Researcher Homepage Identification and Name Extraction

Application of Machine Learning with Multiple Views

Marc Ingold

Albert-Ludwigs University of Freiburg

Introduction

- Topic: The implementation and assessment of a machine learning approach for the information extraction from web pages.
- Motivation: Automated means of gaining insights from the web; an enormous collection of semi- and unstructured data.
- Method: Supervised Machine Learning Binary Classification

Typical Researcher Homepage

E ► 토I= ∽ ۹ @ 3/17

Homepage Identification as Supervised Machine Learning Task

Supervised Learning

For a collection of data points $\langle (x_i, y_i) \rangle_{i=1}^N$, learn a function $h: x \to y$, which predicts the label y_{N+1} for a new datapoint x_{N+1} .

- Number of datapoints N, which were collected in the past $x_i \in \mathbb{R}^D$
- $y_i \in \{true, false\}$

•
$$h(x_{N+1}) = P(y_{N+1}|x_{N+1})$$

Boedecker et al. (2017)

Questions?

< □ > < @ > < ≧ > < ≧ > 差| = のへで 5/17

The Main Tasks

- Obtain suitable web page data
- 2. Identify researcher homepages
 - Develop two prediction models using disjoint feature sets
 - Bag of words approach
- 3. Extract the researchers name from the page
 - Extract all person names from the homepage
 - Identify the correct person name
 - Augmenting heuristic with machine learning features

Common Crawl

- Non profit organization that crawls the web on a monthly basis
- Crawl data is stored in Amazon Web Services as part of their Public Datasets Program
- Approx. 300 index files per crawl. (~ 1.5 TiB uncompressed)
- Crawl of August 2019: 260 TiB (uncompressed), 2.95 billion web pages

URL Based Features - URL Surface Patterns¹

- https://www.inf.uni-hamburg.de/en/inst/ab/hci/news/rse15.html nondict, nondict, nondict, news, alphanumeric
- (2) http://abi.inf.uni-tuebingen.de/People/krueger people, nondict
- (3) http://people.ucas.ac.cn/~zhangxiaopeng?language=en tildenondict, querykeylanguage, queryvaluenondict

Surface Patterns:

- numeric, alphanumeric, hyphenated, underscored, long term
- nondict : No proper English word or not in the term dictionary
- \blacksquare tildenondict : Reseacher name prefixed by \sim
- querykey, queryvalue : prefix to URL query terms

¹Gollapalli et al. (2015)

URL Based Features

- Natural language specific preprocessing applied
- Uni- and bigrams
- Vectorized via Term Frequency Inverse Document Frequency (Tfidf)

Url_Id	tildenondict	numeric	querykeyid		news	people	Label
0	0.723131	0	0		0	0.160545	1
1	0	0.983265	0.324515		0	0	0

Each row represents a web page and is a sparse vector of 8386 features.

Page Content Based Features

- Text from title and h1 tag prefixed with identifier
- Concatenated with the rest of the page text content
- Numeric Features:
 - Num. tables
 - Num. external links
 - Num. internal links
 - Num. images
 - Num. person names in title / h1 tag

Features after preprocessing: 20006 Tfidf vectorized uni-, bi- and tri-grams

Machine Learning Models

Random Forest and linear models with Stochastic Gradient Descent learning were compared.

Best URL based model:

- Random Forest
- Default parameters except for number of trees (1000)

Best Page Content based model:

Support Vector Machine with modified huber loss function

Combined model prediction:

 $P_{combined}(y|x) = P_{url}(y|x) * P_{page}(y|x)$

Questions?

<□ ▶ < @ ▶ < E ▶ < E ▶ E| = のQで 12/17

Training Data

Training data downloaded from July, August and September Crawl of 2018.

Source	No. Homepages
World Wide Knowledge Base ² - 4 Universi-	52
ties Dataset	
Computer Science Bibliography ³	14 473
Manual Labelling (Freiburg, Munich, Stan-	2130
ford, Media Faculty of the MIT)	
After filtering the html data	13 670

Undersampling was applied to account for imbalanced classes

Validation- and Test-Data

Validation Data:

- Cross Validation as part of GridSearch
- Hold out dataset

Test Data:

- 1500 web pages were manually labelled
- Universities: Caltech, Princeton, York, Stuttgart, Hamburg, Applied Science Upper Austria

<□ > < @ > < E > < E > E = の < C 14/17

Contained 86 homepages

Metrics

<u>Precision</u>: Quality of the predictions made by the model. How good are the predictions of the model.

$$\frac{\sum \textit{True Positive}}{\sum \textit{True Positive} + \sum \textit{False Positive}}$$

<u>Recall</u>: Measure for the coverage of the model. How well is the model suited to predict the label.

$$\frac{\sum \textit{True Positive}}{\sum \textit{True Positive} + \sum \textit{False Negative}}$$

<u>F1 Score</u>: Measure of models performance, where precision and recall contribute evenly.

Classification Results

		Validation Data			Test Data		
Model	Label	Precision	Recall	F1 Score	Precision	Recall	F1 Score
Page	0	0.97	0.94	0.96	1	0.58	0.73
Content	1	0.94	0.97	0.96	0.12	0.97	0.22
	0	0.91	0.91	0.91	0.99	0.77	0.86
	1	0.92	0.92	0.92	0.18	0.84	0.29
Combined	0	0.95	1	0.97	0.98	0.98	0.98
Combined	1	1	0.94	0.97	0.68	0.69	0.68

<ロト < 母 ト < 臣 ト < 臣 ト 三目目 のへで 16/17

Summary

- 68% F1 Score achieved in the homepage identification task
- 94% F1 Score achieved in the person identification task
- Simple machine learning algorithms and features well suited for the web page classification
- Great benefit from using two disjoint feature sets under suboptimal condition
- Convention of writing the researcher name in the title tag is widely held
- Person identification heuristic could be improved with machine learning features

Bibliography I

- Boedecker, J., Hutter, F., and Tangermann, M. (2017). Machine learning. Albert Ludwigs University Freiburg Lecture.
- Criminisi, A. and Shotton, J. (2013). *Decision forests for computer vision and medical image analysis*. Springer Science & Business Media.
- Friedman, J., Hastie, T., and Tibshirani, R. (2001). *The elements* of statistical learning, volume 1. Springer series in statistics New York.
- Gollapalli, S. D., Caragea, C., Mitra, P., and Giles, C. L. (2015). Improving researcher homepage classification with unlabeled data. *ACM Transactions on the Web*, 9(4):1–32.

Bibliography II

- Gollapalli, S. D., Giles, C. L., Mitra, P., and Caragea, C. (2011). On identifying academic homepages for digital libraries. In Proceedings of the 11th annual international ACM/IEEE joint conference on Digital libraries, pages 123–132. ACM.
- Tanha, J., van Someren, M., and Afsarmanesh, H. (2017). Semi-supervised self-training for decision tree classifiers. *International Journal of Machine Learning and Cybernetics*, 8(1):355–370.

A0: Person Identification - Sampling

- Names extracted with Stanford NE Recognizer, merged and manually labelled
- Training data:
 - Sample taken from the homepage identification training dataset
 - Extracted and labelled 36123 person names from 1705 homepages
- Test data:
 - Sample taken from the homepage identification test dataset
 - Extracted and labelled 2106 person names from 83 homepages

A1: Person Identification - The Method

Appendix

Url_Id	Name	In_Title	ln_h1	In_h2	Count	Count_Third	Count_Half	No_Parts	Label
0	Name1	0	0	1	5	2	2	1	0
0	Name2	1	1	0	10	3	6	2	1
0	Name3	0	0	0	1	1	1	6	0
1	Name1	1	0	0	16	14	16	2	1

Z-score standardization of numeric features : $\frac{x_i - \mu}{\sigma}$

Machine Learning Algorithm:

Random Forest (250 trees)

A2: Person Identification Results

	Validation	Test Data				
Model	Precision	Recall	F1 Score	Precision	Recall	F1 Score
Heuristic	0.93	0.84	0.88	0.95	0.92	0.93
4 Features	0.93	0.92	0.92	0.95	0.93	0.94
All Features	0.96	0.91	0.94	0.95	0.93	0.94

B: Development Overview

Appendix

C: Prediction Probabilities by Model and Web Page Type

D: Natural Language Preprocessing

- Tokenization : Splitting sequences of characters into useful semanatic units.
- Lower case
- Stopword / Punctuation removal
- Stemming / Lemmatization : Reduce terms to a common base form. (Word Stem / Lemma)
- Term Frequency Inverse Document Frequency (Tfidf):

$$tfidf(t, d) = tf(t, d) \cdot \log \frac{N}{\sum_{D:t \in D} 1},$$

for term t, documents $d \in D$, number of documents N.

- Appendix

E: URL Based Features - 20 Most Frequent Terms by Label

F: URL Based Features - Feature Importance

Appendix

G: Page Based Features - 30 Most Frequent Terms by Label

Feature

H: Page Based Features - Feature Importance

- Appendix

J: URL Based Model : Common Errors / Improvements

	URL	$P_{url}(y=1 x)$	$P_{page}(y = 1 x)$	Error Type
(1)	http://www-users.cs.york.ac.uk/~susan/sf/dani/PS_019.htm	73	14	
	tildenondict, nondict, underscoredword	.15	.75 .14	
(2)	 https://www.ifm.uni-hamburg.de/en/datenschutz.html 		70	positive
	en, nondict	1	.15	
(3)	https://www.york.ac.uk/economics/our-people/staff-profiles/john-hutton/	37	88	
	economics, hyphenatedword, hyphenatedword, hyphenatedword	.57	.00	
(4)	http://carvermead.caltech.edu/research.html	58	74	false
	research	.30	. / 4	negative

Improvements:

Appendix

- (1) Add features representing the beginning and end of the URL.
- (2) Handle non-english terms
- (3) Include meaning of hyphenated terms

K: Page Content Based Model : Improvements

2009: Coupled electro-mechanical response of an electroactive polymer cantilever structure and its application in energy harvesting

<□ > < @ > < E > < E > E = の < C 14/15

Seiteninfo: Impressum | Last Change 1. Mai 2010 by Volkmar Vill und Ron Zenczykowski

Blättern: 🔼

Topic Modelling ⁴

Substantially expand stopword lists

⁴Gollapalli et al. (2011)

Future Work

Improvements:

- Homepage Identification:
 - Training data sampling
 - Individual model feature engineering and feature selection
- Person Identification:
 - Name extraction and name merging procedures at the preprocessing for the person identification
- Overall approach:
 - Co-training⁵
 - Improvements to the probability estimates produced by tree based models⁶

⁵Gollapalli et al. (2015) ⁶Tanha et al. (2017)