
x-search: A C++ library for fast
external string search

Bachelor Thesis – Mai 27, 2023

AUTHOR

Leon Freist

SUPERVISOR

Johannes Kalmbach

Faculty of Engineering, University of Freiburg
Chair of Algorithms and Datastructures

Prof. Dr. Hannah Bast

Why External String Search?

Information Retrieval Natural Language Processing Bioinformatics

2

Problem

GNU grep Comes Short in Different Terms

4

● No library
● No multi-thread support for searching a single file
● No direct preprocessing supported
● License issues

Aims for this Thesis
● Implement a C++ library
● Support multi-threading
● Support preprocessing (compression)
● Be faster than GNU grep

Questions?

Solution

High Level ViewportSimple Usage

x-search: Basic Usage

7

$ basic_grep pattern /path/to/file

// basic_grep.cpp
#include “xsearch/xsearch.h”
#include <iostream>

int main(int argc, char** argv) {
 auto searcher = xs::extern_search<xs::lines>(argv[1], argv[2], false, 1);
 for (auto const& line : *searcher->getResult()) {
 std::cout << line << '\n';
 }
}

0
1
2
3
4
5
6
7
8
9

A Pipeline as Base-Construct

8

Final Processing
xs::ReturnProcessor

● Substring search

Providing Data
xs::DataProvider

● Reading from file

Optional Processing
xs::InplaceProcessor

● Compression
● Decompression

Result
xs::Result

Managing partial results provided by the
ReturnProcessor

Preprocessing

9

Reading Data in Chunks
xs::DataProvider

Each chunk ends with a
new line character

Compression
xs::InplaceProcessor

Compress chunks using
● LZ4
● LZ4 HC
● ZSTD

Write (Meta) Data
xs::ReturnProcessor

xs::Result

● Write metadata to a metafile
● Write compressed data to a

file

01
10

ProcessingInput Output

Searching a Preprocessed File

10

Read Data in Chunks
xs::DataProvider

Read Metadata and
chunks from input file

Search
xs::ReturnProcessor

Search according to
the specified settings
● Literal
● Regex
● Ignore case

Collect Search Results
xs::Result

Provide results
according to the
specified result type

Decompression
xs::InplaceProcessor

Decompress read
chunks

ProcessingInput Output

01
10

[user@client ~]$./main --print
This is the first matching line
Also here is another line that matches
matches are relatively raw
However what matches, matches

std::vector<T>

Searching a plain Text File

11

Read Data in Chunks
xs::DataProvider

Each chunk ends with a new
line character

Search
xs::ReturnProcessor

Search according to the
specified settings
● Literal
● Regex
● Ignore case

Collect Search Results
xs::Result

Provide results according
to the specified result
type

ProcessingInput Output

[user@client ~]$./main --print
This is the first matching line
Also here is another line that matches
matches are relatively raw
However what matches, matches

std::vector<T>

Questions?

Evaluation
x-search

xs grep

Dataset
● OpenSubtitles2016

○ 9.3 GiB
○ 337’845’355 lines

24

Pattern
● Literal: “Sherlock”

○ 13’645

Benchmark Metrics
● Wall Time
● CPU Time

Hardware
● RAID0 NVMe SSD
● HDD

Reading from SSD

26

Reading from HDD

28

Reading from HDD: Compressed Input

29

Pattern “Sherlock”

data.txt 9.3G

data.zst 1.5G

data.xs.zst 1.5G

data.xs.meta 9.6M

zstdcat

Questions?

What else can x-search do?

20

1. Supporting different search results (T)
○ xs::lines
○ xs::count
○ xs::count_lines
○ xs::match_byte_offsets
○ xs::line_byte_offsets
○ xs::line_indices

auto searcher = xs::extern_search<T>(...);

What else can x-search do?

19

1. Supporting different search results (T)
2. Controlling the searcher

○ searcher.join(): Wait for the search to finish
○ searcher.stop(): Force stop the searcher
○ searcher.getResult()->begin(): Access results live

auto searcher = xs::extern_search<T>(...);

What else can x-search do?

19

1. Supporting different search results (T)
2. Controlling the searcher
3. Accessing search results

auto searcher = xs::extern_search<T>(...);

What else can x-search do?

19

1. Supporting different search results (T)
2. Controlling the searcher
3. Accessing Search Results
4. Providing an extended API

○ Implement custom DataProvider-, InplaceProcessor- and ReturnProcessor-Tasks
○ Implement custom Result-Types

auto searcher = xs::extern_search<T>(...);

xs grep: A GNU grep-like command line search tool
● Single pattern and single file input
● Command-Line-Options:

○ -F [--fixed-string]
○ -i [--ignore-case]
○ -o [--only-matching]
○ -n [--line-number]
○ -b [--byte-offset]
○ -c [--count]

○ -j [--threads]
○ --max-readers
○ -m [--metafile]
○ --no-mmap

23

GNU grep equivalents

Additional arguments

SIMD Substring Search Algorithm

25

This sped up using simd instructions.

Pattern: “simd”

ssssssss

dddddddd

00010100

00000100
00010100
00000100

memcmp(data + __builtin_ctz(mask) + 1, pattern + 1, 2)

mask :=

Pattern: “simd”Pattern: “simd”

SIMD Substring Search Algorithm

26

This sped up using simd instructions.

Pattern: “simd”

ssssssss

dddddddd

00000010

00000000
00000010
00000000mask :=

SIMD Substring Search Algorithm

27

This sped up using simd instructions.

Pattern: “simd”

memcmp(data + __builtin_ctz(mask) + 1, pattern + 1, 2)

ssssssss

dddddddd

00010000

00010000
00010000
00010000mask :=

Appendix

Data Characteristics
Size 9.3 GiB

Number of Lines 337’845’355

Bytes per Line

Mean 29.5

Min 1

25% Quartile 14

50% Quartile 24

75% Quartile 38

Max 26’586

Appendix

Pattern Matching Lines % of Lines

“Sherlock” 13’645 0.004

“ [sS][A-Za-z]*[Kk] ” 1’079’731 0.320

Pattern Characteristics

Thread Management

25
Number of worker Threads

Pattern:

“ [Ss][A-Za-z]*[Kk] ”

Reading from RAM cache

Reading from SSD

26

Pattern:

“ [Ss][A-Za-z]*[Kk] ”

Appendix

Appendix

Appendix

Appendix

Benchmark Metrics
● Wall Time
● CPU Time

24

Scenario 0:

One Thread reads data from disk and writes
the read data to standard out. The program
runs 1 second.

○ Wall: 1 seconds
○ CPU: 0.1 seconds

Scenario 1:

Two threads simultaneously search two
different patterns within a string. The
program runs 1 second.

○ Wall: 1 second
○ CPU: 2 seconds

Appendix

Boyer-Moore: Bad Character

Data: this is a boyer-moore test!
Pattern: test| | | | || ‘s’ = 1
 test | | | || ‘ ‘ = 4
 test | | || ‘a’ = 4
 test | || ‘y’ = 4
 test || ‘m’ = 4
 test| ‘e’ = 2
 test ‘ ‘ = 4
 test

t 0

e 2

s 1

other pattern size: 4

Appendix

Boyer-Moore: Good Suffix

Data: reinesupersauersupesupersupe
Pattern: supersupe | |
 supersupe |
 supersupe
 supersupe

e 1

pe 10

upe 11

supe 12

rsupe 9

ersupe 10

persupe 11

upersupe 12

x-search: Basic Usage

39

[lfreist@xps ~]$ time ./example_grep Sherlock data.txt

real 0m0.933s
user 0m0.640s
sys 0m0.320s

[lfreist@xps ~]$ time grep Sherlock data.txt

real 0m3.572s
user 0m2.626s
sys 0m0.869s

Metafile Structure

40

0 32 64
Size (bits)

va
lue

s

Compression Type (int)

Original Offset (uint64_t)

Actual Offset (uint64_t)

Original Size (uint64_t)

Actual Size (uint64_t)

Number of newline-offset-mapping data (uint64_t)

Byte offset (uint64_t)

Corresponding line index (uint64_t)

⋮

Appendix

