up

with a set of edges and nodes that are not used in one of the trees. Such components

will later be interpreted as the candidate lines for a potential upgrade of the grid.

Thus, the following algorithms should not be interpreted as a spanning forest, but as

a forest that guarantees that every building is connected to exactly one substation.

They will have the ”SB” (Substation-Building) prefix to clarify that they are in fact

specialized forests that respect the beforehand mentioned condition.

To offer the user the most flexible grid simulation, we provided four different algo-

rithms that can generate a ci-grid. Those different algorithmic options are especially

important, as in a real world scenario, a ci-grid is only rarely a proper minimum

spanning forest. A low-voltage grid is usually expanded through the historic develop-

ment of the village or city. In general, this makes ci-grids prone to imperfections and

inefficient layouts. Thus, to enhance the variety and also provide more challenging

ci-grids, it is useful to offer the user a set of different algorithmic options to generate

the sb-forest.

14

4.4.1 Shortest Paths SB-Forest

Algorithm

A first and intuitive way to generate a sb-forest is to connect every building to the

closest substation. For that we make use of the shortest paths through the edges’

weights, i.e. their physical length. Firstly we need to identify such paths from

each building node to its closest substation. NetworkX, the library we are using to

represent our grid in, already has a useful built-in method for this. The method is

called multi_source_dijkstra_path and is an extension of Dijkstra’s famous shortest

path algorithm. Instead of the usual dijkstra_path which needs one specific source,

the extended version can handle a set of sources.

In general, an implementation of Dijkstra’s algorithm will sequentially iterate over

the neighbor of the set of already visited nodes with the shortest distance to the

source node. Thus, it keeps track and possibly updates the currently shortest path

found for each node. It needs a queue to store the order in which different nodes

should be selected. Note that with every visited node, the order of neighbor nodes in

the queue can potentially change. Once a node is visited, it can no longer enter the

queue again, as its shortest path was already found, assuming there are no negative

edge weights in the grid. The only input Dijkstra’s algorithm will need is a source

node, from which we can sequentially enlarge the set of neighbor nodes and update

the shortest paths.

The multi-source version of this algorithm shares large parts of the same process.

Instead of starting the algorithm with only one source node, that has a shortest path

of weight zero to itself, we will have several source nodes having this property. A

node position in the queue will be determined by the shortest distance to one of the

source nodes. The pseudocode for the multi_source_dijkstra algorithm can be seen

in Algorithm 1.

15

Note that every node of the grid will be considered in a shortest path algorithm as

long as the grid is connected, thus every node must also find a path to the sources.

In our implementation, the sources will be the substations. This will return us a

list of edges for every building representing the path to its closest substation. The

paths that are generated for all non-building nodes during the method call can be

discarded.

Algorithm 1 Shortest path sb-forest algorithm(grid=(V,E))
foreach node in grid do

dist[node] =∞
prev[node] = None

end for
foreach source in sources do

dist[source] = 0
end for
heapq = set of all nodes in grid
while heapq not empty do

candidate = smallest dist node in heqpq
heapq = heapq \ {candidate}
foreach neighbor of candidate still in heapq do

if dist[candidate] + weight(candidate, neighbor) < dist[neighbor] then
dist[neighbor] = dist[candidate] + edge_weight(candidate, neighbor)
prev[neighbor] = candidate

end if
end for

end while

Correctness

Dijkstra’s algorithm will guarantee that every building will connect to at least one

substation as the grid is connected. Note that it will not be possible for two nodes,

that are directed to different substations, to cross or share part of their shortest

paths. Otherwise, this would mean that there exists a node from which point onward

there are two shortest paths to two different substations. For such a scenario to

occur, both paths from the above-mentioned node onwards must have the same exact

weight. However, NetworkX’s method will, in this case, still deterministically chose

16

one of the paths. Therefore, we can conclude that every building is connected to

exactly one substation, confirming the sb-forest condition.

Complexity

The complexity of this overall method is determined by the amount of nodes |V | and

the amount of edges |E| in the grid. NetworkX multi_source_dijkstra_path uses

Python’s internal heapq data structure to efficiently determine the next closest nodes.

Multi_source_dijkstra_path should not add a relevant time constraints to the general

Dijkstra’s algorithm, as the modifications can be done in constant time. Assuming

Dijkstra’s algorithm was implemented by NetworkX along the state of the art, we will

receive a runtime complexity of O(|V | log(|V |) + |E|). The latter runtime includes

heapq, for which the worst case boundary for every operation can be set to O(log |V |).

As the multi_source_dijkstra_path will return us a set of paths for each node, we will

iterate through every of those paths to mark down which edges and nodes will become

part of the ci-grid. This can be done in O(|V | · |E|). Thus, the overall complexity of

the shortest path sb-forest algorithm will be O(|V | log(|V |)+|E|+|V |·|E|) = O(|V |2).

The latter equation can be explained through the fact, that for every node we will

have a constant amount of edges. Note that a usual street node will at most have a

hand-full/constant amount of edges in case of a large crossroad. From this we can

conclude that O(|V |) = O(|E|).

On average the complexity of the iteration through the output paths of NetworkX’s

multi_source_dijkstra_path can be simplified to O(h · |V |), where h stands for the

longest (amount of edges) ”shortest” path found by the algorithm. Thus, the average

complexity can be reduced to O(|V | log(|V |) + h · |V |).

Why is there no Longest Paths SB-Forest in the benchmark?

An algorithm that would produce us the longest paths sb-forest would rely on an

algorithm able to produce maximum paths. This problem, however, is NP-hard[12].

17

Figure 3: Shortest Paths SB-Forest of Bad Krozingen with 20 substations

Such an implementation would resemble a ”brute force” algorithm, which would

have a factorial runtime complexity. As even the smallest grids do contain hundreds

of edges, such an approach would struggle to finish. Thus, we declared such an

implementation to be useless for our benchmark tool.

In Figure 3 we can see the shortest paths sb-forest algorithm applied to ”Bad

Krozingen”. The substations amount was set to 20 and the upper bound for buildings

was set to infinity. The substations themselves are colored yellow, while their

connected nodes take on a random but uniform color. Nodes and edges that stay

black are not part of the sb-forest/ci-grid.

Algorithm 1 shows the pseudocode for the shortest path sb-forest algorithm.

18

4.4.2 Random SB-Forest

Algorithm

An alternative to generating the sb-forest through a modified shortest path algorithm,

is to generate it randomly. While developing this algorithm we wanted to set a main

emphasis on having approximately even sizes of the individual trees. To achieve

this we let every substation sequentially pick one of its neighbor nodes to become

part of its tree until every substation tree finds no more node that can be connected.

This approach will return us a spanning forest that will match every node to one

of the substations. Such a forest however does also contain nodes and lines that

are not part of the ci-grid, as they are not directly on the path between a building

and its substation. This can occur as we can have several nodes in the grid that

are not needed to connect a building to the grid. To solve this issue, we developed

a separate method called the traceback_forest method. This method will check for

every node in the entire grid if it is an endpoint (degree = 1) of a spanning tree and

neither a house nor a substation. If such a node is found, it will be removed from

the forest. This method will be run as long as nodes are getting removed. In the

end we will thus receive a proper sb-forest, that may also have several candidate

lines. Algorithm 2 shows the pseudocode for the random forest while Algorithm

3 presents the traceback_forest method.

Correctness

As we know that the grid is connected and the individual substation trees must be

as expanded as possible, we can assume that we generated a spanning forest. Note,

that there is no guarantee that every substation tree will have the same amount of

nodes in its set, as it can happen that certain selections can ”cut off” substations

from the rest of the grid. This will stop a substation tree from further expanding, as

it will not find any more available neighbors that are not already part of another tree.

19

Algorithm 2 Random spanning forest algorithm(grid=(V,E))
foreach substation in grid do

subset[substation] = {}
end for
visited = {substations}
while visited ̸= V do

sub = Get next substation
candidate = Get random neighbor of subset[sub] not in visited
if candidate exists then

Add candidate to subset[sub]
Add candidate to visited

end if
end while

Algorithm 3 Traceback forest algorithm(grid=(V,E))
while nodes are getting removed do

foreach node n in grid do
if degree(node) = 1 & node ̸= substation & node ̸= building then

Remove node from forest
end if

end for
end while

Using the traceback_forest method will sequentially shorten and remove paths that

are not relevant for the sb-forest condition. As the traceback_forest will iteratively

delete only nodes that do have degree 1 that are not buildings and substations, we

can guarantee, that no node which is part of the sb-forest will be deleted.

Complexity

The runtime complexity of this algorithm can be split up into two parts. In the first

step (Line 1 - 4) some initializations are executed which can be done in constant time.

After that we enter the while loop (Line 5) which will run for |E| iterations. Inside

the loop the most time draining operation is the get_random_neighbors method.

As we did not use advanced data structures(i.e. Union-Find) to implement this

method, this method will only run in O(|V |). The beforehand complexity can be

20

explained through the lookup of the neighbor, which can take up to O(|V |) for each

method call, as we need to initially update said set for the recently added node.

The selection of the random neighbor out of this set, however, can be done in O(1).

Secondly, in the worst case scenario of the traceback_forest, we would have a grid

only consisting of one path, that is on one side connected to a substation while the

other nodes are all simple non-building nodes. If our iterations through the |V |

nodes are unlucky we will only reduce such a path by one node in each step. Thus

forcing us to repeat that step |V | times, returning us an overall complexity for the

traceback_forest method of O(|V |2). If we however assume, that the longest path of

a tree that has no building at the end has length of k, we can reduce the runtime

complexity of the traceback_forest method to be O(k|V |). Nonetheless, the overall

complexity of the random sb-forest algorithm will be O(|V ||E|+ k|V |) = O(|V |2).

Again, we can conclude that O(|V |) = O(|E|), with the same argument as before.

Due to the lack of specialized data structures in the implementation of the random

approach, we will also receive an average runtime complexity of O(V 2).

In Figure 4 we can see the random sb-forest algorithm applied to ”Bad Krozingen”.

The substations amount was set to 20 and the upper bound for buildings was set to

infinity. The substations themselves are colored yellow, while their connected nodes

take on a random but uniform color. Nodes and edges that stay black are not part

of the sb-forest/ci-grid.

4.4.3 Minimum SB-Forest and Maximum SB-Forest

Algorithm

To start of, we will introduce a new temporary node to the grid. This node will be

connected to every substation node through an edge with a weight of 0. Now we

can use the built-in NetworkX method called minimum_spanning_edges which can

be configured to use Kruskal’s algorithm. Firstly, Kruskal’s algorithm will sort all

21

Figure 4: Random SB-Forest of Bad Krozingen with 20 substations

edges of the grid by their weights and store them in a list. After that, the algorithm

will sequentially add the edges of the beforehand list, and check if the adding of the

edge has resulted in a circle in the grid. If so, the edge will be discarded from the

spanning forest. As we picked weight values of 0 for the edges connecting the added

node to the substations, those edges will be the first to be selected to the spanning

tree. After the algorithm finished running through the sorted edge list, we have a

spanning tree. Now we can remove the temporary node and its linked edges. This

will return us a spanning forest, for which we can once again use the traceback_forest

method. In the end we will thus end up with a minimal sb-forest.

The maximum sb-forest can be generated in an identical fashion. The only difference

is that we will have to invert the edges weights, so that the largest weights will

become the smallest and vice versa. After the minimum_spanning_edges is called

we can revert the weights to the original values. The rest of the process will be the

same. Algorithm 4 shows the pseudocode for a minimum spanning forest algorithm.

It was inspired from the following slides[13].

22

Algorithm 4 Minimum spanning forest algorithm(grid=(V,E,w))
Connect temporary_node to every substation with weight 0
MST = {}
foreach node in grid do

Create subset for node
end for
Sort edges in ascending order of weights
foreach edge(u, v) in grid (in ascending weight order) do

if find(u) ̸= find(v) then
MST ← MST ∪ edge(u, v)
union(find(u), find(v))

end if
end for
Remove temporary_node
Apply traceback_forest algorithm

Correctness

To prove that this algorithm will actually return us a sb-forest, we will initially have

a look at Kruskal’s algorithm. Kruskal’s algorithm will always return a minimal

spanning tree. Firstly, we need to introduce the definition of a subtree. In the

following explanation, a subtree will be a subset of all nodes, that are connected

and do not have a circle. The smallest subtree possible is a single node that is not

connected to any other node. Kruskal will order the edges with the help of their

weights. After that, it will iteratively suggest an edge to be part of the spanning tree.

Now we can differentiate between two cases. Firstly, the selected edge can connect

two nodes of the same subtree resulting in a cycle in that subtree. A tree should not

contain cycles, thus we will not add the selected edge, and move on to next heavier

weighted edge. If however, the selected edge does not produce a cycle, meaning it

connects two different subtrees, they will be merged together into one larger subtree.

Iterating over all the edges will force the subtrees to slowly merge into one large

tree, which is connected to every individual node. To manage the different subtrees

and keep track of which node belongs to which subtree, Kruskal’s algorithm uses

the Union-Find data structure[14]. In short this data structure can be represented

23

as a large array linking nodes through sequential references to their root/subtree.

After receiving the spanning tree, we will remove the temporary node, which will

break down the spanning tree into a spanning forest, where each subtree is exactly

connected to one substation. Once again, the traceback_forest method will turn the

spanning forest into a sb-forest.

Complexity

The runtime complexity of Kruskal’s algorithm can be extracted from the combination

of the runtime of sorting the list of edges and the checks if the grid contains a circle.

Firstly, sorting the list will take O(|E|log|E|) where E represents the amount of

edges. Such a time complexity can be achieved either through a heap sort or a merge

sort algorithm. Secondly, checking for circles in each step can be done with the help

of a Union-Find structure, which has an overall runtime of O(|E|+ |V | log |V |). The

|E| in the beforehand complexity comes from the algorithm iterating and testing

each of the lines. The other term can be explained through the fact that we can

at most combine the subsets |V | log |V | times until there is only one big subset left.

After applying Kruskal to the grid, we once again apply traceback_forest which

brings the worst-case runtime of the minimum and maximum sb-forest algorithm to

O(|E| log |E|+ |E|+ |V | log |V |+ |V |2) = O(|V |2). We again used the observation

that O(|V |) = O(|E|).

However, if we consider the average case, the traceback_forest method’s complexity

could be simplified to O(k · |V |), where k is the longest path (amount of edges) of a

tree that has no building at the end. Thus, we can conclude that this algorithm has

an overall average runtime of O(|V | log |V |+ k · |V |). This complexity is probably a

much more accurate estimate of the real runtimes.

In Figure 5 we can see the minimum sb-forest algorithm applied to ”Bad Krozingen”.

The substations amount was set to 20 and the upper bound for buildings was set to

24

Figure 5: Minimum SB-Forest of Bad Krozingen with 20 substations

infinity. The substations themselves are colored yellow, while their connected nodes

take on a random but uniform color. Nodes and edges that stay black are not part

of the sb-forest/ci-grid.

In Figure 6 we can see the maximum sb-forest algorithm applied to ”Bad Krozingen”.

The substations amount was set to 20 and the upper bound for buildings was set to

infinity. The substations themselves are colored yellow, while their connected nodes

take on a random but uniform color. Nodes and edges that stay black are not part

of the sb-forest/ci-grid.

4.5 Generating Output Files

Before we can properly generate the CSV files that will be interpreted by expansion

planning algorithms, we need to tackle one more issue we are having with the present

state of the grid. As for Lukas’ Gebhard ANTPOWER, the algorithm assumes that

every available new line that may be suggested to be added to the grid, must result

in a circle in the grid. However, by looking at any of sb-forest algorithm figures, it

25

Figure 6: Maximum SB-Forest of Bad Krozingen with 20 substations

becomes clear that we can have cases, where an upgrade path should be considered

instead of a single line, to produce such a circle. To fit this requested condition of

ANTPOWER’s input, we developed a special grid_smoothing method. The goal of

this algorithm is to unify possible upgrade paths into single edges, while not losing

any information of distances and potential connection possibilities. The main idea

behind the algorithm, is to iterate over all the nodes that are currently not part of

the ci-grid, delete them and connect each of its neighbors with each other, while also

adding the appropriate weights to those edges.

Note that in special cases, this implementation can worsen the actual length of the

edges when ”smoothing” a node. Imagine the special scenario, where an expansion

planning algorithm would like to connect a smoothed node twice. With our imple-

mentation, the algorithm would than have to select two smoothed edges which are

longer than the combination of the shortest path of the first two nodes we want to

connect over the ”smoothed” node coupled with the edge between the third node

and the smoothed node.

Algorithm 5 shows the pseudocode for the grid smoothing algorithm.

26

Algorithm 5 Grid smoothing algorithm
foreach node in grid do

if node not part of sb-forest then
neighbors = Get neighbors of node
foreach {neighbor1, neighbor2} in neighbors do

tmp = weight(node, neighbor1) + weight(node, neighbor2)
Add edge (neighbor1, neighbor2) with weight tmp

end for
Remove node and connected edges

end if
end for

In the last step of the implementation, we have used a built-in CSV writer to help

us return the grid and candidate lines as files. Those files are specially tailored to fit

PyPSA’s import_network methods.

27

5 Evaluation

In the following section we are going to describe how we evaluated the different sb-

forest algorithms and determine which sb-forests are the most interesting in different

scenarios.

5.1 Tests

Before we can look at the actual data, we need to define the setup and grids we

tested the individual sb-forest algorithms on. The following evaluation was done

on four different villages in the southwest of Germany. They have different sizes

(amount of nodes and edges) and graph topologies.

Village Nodes Edges Substation Buildings

Wieden 434 439 1 206
Kirchzarten 4669 4732 14 2457

Bad Krozingen 9254 9510 11 4353
Freiburg i.Br. 60942 62490 91 29650

Table 1: Evaluation villages

Analyzing the three villages we can note that Bad Krozingen has fewer substations

than Kirchzarten, even though Bad Krozingen is nearly double the size in nodes,

buildings and edges. This is a good showcase of the lack of OSM data accuracy in

different locations. We can however assume that Bad Krozingen must have more

28

than the 11 substations. We probably did not find them through our data extraction

filters.

Nonetheless, we can simulate a proper grid by setting an arbitrary value for the lower

bound of the quantity of substations. To simplify the evaluation and to get a better

comparison, we will raise the lower bound of the substations for every of the three

grids to 20.

Note that for Wieden, 20 substations may be unrealistic from the perspective of

a grid operator. Nonetheless, we chose to pick this value as it will facilitate the

comparison between the different algorithms in this evaluation part.

Figure 7: Left: Wieden, Right: Krichzarten, Bottom: Freibrug im Breis-
gau

In the following tests every algorithm was run 100 times on all villages except Freiburg

im Breisgau. The largest grid was only tested 10 times per algorithm, and limited

to at least 200 substations. It is important to note that the insertion of additional

29

substations at random positions is crucial for generating different forests for each test

iteration. If we would not add new substations to the grid, every algorithm except

for the random sb-forest algorithm will return a deterministic result.

The following results were averaged from the amount of iterations of each algorithm

and grid. The grid smoothing method, that is needed for ANTPOWER, was explicitly

not considered for the data extracted from the following results, as it would change

the total amount of edges and nodes. This would obfuscate the actual performance

of the algorithms.

5.1.1 Standard Deviation for Buildings per Substation

Firstly we wanted to have a look at the standard deviation for the quantity of

buildings per substation. In short, we want to know how many buildings every

substation deviates from the average amount of buildings it should have. This value

essentially tells us if buildings are fairly distributed between substations, or if certain

substations are struggling to feed a large amount of buildings, while others would

still be able to feed more.

σ(Shortest Path) σ(Random) σ(Minimum) σ(Maximum)

Wieden 10.03 6.75 12.40 13.37
Kirchzarten 143.39 72.03 211.20 254.24

Bad Krozingen 196.60 128.99 276.68 573.36
Freiburg i. Br. 163.85 116.31 260.87 392.29

Table 2: Average standard deviation for buildings per substation

From Table 2 we can see that the random sb-forest algorithm seems to generate

the ”fairest” grids. This aligns with what we would expect, as it will sequentially

distribute nodes between the individual substations. The minimum and maximum

sb-forest algorithms seem to produce the largest inequalities in the distribution of

buildings between the substations. This can be explained by the greedy nature of

30

those algorithms. They will not consider ”fairness” as they will only look to minimize

resp. maximize their own conditions.

The question that may arise is why the minimum sb-forest algorithm is considerably

”fairer” than its maximum counterpart. This can be explained through the priori-

tization of edge selection of the both algorithms. While the maximum algorithm

will preferably pick large edges, the minimum algorithm will firstly pick the small

edges that are often in the close neighborhood of the substations. Additionally, we

added synthetic substations, which will be placed at random positions instead of

buildings. A village topology usually contains sets of buildings that are connected

to each other, which can be interpreted as housing estates, residential or industrial

areas. In the minimum case, if a substation is placed right inside such a grouping it

is likely to be spanned to the entire set, as the edges used inside such sets are very

short. On the other hand, the maximum sb-forest algorithm will firstly prioritize

large edges, which are usually situated outside such groupings of buildings.

From this data we can conclude that the minimum and maximum sb-forest algorithm

will generate more challenging grids. Such grids will have many consumers connected

to few substations, raising the chance of electrical constraint violations in the grid.

On the other hand, the shortest path and random sb-forest algorithm seem to produce

much more balanced and distributed grids. Thus overloaded components become

much less probable.

5.1.2 Weight Coverage

In this section we are going to have a look at the average overall length/weight

coverage of all the cables that are part of the sb-forest. For this we will initially

sum up all the edges weights that are part of the ci-grid, and divide them by the

weight of all the edges in the entire grid (including candidate lines). Averaging those

values over the amount of iterations of each algorithm will return us a percentage of

31

cable length that was used to generate the sb-forest. We will call this percentage the

weight coverage of the sb-forest. Note that a 100% coverage would mean that every

edge of the village was used to build the sb-forest.

Shortest Path Random Minimum Maximum

Wieden 83.76% 94.64% 80.88% 98.64%
Kirchzarten 96.12% 98.60% 94.11% 99.31%

Bad Krozingen 81.63% 93.07% 76.84% 95.35%
Freiburg i. Br. 83.01% 93.35% 79.93% 95.81%

Table 3: Average Weight coverage for 100 iterations

As expected, having a look at Table 3, the minimum sb-forest will return us the

least coverage by far. On the other hand, the maximum algorithm has the completest

coverage.

If a current grid has a large weight coverage, this will mean that a large quantity

of cable is already placed in the ground. This leaves a good chance for potential

upgrades by grid optimization algorithms.

Additionally, for grid operators, the total weight/length of the ci-grid is a useful

metric as it directly correlates to the price of material and construction that was

needed to build up that specific grid.

For the sake of completeness, the overall weights of the grids, meaning the sum of

the ci-grid weights and the candidate lines can be read out of Tabular 4.

Wieden Kirchzarten Bad Krozingen Freiburg i. Br.

Length in km 36.62 297.37 222.26 1673.36

Table 4: Average overall grid weight in km

32

5.1.3 Runtimes

In this section we are going to have a look at the different examined runtimes of the

algorithms. They were all run on an i7-7700HQ (mobile) processor. The following

runtimes are measured in milliseconds.

Shortest Path Random Minimum Maximum

Wieden 11.69 25.06 21.47 25.54
Kirchzarten 287.97 738.80 271.85 250.16

Bad Krozingen 582.05 2969.30 880.65 694.11
Freiburg i. Br. 4108.22 37347.56 4902.56 4599.00

Table 5: Average runtime in milliseconds

As we can see from the data, the shortest path and the minimum/maximum sb-forest

algorithm perform fairly the same. For the random sb-forest algorithm we received

the largest average runtime during our tests. Looking at the different runtime

complexities that we determined in chapter 4.4.1 to 4.4.3, we will note that in the

worst case, every complexity is O(|V |2). However, as we are averaging the runtimes

over a large set of runs, we should also consider the average case complexities of

the different algorithms. From this we can conclude that the shortest path and

minimum/maximum sb-forest algorithm will outperform their forth competitor.

5.2 ANTPOWER on Wieden

To show the real application of this benchmark tool, we tested Lukas Gebhard’s

ANTPOWER with one of our grids. We chose the small grid of Wieden with five

substations with no limitations on the amount of buildings and a 50% ratio for

generators. Unfortunately the generated grid does not immediately run with the

default electrical values. The problem is that PyPSA’s powerflow will not always

converge, and thus generate a very large error. This is a well known error and can

33

be troubleshoot[15]. This is probably related to us not properly being able to set up

the electrical values.

Nonetheless, to prove the concept of our implementation we applied a length factor

to all the lines in the grid. This will multiply the length of every line by a specific

value. In our case we chose the value of 0.1 reducing the actual edge weights to 10%

of their real weight. Now PyPSA’s powerflow converges and ANTPOWER is able to

optimize the grid. In the concrete example, we were able to reduce the initial ten

constraint violations into zero over 200 iterations of ANTPOWER.

Figure 8: An example of constraint violations for Wieden with four sub-
stations

In Figure 8 we can see an example grid of Wieden with four substations. In Figure

9 we can see a zoomed in version of the same grid.

We expect that grid operators will be able to properly adjust electrical values to

generate and test grids with their correct length of edges.

34

Figure 9: Zoomed in example of constraint violations for Wieden with 4
substations

35

6 Conclusion

With this thesis we propose an open source option to benchmark low-voltage grid

planning algorithms. The benchmark tool offers a large flexibility and enables the

user to specify and generate low-voltage grid problems with additional candidate

lines. The user is not only able to define a large amount of electrical and physical

variables, but can also choose one of the four sb-forest algorithms. Every sb-forest

algorithm comes with its set of properties, advantages and disadvantages. Thus,

the user can decide to make the low-voltage grid expansion problem a harder but

also more unrealistic by generating a maximum sb-forest through this tool. Such

problems tend to be much more synthetic, and we expect them to have many more

constraint violations. The alternative is for the user to generate a more realistic

problem, by selecting either the random, the shortest path or the minimal sb-forest

algorithm. In that case the user will be able to test his expansion planning algorithm

on a problem that should only have few constraint violations.

36

7 Acknowledgments

First and foremost, I would like to thank Matthias Hertel for proposing me the topic

for this thesis. He supported me throughout my entire bachelor’s project and thesis

and motivated me to tackle the work. I am happy, that we could work together.

Secondly I would like to thank Prof. Dr. Hannah Bast for giving me the opportunity

to present this work to.

Next in line is Felix Schoellen. He is a great friend of mine who stuck with me

through large parts of my academic career and never let me down. He always made

time to explain me subjects and learn with me for future exams. I would not be

writing this thesis if it was not for your patience and persistence.

Merci Felix!

After that I would like to give a special thanks to Isabelle Desbordes and Georges

Kapgen, my parents. They will not admit it, but they gave up a lot to make studying

possible for my brothers and me. I hope the day will come where I can give you back

the joy and good times I had in Zurich and Freiburg.

Merci Mamm a Papp!

My last thank you goes out to everyone that believed in me throughout this adventure.

To my brothers, girlfriend, family and friends.

Thank you a lot!

37

Bibliography

[1] T. Brown, J. Hörsch, and D. Schlachtberger, “PyPSA: Python for Power System

Analysis,” Journal of Open Research Software, vol. 6, no. 4, 2018.

[2] L. Gebhard, “Expansion planning of low-voltage grids using ant colony op-

timization,” 2021. Chair of Algorithms and Data Structures, University of

Freiburg.

[3] J. Saat, S. Stein, M. Müllender, and A. Ulbig, “Planning and design of urban

low-voltage dc grids,” Electric Power Systems Research, vol. 211, 2022.

[4] A. Alhamwi, W. Medjroubi, T. Vogt, and C. Agert, “Openstreetmap data in

modelling the urban energy infrastructure: a first assessment and analysis,” En-

ergy Procedia, vol. 142, pp. 1968–1976, 2017. Proceedings of the 9th International

Conference on Applied Energy.

[5] G. Boeing, “Osmnx: New methods for acquiring, constructing, analyzing, and vi-

sualizing complex street networks,” Computers Environment and Urban Systems,

vol. 65, pp. 126–139, 07 2017.

[6] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,

dynamics, and function using networkx,” in Proceedings of the 7th Python in

Science Conference (G. Varoquaux, T. Vaught, and J. Millman, eds.), (Pasadena,

CA USA), pp. 11 – 15, 2008.

38

[7] W. Medjroubi, U. P. Müller, M. Scharf, C. Matke, and D. Kleinhans, “Open

data in power grid modelling: New approaches towards transparent grid models,”

Energy Reports, vol. 3, pp. 14–21, 2017.

[8] M. Kapgen, “Testing and improving antpower on the simbench net-

works,” [https://ad-blog.informatik.uni-freiburg.de/post/testing-and-improving-

antpower-on-the-simbench-networks/; accessed 10-October-2022].

[9] “Simbench networks,” [https://simbench.de/de/; accessed 10-October-2022].

[10] E. Hartvigsson, M. Odenberger, P. Chen, and E. Nyholm, “Generating low-

voltage grid proxies in order to estimate grid capacity for residential end-use

technologies: The case of residential solar PV,” MethodsX, vol. 8, p. 101431,

2021.

[11] “Pyosmium,” [https://osmcode.org/pyosmium/; accessed 10-October-2022].

[12] C. H. Thomas, L. E. Charles, R. L. Ronald, and S. Clifford, “Introduction to

algorithms,” vol. 2, p. 978, 2001.

[13] Uni-Paderborn, “Datenstrukturen und Algorithmen, Kapitel 16,” [https://cs.uni-

paderborn.de/fileadmin/informatik/fg/ti/Lehre/SS_2017/DuA/16.pdf; ac-

cessed 10-October-2022].

[14] Wikipedia, “Union-Find-Struktur — Wikipedia, the free encyclopedia,” 2022.

[https://de.wikipedia.org/wiki/Union-Find-Struktur; accessed 10-October-2022].

[15] “Pypsa - troubleshooting,” [https://pypsa.readthedocs.io/en/latest/troubleshooting.html;

accessed 10-October-2022].

39

	1 Introduction
	2 Related Work
	3 Background
	3.1 Low-Voltage Grid Expansion
	3.2 OpenStreetMap Data

	4 Approach
	4.1 Problem Definition
	4.2 OSM Data Extraction
	4.3 Grid Configuration
	4.4 CI-Grid Generation
	4.4.1 Shortest Paths SB-Forest
	4.4.2 Random SB-Forest
	4.4.3 Minimum SB-Forest and Maximum SB-Forest

	4.5 Generating Output Files

	5 Evaluation
	5.1 Tests
	5.1.1 Standard Deviation for Buildings per Substation
	5.1.2 Weight Coverage
	5.1.3 Runtimes

	5.2 ANTPOWER on Wieden

	6 Conclusion
	7 Acknowledgments
	Bibliography

