
Undergraduate Thesis

Improved Dehyphenation of Line
Breaks for PDF Text Extraction

Mari Sverresdatter Hernæs

Examiner: Prof. Dr. Hannah Bast
Adviser: Claudius Korzen

University of Freiburg
Faculty of Engineering

Department of Computer Science
Chair of Algorithms and Data Structures

December 2nd, 2019



Examiner

Prof. Dr. Hannah Bast

Adviser

Claudius Korzen



Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature



Abstract

Words in layout-based documents can contain hyphens that divide the word into
two parts across two lines. PDF documents only store information about individual
characters, which makes it difficult to extract text correctly. Words which are
hyphenated at the end of a line are especially problematic because in English there
are some words where the hyphen should be kept, while others need to be merged. For
example, “high-quality” can be a compound word. If this word splits on the hyphen
across two lines, then the hyphen should be retained in the extracted text. The correct
dehyphenation of line breaks requires the recognition of either words or sequences of
characters. In this thesis, vocabulary-based baseline algorithms, logistic regression
on the word level and a bi-LSTM Language Model on the character level are used
to solve this problem. On the ClueWeb12 Extract data set, the vocabulary-based
algorithm achieved a balanced accuracy (bACC) of 66.87%, the logistic regression
92.38% and the bi-LSTM Language Model 90.14%. Our investigations showed a
trade-off effect between recognising words which naturally contain hyphens and
predicting words without hyphens correctly.
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Zusammenfassung

Wörter in layoutbasierten Dokumenten können Bindestriche enthalten, so dass sie
in zwei Teilen über zwei Zeilen erscheinen. Dieses Arbeit beschreibt verschiedene
Methoden, um diese Wörter korrekt zusammenzuführen. PDF-Dokumente enthalten
nur Informationen über einzelne Zeichen, was die korrekte Extrahierung von Texten
erschwert. Besonders problematisch sind Wörter, die am Ende einer Zeile mit einem
Bindestrich versehen sind. Im Englischen gibt es Wörter, in denen der Bindestrich
beibehalten werden soll, andere, die zusammengeführt werden müssen. Wenn sich
beispielsweise “high-quality” auf den Bindestrich über zwei Zeilen verteilt, sollte
der Bindestrich im extrahierten Text erhalten bleiben. Um Zeilenumbrüche korrekt
zusammenzuführen, müssen entweder Wörter oder Zeichenfolgen erkannt werden. In
dieser Arbeit werden wörterbuchbasierte Algorithmen, logistische Regression auf Wor-
tebene und ein bi-LSTM-Sprachmodell auf Zeichenebene zur Lösung dieses Problems
verwendet. Auf dem ClueWeb12 Extract Datensatz erzielte der wörterbuchbasierte
Algorithmus eine ausgeglichene Genauigkeit (bACC) von 66, 87%, die logistische
Regression 92,38%, und das bi-LSTM Sprachmodell 90,14%. Unsere Untersuchungen
zeigten einen Trade-off-Effekt zwischen dem Erkennen von Wörtern, die allgemein
mit Bindestrich geschrieben werden und der korrekten Vorhersage von Wörtern ohne
Bindestrich.
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1 Introduction

The topic of this thesis is inspired by the need for even more precise text extraction
as a part of Bast and Korzen’s Icecite system [1]. Icecite is a research management
system that precisely extracts metadata, references, annotations and full texts from
the PDF files of scientific research papers.

The system has a fast search-as-you-type functionality which is driven by Com-
pleteSearch [2]. To be able to search in the documents with high accuracy, however,
it becomes necessary to extract the text with even more precision. Here emerges
the topic of this thesis. The subproblem emphasized in this thesis is the correct
extraction of words with hyphens at the end of a line. Consider Figure 1.1, which
shows a typical PDF hyphenation.

Figure 1.1: An example of PDF hyphenation. This example shows text with
two end-of-the-line hyphenations: high- quality and bench- mark. The challenge is to
extract these correctly as high-quality and benchmark.

A PDF document is like printed pages on a computer screen. The file does not
include the text as it is but rather information on how to draw the page to obtain the
desired layout. To be specific, the PDF provides information about the single letters
with their position and font (if it is not scanned). Icecite already composes words
out of these letters, in the correct reading order. However, words split between two
lines are still two separated word parts. The subproblem in this thesis is to find out
how to assemble these two-word parts, for which there are four different approaches:
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1. Do not merge the parts. For example: extract bench- mark as the two words
bench- and mark

2. Always merge the parts without a hyphen. For example: extract bench- mark
as benchmark and high- quality as highquality

3. Always merge the parts with a hyphen. For example: extract bench- mark as
bench-mark and high- quality as high-quality

4. Merge the parts with or without hyphen depending on whether the actual word
has a hyphen or not. For example: extract bench- mark as benchmark and
high- quality as high-quality

We implement the fourth approach because we aim to merge the parts accurately.
Our main point of interest was to see if a machine learning model could solve the
problem. We experimented with a Conditional Random Field, a Language Model,
and simple linear regression. We will describe these in chapter 3. But first, we define
the problem formally, and we take a closer look at some of the challenges.

We represent a word as a sequence of characters, ordered by left-to-right reading
direction. Thus, the formal task definition of this thesis is defined as follows:

Given a sequence of characters with a line-break hyphen on position i

S = [c1, c2, ..., ci−1,−, ci+1, ..., cn]

the task is to decide if this hyphen should be deleted or kept

Ŝ = [c1, c2, ..., ci−1, ci+1, ..., cn] ∨ Ŝ = [c1, c2, ..., ci−1,−, ci+1, ..., cn]

so that Ŝ is identical to the expected output.

(1.1)

An obvious solution to the problem is a vocabulary-based algorithm, which stores
words along with frequencies to indicate how common the word is. The algorithm
looks up the parts merged with and without a hyphen, respectively, and chooses the
most common word. For example, for the word parts ele and phant, that is, for the
sequence S = [e, l, e,−, p, h, a, n, t], the algorithm looks up ele-phant and elephant,
and chooses the most common spelling. Since ele-phant is not a word, the choice is
simple: delete the hyphen. For most cases, this method works well. As long as the
original word is well known, and there is no other alternative spelling, it should be
in the dictionary with the highest frequency.
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Unfortunately, this approach will not always work. One obvious problem is that
the algorithm only knows a limited amount of words, and it would not recognise
misspellings, such as elhephant. Furthermore, it usually does not know plural or
conjugated words, unless these are explicitly defined. There is a risk that the
algorithm will not recognise elephants even though it knows the word stem elephant.
For this reason, it is crucial to obtain a good dictionary so that the baseline approach
can work well. In the rest of this thesis, we will refer to the dictionaries as vocabularies.
We define a vocabulary to be a specific collection of words. No dictionary describes
all words perfectly with frequencies: language is unique, and some people use some
spelling styles more than others. Hence, we tested different vocabularies with different
frequency scores.

The idea of frequency scores leads us to the next problem, illustrated in figure 1.2.
It is a screenshot from a robotics research paper which analyses the stability of
walking robots based on their leg-end movements. For the prefix leg- and the suffix
end, the algorithm described above would obviously choose to merge the two parts
because legend is a more common word than leg-end. The result is an odd sentence,
not about the forces of the leg-ends, but about “the legend forces” which “can be
sensed by the force sensors mounted on leg-ends”.

Figure 1.2: An example of challenging hyphenation.This screenshot from the
research paper “A stability analysis of walking robots based on leg-end supporting
moments” by Zhou et al. demonstrates challenging hyphenation. The search result
marked in blue shows that the word leg-end is incorrectly recognised as legend.

Important to note about this example is that both words are grammatically correct,
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but with different meanings. To know whether to choose leg-ends or legends, one
would have to analyse the context. Another possibility is to use the document itself
as a dictionary, hoping that the hyphenated word occurs somewhere else. For the
leg-end example, this would be a possible solution, since the word legend does not
appear anywhere else in the running text of the paper. The word leg-end, though,
appears in the same sentence.

Another difficulty is words which have two correct spellings and the same meaning.
For example, long-standing or longstanding, north-east or northeast and e-mail or
email can be used interchangeably. Again, one could use the document itself as a
dictionary, hoping that it would give clues about the desired spelling. Other than
that, it would be an educated guess. To always choose the most frequent spelling
would be one strategy. Another strategy is to use Approach 2 or 3 for these words;
either always keep or always discard the hyphen. Tendentially, newly made-up words
are spelled with a hyphen, such as e-mail in the 1970s. As the word becomes widely
used, the hyphen disappears: email. As Donald Knuth argues, “it’s high time for
everybody to stop using the archaic spelling ‘e-mail’. Think of how many keystrokes
you will save in your lifetime if you stop now!” [3]. This suggests removing the
hyphens in the words where both spellings are correct would be the better option.
However, this is not always the case. For instance, if this quote from Donald Knuth
were to be split precisely at the hyphen, the hyphen should remain. If not, the result
would have been “the archaic spelling email”, which is not what he wanted to say.

1.1 Overview of the thesis

The goal of this thesis is to use Approach 4 and merge the two-part words correctly.
As demonstrated in the previous paragraphs, this is a challenging task. Without a
ground truth, that is to say, the original text, it is not always clear, even for humans,
if the author meant to put a hyphen in a specific word or not. We explore the problem
with a vocabulary-based baseline algorithm and machine learning approaches and do
a thorough evaluation of the results.

Chapter 2 discusses different fields of research which are related to the work in
this thesis.

Chapter 3 outlines the history of typography and different digital document
formats. It describes a computer-based hyphenation routine in detail. Furthermore,
it considers the grammar and correct use of hyphens. Last but not least, it outlines
the theoretical background of Natural Language Processing, Conditional Random
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Fields and LSTM networks.
Chapter 4 presents the data sets used in this thesis, as well as the filtering and

cleaning preprocessing steps we did. Furthermore, it describes the modifying steps
we did to get a data set suitable for our purposes.

Chapter 5 gives a thorough explanation of our implementations of the vocabulary-
based baseline algorithms and of the machine learning model.

Chapter 6 evaluates the results thoroughly by comparing the baseline algorithms,
a machine learning approach and a language model.

Chapter 7 presents ideas for future research. It discusses the possibilities of our
algorithms and it considers the application of them on other languages.

Chapter 8 concludes the thesis.
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2 Related Work

As far as we know, there are not many published methods that attempt to merge
two-part words with or without hyphens correctly. In this chapter, we describe two
papers that have also used approach 4, however with different methods than ours.
Furthermore, we describe what other PDF extraction tools do. Most of the tools do
not stress the problem at all, using either approach 1, 2 or 3. However, there are
some conversion tools which do address the problem. In addition, there are several
works about the reversed problem of this thesis, namely inserting hyphens correctly
into words. Though created for other purposes, the field of spelling correction tools
is also relevant for our work

2.1 Noisy text correction

Clark [4] focused on the problem of preprocessing noisy text. He proposed to solve
the hyphenation problem in a unified tool, based on a noisy channel model, which at
the same time corrects other issues in general noisy text. However, the publication
does not contain a proper evaluation.

In “A Method for Correcting Broken Hyphenations in Noisy English Text” Micher [5]
developed a rule-based algorithm to solve the hyphenation problem. Similar to our
baseline approach, Micher’s algorithm uses a long list of valid words to indicate
whether a spelling is correct or not. The algorithm takes one of three different actions:
if the merged word is known, it merges. If not, it tries to look up parts of the word.
If this succeeds, the hyphen stays. If not, the algorithm does nothing.

The algorithm solves one problem which we do not address in this thesis: hanging
hyphens. For example: “first- and second-order planning”. Specifically, if the second
word is “and”, “or” or a comma, the algorithm does nothing.

Micher tested the algorithm on an English military training text, and achieved
98.19% accuracy for the words with non-expected hyphens and 93.18% accuracy for
words with expected hyphens. However, there were only 43 words with expected
hyphens in the ground truth. We assume that the high recall value for these occurs
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because there were few, or none, words with ambiguous spellings and no words with
creative language in the data set.

2.2 Conversion tools

Tiedemann [6] developed the open-source tool pdf2xml 1, which aims to convert
PDF text to a linguistically useful XML format. This tool uses three different PDF
rendering software; Apache Tika; pdfXtk 2, which is built upon pdfbox 3; and tools
from Poppler Developers, which includes pdftotext 4. Through a post-processing
procedure, Tiedemann’s tool aims to fix various imperfections and to extract a
cleaner text. It creates a vocabulary based on the output from the three conversion
tools. Concerning the hyphenated words, the tool merges the two parts if the
resulting word is a part of its vocabulary. This tactic is similar to Approach 4 using
a dictionary-based algorithm, albeit without a frequency score.

Likewise, the tools which aim to convert PDF files to the ebook file format EPUB
faces the same difficulties as in this thesis. The EPUB format is designed to be
paper-format independent. It supports custom layouts that are influenced by page
orientation and the size and resolution of the mobile device. Specifically, the lines
can be longer or shorter, leading to a different hyphenation than in the original PDF
document. Therefore, the tools aim to extract the text as cleanly as possible. One
example is the open-source converting tool Calibre 5. It enables heuristic processing
that removes unnecessary hyphens. It uses the document itself as a dictionary
and removes the hyphen if the merged version is present somewhere else. If the
word occurs only once within the document, nothing is changed, and the hyphen
stays. Therefore, this tool would succeed with the leg-end example, demonstrated in
Figure 1.2. But in our experiments, we found that if a text was randomly hyphenated,
there was a less than 3% chance that the inserted hyphen was on the same position
as an original one. Hence, we consider Calibres choice of keeping the hyphens in the
cases where the word is unknown, as disadvantageous.

1https://bitbucket.org/tiedemann/pdf2xml/src
2https://github.com/tamirhassan/pdfxtk
3https://pdfbox.apache.org/
4https://www.xpdfreader.com/pdftotext-man.html
5https://calibre-ebook.com/
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2.3 Hyphenation tools

There are several papers about the reversed problem in this thesis, that is, to find
correct hyphenation breakpoints in any word. We were interested to see if these
methods could be used to find out if a hyphen was suitable in a word.

Specifically, one idea was to see if we could look at the word at a character sequence
level to determine whether a hyphenation was valid or not. For example, a hyphen
likely follows prefixes like high, pre, post, and similar. These prefixes have specific
properties, such as combinations of syllables. And such properties of character
sequences were examined in these works.

Trogkanis and Elkan [7] used Conditional Random Fields (CRF) to decide possible
hyphenation points in a word, outperforming the current state-of-the-art systems.
They report a sixfold improvement compared to the systems currently in use. Németh
et al. [8] used different deep learning-based methods to hyphenate Hungarian words
and compares three neural network models: Feedforward Neural Network (FFNN),
Convolutional Neural Network (CNN) and Long Short-Term Memory Network
(LSTM). All models achieve more than 95% accuracy, with CNN being the best
model.

2.4 Spelling correction tools

Finally, the topic of this thesis can also be considered a spelling correction problem.
Assuming that we always keep the hyphen, the problem is to remove misplaced
hyphens in a sentence. That is to say, fixing a possibly misspelt sentence.

Taghva and Stofsky [9] proposed a spelling correction system specifically made for
correcting optical character recognition (OCR) mistakes. The system is interactive.
This means it has, for example, a second mode for texts with many hyphenations.
The evaluation of the tool is on a word- and character basis, but not specifically on
hyphens.

Furthermore, many grammar check tools which are on the market today would
recognise words with invalid hyphenations. But they would not always differentiate
between common and rare spellings. Nonetheless, when we tested the Grammarly [10]
spell checker manually, the results were surprisingly good. That is, the tool could
correct most false hyphenation. However, it is not open-source, and therefore not
applicable to our work. The system uses machine learning techniques, but it is not
specified how.
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3 Background

This chapter outlines the history of typography and the emergence of different
electronic document formats. We show the challenge of implementing typographical
routines with computers. Specifically, we explain how Frank Liang’s computer-based
algorithm is used to hyphenate words in electronic documents. Moreover, we describe
the grammar and correct use of hyphens in the English language. Last but not least,
we describe the tasks of Natural Language Processing, and how Conditional Random
Fields and LSTM networks can be used to solve these tasks.

3.1 Typography

The main goal of typography is to make written language readable and visually
appealing. Although the topic has been relevant ever since the invention of the
written language, it emerged as a craft with Gutenberg’s printing works in the middle
of the 15th century. Gutenberg’s printing press made it possible to mass-produce
manuscripts. The art of setting the text in written material became a new craft:
typography.

During the mid-1980s, computers replaced the traditional typography craft. Desk-
top publishing, the creation of documents using a personal computer, increased
dramatically. The typography skills were no longer needed in the print shops but in
offices everywhere. At the same time, the designers started to typeset documents
by themselves, using different software applications. However, they did not have
the typography skills to set the texts properly. Therefore, this led to a phase of
insensitivity in respect of character construction and spacing [11]. On the other hand,
the digital shift made it drastically cheaper and faster to make new fonts and layouts.
It allowed the typographers to create more experimental designs.

Typography has three fundamental aspects. Legibility points out how easy it is to
distinguish two characters. The characters should be similar enough to look uniform
but at the same time different enough to be easily separated. Aesthetics refers to the
general layout of the page, aiming to make it look visually appealing. Readability
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considers how easy it is to read the text as a whole. The latter aspect is the most
relevant for this thesis. Readability is affected by the use of margins, line length, line
spacing and the design of the right-hand edge.

There are different typographical techniques to make the right-hand edge look
beautiful. A beautiful and readable edge is not too ragged, that is to say, it is even.
For a left-aligned text, hyphenation can help to achieve this. Justified text has lines
with spacing between words and characters so that both the left and the right edge
are perfectly even. Here, hyphenation is quite necessary. If hyphenation is not used,
the spaces can be extremely large.

Figure 3.1 shows the difference between hyphenated and unhyphenated justified
text. There is no doubt that hyphenation improves readability. If hyphenation
is disabled, there are fewer points where you can break the sentence. This makes
inconvenient line breaks more likely.

Figure 3.1: An example of justified paragraphs. This example shows how
hyphenation affects the look of justified paragraphs, as demonstrated in M. Butterick’s
online book “Practical Typography”. [12]

3.2 Electronic documents

The craft of typography shifted to digital formats in the space of about ten years [11].
In this time, there were different approaches on how to make layout-based documents
look typographically satisfactory. But none of the standards succeeded in being
compatible with all kinds of systems. The PDF format focused on keeping a fixed
layout as it is, disregarding the need for extracting the raw text. E-book file-formats
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preserves the raw text as it is, but does not support fixed-layout typography. In this
section, we describe the two file formats and the ideal one.

3.2.1 PDF

Portable Document Format (PDF) is an open-source file format created by Adobe
in 1993, based on the PostScript language. Each PDF file describes a fixed-layout
document, including text, fonts, vector graphics, raster images, and other information
that is required to visualise it. Since 2008 it is an ISO 32000 standard [13].

The newest version of PDF supports metadata, annotations and even three-
dimensional content. However, text extraction remains a challenge. As explained
in the introduction, the text is only available in letters. Usually, it is therefore not
clear which letters belong to which word, and there are no spaces. To assemble the
words you have to, for example, analyse the distances between the letters.

3.2.2 EPUB

The electronic publication format EPUB is an open file format standardized by the
International Digital Publishing Forum (IDPF) in 2007 [14]. EPUB is an archive file
format. It contains XML- and XHTML-based files which specifies the content, image
files (if any) and files which specify metadata. The final document does not have a
fixed layout. It adjusts according to the (usually small) screen and the resolution
of the e-book reading device. This feature, called reflowable text, is necessary for a
satisfying reading experience. With a PDF document, you would have to zoom and
scroll all the time.

3.2.3 The ideal electronic document

Today, the ideal digital document somehow preserves the original text as it is.
Unfortunately, PDF documents were designed to be printed out in their physical
form. But nowadays, people mostly read research papers on a computer. The times
have changed, and the way we read texts has changed. The best method to ensure
that people can use search- and copy-functions with the computer, as usual, is to
adapt the file format.

The newest PDF versions currently do support extensive metadata notes, including
page content annotations. At least with Adobe’s Acrobat Pro DC 1. It is indeed
possible to tag headers, figures, paragraphs and references as what they are. It is

1https://acrobat.adobe.com/us/en/acrobat/acrobat-pro.html
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also possible to denote the reading order. In this way, the document is accessible for
people with blindness, low vision or other disabilities. Personal computers make it
possible to read digital texts differently.

Ideally, the electronic document would have annotations in such a way that it is
digitally accessible and useful for the way we consume digital text today. However,
these annotations are usually not used. There are several reasons for that. It means
additional work for the creator of the document to create these annotations. Of
course it is possible to automate this, but then the problem is how to calculate these
annotations reliably. Even if the PDF was created from TeX, it is not so easy.

3.3 Liang’s hyphenation algorithm

Figure 3.1 shows the importance of hyphenation in justified paragraphs. However, for
a computer, it is not clear how a word should be hyphenated. It does not understand
grammar or phonetics. Take the word misleading as an example. Without routines,
a computer could hyphenate the word at any place: mi-sleading, misl-eading, misle-
ading. It would ignore whether the hyphenation is readable or not. Therefore, it was
necessary to implement hyphenation routines.

Frank Liang [15] designed the hyphenation routine which is used in TeX today.
The computer-based algorithm uses phonetic patterns to suggest where a word can
be broken in two whilst still being easily readable. To be precise, the patterns are
a set of short sequences of letters and digits. For example, mis5l. Liang created
this set during the work on his thesis “Word Hy-phen-a-tion by Com-put-er”. He
distinguished between two types of phonetic patterns: inhibition- and hyphenation.
The inhibition patterns are sequences of letters where hyphenation is inappropriate.
Furthermore, he gave the patterns five levels of increasing strength. Hence, they
have digits in the range one to five. The odd numbers indicate allowable hyphen
points, the even the opposite.

For example, the pattern mis5l suggests that a word which has the letter sequence
misl should be hyphenated between the s and the l. For the word misleading, this
would force the hyphenation mis-leading, which is better than the examples given
above.

We demonstrate Liang’s algorithm in action on the word hyphenate in Figure 3.2.
First, the algorithm pads the word with two punctuation marks, symbolising the
beginning and the end of the word. Then, it finds all patterns from Liang’s set,
which match parts of the word. In this example, there are seven matching patterns.
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We have listed them below the word in arbitrary order. Notice that some patterns
overlap, for example, 4te. and n2at. Also, notice that 4te. includes a punctuation
mark. This pattern only applies to the very end of a word. The algorithm chooses
the highest number at each intercharacter position. Since hyphens are only allowed
at odd-valued positions, the resulting hyphenation is hy-phen-ate.

. h y p h e n a t e .
h e 2 n
h e n a 4
h e n 5 a t

h y 3 p h
1 n a

n 2 a t
4 t e .

. h y 3 p h e 2 n 5 a 4 t e .
h y - p h e n - a t e

Figure 3.2: A demonstration of Liang’s hyphenation algorithm This illustra-
tion, inspired by Németh[16], shows Liang’s algorithm on the word hyphenate.

Today, the quality of the phonetic patterns has improved. There are more patterns
and exceptions, some of them having level six. Besides, there are custom patterns
for different languages. Nevertheless, the basic algorithm remains the same.

3.4 Hy-phens

The word “hyphen” origins from the Greek “huphen”, which means “together”. A
hyphen is a punctuation mark which is used to point out that two words have a
combined meaning. As seen in the previous paragraphs, a hyphen can be used to
indicate a word division between two lines. It can also be used to indicate that a
word has repetitive elements which belong together, for example short- and long-term.
This section describes the use of hyphens in compound words and the difference
between American English and British English concerning word division.

But first, we will describe what is not a hyphen: a dash. A dash looks like a
hyphen, but it is wider. The en-dash (–) is about the length of an upper-case N;
the em-dash (—) is roughly as long as an M. The en-dash is often mistaken to be a
hyphen. It mostly occurs in formal publications, where it serves as an even stronger
connection between compound words. The em-dash has an entirely different function.
It indicates a longer pause in a sentence. This pause is stronger than a comma but
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weaker than a period or semicolon [17]. The em-dash is not interchangeable with a
hyphen. We will come back to this when we describe the data preprocessing steps in
section 4.2.2.

Going back to the hyphens: perhaps their most important function is to form
compound words, such as high-quality or brother-in-law. When combining a noun or
an adjective with a present participle (a word ending in -ing), the hyphen makes it
clear that the two words are one unit of meaning. For example, in the sentence “we
were told a story about a man eating shark”, it is not clear whether a man is eating
a shark or if a shark is eating a man. An unambiguous version could be “we were
told a story about a man-eating shark”.

Another function of the hyphen is to split a word between two lines. It is not
clear how to do this correctly. There are even different guidelines for British English
and American English. The prior tends to focus on the origin of a word, the latter
on the sounds [18]. But, even when emphasising the sounds, British and American
pronunciations can be different. Take the word vitamin as an example. In British
English, the first syllable vit rhymes with fit, and the hyphenation is vit-amin. In
American English, on the other hand, the first syllable sounds more like wide, and
the hyphenation is vi-ta-min.

Most importantly, the hyphenation should not be misleading. For example readjust,
which means to adjust something again, should be hyphenated as re-adjust, not as
read-just. To understand this, take a look at figure 3.3 and try to read the words out
loud.

Figure 3.3: An example of a hyphenation flaw This example shows our bad luck
when setting the preceding paragraph with the LATEXhyphenation routine

It is indeed simpler to read read as the first syllable. But it is misleading because
the correct pronunciation of readjust has two syllables in the beginning: re and
ad, with a small break in between. The reader is likely to miss this break because
read is a well-known word by itself. Section 3.3 demonstrated a computer-based
hyphenation algorithm which focused on the sounds of a word. This method works
well for most words, but not for words like readjust, because the algorithm would
not understand that the syllable pattern, which is harder to pronounce, is indeed
the correct one. The algorithmic approach does not supersede common sense and a
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human understanding of the language.
Nevertheless, there is a dream of “understanding” human language using a com-

puter. The next sections will describe various computer-based approaches which seek
to accomplish this.

3.5 Natural Language Processing

Statistical Natural Language Processing (NLP) is concerned with the automatic
processing of the natural languages of humans. It applies probabilistic methods,
information theory, and linear algebra. The history of NLP is exciting, but out of
the scope of this thesis. We will limit ourselves to two concepts: Part-of-Speech
Tagging and Named Entity Recognition. We will use these to explain how a Hidden
Markov Model, a Maximum Entropy Markov Model, and a Conditional Random
Field, works. But firstly, we outline some of the challenges in this field of science.

Automatic processsing of natural languages is considered to be a difficult problem.
The reason for this is that the human language has idioms, abstract, sarcastic or
ambiguous sentences. It is difficult to describe this to a computer. Consider the
phrase out of sight, out of mind. It does not mean invisible, insane. For a human, this
is obvious, but for a computer, it remains a challenge to understand such concepts.
“For this reason, much research in NLP has focused on intermediate tasks that make
sense of some of the structure inherent in language without requiring complete
understanding” (Manning and Schütze, p. 341) [19]. One of these intermediate tasks
is part-of-speech tagging: to assign grammatical labels to words in a sentence. That
is, to decide if a word is a verb, a noun, a determiner, or something else. An example
of a POS-tagged version of the sentence “I can understand this” is:

I/PRP can/MD understand/VB this/DT ./PUNCT.

Each word has a grammatical tag. The first word, I, is tagged as PRP (personal
pronoun). Can is tagged as MD (a modal verb), and understand is a regular verb
VB. This is a determiner DT. Last but not least, there is a PUNCT (punctuation). The
tags can be more or less specific. For example, one can distinguish between NN (a
noun) and NNP (a proper noun). The goal of Named Entity Recognition (NER) is to
identify proper nouns in a sentence. That is to say, to find out if a proper noun is a
real-world object, for example, an organization, a person, a place, or something else.

The challenge of POS-tagging is that a word might have a different tag in a
different context. Consider the classic example “time flies like an arrow”. You can
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interpret time and flies as a noun and a verb, suggesting that time passes very
quickly. However, flies is also a noun in plural, and like is a verb. A computer could
just as well assume that the sentence is about a unique type of flies, time flies, which
happen to like arrows.

3.5.1 Motivation

At this point, please notice the relation between POS-tagging and the hyphenation
challenge proposed in this thesis. Imagine a sentence with one hyphenated word.
We wanted to find out if the grammatical structure of the sentence could indicate
whether or not this hyphen is correct. For example, consider the word high-quality,
which is written with a hyphen because it is a compound word. Since we know that
compound words usually come before a noun in a sentence, we wanted to see if this
could help us solve the problem. In other words: if a word is hyphenated, and it is
most likely a compound word, then the hyphen should probably stay.

We can already reveal that we changed the approach throughout the thesis, not
looking at sentences any more, but at single words or sequences of character. However,
we will now describe how a sequential model works at the word level. To some extent,
we will focus on the words to explain why we changed our approach. But also,
we keep it on this level because it makes it less abstract, and more intuitive to
understand how the model works.

So the question is, how do you compute the most likely sequence of POS-Tags?
A solution which solves the problem with high accuracy is to use a Hidden Markov
Model and the Viterbi Algorithm.

3.5.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a sequence model. In other words, it is a classifier
which assigns a label or class to each unit in a sequence. For example, it can assign
a POS-tag to each word in a sentence. It is a generative approach; it learns a
probability distribution over the data and uses this to deduce a label or a class. In
this case, the model first estimates the probability of a word given a POS-tag. Later,
the model uses these probabilities to predict a POS-tag when given a word.

The basis of an HMM is a Markov chain. For a set of states, which can be
words, labels, or anything else, a Markov chain computes the probability of a specific
sequence of states. It makes one strong assumption, called the Markov property: it
assumes that the current state only depends on the previous one. Or, if you see it
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the other way, it assumes that the future can be predicted from the current state
only, ignoring the history before.

Formally, the Markov assumption is defined as follows: consider a sequence of
state variables q1, q2...qi. The probability of state qi only depends on state qi−1.

P (qi|q1...qi−1) = P (qi|qi−1)) (3.1)

A Markov chain is made up of the following components:

Q = q1, q2...qn a set of n states
A = a11a12...an1...ann a transition probability matrix A,

each aij representing the probability of
moving from state i to state j. Each row
sum to one:

∑n
j=1 aij = 1 ∀i

π = π1, π2...πn an initial probability distribution over
the states. πi is the probability that the
Markov chain will start in state i. Some
j may have πj = 0, meaning that they
cannot be initial states. The initial proba-
bilities sum up to one:

∑n
i=1 πi = 1

as defined by Jurafsky and Martin[20].
The Markov chain computes the probability of an observable sequence. In many

cases, however, the events in which we are interested are hidden: we can not observe
them directly. For example, we can not usually see the POS tags in a sentence, only
the words. An HMM allows us to consider both observable and hidden events. It
consists of the Markov chain components and the following extensions:

Q, A and π the Markov chain components
O = o1o2...ot a sequence of t observations, each one

drawn from a vocabulary V = v1, v2...vv

B = bi(ot) a sequence of observation likelihoods,
expressing the probability of an observa-
tion ot being generated from a state qi

Two assumptions simplify the model. The Markov property 3.1, and also the
assumption that the probability of an output observation only depends on the state
which produced this observation.
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p(oi|q1...qi...qt, o1...oi...ot) = P (oi|qi) (3.2)

as defined by Jurafsky and Martin[20].
We will not explain in detail how to learn the probability distributions over the

data. However, we will outline the procedure of deducing POS-tags in a sentence,
given the set of probability distributions.

3.5.3 Deducing POS-tags with the Viterbi algorithm

Assume that we have a trained HMM and an observed sentence. To compute the most
likely sequence of POS-tags is to find the series of tags maximizing the probability of
seeing the sentence. More formally, given a sequence of observations, the task is to
find the most likely order of hidden states.

Figure 3.4: A sketch of how the Viterbi algorithm works This sketch, made
of Jurafsky and Martin[20], shows the procedure of the Viterbi algorithm on the
sentence “Janet will back the bill”. The edges are thicker for the most likely sequence
of hidden states.

A dynamic programming algorithm which solves this is the Viterbi algorithm. It
is similar to the dynamic minimum edit distance algorithm. Consider figure 3.4.
Each cell represents the probability of a specific hidden state after seeing the first t
observations and passing through the most likely sequence q1, ...qt−1. The algorithm
fills out the cells recursively. For each step, that is, for each word, it only considers
the most likely path which leads to a particular state.

Notice that some cells are grey because the observation likelihood is zero. For
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example “Janet” is always a proper noun, never a verb or an adjective. From this, it
is easy to observe a problem of HMMs: unknown words. Imagine if the word “Janet”
never occurred during the training. All the cells for this word would be grey, and the
probability of the whole sequence would be zero. That is to say, all of the observation
probabilities for this word in the model would be zero. Without a proper probability
distribution, the generative model does not know which label to predict. This can be
solved using smoothing or with other extensions to the model. Or, by using another
approach, such as a maximum entropy Markov model or a conditional random field.

3.5.4 Maximum Entropy Markov Model

The idea behind the maximum entropy Markov model (MEMM) is to add additional
features to each word, that is, to combine logistic regression and HMMs. As we know,
HMM use a generative approach. However, logistic regression is a discriminative
approach: it learns a decision boundary between classes with which it can later make
predictions.

Notice the contrast between the two strategies: an HMM learns a probability
distribution over words and labels. Logistic regression learns how to estimate a tag
directly, depending on the properties of the word itself.

However, one can classify the words consecutively, using a feature which tells the
label for the previous word. A MEMM applies logistic regression in this way. This
model can deal with unknown words because it incorporates many different features;
the word shape, if it contains a specific prefix, digits, hyphens, and more.

3.5.5 Bidirectionality

One problem with HMMs and MEMMs is that they only run left-to-right. It can be
useful to know what will happen in the future, that is to say, to use the information
about the next tag. One solution is to run the MEMM twice: once left-to-right, and
once right-to-left, and then choose the prediction with the highest scoring. This idea
is taken further with the bi-LSTM model, which we will outline in section 3.7.

Furthermore, MEMMs have a so-called label bias problem [21]. It is a type of
unwanted explaining-away effect. As opposed to the HMMs, the MEMMs cannot
downgrade a sequence of hidden states based on something that will happen in the
future, for example, based on a word in the very end of a sentence. Following the
Markov property, the classifier merely decides one class for each time step (or one
tag for each word). It does not distinguish between different probability scores but
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makes a discriminative decision. In other words, one sequence is explained away
because the path of influences is severed [22].

The problem is that the probabilities are locally normalized, and therefore, the
MEMM prefers states with fewer transitions. Conditional random fields solve the
label bias problem by globally normalizing the model instead.

To sum up, we compare the definitions of the HMM and the MEMM, before we
will explain how the conditional random fields work. Let w be the sequence of words
and t the sequence of tags. The goal is to compute the best tag sequence t̂ that
maximises P (t|w). An HMM uses Bayes’ rule and P (w|t), the likelihood of a word
given a tag [20]:

t̂ = arg max
t

P (t|w)

= arg max
t

P (w|t)P (t)

= arg max
t

∏
i

P (wordi|tagi)
∏

i

P (tagi|tagi−1)

= arg max
t

∏
i

P (wordi|tagi)(tagi|tagi−1)

(3.3)

A MEMM computes the posterior P (t|w) directly. It considers a set of features
within l neighbouring words, and it takes the previous k tags into account:

t̂ = arg max
t

P (t|w)

= arg max
t

∏
i

P (tagi|ti−1
i−k, w

i+l
i−l)

= arg max
t

∏
i

exp(
∑

j θj · fj(ti, ti−1
i−k, w

i+l
i−l)))∑

t′∈tagset

exp(
∑

j θj · fj(t′, ti−1
i−k, w

i+l
i−l)

= arg max
t

∏
i

1
Zi(ti−1, w

i+l
i−l)
· exp(

∑
j

θj · fj(ti, ti−1
i−k, w

i+l
i−l)))

(3.4)

Notice that Zi(ti−1, w
i+l
i−l) is the normalisation factor which forces the probabilities

of a particular preceding tag to sum to one.
By having a theoretical overview of the HMMs and MEMMs, we are now ready to

discuss the conditional random fields.
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3.6 Conditional Random Field

A conditional random field is an undirected graphical model. It was introduced by
Lafferty et al. [21] as an improvement to the MEMM model. If the graph is a single
line, it is called a linear-chain CRF. Instead of computing one tag for each time step,
that is, for each word, the model computes log-linear functions over a clique, a set
of relevant features [20]. These features might include information about words in
future steps. Consider figure 3.5, which compares the two sequence models we have
discussed until now with the linear-chain CRF.

The figure shows how the most probable tag sequence for the sentence “I like
dogs” is generated. The HMM computes the likelihood of each word conditioned on
the hidden states, whereas the MEMM computes the most likely subsequent tag,
given a label and a word. The CRF computes the most likely sequence of tags using
log-linear functions.

PRP
ti−1

VBP
ti

NNS
ti+1

I
wi−1

like
wi

dogs
wi+1

PRP
ti−1

VBP
ti

NNS
ti+1

I
wi−1

like
wi

dogs
wi+1

PRP
ti−1

VBP
ti

NNS
ti+1

I
wi−1

like
wi

dogs
wi+1

HMM MEMM CRF

Figure 3.5: A graphical representation of the sequence models This figure
shows the difference between HMM, MEMM and linear-chain CRF. The first two
models are Bayesian networks, with arrows indicating conditional dependencies; the
third is an undirected graphical model. A filled circle indicates a variable generated
by the model.

Since CRFs are globally normalised, in contrast to the locally normalised MEMMs,
they avoid the label bias problem. To understand the reason why, one can consider
the CRF as a probabilistic automaton with unnormalised transition probabilities [23].
Each transition can magnify or reduce the total probability mass of a sequence. Due
to the global normalisation factor, the weights of the final sequences are still a valid
probability distribution.

We use the notation of Hanna Wallach [24] to describe the CRFs formally. The
probability of a label sequence t and a sequence of observations w can be written as

p(t|wλ) = 1
Z(w) exp(

∑
j

θjFj(t, w)) (3.5)
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where Z(x) is a normalisation factor. F is a global feature vector which maps the
entire sequence:

Fj(t,w) =
n∑

i=1
fj(ti−1, ti,w, i) (3.6)

Each function fj(ti−1, ti,w, i) is a set of real-valued features b(w, i) which expresses
characteristics of the data. For example:

b(w, i) =

1, if the word in position i is uppercase

0, otherwise
(3.7)

There is no limit of feature functions. Therefore, the predictions can be based on
properties anywhere in the sentence, which is why, for example, the Stanford Named
Entity Recogniser by Finkel et Al. [25] is CRF-based.

Just like the MEMM, the CRF is a combination of logistic regression and a
sequential model. In other words, if the CRF is a chain with only one label, it is
merely logistic regression. When we tested the linear-chain CRF, we quickly found
out that the properties of a single word were sufficient enough to predict a label
with high accuracy. To be precise: we ran the model on one-word sequences, which
is plain logistic regression. Since this gave surprisingly good results (discussed in
chapter 6), we did not use the model further but changed our strategy.

We therefore adapted our approach, looking at sequences of characters instead. We
tested a character-based bidirectional LSTM language model to see if this approach
would give similar results.

3.7 Bidirectional LSTM

We are grateful that we could use Matthias Hertel’s bidirectional LSTM [26] to
explore the possibilities of character-based neural language models for the problem
stated in this thesis.

Before we explain how his model works, we give a general outline of bidirectional
LSTMs (bi-LSTMs). To be consistent with the examples in the preceding sections,
we will still consider sequences of words. To be clear, this is different from Hertel’s
model, which is on the character level. We use the word example because it is less
abstract and more intuitive. Consider Figure 3.6. On the left side, there is a regular
unidirectional Long Short-Term-Memory (LSTM) model. The new elements here are
the grey boxes: the LSTM memory cells. These cells are designed to store information;
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that is, it can keep its hidden state, and it can learn long-term dependencies. To
learn long-term dependencies is the same as learning how to connect information,
although the gap between the information which is needed, and the information
which is relevant to predict it, is large.

To use Christopher Olah’s [27] example, consider the problem of predicting the
last word in the sentence “I grew up in Norway... I speak fluent Norwegian”. The
last part suggests that the last word should be the name of a language. But to know
which one, you need to remember the information in the beginning.

A unidirectional LSTM network has one layer of cells. A bidirectional LSTM
network has two layers, one forward, and one backward layer. Notice the dependencies
(arrows) between these layers in Figure 3.7. For each element of the (finite) input
sequence, the bidirectional model can access more information. That is, it can access
information about the future as well as the past. Interestingly, this is comparable to
the advantage CRFs have over MEMMs [28].

forward
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NNS
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ti+1

LSTM network Bidirectional LSTM network

Figure 3.6: LSTM Networks. This example, inspired by Huang et Al. [28], shows a
unidirectional and a bidirectional LSTM. Each grey box represents a LSTM memory
cell. These cells can make use of long-range dependencies in the data.

Hertel used (among other models) a bidirectional LSTM to perform tokenization
repair, a special case of spelling correction. For each character at each position in a
sequence, the model predicts the likelihood of all other characters. In this thesis, we
are solving a similar task (see section 1.1). For a sequence of characters, we want to
determine if a hyphen at position i is correct or wrong. That is, we want to find out
how likely the character is.

Hertel’s bidirectional LSTM works on a character level. More specifically, it
considers a set of the hundred most common English letters, as well as three special
characters: one for the beginning of a sentence, one for the end, and one for the
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non-set characters. The training, validation and test data were from the English part
of the Europarl German-English Parallel Corpus and an English Wikipedia dump.
The prior was 287MB in raw text size, the latter 12.7GB.

The model learns a probability distribution over all characters in all sequences (in
the training data). The output layer is sigmoidal so that the model also can predict
that “no character is likely”. There are 103 output neurons, one for each element in
the character set. In chapter 5, we will describe how we use the likelihoods of these
103 characters to solve our task. The results are evaluated in chapter 6.
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4 Approach

We approached the problem by designing a data set of sentences with hyphenated
words. We used Frank Liang’s algorithm, described in Section 3.3, to obtain a realistic
hyphenation. In this way, we could flexibly hyphenate several words in the same
sentence. And, most importantly, we had the original text available, which served as
ground truth for the evaluation. This chapter describes ClueWeb12 and Ontonotes,
the two data sets of sentences used in this work, and the necessary preprocessing
steps. Finally, it describes in detail how we created and structured the final data set.

4.1 Data sets

We used two data sets which consists of sentences in natural language: ClueWeb12
and Ontonotes 5.0.

4.1.1 ClueWeb12

The ClueWeb12 dataset consists of 733,019,372 English web pages. It was created
by researchers at Carnegie Mellon University, through a web crawl done between
February 10, 2012 and May 10, 2012.

We used a smaller version of the data set, which was already parsed by our group.
This version contained Named Entity Recognition (NER) tags (see section 3.5),
intended for other purposes. We removed these tags in the cleaning step of the data
preprocessing. However, there were some sentences with broken NER tags, lacking
the closing brackets. We removed these sentences from the dataset.

This resulted in a dataset of 389,718,096 sentences with a total of 10,794,281,624
words before preprocessing. The dataset consists of all sorts of sentences which
have been posted online. Therefore, the dataset includes misspellings and improper
formatting. And although the web pages which were crawled are English, the
sentences contain quotes, names and translations in other languages. Nevertheless,
this is a huge and resourceful database of natural language. Figure 4.1 shows a small
sample from this version of ClueWeb12 before we started working with it:
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Figure 4.1: Sample of ClueWeb12 sentences This sample shows three sentences
from our version of ClueWeb12, before the data preprocessing steps.

There were certainly several preprocessing steps needed before we could use the
dataset for our purposes. We will describe these in Section 4.2.

4.1.2 Ontonotes

Ontonotes Release 5.0 consists of sentences in English, Chinese and Arabic, manually
annotated by a collaborative team from BBN Technologies, Brandeis University,
the University of Colorado, the University of Pennsylvania and the University of
Southern California’s Information Sciences. The corpus consists of text from different
genres: news, broadcasts, talk shows, conversational telephone speech, among others.
For each sentence and each source, there is an extensive amount of grammatical
and structural information, as well as other annotation layers. The English corpus
consists of 1,745 texts.

Unfortunately, the data set has a format which does not fit our purposes. Therefore,
we did several steps to reformat it. In the following paragraph, we will describe these
steps.

The data set includes five annotation layers for each text. Specifically, these layers
are distinct files in a database. They contain different types of semantic annotation:
named entities, coreference, word sense, treebank- and proposition bank annotations.
We will not explain what the different layers are (see [29]). The point is that this
was not useful for us because we only needed sentences. Although it indeed exists a
summary file of each text, these are very inconvenient to parse. Sameer Pradhan et
Al. [30], a part of the team which produced Ontonotes, proposed a script for joining
the different annotation layers into a single CoNLL 2012-formatted file. Although
this format was more what we needed, it was not ideal. Therefore, we used a second
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script 1 to convert the CoNLL 2012-data into a BIO tagging scheme. These BIO
formatted files were the ones we used in the further preprocessing.

We extracted the raw sentences, ignoring most of the annotation layers, but keeping
the Part-Of-Speech Tags (see section 3.5). This resulted in a data set of 130,540
sentences with a total of 2,262,674 words before preprocessing. We separated the
strings and the corresponding tags by a tab character. Figure 4.2 shows a sample of
four sentences from this version of Ontonotes before we cleaned the sentences, and
before we replaced the bracket tags with “(” or “)”.

Figure 4.2: Sample of Ontonotes 5.0 sentences with corresponding POS-
tags This sample shows four sentences from our version of Ontonotes, before the
data preprocessing steps. The special POS-tags -LRB- and -RRB- symbolise left- and
right round brackets.

This corpus does not have the same amount of misspellings and foreign characters
as in ClueWeb12, because the sentences were annotated and transcribed by linguists.
Still, further preprocessing was needed, mainly due to the extensive annotations of
brackets and hyphens, which were undesired for this work. Notably, the HYPH tag
sometimes symbolises a hyphen, but not always. The third sentence in Figure 4.2
shows a difference between the tags for hyphenated words. post-Pop is tagged as JJ

(adjective), and “ism”-free as NN HYPH JJ (noun, hyphen and adjective).

4.2 Data preprocessing

We filtered the data sets in two steps, removing specific sentences and characters.
Then, we cleaned the remaining sentences for unusual words and symbols which does
not represent natural language.

1https://github.com/yuchenlin/OntoNotes-5.0-NER-BIO
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4.2.1 Filtering

Although the datasets are English, they had foreign words and characters. Consider
figure 4.1. The last two sentences include both non-words, namely descriptions of
pronunciation, and, for the last one, even Russian characters. Another mixture of
languages occurs when poems, names of persons and places, and similar, occur in
their original language. We focused our work and algorithms on the English language
only. Therefore, we attempted to remove as many foreign-character sentences as
possible.

• We filtered out all sentences with characters in the Unicode sections U+0370
(Greek and Coptic) until U+1FFF (Greek Extended); which equals most of
the non-Latin languages. Note that non-English languages with Latin alphabet
were not filtered out. These languages are more difficult to filter because the
character sets are the same. Therefore, the second sentence in figure 4.1 was
not filtered out even though it contained the non-words Svair-ah Mahg-noos.

• We also removed all soft hyphens, meaning all hidden hyphenation marks.

4.2.2 Cleaning

In the cleaning step, we reformatted the parts of the sentences which were inconsistent,
or different than natural language. The intention was to avoid hyphenating these
words in step 4.3.

• We replaced all links and emails with the character x. More specifically, we
replaced all words which had ., @ or : in the middle. After all, it is highly
uncommon to break a link or an e-mail in two.

• Most of the punctuation marks had space before and after the symbol. An
exception was the slashes. We inserted spaces in between the slashes directly
between words.

• For our version of ClueWeb12, we removed the named entity tags, seen in
figure 4.1. Furthermore, we corrected the characters which should have been
em-dashes (see section 3.4). Specifically, there were some hyphens between two
whitespace characters, indicating a longer pause in the sentence. We replaced
these hyphens with em-dashes.
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• From our parsed version of Ontonotes, which included sentences with corre-
sponding POS-tags, we used the tags to clean the sentences, converting it to
one sentence per line. Consider figure 4.2. We replaced the left- and right
bracket tags with the proper symbols. To be consistent with ClueWeb12, we
removed the spaces around the hyphens which had a HYPH tag.

In this way, the two data sets had similar formatting, one sentence per line, without
grammar- or entity tags and links and emails.

4.3 Adding hyphens to sentences

The last preprocessing step was to hyphenate the sentences from ClueWeb12 and
Ontonotes. We had three main intentions: to insert the hyphens realistically, with a
special symbol, in a random manner. This section describes how we met these three
aims.

A realistic hyphenation is similar to what occurs in real documents. We used Frank
Liang’s hyphenation algorithm, described in section 3.3, to achieve this authenticity.
More specifically, we used Ned Batchelder’s implementation 2 of this algorithm,
which includes hyphenation patterns up to level six and can, therefore, handle more
exceptions. In this way, we ensured an authentic hyphenation process.

We used a special symbol, the Greek Ano Telia, to denote the hyphens. It is
comparable to an interpunct character or a centred dot, but the Unicode code point
is in the Greek range. Remember from section 4.2.1, that we filtered out all sentences
with Greek letters. Therefore, we were sure that the Greek Ano Telia did not occur
anywhere else in the data set.

Algorithm 1 shows, in a simplified way, how we randomised the hyphenation
procedure. The basic principle is as follows: For each sentence, we started at a
random point in the first half of it. We ran the hyphenation algorithm on the word
at that point. If it was not possible to hyphenate that specific word, we tried the
next word, until a word could be hyphenated. After each succeeding hyphenation,
we moved not only to the next word but to the word in a predefined distance.

2https://nedbatchelder.com/code/modules/hyphenate.html
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Algorithm 1 Hyphenate sentence
Input : A sentence, as string
Output : The same sentence, with hyphens
hyphen symbol ← ·
hyphen interval ← 13
begin

tokens ← sentence.split()
n ← len(tokens)
/* add random slack to the hyphen interval */

hyphen interval += random(-3, 2)
/* start at a random point in the first sentence half */

pointer ← random(0, n // 2)
while pointer ← n do

try to hyphenate tokens
[
pointer

]
if hyphenation not possible then

pointer += 1
continue while loop

else if several possible hyphenations then
choose one hyphenation at random

end
/* insert hyphen in between two characters, or on top of an

existing hyphen */

insert hyphenation with hyphen symbol in tokens
[
pointer

]
.

pointer += hyphen interval
end
return joined tokens

end

In this way, we did not hyphenate every single word, but roughly one or two
words per sentence, depending on the length of the input sentence. The final output
was a collection of hyphenated sentences and the corresponding original sentences,
structured as <hyphenated sentence>TAB<original sentence>. As an example,
consider the sentence “Let’s have a time-out to re-evaluate!”, which could have the
following output:

Let’s have a time·out to re-evaluate! Let’s have a time-out to re-evaluate!

This example has exactly one new hyphen, namely in time-out, on top of the
existing hyphen. It simulates a word break on the end of a line. Imagine it as follows:
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Let’s have a time·
out to re-evaluate!

where the centred dot represents a hyphen at the end of the line. Notice that
re-evaluate is kept as it is. In the evaluation, we only consider words with centred-dot
hyphens.

4.3.1 The final hyphenated data set

These procedures resulted in two hyphenated data sets. For ClueWeb12, we kept
370,958,448 sentences with 10,182,157,839 words. We inserted 543,538,945 new
hyphens. For Ontonotes, we kept 117,450 sentences with 2,234,528 words and inserted
126,028 new hyphens. Because ClueWeb12 is huge, we also extracted roughly five
hundred thousand sentences evenly distributed over the data set, to evaluate our
algorithms and language models. The data sets are compared in table 4.1.

Hyphenated
data set

ClueWeb12
total

ClueWeb12
extract

Ontonotes
Release 5.0

Wikipedia
extract

size 104GB 152MB 64MB 63MB
sentences 2 · 370, 958, 448 2 · 529, 933 2 · 117, 450 –
words 2 · 10, 182, 157, 839 2 · 14, 553, 968 2 · 2, 234, 528 2 · 5, 294, 052
new hyphens 543, 538, 945 776, 700 126, 028 300, 009

Table 4.1: A comparison of the hyphenated data sets This table compares the
hyphenated data sets. Remember that each sentence is written twice: once in the
hyphenated, and once in the original form. Therefore, the number of sentences in
total is two times the number of individual sentences, and the size of the data sets
are accordingly larger.

We also gained access to the dataset on which Hertel’s language model was trained.
For testing, we used the validation section of this dataset. As before, we used
our algorithm to add new hyphens. We will refer to this hyphenated dataset as
“Wikipedia extract”. The data set is slightly different because each line consists of a
whole paragraph, instead of only a sentence. There were 99,289 paragraphs. In the
table, the cell for these sentences is left intentionally blank.

4.3.2 Training and test data

From the hyphenated data set, we also prepared test- and training data for machine
learning approaches. To make the training faster and easier, we reformatted the
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data in a tab-separated format: <label>TAB<prefix>TAB<suffix>. The prefix was
the part of the hyphenated word before the centred dot, while the suffix was the
part after. The label was either 1 (indicating a correct hyphen) or 0 (indicating a
misplaced hyphen).

There was one entry per line. Of course, this resulted in a data set which had
as many lines as hyphenated words. Therefore, for the ClueWeb12 extract, the
corresponding machine learning data set had 776,700 lines.

We did not explicitly split the data in training and test parts because we had data
from several different sources. That is, we could train on Ontonotes and test on
ClueWeb12, or vice versa. We never used the same data for training and testing;
that is, we did not do overfitting.

However, we made other versions of the training data with more 1-labels. We did
this by including every regular hyphenated word as well. That is, we included words
hyphenated with “·” and also the words with “-”. In this way, our machine learning
models had more examples of words with correct hyphens. We will note the type of
training- and test data explicitly in the evaluation in chapter 6.
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5 Implementation

This chapter describes our two different baseline algorithms in detail. Furthermore,
we explain how we implemented CRF-based logistic regression. Finally, we describe
how the bi-LSTM output probabilities were used to determine whether to delete or
retain a hyphen.

5.1 Vocabulary-based baseline algorithms

We implemented two baseline algorithms, based on the same simple idea: to look up
the hyphenated word in an English vocabulary. If the hyphenation is known, and
quite common, it should probably stay. If not, then the word without the hyphen
should be familiar. This chapter describes how we created a vocabulary, a collection
of words, specially designed for this purpose. Furthermore, it describes in detail how
we implemented the baseline algorithms.

5.1.1 Creating a vocabulary

A vocabulary suitable for our purposes is a collection of most written words. A simple
word list, for example, the 171,476 words in the Oxford Dictionary, is not enough,
because most words come in different variants. Conjugated verbs, plural nouns, and
adjectives with comparative and superlative forms; we needed a vocabulary covering
all these forms.

Therefore, we created a vocabulary from scratch, based on all words in ClueWeb12.
We registered all unique words, and how often each word occurred. Please note that
we only added words which exclusively consisted of letters and hyphens. Words like
ClueWeb12 and Zipf’s were therefore not registered. In this way, we created an
extensive list of common words with scores, indicating how frequent a specific word
(spelling) is. True to Zipf’s law, the word frequencies were inversely proportional to
the rank in the list. When sorting the vocabulary after the frequencies in descending
order, the first word occurred about twice as often as the second one, which occurred
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roughly three times as often as the third one, and so on. Therefore, we assumed that
the vocabulary was indeed a good representation of the English language.

As the last step, we discarded all words with the lowest frequency scores. This
threshold was set manually, in a trial-and-error style, aiming to remove the worst
spelling mistakes and nonce words. Since we were not particularly restrictive,
this resulted in a ClueWeb12-based vocabulary of 4,218,204 hyphenated and non-
hyphenated words. This number is much higher than the number of English words.
A lot of artistic and unusual compound words (such as hype-the-lemon-matrix) were
included, as well as spelling mistakes and abbreviations. But since the vocabulary
included frequencies, this was not directly a problem. We will discuss the bias effects
at the end of this section.

Adding words with numbers

Usually, vocabularies do not include words with numbers. But, to handle common
word constructions like 17-years-old or 19th-century, it was necessary to register
these as well. We created a second vocabulary, aiming to include words like these.
One obstacle was to get reasonable frequency scores for these words. There are 89
different versions of xx-years-old, and even more versions of xxx-billion-dollar. We
wanted the commonness of the construction years-old itself, not only the unrelated
frequencies of 17-years-old, 23-years-old, and so on. Therefore, we replaced all digits
with the Greek character chi. Again, due to the filtering step in section 4.2.1, we
were sure this character did not occur anywhere else in the data set. For example,
χχ-years-old was registered, with a reasonable frequency score. We used a threshold
again to remove the worst spelling mistakes and nonce words. This ClueWeb12-based
vocabulary had a total of 4,604,374 words with and without hyphens, including
representations of words with digits.

Testing bias

There was an obvious risk of a vocabulary bias. We were going to evaluate the
baseline algorithm on a ClueWeb12 dataset, with a vocabulary made from the very
same sentences. Hence, it was needed to find an external collection of words with
which we could test the bias.

We used Maas et al.’s Large Movie Review Dataset [31], a collection of 50,000
highly polar movie reviews. The data set includes a vocabulary of 89,527 words,
sorted after frequency in descending order. We used the inverse rank number to
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indicate the commonness. Therefore, the had a score of 89527, and a score of 89526,
a a score of 89525, and so on.

The IMDB-based vocabulary did not include numbers, and it was much smaller
than the ClueWeb12-based one. However, it did include expressive words like fancy-
dancy and thousand-cuts-a-minute, found in the negative reviews. These words are
not present in our ClueWeb12 data set. Therefore, we concluded that although
ClueWeb12 is web page-based, it did not include sentences from these movie reviews.
And we had a collection of words with which we could test the algorithm with less
bias.

5.1.2 Baseline algorithm

The simplest variant of our baseline algorithm merely looks the words up in a
vocabulary. The vocabulary can come from different sources. Until now, we have
described the IMDB-based and the ClueWeb12-based ones. In the evaluation in
chapter 6, we will use other versions as well.

In the following paragraphs, when we refer to “the vocabulary”, we always mean
“the vocabulary with digits”. Think about it: for the basic algorithm, which only looks
up words as they are, it does not make a difference to use the extended vocabulary.
As mentioned before, we were sure that χ never occurred in our data set. Unless
the algorithm has methods to convert words with numbers into χ, it will never find
these words in the vocabulary.

Algorithm 2 describes the baseline algorithm in a simplified way. It returns the
word without a hyphen if only this version is in the vocabulary. Likewise, if just
the hyphenated word is there, this is returned. If both variants are there, then the
algorithm returns the word with the highest frequency. Otherwise, it returns the
merged word. The latter is a choice based on the nature of our data. In more than
97% of the cases, the correct answer is to remove the hyphen.
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Algorithm 2 Baseline algorithm
Input : A word hyphenated with ·
Output : The corresponding word either merged or regularly hyphenated
vocab ← load vocabulary from file
begin

merged word ← remove · in the (lowercased) word
hyphenated word ← replace · with – in the (lowercased) word
if merged word in vocab then

if hyphenated word in vocab then
/* return the variant with highest frequency score */

freq merged ← frequency of merged word in vocab
freq hyphenated ← frequency of hyphenated word in vocab
if freq merged > freq hyphenated then return merged word else return
hyphenated word;

else
return merged word

end
else if hyphenated word in vocab then

return hyphenated word
else

/* if neither is found, return the merged variant */

return merged word
end

end

5.1.3 Supplemented baseline algorithm

The second version of the baseline algorithm has two more features. It can recognize
words with numbers, and it can look up only a part of a word if the word has several
hyphens.

First, it replaces all numbers in input words with χ, formatting them the same
way as in the vocabulary. Then, it proceeds like algorithm 2. However, if neither
the hyphenated nor the merged variant is known, but the word has several hyphens,
then the algorithm looks up a part of it. For example, for thou·sand-cuts-a-minute
it looks up thou·sand on its own. The ClueWeb12 vocabulary does not include the
whole word. However, it knows thousand, and would, therefore, remove the hyphen.
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Running time

Assuming that the baseline algorithm itself is only loaded once, that is, the vocabulary
is the same, the running time is linear in the size of the input data. To read the
vocabulary into an internal dictionary takes time O(m) for m words. A lookup in a
dictionary has a complexity of O(1), in the average case. Therefore, for n hyphenated
words in the input and m words in the vocabulary, the running time of the baseline
algorithm is O(n+m).

5.2 Logistic regression

Although we planned to implement a CRF model, we stopped when we noticed how
well the simple logistic regression worked (see section 3.6). Therefore, the features
which we describe in this section are functions from a CRF framework.

We prepared the features for a sequential model, but we only used two labels
(0 and 1), and we only trained on sequences of length one. Therefore, the results
which we present in Chapter 6 is comparable with a simple logistic regression (see
section 3.6. However, it is easy to extend the code to a sequential model.

In the following, we will describe the features we used. We used the prefix and
the suffix (see section 4.3.2) as one input, and predicted one label based on these
two. We distinguished between the prefix and suffix features. For the suffix, we used
the +1bigram, +2bigram and +3bigram, if possible. For the prefix, we used the
same bigrams but in a backward direction. We used an “s” to denote a suffix feature
and a “p” to denote a prefix feature. As an example, consider the hyphenation
19th-cen·tury. The prefix is 19th-cen and the suffix is tury. The suffix bigram features
are: s:+1bigram:tu, s:+2bigram:ur, and s:+3bigram:ry. Furthermore, we registered
if the prefix and suffix were uppercase, if (the whole part) was a digit or if they
included another hyphen. As an example, consider 19th-cen·tury again. The prefix
features were, in addition to the bigram features, p:uppercase:False, p:isdigit:False,
p:lower:19th and p:hashyphen:True. The last feature, the only one computed from
both word parts, was the “word shape”. We replaced all characters except hyphens
with x. In this example, it would be word-shape:xxxx-xxx-xxxx. These features proved
to be sufficient to decide whether a hyphen fitted in a sequence or not.

We used sklearn-crfsuite1, which is a scikit-learn-similar wrapper of python-crfsuite2

which in turn is a python binding to CRFsuite, “A fast implementation of CRFs” by
1https://github.com/TeamHG-Memex/sklearn-crfsuite
2https://github.com/scrapinghub/python-crfsuite
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Naoaki Okazaki [32].
We tested two training algorithms. The default L-BFGS (Limited-memory Broyden-

Fletcher-Goldfarb-Shanno, proposed by Nocedal [33]) algorithm with L2 regulariza-
tion, and OWL-QN (Orthant-Wise Limited-memory Quasi-Newton) with Elastic Net
(a combination of L1 and L2 regularization proposed by Zou et Al. [34]). We used
the test data sets described in section 4.3.2. Hence, we already had a set of extracted,
hyphenated words, and it was not necessary to parse sentences to test the algorithm.

5.3 Using the bi-LSTM

As explained in section 3.7, Hertel’s bi-LSTM has 103 output neurons, one for each
element of the character set (the hundred most common English characters, and
three special characters). Algorithm 3 shows the procedure we used. We based the
hyphen-decision not only on the hyphen but also on the likelihood of other characters
in the same word.
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Algorithm 3 Usage of the Language Model
Input : A sentence, with word(s) hyphenated with ·
Output : The word(s) either merged or regularly hyphenated
language model ← load language model
target word indexes ← empty list
result ← empty list
begin

foreach word in sentence do
/* mark the words which have · hyphens */

foreach character in word do
if character is · then append word-index to target word indexes;

end
end
/* make two new sentences, with and without hyphens for · */

v1 sentence ← replace all · with – in sentence
v2 sentence ← remove all · in sentence
/* the language model predicts each character in the sentence */

v1 all probs← predict character probabilities of v1 sentence with language model
v2 all probs← predict character probabilities of v2 sentence with language model
/* consider all the target words, which used to have a · hyphen */

foreach word-index in target word indexes do
v1 word ← word in v1 sentence on word-index
v1 word sum = 0
/* sum up probabilities of characters in v1 word.. */

foreach character in v1 word do
i ← character index in v1 all probs
v1 word sum + = v1 all probs [i][character]

end
v2 word ← word in v2 sentence on word-index
v2 word sum = 0
/* ..and repeat the process for v2 word */

foreach character in v2 word do
i ← character index in v2 all probs
v2 word sum + = v2 all probs [i][character]

end
/* choose the variant with the highest probability sum */

if v1 word sum > v2 word sum then
append v1 word to result

else
append v2 word to result

end
end

end
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Our procedure was as follows: for each sentence, we marked the words which had
centred-dot hyphens. Then, we made two new versions of the sentence. The first
version had regular hyphens in those places where it had been a centred dot. The
second version had no such symbols. In other words, the first sentence had many
hyphens, and the second version had only natural hyphens.

We used the language model to predict all character probabilities of each of the
sentences. Then, we looked up the words which used to have centred-dot hyphens
in both of the new sentence versions. For each of these words, we summed up the
probabilities of each character. As an example, consider the hyphenation “high-
quali·ty”. In the first version of the sentence, the word was: “high-quali-ty”. We
added the probabilities of an ’h’ on this position in the sentence, of an ’i’, of ’g’, and
so on.

Finally, we chose the word from the first or the second version of the sentence
with the highest probability sum. We did this for all the hyphenated words. That is,
for each word, we made separate decisions if the hyphenated or the non-hyphenated
version was the most likely.
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6 Evaluation

This chapter analyses the results of our different methods. First, we describe the
metrics we used. Then, we discuss the results and analyse the error types.

6.1 Metrics

We use the metrics: “Total accuracy”, “Accuracy Expected Hyphen”, “Accuracy
Expected Non-Hyphen” and “Balanced Accuracy”. Our data sets are very unbalanced.
Specifically, the algorithm reaches an overall accuracy of over 97% when it always
merges the words. But this value does not show how well our algorithms recognise
words that have hyphens that should remain. Some well-known alternatives are
“Recall”, “Precision” and “F1-Score”. But these scores will not catch the fact that we
are interested in an algorithm which predicts both positive and negative classifications
well. To understand this, consider the confusion matrix in figure 6.1.

expected 0 expected 1

predicted 0 50.000 (TN) 100 (FN)

predicted 1 1000 (FP) 500 (TP) Precision
33.3%

Recall
83.3%

F1-Score
47.2%

Figure 6.1: An example of inappropriate metrics This confusion matrix demon-
strates a situation where the recall, precision and F1-metrics does not capture what
we want. The green cells are correct predictions, the red cells are mistakes. Precision
(P) is defined as TP/(TP + FP ) and recall (R) is TP/(TP + FN). The F1 score is
the harmonic mean of the latter values, 2 · P ·R/(P +R)
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The 0-label denotes a non-hyphen, and the 1-label denotes a hyphen. Notice that
the second matrix row is sufficient to calculate the precision. And the second column
is enough to calculate the recall.

The problem with these metrics is that they ignore a particular type of word,
namely the words correctly classified as 0, shown in the True Negative (TN) class.
In our case, this group is very, very much larger than the other ones. If ignored,
the metric will not describe how well our algorithm works overall. Because if our
algorithm recognises all the words with a correct hyphen, but it neglects words with
wrong hyphens, then it is overall worse. Consider figure 6.1 again. The value of TN
is neither used to calculate the precision, recall, nor the F1 score. Therefore, these
metrics do not reflect the fact that 50,500 choices were correct and that there were
only 1,100 errors. But this should be taken into account.

Therefore, we chose to use accuracy as our metric, as well as accuracy for “expected
non-hyphen” (specificity), accuracy for “expected hyphen” (recall), and balanced
accuracy (bACC). In that way, we could break down the results in a transparent
manner. Figure 6.2 illustrates, again with a confusion matrix, what these metrics are.
Notice that the first matrix column is enough to calculate the specificity, analogue
to the recall and precision calculations demonstrated in figure 6.1.

expected 0 expected 1

predicted 0 50.000 (TN) 100 (FN) Accuracy
97.8%

predicted 1 1000 (FP) 500 (TP)

Specificity
98.0%

Recall
83.3%

bACC
90.7%

Figure 6.2: An example of appropriate metrics This confusion matrix demon-
strates better metrics than in figure 6.1. Specificity (accuracy for expected 0) is
defined as TN/(TN + FP ); recall (accuracy for expected 1) = TP/(TP + FN);
accuracy is (TN + TP )/(TN + FP + FN + TP ); balanced accuracy (bACC) is
defined as (specifcity + recall)/2.

It is the same situation as before, where the algorithm did a pretty good job. The
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difference is, that the accuracy of “expected non-hyphen” (also called the specificity)
is taken into account. The accuracy of “expected hyphen”, which is the same as the
recall, is calculated just as before. The balanced accuracy bACC, that is, the average
value of specificity and recall, shows that the algorithm made many right choices.
The improvement is that the true negatives have affected the score.

6.2 Results

In the following sections, we will present the most remarkable of the results. We
tested the models with different types of training data (or different vocabularies), on
different data sets. First, we present the results with distinct training and test data.
Then, we analyse the types of errors.

Consider table 6.1, which shows some of the results from the evaluations on the
ClueWeb12 Extract data set (see table 4.1 for details about the data). The baseline
algorithms have the lowest results; however, IMDB and Ontonotes are also the
smallest vocabularies. That is, the baseline is never better than its vocabulary. The
bi-LSTM gets the highest total accuracy, but the recall is slightly lower than the
CRF models.

Model Version Accuracy Specificity Recall bACC

Baseline1 VOC-I 98.76% 99.91% 31.67% 65.79%
Baseline2 VOC-O 98.79% 99.91% 33.83% 66.87%
bi-LSTM – 99.25% 99.56% 80.71% 90.14%
CRF OWL-QN O+W 98.75% 98.98% 85.78% 92.38%
CRF OWL-QN OT+W 98.86% 99.11% 84.27% 91.69%
CRF OWL-QN O+WT 99.14% 99.55% 75.38% 87.47%
CRF L-BFGS OT+W 98.78% 99.07% 81.45% 90.26%

Table 6.1: Evaluation results on ClueWeb12 Extract. The results on the
hyphenated data set ClueWeb12. It consisted of 776,700 hyphenated words from
which 13,112 were expected hyphens. Abbreviations: VOC-I=vocabulary IMDB;
VOC-O=vocabulary Ontonotes. Training data O+W, OT+W, O+WT and OT+W
are different combinations of words from Ontonotes and Wikipedia. Specifications:
O+W: 11.64% expected hyphen; OT+W: 9.53% expected hyphen; O+WT: 4.42%
expected hyphen.

There are results from three CRF models with the same learning algorithm,
however, trained on data sets with different portions of expected hyphens. The data
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sets are sorted after the portion of expected hyphens, in descending order. They
demonstrate the trade-off effect between total accuracy and recall. That is, when
the model learns more words with natural hyphens, it recognises such words easier.
Therefore, the CRF OWL-QN model trained on O+W (Ontonotes and Wikipedia
with 11.64% expected hyphen) has a recall of 85.78% and a bACC of 92.38%. These
are the best results for these categories. However, this means that it does make
the right decision for as many words without hyphens. Therefore, total accuracy
is smaller. On the other side, CRF OWL-QN trained on O+WT (Ontonotes and
Wikipedia with 4.42% expected hyphen) recognises fewer words with hyphens. Still,
it has a better total accuracy score.

Table 6.2 shows the evaluation results for the Wikipedia extract. The baseline
algorithm achieves better results with a more extensive vocabulary. It gets the best
bACC score as well as the best accuracy score. The CRF OWL-QN performs worse
than on the ClueWeb12 data set, but the training data was only Ontonotes-based,
and accordingly smaller. The bi-LSTM gets bACC and total accuracy comparable
to the ones from the baseline.

Model Version Accuracy Specificity Recall bACC

Baseline2 VOC-C 99.51% 99.95% 76.82% 88.39%
bi-LSTM – 99.17% 99.67% 73.86% 86.77%
CRF OWL-QN OEA 98.91% 99.60% 63.78% 81.69%

Table 6.2: Evaluation results on Wikipedia Extract The results on the hy-
phenated data set Wikipedia Extract. It consisted of 299,919 hyphenated words
from which 5,734 were expected hyphen. Abbreviations: Baseline2+Voc-C: Second
baseline algorithm with ClueWeb12 vocabulary; bi-LSTM: algorithm described in
section 5.3 (Note: it was only validated on 272,225 hyphenated words, 27,694 less
than total. Further, the model was validated on Wikipedia Extract, which makes
overfitting feasible); CRF OWL-QN+OEA: The CRF classifier. trained on all words
from Ontonotes.

6.3 Analysis of types of errors

We had the impression that many words were impossible to decide due to the nature
of the data set. As explained before, words can have different spellings, for example.

To investigate this effect, we examined our models and algorithms differently.
Specifically, we tested the machine learning models on the same data we had trained
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them on, and the rule-based algorithm with a vocabulary derived from the same
dataset. Theoretically, this should force accuracies close to 100%. Table 6.3 shows
the results.

Model/
version

Dataset/
Size

Accuracy SpecificityRecall bACC

CRF OWL-QN
W

Wikipedia Extract
299,919

99,52% 99,60% 95,01% 97,31%

Baseline2
VOC-C

ClueWeb Extract
776,700

99,67% 99,95% 83,40% 91,68%

Baseline2
VOC-C

ClueWeb Total
543,537,395

99,66% 99,94% 83,55% 91,74%

Table 6.3: Evaluation on training data This table demonstrates the relationship
between training data and results. The models are tested on the same data set on
which they are trained. Baseline 2 is tested on Clueweb with VOC-C (the Clueweb
vocabulary), and the CRF OWL-QN model is trained on Wikipedia Extract.

We see that the CRF model, tested and trained on Wikipedia, has 95% recall.
This is in line with the theory that the accuracy values should be close to 100%.
With the baseline, we tested the same effect with a larger data set. Note that the
vocabulary was derived from the total ClueWeb12 dataset, not from the ClueWeb
extract. The frequency scores of each word were therefore also based on the total
dataset, not the extract. However, the recall is only 83.40%. We could expect a
higher number because all the words are in the vocabulary. This suggests that
although the algorithm recognizes the words, it is not always certain which spelling
variant is the correct one, and this has a big impact on the final numbers.

To confirm this theory, we also tested the Baseline algorithm on the total ClueWeb
dataset (see section 4.3). Overall, this resulted in a slightly higher recall value and a
slightly higher bACC. But the trend is the same: there are many cases where the
algorithm, even though it knows the word with a hyphen, selects a different variant
because it is more common. To make it clear, consider the word email. It can be
written with a hyphen, or without. If the word is written without a hyphen in 70%
of the cases, and the model or algorithm learns this, then the 30% of the choices will
necessarily be considered “wrong”.

Another thing that affects the datasets is which words occur frequently and which
words are rare. For example, email or e-mail occurs very often in our data sets.
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Hence, a 30% error for this word has a very large total impact. However, in the
tables presented in this chapter, we chose to include all unique words. Because this
represents reality in the best possible way: if a particular word occurs very often,
our algorithm must be able to put that word together in a sensible way.

Finally, it is often difficult to know whether the name of a person or a company
is with or without a hyphen. The same applies to abbreviations and similar. For
example, ADAC does not have a hyphen, in contrast to APD-C.

All in all, we can see that our methods recognise many words with hyphens. This
is an improvement compared to the current tools, which do not handle the problem
at all. Today’s tools do not have a bad overall accuracy value, but, the accuracy of
the “expected hyphen” is not satisfactory. The overall accuracy of our methods is
better. This can be read based on recall and bACC values. It is uncertain whether
it is possible to improve our accuracy scores much at all. Because of the nature of
the problem, there are many situations and many words where one cannot say with
certainty which decision was the right one.
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7 Future Work

This section describes ideas for future work, and it addresses other problems which
we discovered during this project. Furthermore, we discuss the extension of the
methods to non-English languages.

Hanging hyphens

Due to the limited time and resources within the framework of a Bachelor thesis,
the problem of “hanging hyphens” was not further explored. For example, words
like “full- and part-time”. Our algorithms looked only at a sequence of characters,
ignoring the white space after the line break hyphen. However, we assume that there
is a only a limited amount of words which follows after such hanging hyphens. Our
methods should be effortlessly adaptable to this problem as well.

Conditional Random Field on a sentence

We only used the CRF for logistic regression. It would be interesting to see if the
sequentiality of the model can improve performance. Thus, examining whether using
a longer sequence as input, either at the word level or the character level, can lead to
better results. The good results of the bi-LSTM model indicate this. In this thesis,
we have thoroughly examined different sequential models, and we have described the
possibilities and dilemmas of these models concerning our problem. The methods we
propose are easy to apply to sequences, with most of the work consisting of creating
reasonable datasets.

Other classification methos

The performance of the CRF on a single-word level indicates that regular classification
methods could be an adequate solution. We explored SVM, linear regressoion, Naive
Bayes, Random Forest, and other algorithms, but only superficially; on a small test
set, and without satisfactory results. However, it would be interesting to see how the
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results improved if we used features similar to the ones which are common in CRF
modelling.

Extensions for non-English languages

The work in this thesis only relates to the English language. We describe tech-
niques which applies to English hyphenation rules. However, as discussed previously,
hyphenation rules vary within languages. In English, there are minor differences
between American and British spelling. But no matter how you hyphenate a word,
the characters remain the same.

This does not apply to all languages. In Norwegian, for example, there are words
which are spelt differently when they are hyphenated. Namely compound words
which have three similar consonants in a row. These words are, for the sake of
convenience, only written with two consonants. This is confirmed by the Norwegian
Language Council [35]. For example, the word trafikkork, meaning traffic jam, is a
compound word of trafikk (traffic) and kork (cork). Though if the word is hyphenated,
it is spelled trafikk-kork, adding one more k before the hyphen. The same applies to
words like nattog (night train), bussj̊afør (bus driver) and gresstr̊a (blade of grass),
where one more t or s is added, respectively. Our baseline algorithm merges the
hyphenated words and looks them up in a dictionary. Merging the special hyphenated
word gress-str̊a to gressstr̊a (with three consecutive identical consonants) would not
give any results, although the spelling without a hyphen is by far the most common
one.

We assume there are other peculiarities in other non-English languages. To adapt
to this, it is usually necessary to have native speakers.
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8 Conclusion

Extracting text from PDF files is a surprisingly difficult problem. We have investigated
the possibilities of correcting words with hyphens. In most cases, it is quite obvious
which word was the right one. But not always.

The simple algorithm that only looked up the words in a dictionary worked very
well, as long as the vocabulary was large enough. Machine learning methods were
more flexible. They could recognise words that were not spelt quite as one would
think.

It is important to have procedures to remove hyphens, to ensure that people
can search through PDF files, and to make the text available for various computer
systems. Just as Liang created methods in 1983 to put hyphens into words, it is high
time to have methods to remove them.

In this work, we have come up with suggestions on how to solve this small but
very significant problem. Our methods work better than those used today. But there
will always be a challenge to figure out which word someone was going to write, in
retrospect, with very high precision.
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