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LThe Problem

Introduction

m Topic: The implementation and assessment of a machine
learning approach for the information extraction from web
pages.

m Motivation: Automated means of gaining insights from the
web: an enormous collection of semi- and unstructured data.

m Method: Supervised Machine Learning - Binary Classification
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LTypical Researcher Homepage
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LThe Problem
LHomepage Identification as Supervised Machine Learning Task

Supervised Learning

|
For a collection of data points ((x,-,y,-)),’-vzl, learn a function
h: x — y, which predicts the label yy.1 for a new datapoint xp1.

m Number of datapoints N, which were collected in the past
m x; € RP

m y; € {true, false}

m h(xnt1) = P(yn+1lxn+1)

feature . evaluation

pre- . feature machine post-
. extraction X - & model .

processing /encodingH selectlonH learning H selectionMprocessmg

Boedecker et al. (2017)
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LThe Approach

The Main Tasks

m 1. Obtain suitable web page data

m 2. Identify researcher homepages
m Develop two prediction models using disjoint feature sets
m Bag of words approach

m 3. Extract the researchers name from the page
m Extract all person names from the homepage

m ldentify the correct person name
m Augmenting heuristic with machine learning features
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Common Crawl

Non profit organization that crawls the web on a monthly
basis

m Crawl data is stored in Amazon Web Services as part of their
Public Datasets Program

Approx. 300 index files per crawl. (~ 1.5 TiB uncompressed)
Crawl of August 2019: 260 TiB (uncompressed), 2.95 billion
web pages

https://commoncrawl.org/


https://commoncrawl.org/

LThe Approach
LHomepage Identification

URL Based Features - URL Surface Patterns?

(1) https://www.inf.uni-hamburg.de/en/inst/ab/hci/news/rse15.html
nondict, nondict, nondict, nondict, news, alphanumeric

(2) http://abi.inf.uni-tuebingen.de/People/krueger
people, nondict

(3) http://people.ucas.ac.cn/~zhangxiaopeng?language=en
tildenondict, querykeylanguage, queryvaluenondict

Surface Patterns:
® numeric, alphanumeric, hyphenated, underscored, long term
m nondict : No proper English word or not in the term dictionary
m tildenondict : Reseacher name prefixed by ~

m querykey, queryvalue : prefix to URL query terms

'Gollapalli et al. (2015)
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LHomepage Identification

URL Based Features

m Natural language specific preprocessing applied
m Uni- and bigrams

m Vectorized via Term Frequency Inverse Document Frequency

(Tfidf)
Url_Id | tildenondict | numeric | querykeyid | ... | news | people | Label
0 0.723131 0 0 0 0.160545 1
1 0 0.983265 | 0.324515 | ... 0 0 0

Each row represents a web page and is a sparse vector of 8386
features.
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LHomepage Identification

Page Content Based Features

m Text from title and hl tag prefixed with identifier

m Concatenated with the rest of the page text content
m Numeric Features:

Num. tables

Num. external links

Num. internal links

Num. images

Num. person names in title / hl tag

Features after preprocessing: 20006 Tfidf vectorized uni-, bi- and
tri-grams



LThe Approach
LHomepage Identification

Machine Learning Models

Random Forest and linear models with Stochastic Gradient
Descent learning were compared.

Best URL based model:

m Random Forest

m Default parameters except for number of trees (1000)
Best Page Content based model:

m Support Vector Machine with modified huber loss function

Combined model prediction:
'Dcombined()/|x) = Purl(}/|X) * Ppage(Y|X)
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L Evaluation

LSampling

Training Data

Training data downloaded from July, August and September Crawl

of 2018.
Source No. Homepages
World Wide Knowledge Base? - 4 Universi- | 52
ties Dataset
Computer Science Bibliography? 14 473
Manual Labelling (Freiburg, Munich, Stan- | 2130
ford, Media Faculty of the MIT)
After filtering the html data 13 670

Undersampling was applied to account for imbalanced classes

https://cs.cmu.edu/afs/cs. cmu. edu/project/theo-20/www/data/

*https://dblp.org/


https://cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
https://dblp.org/

L Evaluation

LSampling

Validation- and Test-Data

Validation Data:
m Cross Validation as part of GridSearch
m Hold out dataset

Test Data:
m 1500 web pages were manually labelled

m Universities: Caltech, Princeton, York, Stuttgart, Hamburg,
Applied Science Upper Austria

m Contained 86 homepages



L Evaluation

LSampling

Metrics

Precision: Quality of the predictions made by the model. How
good are the predictions of the model.
> True Positive
> True Positive + ) False Positive

Recall: Measure for the coverage of the model. How well is the
model suited to predict the label.

>~ True Positive
> True Positive + >, False Negative

F1 Score: Measure of models performance, where precision and
recall contribute evenly.

Precision - Recall

" Precision + Recall



L Evaluation

LSampling

Classification Results

Validation Data Test Data
Model Label | Precision Recall F1 Score | Precision Recall F1 Score
Page 0 0.97 0.94 0.96 1 0.58 0.73
Content 1 0.94 0.97 0.96 0.12 0.97 0.22
Ul 0 0.91 0.91 0.91 0.99 0.77 0.86
1 0.92 0.92 0.92 0.18 0.84 0.29
Combined 0 0.95 1 0.97 0.98 0.98 0.98
1 1 0.94 0.97 0.68 0.69 0.68




LC)uestions?

Summary

m 68% F1 Score achieved in the homepage identification task
m 94% F1 Score achieved in the person identification task

m Simple machine learning algorithms and features well suited
for the web page classification

m Great benefit from using two disjoint feature sets under
suboptimal condition

m Convention of writing the researcher name in the title tag is
widely held

m Person identification heuristic could be improved with
machine learning features
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LAppendix

AOQ: Person ldentification - Sampling

m Names extracted with Stanford NE Recognizer, merged and
manually labelled
m Training data:
m Sample taken from the homepage identification training
dataset
m Extracted and labelled 36123 person names from 1705
homepages
m Test data:

m Sample taken from the homepage identification test dataset
m Extracted and labelled 2106 person names from 83 homepages



LAppendix

Al: Person ldentification - The Method

Url.Id | Name | In_Title | In_h1 | In_h2 | Count | Count_Third | Count_Half | No_Parts | Label
0 Namel 0 0 1 5 2 2 1 0
0 Name2 1 1 0 10 3 6 2 1
0 Name3 0 0 0 1 1 1 6 0
1 Namel 1 0 0 16 14 16 2 1

Z-score standardization of numeric features : £

Machine Learning Algorithm:
m Random Forest (250 trees)



LAppendix

A2: Person ldentification Results

Validation Data Test Data
Model ‘ Precision Recall F1 Score ‘ Precision Recall F1 Score
Heuristic 0.93 0.84 0.88 0.95 0.92 0.93
4 Features 0.93 0.92 0.92 0.95 0.93 0.94
All Features 0.96 0.91 0.94 0.95 0.93 0.94

Importance

I
Appeared in Title  Appeared in Headerl Count Count in first half  Count in first third Appeared in Header2 Parts
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B: Development Overview
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C: Prediction Probabilities by Model and Web Page Type

(A) Non Homepages (B) Homepages (C) Combined model
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LAppendix

D: Natural Language Preprocessing

m Tokenization : Splitting sequences of characters into useful
semanatic units.

m Lower case
m Stopword / Punctuation removal

m Stemming / Lemmatization : Reduce terms to a common
base form. (Word Stem / Lemma)

m Term Frequency Inverse Document Frequency (Tfidf):

N
tfidf (t, d) = tf(t,d) - log =—,
ZD:tED 1

for term t, documents d € D, number of documents N.
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LAppendix

G: Page Based Features - 30 Most Frequent Terms by
Label

H
Sml ““I
S ldiin




_ES:mumm:_m\,w_ n
IP3Wwanjengyyy

__mcoﬁwam:_gw:.a
mwww
bedanjenapyy awoyan
qejanjeaspy
dpanjeay
cuE:Em:_m\,w:: nwianjeasyy,
Mmm
19p
dpanjenspy
AMnsur
J49juas
looyos
I dnoss
Ay
I uspms
R
I B0 SUT Wiy
B woyanjengy
N "wisnjeaspy
I nis
[ | »mhwi::w:_m\,wz
| mmmuw:_m\,w_yz
I Snjeaspy
I £Gojouy>a
I ‘vewiedap
I 5
| mm.:wmc__m:m
I °°U3Ds isindwo,
. uzmumrwmm:‘._n_.::z
I Wa)sAs
[ ] cu_c:Em:_m\,wzz
B 0555j0.d
T BRI AU wny
I m:omeAAHIAEJZ
I >3ndwos
I Y°-/essay
I AsiaA1un
I 5oUsis
SUOSIa 311 Wiy
L]

=)

n

2 = =]

> 5 =]
n

IeAspn

o
o
5

0.15

S
uonewIou| [enyl

Q
O
c
(90}
put
o
o
£
()
—
=
-
O
L
I
(%2]
(]
—
3
-
o
L
)
Q
(92}
(9°]
m
(0]
o0
(T
(ol

LAppendix

H

Feature



LAppendix

J: URL Based Model : Common Errors / Improvements

URL Puri(y = 1|X)  Ppage(y = 1|x) Error Type
(1) http://www-users.cs.york.ac.uk/~susan/sf/dani/PS_019.htm 73 14
tildenondict, nondict, nondict, underscoredword : ) false
(2) https://www.ifm.uni-hamburg.de/en /datenschutz.html 1 79 positive
en, nondict )
(3) https://www.york.ac.uk/economics/our-people/staff-profiles/john-hutton /
. .37 .88
economics, hyphenatedword, hyphenatedword, hyphenatedword
(4) http://carvermead.caltech.edu/research.html 58 74 false
research ) : negative

Improvements:

m (1) Add features representing the beginning and end of the
URL.

m (2) Handle non-english terms

m (3) Include meaning of hyphenated terms



LAppendix

K: Page Content Based Model : Improvements

c o @ liqeryst.chemie.uni-hamburg.de/dataindex/monograph.php2au=AR/ARVIND_K prd
Index Name
Arvind, K.

Co-authors

Ahish B Anand, SV Bharath P Chakraborty, N.. Mat D.Rov

Publication Titles

2009: Coupled clectro-mechanical response of an electroactive polymer cantilever structure and its application in encrgy harvesting

Seiteninfo: Impressum | Last Change 1. Mai 2010 by Volkmar Vill und Ron Zenczvkowski

Blittern:

m Topic Modelling #

m Substantially expand stopword lists

*Gollapalli et al. (2011)



LAppendix

Future Work

Improvements:

m Homepage Identification:
m Training data sampling
m Individual model feature engineering and feature selection
m Person ldentification:
m Name extraction and name merging procedures at the
preprocessing for the person identification
m Overall approach:
m Co-training®
m Improvements to the probability estimates produced by tree
based models®

®Gollapalli et al. (2015)
®Tanha et al. (2017)



	The Problem
	Typical Researcher Homepage
	Homepage Identification as Supervised Machine Learning Task

	
	The Approach
	Homepage Identification

	
	Evaluation
	Sampling

	Questions?
	Appendix
	Bibliography
	References
	Appendix


