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Why External String Search?

Information Retrieval Natural Language Processing Bioinformatics
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Problem



GNU grep Comes Short in Different Terms
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● No library
● No multi-thread support for searching a single file
● No direct preprocessing supported
● License issues

Aims for this Thesis
● Implement a C++ library
● Support multi-threading
● Support preprocessing (compression)
● Be faster than GNU grep



Questions?



Solution

High Level ViewportSimple Usage



x-search: Basic Usage
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$ basic_grep pattern /path/to/file

// basic_grep.cpp
#include “xsearch/xsearch.h”
#include <iostream>

int main(int argc, char** argv) {
  auto searcher = xs::extern_search<xs::lines>(argv[1], argv[2], false, 1);
  for (auto const& line : *searcher->getResult()) {
    std::cout << line << '\n';
  }
}
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A Pipeline as Base-Construct
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Final Processing
xs::ReturnProcessor

● Substring search

Providing Data
xs::DataProvider

● Reading from file

Optional Processing
xs::InplaceProcessor

● Compression
● Decompression

Result
xs::Result

Managing partial results provided by the 
ReturnProcessor



Preprocessing
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Reading Data in Chunks
xs::DataProvider

Each chunk ends with a 
new line character

Compression
xs::InplaceProcessor

Compress chunks using
● LZ4
● LZ4 HC
● ZSTD

Write (Meta) Data
xs::ReturnProcessor

xs::Result

● Write metadata to a metafile
● Write compressed data to a 

file
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ProcessingInput Output



Searching a Preprocessed File
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Read Data in Chunks
xs::DataProvider

Read Metadata and 
chunks from input file

Search
xs::ReturnProcessor

Search according to 
the specified settings
● Literal
● Regex
● Ignore case

Collect Search Results
xs::Result

Provide results 
according to the 
specified result type

Decompression
xs::InplaceProcessor

Decompress read 
chunks

ProcessingInput Output
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[user@client ~]$ ./main --print
This is the first matching line
Also here is another line that matches
matches are relatively raw
However what matches, matches

std::vector<T>



Searching a plain Text File
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Read Data in Chunks
xs::DataProvider

Each chunk ends with a new 
line character

Search
xs::ReturnProcessor

Search according to the 
specified settings
● Literal
● Regex
● Ignore case

Collect Search Results
xs::Result

Provide results according 
to the specified result 
type

ProcessingInput Output

[user@client ~]$ ./main --print
This is the first matching line
Also here is another line that matches
matches are relatively raw
However what matches, matches

std::vector<T>



Questions?



Evaluation
x-search

xs grep



Dataset
● OpenSubtitles2016

○ 9.3 GiB
○ 337’845’355 lines
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Pattern
● Literal: “Sherlock”

○ 13’645

Benchmark Metrics
● Wall Time
● CPU Time

Hardware
● RAID0 NVMe SSD
● HDD



Reading from SSD
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Reading from HDD

28



Reading from HDD: Compressed Input
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Pattern “Sherlock”

data.txt 9.3G

data.zst 1.5G

data.xs.zst 1.5G

data.xs.meta 9.6M

zstdcat



Questions?





What else can x-search do?
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1. Supporting different search results (T)
○ xs::lines
○ xs::count
○ xs::count_lines
○ xs::match_byte_offsets
○ xs::line_byte_offsets
○ xs::line_indices

auto searcher = xs::extern_search<T>(...);



What else can x-search do?
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1. Supporting different search results (T)
2. Controlling the searcher

○ searcher.join():               Wait for the search to finish
○ searcher.stop():               Force stop the searcher
○ searcher.getResult()->begin(): Access results live

auto searcher = xs::extern_search<T>(...);



What else can x-search do?

19

1. Supporting different search results (T)
2. Controlling the searcher
3. Accessing search results

auto searcher = xs::extern_search<T>(...);



What else can x-search do?
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1. Supporting different search results (T)
2. Controlling the searcher
3. Accessing Search Results
4. Providing an extended API

○ Implement custom DataProvider-, InplaceProcessor- and ReturnProcessor-Tasks
○ Implement custom Result-Types

auto searcher = xs::extern_search<T>(...);



xs grep: A GNU grep-like command line search tool
● Single pattern and single file input
● Command-Line-Options:

○ -F [--fixed-string]
○ -i [--ignore-case]
○ -o [--only-matching]
○ -n [--line-number]
○ -b [--byte-offset]
○ -c [--count]

○ -j [--threads]
○ --max-readers
○ -m [--metafile]
○ --no-mmap
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GNU grep equivalents

Additional arguments



SIMD Substring Search Algorithm
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This sped up using simd instructions.

Pattern: “simd”

ssssssss

dddddddd

00010100

00000100
00010100
00000100

memcmp(data + __builtin_ctz(mask) + 1, pattern + 1, 2)

mask :=

Pattern: “simd”Pattern: “simd”



SIMD Substring Search Algorithm
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This sped up using simd instructions.

Pattern: “simd”

ssssssss

dddddddd

00000010

00000000
00000010
00000000mask :=



SIMD Substring Search Algorithm
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This sped up using simd instructions.

Pattern: “simd”

memcmp(data + __builtin_ctz(mask) + 1, pattern + 1, 2)

ssssssss

dddddddd

00010000

00010000
00010000
00010000mask :=



Appendix

Data Characteristics
Size 9.3 GiB

Number of Lines 337’845’355

Bytes per Line

Mean 29.5

Min 1

25% Quartile 14

50% Quartile 24

75% Quartile 38

Max 26’586



Appendix

Pattern Matching Lines % of Lines

“Sherlock” 13’645 0.004

“ [sS][A-Za-z]*[Kk] ” 1’079’731 0.320

Pattern Characteristics



Thread Management
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Number of worker Threads

Pattern:

“ [Ss][A-Za-z]*[Kk] ”

Reading from RAM cache



Reading from SSD
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Pattern:

“ [Ss][A-Za-z]*[Kk] ”
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Benchmark Metrics
● Wall Time
● CPU Time
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Scenario 0: 

One Thread reads data from disk and writes 
the read data to standard out. The program 
runs 1 second.

○ Wall: 1 seconds
○ CPU: 0.1 seconds

 

Scenario 1:

Two threads simultaneously search two 
different patterns within a string. The 
program runs 1 second.

○ Wall: 1 second
○ CPU: 2 seconds 
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Boyer-Moore: Bad Character

Data:    this is a boyer-moore test!
Pattern: test|   |   |   |   ||       ‘s’ = 1
          test   |   |   |   ||       ‘ ‘ = 4
              test   |   |   ||       ‘a’ = 4
                  test   |   ||       ‘y’ = 4
                      test   ||       ‘m’ = 4
                          test|       ‘e’ = 2
                            test      ‘ ‘ = 4
                               test

t 0

e 2

s 1

other pattern size: 4
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Boyer-Moore: Good Suffix

Data:    reinesupersauersupesupersupe
Pattern: supersupe   |     |
              supersupe    |
                       supersupe
                            supersupe

e 1

pe 10

upe 11

supe 12

rsupe 9

ersupe 10

persupe 11

upersupe 12



x-search: Basic Usage
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[lfreist@xps ~]$ time ./example_grep Sherlock data.txt

real 0m0.933s
user 0m0.640s
sys 0m0.320s

[lfreist@xps ~]$ time grep Sherlock data.txt

real 0m3.572s
user 0m2.626s
sys 0m0.869s



Metafile Structure
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0 32 64
Size (bits)

va
lue

s

Compression Type (int)

Original Offset (uint64_t)

Actual Offset (uint64_t)

Original Size (uint64_t)

Actual Size (uint64_t)

Number of newline-offset-mapping data (uint64_t)

Byte offset (uint64_t)

Corresponding line index (uint64_t)

⋮
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