
Undergraduate’s Thesis

Merging of Overlapping GTFS Feeds

Leo Felix Zeches

Examiner: Prof. Dr. Hannah Bast
Advisers: Patrick Brosi

Albert-Ludwigs-University Freiburg

Faculty of Engineering

Department of Computer Science

Chair for Algorithms and Data Structures

April 04th, 2019

Writing Period

08. 01. 2019 – 08. 04. 2019

Examiner

Prof. Dr. Hannah Bast

Advisers

Patrick Brosi

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare, that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

The General Transit Feed Specification, GTFS for short, is a commonly used format

for public transportation schedules and related geographical information. Sometimes,

these feeds are covering the same network of public transportation and can overlap

for certain stations, routes and trips. This undergraduate thesis describes a way

to merge such trips in a manner that retains all the relevant information, as well

as recognizing duplicate trips and merging trips that are partially included in each

other.

iii

Zusammenfassung

"General Transit Feed Specification", kurz GTFS, ist ein verbreitetes Format welches

für Fahrpläne im Bereich der öffentlichen Verkehrsmittel benutzt wird. Teilweise

kommt es vor, dass solche Feeds das gleiche Netzwerk abdecken und sich so für

Stationen, Routen oder Trips überschneiden. Diese Bachelorarbeit beschreibt eine

Möglichkeit, solche Feeds zu erkennen und miteinander zu vereinigen. Dabei werden

alle relevanten Informationen erhalten sowie Duplikate und Überschneidungen erkannt

und angemessen behandelt.

v

Contents

1 Introduction 1

2 Related Work 7

3 Theoretical Background 9

3.1 Hash Maps . 9

3.2 GTFS-Format . 9

3.3 Data Structures . 11

3.4 2D Grid . 13

3.5 Different Types of Trips . 14

3.6 Algorithms . 15

3.6.1 Haversine Formula . 15

3.6.2 Timsort . 16

3.7 Memory Usage . 16

3.8 External Libraries . 17

4 Implementation 19

4.1 Reading in the GTFS-Feed . 19

4.2 Comparing and Merging the Trips 20

4.2.1 compareStopData . 21

4.2.2 compareCalendars . 21

4.2.3 Case 1: equivalentTrips() . 22

4.2.4 Case 2: includedTrips() . 22

vii

4.2.5 Case 3: partiallyIncluded() 23

4.2.6 Merging two Trips and creating a new one 24

4.3 Creating the Output . 24

5 Evaluation 27

5.1 The Evaluation Algorithm . 27

5.1.1 Splitting a GTFS-Feed . 27

5.1.2 Creating noise while splitting a GTFS-Feed 28

5.1.3 Evaluating two GTFS-Feeds 30

5.2 Results . 31

5.3 Conclusion . 39

6 Future Work 41

6.1 Managing the shape_id for merged trips 41

6.2 Managing entries that do not belong to any trip 41

6.3 Using optional attributes to put out more data 42

6.4 Improving the matching of trips using different attributes 42

6.5 Managing Overlapping Service Dates 43

6.6 Improving Memory Usage . 43

6.7 Running time optimization . 43

7 Acknowledgments 45

Bibliography 47

viii

List of Figures

1 Public Transport Organizations in Germany, Austria and Switzerland,

2019 . 3

2 IC and EC routes in Germany, 2016 4

3 IC routes in Switzerland, 2018 . 5

ix

List of Tables

1 Ground Truth 1 . 33

2 Ground Truth 2 . 34

3 Merge Result 1 . 36

4 Merge Result 2 . 38

xi

1 Introduction

The organization and managing of public transportation is a well documented and

prevailing field of work. As technology and connectivity increases, so does the need

for managing and organizing the accompanying data sets. In the field of public

transportation, many companies use the General Transit Feed Specification, or GTFS

for short. It contains relevant information regarding trips, stops and routes. This

common format is easy to create, read and use for a multitude of applications, which

is why many companies chose to publish their GTFS feeds to be used by developers

for a range of purposes. This thesis deals with the merging of two overlapping GTFS

feeds.

Different traffic companies tend to create their own GTFS feeds to fit their individual

needs. A feed from the company "Deutsche Bahn" can look very different to a feed

from the Swiss company "VÖV UTP".

Problems usually arise when two companies cover the same area or an overlapping

area. Take for example the public transportation between Germany and Switzerland.

Figure 1 shows the different public transport companies for the different regions in

Germany, Austria and Switzerland. Figure 2 shows different IC and EC routes from

Germany to other countries, such as Austria or Switzerland. On figure 3, we see

the IC plan for Switzerland. A German public transport company may choose to

include all of the international stops and trips in its GTFS feed. A Swiss company

may chose to only include local trips.

1

On listing 1.1 and listing 1.2, we can see a simple example for how two trips from

different agencies could look like. On listing 1.1, we have a trip "FBK" starting in

Freiburg and proceeding to Basel and Zürich. On listing 1.2, we have a trip "BaZue"

from a different public transportation agency. This trip is starting in Basel and then

proceeds to Zürich. Since their arrival- and departure times and stops are the same,

it is reasonable to suspect that the trip "BaZue" in feed 2 is included in the trip

"FBK" from feed 1.

tr ip_id , arr iva l_t ime , departure_time , stop_id , stop_sequence

FBK, 8 : 0 0 : 0 0 , 8 : 0 5 : 0 0 , FreiburgHBF ,1

FBK, 8 : 4 5 : 0 0 , 8 : 5 0 : 0 0 , BaselHBF ,2

FBK, 9 : 5 0 : 0 0 , 1 0 : 0 0 : 0 0 , ZuerichHBF ,3

Listing 1.1: Example for stop_times.txt for a GTFS feed A

tr ip_id , arr iva l_t ime , departure_time , stop_id , stop_sequence

BaZue , 8 : 4 5 : 0 0 , 8 : 5 0 : 0 0 , Basel , 1

BaZue , 9 : 5 0 : 0 0 , 1 0 : 0 0 : 0 0 , Zuerich , 2

Listing 1.2: Example for stop_times.txt for a GTFS feed B

If we want to merge those two GTFS feeds, we can end up with a lot of redundant

information, multiple equivalent router and overlapping trips. For that reason, we

need to find a way to compare different trips and merge them, if they are at the same

stops at the same times. This is not as simple as it may seem at first; different GTFS

feeds may have very different values for the same stops or trips. For example, a stop

could be marked as "Freiburg Hauptbahnhof" or as "Freiburg im Breisgau, HBF".

In this thesis, we will discuss an approach to merge overlapping GTFS feeds, using

geological location and stop times to match and merge trips. Our output is a valid

GTFS feed with no redundant information that can be used for other applications.

2

Figure 1: Public Transport Organizations in Germany, Austria and Switzerland,
2019

3

Figure 2: IC and EC routes in Germany, 2016
4

Figure 3: IC routes in Switzerland, 2018

5

2 Related Work

After extensive research, we could not find any relevant work that focused on merging

overlapping GTFS feeds. In this chapter, we will have a look at a few thesis’ and

works that revolve around GTFS feeds in general.

On Github, a merging tool simply titled "Merge" [1] exists. This tool is used if an

agency changes their service periods and wants to to merge existing trips to close

gaps in their service times. According to the documentaion, this tool is mainly

intended to merge schedules. New stops will be handled but other changes may cause

problems.

In 2017, Tran et al. [2] published a thesis on semantic comparisons between GTFS

feeds. In this thesis, the contents of trips are compared to each other on a semantic

level. After reading in the feeds, the program starts by comparing the different

routes. For this comparison, the entries for route_type, route_short_name and

route_long_name are compared to each other using the levenshtein algorithm to

allow for small deviations. Then, trips that are stored in hash maps using stop_times

entries as keys. When comparing the trips to each other, the results are stored as

TripData-Objects that contain additional information like the percentage of differences

in the stop_times. Stops are compared if two stop_time objects have the same

arrival_time and departure_time. Stop objects are matched using their stop_names

and the levenshtein algorithm as well as their geographical location using the Vincenty

formula. Finally, the service times are compared using the week days and start_dates

and end_dates.

While this work focuses on finding semantic differences and similarities between

7

GTFS feeds, our thesis focuses on merging overlapping GTFS feeds.

In 2017, Zhang et al. [3] published a thesis on public-transit data extraction from

OpenStreetMap (OSM for short). In the first step, the relevant information is

extracted from the OSM data and stored in a railway network. The second step

focuses on fixing incorrect entries, such as missing information or gaps. Finally,

the network is transformed into a valid GTFS feed and visualized using Transit

Visualization Client (TVC) and OpenTripPlanner (OTP). The paper also talks about

the limitations of OSM data and the resulting performance.

8

3 Theoretical Background

We used a number of data structures and algorithms in the implementation of our

program. In the following chapter, we will take a look at the most important ones,

as well as giving a small overview of the most important external libraries used.

3.1 Hash Maps

A hash map is used to store data elements using a key. This key can then be used

to search and access the element. The key is calculated using a hash function. A

hash function usually takes the data to be stored and calculates a key based on that

data itself. This key is used to access the data later on. In our program, we use the

python hash function to calculate a key to store our data into a hash map.

In our program, mostly use python dictionaries, which is a form of a hash map. The

keys are set manually, so that we know the value of the key. When using dictionaries

and hash maps, we have to make sure our keys are well distributed in order to avoid

collisions.

A useful aspect of hash maps is the efficient running time to access a data element.

If we know the key of the element, we can access it in O(1) if the hash map is

constructed well and if the elements are distributed evenly.

3.2 GTFS-Format

The General Transit Feed Specification [4] is a format developed by Google. It is

made up of text files usually compressed into a zip file. The documentation specifies

9

13 text files containing CSV-data (comma-separated-values), with 7 of these text files

being required, and the other 6 being optional. The files themselves have required

and optional attributes. In this thesis, we will only work with the required files and

attributes, which are as follows:

• agency.txt: One or multiple transit agencies that provide the data for the

GTFS feed. Contains the required attributes agency_name, agency_url and

agency_timezone.

• stops.txt: The individual stop locations. Contains the required attributes

stop_id, stop_name, stop_lat and stop_lon.

• routes.txt: The transit routes. A route is a group of trips. Contains the required

attributes route_id, route_short_name, route_long_name and route_type.

• trips.txt The trips for each route. A trip is a sequence of multiple stops for

a specific time. Contains the required attributes route_id, service_id and

trip_id.

• stop_times.txt The different times for when a stop is frequented. Contains

the required attributes trip_id, arrival_time, departure_time, stop_id and

stop_sequence.

• calendar.txt Dates for services with a weekly schedule. Contains the required

attributes service_id, monday, tuesday, wednesday, thursday, friday, saturday,

sunday, start_date and end_date.

• calendar_dates.txt Exceptions for the dates specified in calendar.txt. Contains

the required attributes service_id, date and exception_type.

On listing 3.1, we see a section the stop_times.txt file from the example file sample-

feed.zip from the Google developer site.

10

tr ip_id , arr iva l_t ime , departure_time , stop_id , stop_sequence ,

stop_headsign , pickup_type , drop_off_time , shape_dist_trave led

STBA, 6 : 0 0 : 0 0 , 6 : 0 0 : 0 0 ,STAGECOACH, 1 , , , ,

STBA, 6 : 2 0 : 0 0 , 6 : 2 0 : 0 0 ,BEATTY_AIRPORT, 2 , , , ,

CITY1 , 6 : 0 0 : 0 0 , 6 : 0 0 : 0 0 ,STAGECOACH, 1 , , , ,

CITY1 , 6 : 0 5 : 0 0 , 6 : 0 7 : 0 0 ,NANAA, 2 , , , ,

CITY1 , 6 : 1 2 : 0 0 , 6 : 1 4 : 0 0 ,NADAV, 3 , , , ,

CITY1 , 6 : 1 9 : 0 0 , 6 : 2 1 : 0 0 ,DADAN, 4 , , , ,

CITY1 , 6 : 2 6 : 0 0 , 6 : 2 8 : 0 0 ,EMSI , 5 , , , ,

CITY2 , 6 : 2 8 : 0 0 , 6 : 3 0 : 0 0 ,EMSI , 1 , , , ,

CITY2 , 6 : 3 5 : 0 0 , 6 : 3 7 : 0 0 ,DADAN, 2 , , , ,

CITY2 , 6 : 4 2 : 0 0 , 6 : 4 4 : 0 0 ,NADAV, 3 , , , ,

CITY2 , 6 : 4 9 : 0 0 , 6 : 5 1 : 0 0 ,NANAA, 4 , , , ,

CITY2 , 6 : 5 6 : 0 0 , 6 : 5 8 : 0 0 ,STAGECOACH, 5 , , , ,

AB1, 8 : 0 0 : 0 0 , 8 : 0 0 : 0 0 ,BEATTY_AIRPORT, 1 , , , ,

AB1, 8 : 1 0 : 0 0 , 8 : 1 5 : 0 0 ,BULLFROG, 2 , , , ,

AB2, 1 2 : 0 5 : 0 0 , 1 2 : 0 5 : 0 0 ,BULLFROG, 1 , , , ,

AB2, 1 2 : 1 5 : 0 0 , 1 2 : 1 5 : 0 0 ,BEATTY_AIRPORT, 2 , , , ,

BFC1, 8 : 2 0 : 0 0 , 8 : 2 0 : 0 0 ,BULLFROG, 1 , , , ,

BFC1, 9 : 2 0 : 0 0 , 9 : 2 0 : 0 0 ,FUR_CREEK_RES, 2 , , , ,

BFC2, 1 1 : 0 0 : 0 0 , 1 1 : 0 0 : 0 0 ,FUR_CREEK_RES, 1 , , , ,

BFC2, 1 2 : 0 0 : 0 0 , 1 2 : 0 0 : 0 0 ,BULLFROG, 2 , , , ,

Listing 3.1: Section of stop_times.txt from sample-feed.zip

3.3 Data Structures

Our program is based on the concept of object-oriented programming. In order to

handle the data effectively, we created an object class for every kind of text file in

11

the GTFS feed. Using these classes, we create objects for every entry of a text file.

The object classes are as follows:

• Stop:

Contains variables for the required and optional attributes of an entry in

stops.txt. Additionally it has a method to change stop_name as well as

stop_lat and stop_lon. This method is used for our evaluation, which will be

explained in detail in chapter 5.1.

• StopTime

Contains variables for the required and optional attributes of an entry in

stop_times.txt. Additionally it has a method to change the values of ar-

rival_time and departure_time. This method is used for our evaluation, which

will be explained in detail in chapter 5.1.

• Route

Contains variables for the required and optional attributes of an entry in

routes.txt.

• Agency

Contains variables for the required and optional attributes of an entry in

agency.txt.

• Calendar

Contains variables for the required and optional attributes of an entry in

calendar.txt.

• CalendarDates

Contains variables for the required and optional attributes of an entry in

calendar_dates.txt.

12

• Trip

Contains variables for the required and optional attributes of an entry in

trips.txt. Additionally, this class contains list variables to store other objects.

Each trip object has a list for stop_times, stops, routes, calendars, calen-

dar_dates, routes and agencies. These are filled with the objects that are

referencing the trip object itself. This way, a trip object contains all of the

other objects relevant to itself. A trip object also has a method to change the

trip_id and a method to create noise in other objects. These methods are

used for our evaluation, which will be explained in detail in chapter 5.1. A

trip object also contains a __key__ attribute with a hash value we use by

hashing the entries for service_id, route_id and trip_id. A trip object also

contains a set __compared__, used to store the trip keys of every trip we

already compared. This allows us to avoid comparing the same trips multiple

times.

3.4 2D Grid

To optimize the running time of our program, we construct a 2D grid using python

lists. A 2D grid is one large list where each element is another list. This creates a

data structure where we can store and access elements using two index, one for the

outer list (or x-axis) and one for the inner list (y-axis).

The grid is used to store keys of trips that have a similar geographical location. Each

field of the grid represents a 20km by 20km area. For each of our stop objects, we

calculate the distance to our starting point (0,0) using the haversine formula. This

distance is then divided by 20, giving us the index for the field in which the stop is

located. Then, every trip that accesses this stop is written into the field.

When comparing our trips, we only compare the trips that are in the same field or

in the adjacent fields. This avoids comparing trips that share no stops among them,

reducing the number of trips we need to compare with each other. This greatly

13

improves our running time.

3.5 Different Types of Trips

In our program, we check the trips for 4 different cases. These cases are as follows:

• Case 1: Two trips are equivalent

For two trips to be equivalent, they must frequent the same stops at the same

time at the same dates. Only if every stop and time matches for both trips, we

can make sure that they are equivalent and delete one of the two trips from

the merged feed.

• Case 2: A small trip is included in a bigger trip

This is the case when a first trip has less stop_times than a second trip. Besides

that, the smaller trip needs to frequent the same stops at the same times at

the same dates for every stop_time. If this is the case, we can conclude that

the smaller trip is included in the bigger trip and delete the smaller trip from

the merged feed.

• Case 3: Two trips are partially included in each other

If the end of tripA and the start of tripB are overlapping, then they are partially

included in each other. If this is the case, we create a new trip out of them,

starting from the beginning of tripA, continuing over the intersecting part of

both trips, and ends on the remaining trips from tripB. We append the new

trip to our merged feed and delete tripA and tripB.

• Case 4: Two trips are distinct

If none the cases 1-3 applies, the trips are completely distinct and we keep

them both in our merged feed.

14

3.6 Algorithms

3.6.1 Haversine Formula

The haversine formula determines the great-circle-distance between two points on

a spherical model of the earth, given their latitudes and longitudes. We use this

formula in our program to determine the distance between two stop objects. The

formula looks as follows:

Let the central angle θ between two points on a sphere be defined as:

θ = d
r

where d is the distance between the two points and r is the radius of the sphere.

The haversine formula of Θ is given by:

hav(Θ) = hav(ϕ2 − ϕ1) + cos(ϕ1) · cos(ϕ2) · hav(λ2 − λ1)

where ϕ1, ϕ2 are the latitudes of point 1 and point 2 and λ1, λ2 are the longitudes of

point 1 and point 2.

The haversine function of an angle θ is:

hav(θ) = sin2(θ2) = 1−cos(θ)
2

In order to solve for distance d, we apply the inverse function to the central angle

Θ:

d = r · hav−1(hav(Θ)) = 2 · r · arcsin(
√
hav(Θ))

or, more explicitly:

d = 2 · r · arcsin(
√

sin2(ϕ2−ϕ1
2) + cos(ϕ1) · cos(ϕ2) · sin2(λ2−λ1

2))

As mentioned before, the haversine formula calculates the distance between two

points on a perfect sphere. This means that the results will always be a (very close)

approximation, since we know that the earth is not a perfect sphere. To calculate

the distance between two points on the surface of a spheroid, we would have to

15

use the vincenty formula [5]. This would provide us with an even more accurate

distance between two stops. However, we chose not to use this formula since the

calculation of the vincenty formula is iterative and uses a lot more computing power.

Using the haversine formula provides us with a result that is accurate enough to

determine if two stop points are on the same geographical location, while not using

up unnecessary computing power.

3.6.2 Timsort

To sort lists in our programs, we use the python built-in function sort(), which is

using a sorting algorithm called Timsort [6]. Timsort works as follows:

If the list has fewer than 64 items, Timsort will execute an insertion sort. If the list

has more than 64 items, which is mostly the case in our program, Timsort will pass

through the list, checking for parts that are already strictly increasing or decreasing.

If parts are decreasing, those parts are switched. Then the algorithm divides the list

up into block known as Run. The size of run varies between 32 and 64, depending on

the size of the list. The run blocks are sorted using insertion sort and then merging

the run blocks using merge sort.

The time complexity of Timsort is O(n) in the best case and O(n · log(n)) in the

average and worst case.

3.7 Memory Usage

The majority of the information handled by our program comes in the form of strings.

These are stored into our created objects. The largest amount of data we have to

handle are the hash keys in the trip object set __compared__. This set contains

all of the hash keys for the trips already compared to the trip in question. This

means that we have a potential of (m + n)2 entries for the combined sets in the

worst case, with n being the number of trips in feed1 and m being the number of

trips in feed2. The size of these keys is size_t, which is 64 bit or 8 byte on a 64

16

bit machine. This has the potential to increase memory usage for big data sets.

Imagine two GTFS feeds with 10’000 trips each. This means that we have to store

20′0002 = 400′000′000 hash keys in the worst case. At 8 bytes a key, this equals 3.2

GB of memory storage for the hash keys. While this is an amount most machines

can handle, it is understandable how this can quickly become an issue when dealing

with greater amounts of data. In the average case, we have to only This point is

further addressed in chapter 6.

3.8 External Libraries

• csv

CSV is a python library to read and write csv files. Since we are dealing

exclusively with csv text files in our GTFS feeds, this tool allows us to easily

read in our text files and create our objects. The first line of a file is taken as

the header, containing the field names of the entries. Then, every line after

the header is split at the comma symbols. Then every entry is mapped to its

corresponding field name from the header. [7]

• haversine

A simple library that uses the haversine formula to calculate the distance

between two points on the Earth using their latitude and longitude. Returns

the distance in miles or kilometers. [8]

• datetime

The datetime module supplies classes for handling and manipulating dates

and times. We mostly use the datetime.time and datetime.datetime classes,

to make comparisons between times and dates easier. The format is [hour,

minute, second, microsecond] for datetime.time and [year, month, day, hour,

minute, second, microsecond] for datetime.datetime. [9]

• memory_profiler

17

This is a python module to monitor memory consumption of a process, or for

a line by line analysis. In our case, we use the function decorator to analyze

the memory consumption of our main function in gtfsMerge. [10]

18

4 Implementation

In the following section, we will take a look at the implementation of the program.

The program can be split into 3 main parts:

1. Reading the GTFS-Feeds

2. Comparing and merging the trips

3. Creating the output

4.1 Reading in the GTFS-Feed

In this first part of the program, the two zip files are assigned and opened to access

the different text files. Every text file we read has a header, which is the first line in

the file. It provides the field names for the values that follow.

First, we read the trips.txt file from each of our two feeds, using our function

readTrips(). The bytes are transformed into strings using TextIOWrapper [11]. Since

we are dealing with comma-separated-values, we use the CSV-Reader to read the

string. This gives us ordered dictionaries where the field names are the keys, and the

entries are the values. These dictionaries are then used as input to create the trip

objects.

The trip objects are stored in a dictionary using their trip_id as keys. We then

read in each of the required text files, using the same approach: reading the entries,

creating objects, storing them in a dictionary.

After reading every value of every required file in the two feeds, we start filling

the trip objects using the function fillTrips(). The trip objects are filled with the

corresponding stop objects, stop_time objects list, calendar objects, calendar_date

19

objects and route objects. This is done by comparing the dictionary keys with the

values of the trips. Now every trip object has a list with the corresponding stop

objects, stop_time objects, calendar objects, calendar_dates objects and route

objects. The stop_data list is also sorted in order. This is so that we can iterate

over them and check for matching sequences when comparing two trips.

Additionally, we create stop_data tuples. These tuples include a datetime object of

the arrival time of a stop time object, as well as a stop object with the corresponding

stop object. These stop_data tuples allow for an easier comparison between trips,

providing us with a time and a place to compare. The tuples are stored in a list

and added to the trip objects. Now our trip objects are ready to be compared and

merged.

4.2 Comparing and Merging the Trips

In the following section we have a look at the main comparing function compareTrips()

of our program.

We iterate over a dictionary containing our merged stop objects of feed 1 and feed 2.

For every stop, we first take the trips that are in the grid field corresponding to this

stop. Then, we also take the trips of the fields adjacent to the first field. This gives

us all of the trips with a similar geographical location we need to compare. This list

of trips is then sorted by their stop_times, to make that they are in order when we

iterate over the trips. To sort the list, we use the python function sort().

We pop the first item from the list as tripA. Then we compare this first tripA to every

other tripB in the remaining list and check if the trips fall into one of the four cases

we referred to in chapter 3. We also add the keys of tripA to the __compared__ set

of tripB, so we won’t need to compare the same trips twice.

After iterating through the list once, we pop the next item and repeat the process

again. This is done until every trip has been compared and we move on to the next

stop.

Since we need to compare every trip with every other trip in the grid fields, our

20

comparison function is in O((n+m)2) in the worst case, with n being the number

of trips in feed1 and m the number of trips in feed2. This is very rare in practice

however, and our average case is O(g2), with g being the number of trips with a

similar geographical location. This is still not perfect, and the problem of running

time optimization will be discussed in further detail in chapter 6.

The comparisons are using the functions compareStopData() and compareCalendars()

to compare stop_data tuples and calendar objects.

4.2.1 compareStopData

Comparing the stop_data tuples is done by comparing the arrival times and the stop

objects separately. To compare the arrival times, we subtract one datetime object

from the other and take the absolute difference in unit of seconds. We then divide

this difference by 60, giving us the difference in units of minutes. We check if the

difference is smaller than 3. If the difference is equal or greater than 3, we return

False. We also compare the stop_objects by calculating their distance to each other.

This is done by taking their coordinates stop_lat for the latitude and stop_lon for

the longitude and calculating the distance using the haversine formula. This returns

the distance in unit of kilometers. The distance is then multiplied by 1000, giving us

the distance in units of meters. We check if the difference is smaller than 5. If the

difference is equal or greater than 5, we return False.

If both comparisons result true, we conclude that both stop_data tuples are equal

and return True. In essence, this means that two trips arrive at this same stop at

the same time.

4.2.2 compareCalendars

Comparing the calendar objects is done by checking if their day lists are equal and if

their start and stop date are equal. If there are differences, we conclude that the

calendars describe different days and/or dates and we return False. If there are no

differences, we conclude that the calendar objects describe the same time period,

21

and we return True.

This comparison does not handle overlapping start and end dates. This is a case

that will be discussed further in chapter 6.

4.2.3 Case 1: equivalentTrips()

To check if two trips are equivalent, we use the equivalentTrips() function. We start

by making sure that their stop_data lists have the same length. If they are not the

same length, we already know they cannot be the same trip and continue with the

next case check. If the lists have the same length, we compare their calendar lists

and check if the trips are frequenting on the same week days. If this the case, we

iterate once though both stop_data lists comparing the stop data tuples at the same

index. Since they are sorted, this iteration will return True only if the sequence of

stop data tuples (and therefor frequented stops) are equal.

If every iteration of stop tuples returns True, we conclude that the two trips are

passing through the same stops at the same time for the same dates. We can then

conclude that the trips are equal, even if their other values may differ from each

other. If this is the case, we delete the trip from the second feed. Since the two trips

are equal, we can merge them by deleting one of them. Then we continue with the

next inner loop iteration over the trip list. However, if one pair of stop_data tuples

is different, we break and check for the next case.

4.2.4 Case 2: includedTrips()

To check if one trip is included in the other trip, we start by checking if one trip has

a smaller stop_data list than the other. Having this information, we can start the

includedTrips() function. Again, we start by comparing the calendars of the two trips.

If they are equal, we will continue by comparing the actual stop data tuples. Since

the stop data tuples are in order, we check for a matching tuple and then iterate

over the two lists at the same time, checking if the following stop data tuples match

as well. If this is the case for the entire list of the smaller trip, we can conclude that

22

that trip is completely included in the bigger trip, even if their other values may

differ. In that case, we delete the smaller trip and continue our iteration over the

trip list. If not, we continue by checking for the third case.

4.2.5 Case 3: partiallyIncluded()

As in the previous cases, we check if the calendars are describing the same dates. If

this is the case, we check if either the first stop_data tuple of the first trip matches a

tuple in the second trip. If we have a match, we start checking if the following stop

data tuples are matching as well. As soon as we find a unmatching pair after our

first match, we can conclude that the trips are not partially included in each other,

and we break the loop and exit the function.

If we do not find a match for the first tuple of the first trip, we check for the first

tuple of the second trip. In order for two trips to be partially equivalent, at least one

of the two first tuples of the two trips must find a match. If not, we can conclude

that they are not partially equivalent, and do not need to compare the rest of the

stop-data tuples. We can break the function after 2 · n comparisons, where n =

number of stop_data tuples, because it takes us n comparisons to check if the first

tuple of the first trip finds a match, and n comparisons to check if the first tuple fo

the second trip finds a match.

Lastly, if we were able to find a match and iterate through the remaining tuples

without a problem, we check if the number of common stop data tuples is greater

than 1. This condition is important, because if only one stop data is equal in both

trips, we can not definitely say that both trips can be merged. It could be the case

that one trip is ending at the matching stop, and the other trip (on a different vehicle

or on a different platform).

If we have a matching section of stop data tuples, we create a new trip object

containing the whole sequence of stops and stop times. Then we delete both trips

from their lists and append the new trip to the second list.

23

4.2.6 Merging two Trips and creating a new one

To merge two trips and create a new trip, we start by creating a new trip object taking

the values for route_id, service_id, trip_headsign, trip_short_name, direction_id,

block_id, wheelchair_accessible, bikes_allowed from one of the two trips that will be

merged. For a new trip_id, we simply take the two values from the two merged trips

and concatenate the two strings with a "+" in between. This is to make sure that we

won’t accidentally create a trip id that is already taken. (It is not impossible that

an existing trip id is accidentally created, but using the "+" ensures that it won’t

happen in practice.) The value for shape_id will be set to "", because we cannot

simply take one of the shape_ids from one trip. Creating a new shape_id will be

discussed further in the chapter 6.

For the values of stop_data, we take the common stop_data of both trips and add

the additional stop_data from trip 1 and from trip 2. The same is done to the values

of stop_times, this time by only adding the additional values from trip 1 to the list of

trip 2. Afterwards, we sort them by their arrival_time and redo their stop_sequence

values. The stop values are gathered by extracting the stop objects from the new

stop_data list. The stop objects themselves remain the same. Finally, we add the

lists for calendars, calendar_dates, routes and agency from one of the two trips to

our new trip object. This is simple, because if we merge two trips, their calendars,

calendar_dares, routes and agency should be the same, so we can simply take over

these values. Thus, our new trip object is finished.

4.3 Creating the Output

Once we have merged our trip dictionaries, we return them as a list of trip objects.

Using this list, we can go through every trip and extract every stop_time object, stop

object, calendar object, calendar_dates object, route object and agency object. This

way, we have only the relevant objects for our newly merged trips. This also means

that every object that did not belong to a trip in the original two feeds will be "lost".

24

This problem is addressed further in Chapter 6.

After extracting all of the values, we start creating the text files. Each file starts by the

appropriate header. After that, we use the __toString__() method of every object to

fill in the entries. After creating every file, we zip them up using shutil.make_archive()

function [12]. Our final output is a zip file called "MergedFeed.zip", containing a

trips.txt, stops.txt, stop_times.txt, calendars.txt, calendar_dates.txt, routes.txt and

agency.txt file that contain the entries of the two merged feeds.

25

5 Evaluation

In order to evaluate our program, we merge different GTFS-Feeds and check if their

essential information is retained, while the equivalent or overlapping feeds are handled

in the right way. To achieve this, we have to create a ground truth. However, it

would be impossible to create a real ground truth by merging and evaluating two

real life feeds. We would have to analyze the newly created feed by hand, analyzing

every line of every text file and comparing it to the two lines from the two original

feeds. To avoid this problem, we can generate a "fake" ground truth by splitting an

existing GTFS-Feed and merging it again. Then, we can compare the merged feed

with the original feed and check if the program is working as intended.

5.1 The Evaluation Algorithm

To split a GTFS-Feed and compare it to our newly merged feed, we have created the

Evaluation Algorithm.

5.1.1 Splitting a GTFS-Feed

We can use our algorithm to split an existing GTFS-Feed. This is done by firstly

reading the contents of the zip-file using the same approach as our gtfsMerge algorithm.

The trip dictionary is then split into two lists tripsA and tripsB. Random integers are

used to determine whether a trip is put into tripsA or tripsB. Each trip has a chance

of 40% chance to be put in either tripsA or tripsB. Each trip also has a 20% chance

of being split into two different trips. To split a original trip into two new trips,

we build two new trip objects. The values for route_id, service_id, trip_headsign,

27

direction_id, block_id are kept the same, since they do not need to change to split

the trip effectively. The lists for agency, calendar_dates, calendar and routes are

also kept the same for both trip objects. The first value we change is the trip_id,

since this id should still be unique for this trip. We create two trip ids by splitting

the id of the original trip and assigning each half to one of our newly created trips.

We then select a split point for the stop_time list, since this is one of the lists we

have to split to create two distinct trips. If the number of stop times is greater than

4, we split them in a way that they overlap each other (for example a trip with

the stop times "ABCD" will be split into two trips with the stop times "ABC" and

"BCD"). This way, we can evaluate the function of our program to recognize and

merge partially overlapping trips. If the number of stop times is smaller than 4, we

will split the stop times in a way that one smaller trip is included in a bigger trip

(same example: trip with stop times "ABC" will be split into two trips with stop

times "AB" and "ABC"). This way, we can also evaluate the function of our program

to recognize and merge trips that are included in each other. We then rearrange the

stop_sequence of the stop times so they are in order again, and give each stop time

their new trip_id. After that, we assign the correct stop objects to each trip, since

not every stop should be assigned to the newly created trips. Finally, each trip is

added to either tripsA or tripsB. After every trip has been dealt with, we generate

two GTFS-Feeds using our two lists of trip objects using the same approach as our

main gtfsMerge program, and the final output is two zip files SplitFeedA.zip and

SplitFeedB.zip.

5.1.2 Creating noise while splitting a GTFS-Feed

Another useful feature to evaluate the quality of our main algorithm is the creation

of noise during the splitting process. The term "noise" describes changes in the

original values of the split feed that makes it harder to match and merge trips. Noise

mimics real life problems like spelling errors or small differences in arrival_time

or departure_time. In our evaluation algorithm, we implemented 3 modes to add

28

different levels of noise:

Mode 0: no noise

The values of the trips are kept the same (except from the trip_id in the split trips)

Mode 1: small amount of noise

In this mode, we add small amount of noise. With a chance of 30%, a trip will add

small changes, such as mixing up the stop_name for the stop objects or increasing

the arrival_time and departure_time by a few seconds (max. 2 minute difference).

Mode 2: large amount of noise

In this mode, we add a large amount of noise. With a chance of 80%, a trip will

add big changes. These changes include the same alterations as mentioned in mode

1. Additionally, the arrival_time and departure_time can be changed by up to

10 minutes. Additionally, we change important values such as trip_id and stop

coordinates. This amount of noise will change two matching trips so much that our

program will not merge them, since the differences are bigger than our tolerance

levels.

On Figure 5.1 we can see a section of the stops.txt from the GTFS feed sample-file.zip

before we added any noise to it. On Figure 5.2, we see the same section after adding

a small amount of noise, namely to the values of stop_name. On Figure 5.3, we

see the same section again, after adding a large amount of noise to the values of

stop_name and stop_lat, stop_lon.

29

stop_id , stop_name , stop_lat , stop_lon

BEATTY_AIRPORT,Nye County Airport ,36 .868446 , −116.784582

BULLFROG, Bul l f rog ,36 .88108 , −116.81797

STAGECOACH, Stagecoach Hotel & Casino ,36 .915682 , −116.75167

NANAA, North Ave / N A Ave ,36.914944 , −116.761472

Listing 5.1: Section of stops.txt from sample-feed.zip before adding noise

stop_id , stop_name , stop_lat , stop_lon

BEATTY_AIRPORT,yN eoCnuytA r i op t r ,36 .868446 , −116.784582

BULLFROG, uBl l r f go ,36 .88108 , −116.81797

STAGECOACH, tSgaceaohcH t o l e& C san i oD,36.915682 , −116.751677

NANAA, oNtr hvA e / N AvA e ,36.914944 , −116.761472

Listing 5.2: Section of stops.txt from sample-feed.zip after adding noise to the
values of stop_name

stop_id , stop_name , stop_lat , stop_lo

BEATTY_AIRPORT,yN eoCnuytA r i op t r ,36.870497335 , −116.782659944

BULLFROG, uBl l r f go ,36.881965733 , −116.816864765

STAGECOACH, tSgaceaohcH t o l e& C san i oD,36.91588751 , −116.75167

NANAA, oNtr hvA e / N AvA e ,36.914944 , −116.761472

Listing 5.3: Section of stops.txt from sample-feed.zip after adding noise to the
values of stop_name, stop_lat and stop_lon

5.1.3 Evaluating two GTFS-Feeds

To evaluate our main gtfsMerge algorithm, we need to compare the merged feed

to its original form. Our evaluation starts by reading in the two zip files using

the same approach as the gtfsMerge program, giving us the dictionaries containing

30

the trip objects, stop objects, calendar objects etc. we need to compare. After

that, we compare each line of the trips.txt, stops.txt, stop_times.txt, calendar.txt,

calendar_dates.txt, routes.txt and agencies.txt files with each other. We check for

each dictionary key if we can find the same key in the second feed. After that, we

compare the lines by creating a string of the object, leaving out punctuation elements

like whitespaces and commata, since they are irrelevant to the information of an

csv-entry and may yet be different from one feed to the other. We then sort the

strings and check for differences between the two. Comparing every line using this

approach, we get the number of equal lines, different lines and additional lines, as

well as a percentage of differences for two GTFS-Feeds. The lower our difference

percentage is, the better our main algorithm has merged the split feed.

5.2 Results

In the following section, we take a look at the results obtained by using the algorithm

on different GTFS-Feeds as well as a running time and storage analysis of the program.

The running time has been obtained by using the program with minimal print()

commands and without the memory profiler, in order to not let these aspects change

the result.

The following results have been obtained using a personal laptop computer with

a Intel Core i5-7200U CPU @ 2.50GHz, 8 GB of RAM and a Windows 10 64-bit

operating system.

The percentages are the differences between the original feed and the merged feed.

It is calculated by dividing the sum of the different and additional lines by the total

number of lines in one feed:

differences(%) = differnt_lines+additional_lines
total_lines

Table 1 shows the ground truth we created by splitting "sample-feed.zip". Each field

gives the percentages of the differences between the original feed and the merged split

feed, using different kind of comparisons and different levels of noise. The running

time and memory usage are from the last merge operation, with Mode 3 and Noise

31

2. As expected, we have small differences between the original feed and the merged

feed when we are using Mode 0 and Mode 1. Since not every case is covered, some

trips that should be merged are left distinct. If we use the higher modes, every kind

of case is covered and partially included trips are merged, giving us a percentage

difference of 0% for Noise 0 and Noise 1.

For Noise 2, we have high differences between the original feed and merged feed.

This result is expected as well, since Noise 2 creates large amounts of differences

that are well above our margin of tolerance. The trips are no longer similar enough

to be merged.

Table 2 shows the ground truth we by splitting an official feed "chilliwack.zip". This

feed has been premerged to allow for a more accurate evaluation. As with table 1,

each field gives the percentages of the differences between the original feed and the

merged split feed, using different kind of comparisons and different levels of noise.

The running time and memory usage are from the last merge operation, with Mode

3 and Noise 2.

Again, we can see a small amount of differences with Noise 0 and Noise 1 for Mode 0

and Mode 1. The differences become smaller as we increase the Mode. With Noise 2,

the percentage is higher, again as expected, and decreases with Mode 2 and Mode

3.

We can see that we have an overall higher percentage of differences than in table 1.

This is mostly due to the evaluation algorithm. Since we are dealing with an official

real life feed, certain errors happened in the splitting and evaluation processes, like

split trips being included in other trips, or split trips suddenly becoming equal to

other split trips. These examples are rare and have been checked by hand to make

sure the merge program has handled them correctly.

32

GTFS-Feed 1: sample-feed.zip
file lines

trips.txt 11

stops.txt 9

stop_times.txt 28

calendar.txt 2

calendar_dates.txt 1

routes.txt 5

agency.txt 1

Mode 0 1 2 3
Noise 0 5.714% 5.714% 0.000% 0.000%
Noise 1 5.714% 5.714% 0.000% 0.000%
Noise 2 78.571% 78.571% 45.946% 45.946%

running time (milliseconds) 38.86914
memory usage (MiB) 36.1797

Table 1: Ground Truth 1 using "sample-feed.zip"

First table shows the number of lines for each text
file in the GTFS feed.
Second table shows the difference between the original
GTFS feed and the merged GTFS feed.
Mode specifies what kind of matching trips are handled:
Mode 0 for equivalent trips only, Mode 1 for equivalent and
included trips, Mode 2 for equivalent and partially included
trips, Mode 3 for every kind of trip. Noise specifies the
level of noise added to the feeds before merging: Noise 0
for no noise, Noise 1 for a small amount of noise, Noise 2
for a large amount of noise.
The third table shows the time it took to merge with Mode
3 and Noise 2 in milliseconds and the memory usage in
MiB.

33

GTFS-Feed 2: chilliwack_premerged.zip
file lines

trips.txt 462

stops.txt 291

stop_times.txt 11512

calendar.txt 4

calendar_dates.txt 1

routes.txt 10

agency.txt 1

Mode 0 1 2 3
Noise 0 2.414% 2.385% 0.488% 0.454%
Noise 1 2.539% 2.491% 0.548% 0.470%
Noise 2 37.766% 37.696% 16.088% 15.934%

running time (milliseconds) 16633.26716
memory usage (MiB) 47.6719

Table 2: Ground Truth 2 using "sample-feed.zip"

The First table shows the number of lines for
each text file in the GTFS feed.
Second table shows the difference between the original
GTFS feed and the merged GTFS feed.
Mode specifies what kind of matching trips are handled:
Mode 0 for equivalent trips only, Mode 1 for equivalent
and included trips, Mode 2 for equivalent and partially
included trips, Mode 3 for every kind of trip. Noise
specifies the level of noise added to the feeds before
merging: Noise 0 for no noise, Noise 1 for a small
amount of noise, Noise 2 for a large amount of noise.
The third table shows the time it took to merge with
Mode 3 and Noise 2 in milliseconds and the memory
usage in MiB.

34

Feed db_fv_premerged.zip
file lines

trips.txt 6925

stops.txt 714

stop_times.txt 102100

calendar.txt 2557

calendar_dates.txt 1

routes.txt 1485

agency.txt 14

Size zipped: 0.672 MB

Size unzipped: 4,28 MB

Feed ch_fv.zip
file lines

trips.txt 17625

stops.txt 5897

stop_times.txt 161471

calendar.txt 12455

calendar_dates.txt 12346

routes.txt 1544

agency.txt 62

Size zipped: 1,21 MB

Size unzipped: 8,28 MB

35

Merged Feed: "ch_fv + db_fv_premerged.zip"
file lines

trips.txt 11448

stops.txt 1862

stop_times.txt 142879

calendar.txt 3454

calendar_dates.txt 1178

routes.txt 2722

agency.txt 76

running time (milliseconds) 38’640’449.180
running time (minutes) 644.007
memory usage (MiB) 4445.705
Size zipped: 1.7 MB
Size unzipped: 6.43 MB

Table 3: Merge result 1 using feeds "ch_fv.zip" and
"db_fv_premerged.zip"

First two tables show the number of lines for
each feed as well as the size of the feed
The second table shows the number of lines for each
file in the merged feed as well as the time it took to
merge the feeds,the memory usage and the size of
the merged feed

36

Feed fraser_valley_feed.zip
file lines

trips.txt 483

stops.txt 243

stop_times.txt 10461

calendar.txt 5

calendar_dates.txt 0

routes.txt 15

agency.txt 1

Size zipped: 0.118 MB

Size unzipped: 0.845 MB

Feed comox_valley_feed.zip
file lines

trips.txt 2927

stops.txt 638

stop_times.txt 102075

calendar.txt 7

calendar_dates.txt 2

routes.txt 23

agency.txt 1

Size zipped: 0.872 MB

Size unzipped: 6,03 MB

37

Merged Feed: "commox_valley_feed + fraser_valley_feed.zip"
file lines

trips.txt 1576

stops.txt 878

stop_times.txt 51350

calendar.txt 12

calendar_dates.txt 1

routes.txt 38

agency.txt 2

running time (milliseconds) 2’555’623.13175
running time (minutes) 42.59
memory usage (MiB) 285.4
Size zipped: 0.393 MB
Size unzipped: 3.54 MB

Table 4: Merge result 2 using feeds "com-
mox_valley_feed.zip" and "fraser_valley_feed.zip"

First two tables show the number of lines
for each feed as well as the size of the feed
The second table shows the number of lines for
each file in the merged feed as well as the time it
took to merge the feeds,the memory usage and the
size of the merged feed.

38

5.3 Conclusion

The goal of this program is to merge overlapping GTFS feeds in a way that the

output is a valid GTFS feed retaining all of the relevant information while merging

and deleting equivalent, redundant and overlapping trips. The data handling has

been achieved using a csv reader and a 2D grid of lists to map the trips using their

geographical location. The matching has been achieved by using datetime objects

and the haversine formula to compare stop times and stops. our output is a valid

merged GTFS feed.

39

6 Future Work

In this section, we will take a look at possible improvements to the program that

could be done in future projects.

6.1 Managing the shape_id for merged trips

GTFS feeds have an optional text file called shapes.txt. In this file, the entries

describe the physical paths that a vehicle takes, consisting of a sequence of points.

Each trip can contain a shape_id, matching it to a shape in shapes.txt.

In our program, we ignore these text files and entries. If we merge two trips and

create a new trip, the shape_id needs to change, since it no longer fits the shape

it references. Since we merged two trips, the referenced shapes need to be merged

too.

Right now, we avoid this problem by setting the shape_id of the new trip to "". This

way, the new trip will not reference a incorrect shape from shapes.txt. This is a aspect

of our program that could be improved my creating a function that automatically

merges two shape objects if two trips are merged.

6.2 Managing entries that do not belong to any trip

When reading in our GTFS feed and building the program objects, we fill the trip

object with the other stop-, stop_times-, route-objects ect. We only fill them with

the objects that reference that specific trip. This means that entries that do not

match any trip in the feed are ultimately lost.

41

A useful addition to our program would be a function that takes care of "orphaned"

objects and adds them to our output. These objects could also be merged again

to check for duplicates that are already assigned to a trip object, to increase the

accuracy.

6.3 Using optional attributes to put out more data

At the current state of our program, we only manage the required text files from the

two GTFS feeds. We also only return the required text files in our merged GTFS

feed. A useful addition to our program would be a function that would handle the

optional text files by taking into consideration which kind of optional text files and

optional attributes are in the original feeds. This would increase the completeness of

our output.

6.4 Improving the matching of trips using different

attributes

At the current state of the program, we mainly use the attributes arrival_time,

stop_lat and stop_lon. If we wanted to increase running time, we can start looking

for additional arguments that would give us more information on which trips are to

be merged and which are discarded. With additional attributes, it could be possible

to shrink the number of trips to be compared with each other even further.

One way would be to implement a sort of data base or search engine that would

return the closest match for a given stop name. This way, we would not need to rely

on the haversine formula to compare the stop objects and running time and accuracy

would increase.

42

6.5 Managing Overlapping Service Dates

Our current program compares calendar dates by checking if the start- and end dates

of two trips are the same, or if one is included in the other. However, if we have

overlapping dates, the trips are handled as if they have different service times. To

improve accuracy in matching trips, we could check if two trips have overlapping

dates and merge them, taking the earlier start date and the later end date as the

new calendar dates for the trip.

6.6 Improving Memory Usage

Our current algorithm is using hash keys and sets to avoid comparing two trips

more than once. For big data sets, these sets of hash keys can become very memory

consuming. To avoid problems for machines with less memory, it would be advisable

to employ a more efficient way to store the data.

One way to achieve this would be to use data banks in combination with SQL to

store information of bigger feeds efficiently.

6.7 Running time optimization

In programming, running time is always an important area to work on in order to

improve a program. In our case, we do not need to compute and put out results

in real time, so a low running time is not of the highest priority. However, certain

improvements can still be made to decrease running time and increase the usefulness

of the program.

The function that takes the longest time to compute is compareTrips(). In this

function, we have certain nested loops that are running in O(n2) in the worst case,

which is not an optimal complexity. Improving this function can be done by only

comparing trips that are similar in the first place. This means only comparing trips

where we can determine a certain similarity beforehand, and discarding the rest of

43

the trips to be compared differently. This is already done by our 2D grid, but could

be extended even further.

One of these similarities could be the service dates. By using the different kind of

service dates to add another dimension to our 2D grid, we could reduce the numbers

of trips to compare to each other. This would improve our running time, although

we can’t be sure how by how much, since it is probable that the majority of trips

will frequent on the same service days from Monday to Friday.

44

7 Acknowledgments

First and foremost, I would like to thank Prof. Dr. Hannah Bast for enabling me to

work on this project.

I would also like to thank Patrick Brosi for his supervision, creative input and

support.

I would also like to thank my friends and family for supporting me throughout my

studies.

45

Bibliography

[1] Google, “Merge.” https://github.com/google/transitfeed/wiki/Merge.

[2] P. Tran, “Semantischer vergleich von fahrplandaten,” Bachelorarbeit, 2017.

[3] Z. Zhang, “Public-transit data extraction from openstreetmap data,” Bachelo-

rarbeit, 2017.

[4] “General transit feed specification.” https://developers.google.com/transit/gtfs/.

[5] N. A. Rooy, “Calculate the distance between two gps points with python

(vincenty’s inverse formula).” https://nathanrooy.github.io/posts/2016-12-

18/vincenty-formula-with-python/.

[6] “Timsort.” https://svn.python.org/projects/python/trunk/Objects/listsort.txt/.

[7] “Csv file reading and writing.” https://docs.python.org/3.7/library/csv.html.

[8] B. Rouberol, “Haversine.” https://github.com/mapado/haversine.

[9] “datetime–basic date and time types.” https://docs.python.org/3/library/datetime.html.

[10] “Memory profiler.” https://pypi.org/project/memory-profiler/.

[11] “Textiowrapper.” https://docs.python.org/3/library/io.html.

[12] “shutil.” https://docs.python.org/3/library/shutil.html.

	1 Introduction
	2 Related Work
	3 Theoretical Background
	3.1 Hash Maps
	3.2 GTFS-Format
	3.3 Data Structures
	3.4 2D Grid
	3.5 Different Types of Trips
	3.6 Algorithms
	3.6.1 Haversine Formula
	3.6.2 Timsort

	3.7 Memory Usage
	3.8 External Libraries

	4 Implementation
	4.1 Reading in the GTFS-Feed
	4.2 Comparing and Merging the Trips
	4.2.1 compareStopData
	4.2.2 compareCalendars
	4.2.3 Case 1: equivalentTrips()
	4.2.4 Case 2: includedTrips()
	4.2.5 Case 3: partiallyIncluded()
	4.2.6 Merging two Trips and creating a new one

	4.3 Creating the Output

	5 Evaluation
	5.1 The Evaluation Algorithm
	5.1.1 Splitting a GTFS-Feed
	5.1.2 Creating noise while splitting a GTFS-Feed
	5.1.3 Evaluating two GTFS-Feeds

	5.2 Results
	5.3 Conclusion

	6 Future Work
	6.1 Managing the shape_id for merged trips
	6.2 Managing entries that do not belong to any trip
	6.3 Using optional attributes to put out more data
	6.4 Improving the matching of trips using different attributes
	6.5 Managing Overlapping Service Dates
	6.6 Improving Memory Usage
	6.7 Running time optimization

	7 Acknowledgments
	Bibliography

