Undergraduate’s Thesis

Merging of Overlapping GTFS Feeds

Leo Felix Zeches

Examiner: Prof. Dr. Hannah Bast
Advisers: Patrick Brosi

Albert-Ludwigs-University Freiburg
Faculty of Engineering
Department of Computer Science

Chair for Algorithms and Data Structures

April 04™, 2019

Writing Period

08.01.2019 — 08.04. 2019

Examiner

Prof. Dr. Hannah Bast

Advisers

Patrick Brosi

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.

I hereby also declare, that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

Abstract

The General Transit Feed Specification, GTFS for short, is a commonly used format
for public transportation schedules and related geographical information. Sometimes,
these feeds are covering the same network of public transportation and can overlap
for certain stations, routes and trips. This undergraduate thesis describes a way
to merge such trips in a manner that retains all the relevant information, as well
as recognizing duplicate trips and merging trips that are partially included in each

other.

iii

Zusammenfassung

"General Transit Feed Specification", kurz GTFS, ist ein verbreitetes Format welches
fiir Fahrpldne im Bereich der 6ffentlichen Verkehrsmittel benutzt wird. Teilweise
kommt es vor, dass solche Feeds das gleiche Netzwerk abdecken und sich so fir
Stationen, Routen oder Trips iiberschneiden. Diese Bachelorarbeit beschreibt eine
Moglichkeit, solche Feeds zu erkennen und miteinander zu vereinigen. Dabei werden
alle relevanten Informationen erhalten sowie Duplikate und Uberschneidungen erkannt

und angemessen behandelt.

Contents

1 Introduction
2 Related Work

3 Theoretical Background

3.1 Hash Maps
3.2 GTFS-Format
3.3 Data Structures
34 2D Grido
3.5 Different Types of Trips
3.6 Algorithms

3.6.1 Haversine Formula . . .

3.6.2 Timsort
3.7 Memory Usage
3.8 External Libraries

4 Implementation

4.1 Reading in the GTFS-Feed
4.2 Comparing and Merging the Trips
4.2.1 compareStopData L.
4.2.2 compareCalendars,

4.2.3 Case 1: equivalentTrips()
4.2.4 Case 2: includedTrips()

11
13
14
15
15
16
16
17

19
19
20
21
21
22
22

vii

4.2.5 Case 3: partiallyIncluded()
4.2.6 Merging two Trips and creating anewone

4.3 Creating the Output

5 Evaluation
5.1 The Evaluation Algorithm
5.1.1 Splitting a GTFS-Feed
5.1.2 Creating noise while splitting a GTFS-Feed
5.1.3 Evaluating two GTFS-Feeds
5.2 Results. L

5.3 Conclusion e

6 Future Work
6.1 Managing the shape_id for merged trips
6.2 Managing entries that do not belong to any trip
6.3 Using optional attributes to put out moredata
6.4 Improving the matching of trips using different attributes
6.5 Managing Overlapping Service Dates
6.6 Improving Memory Usage

6.7 Running time optimization 0.
7 Acknowledgments

Bibliography

viii

27
27
27
28
30
31
39

41
41
41
42
42
43
43
43

45

47

List of Figures

1 Public Transport Organizations in Germany, Austria and Switzerland,

2 IC and EC routes in Germany, 2016
3 IC routes in Switzerland, 2018

ix

List of Tables

1 Ground Truth 1.
Ground Truth 2.

2
3
4

Merge Result 1 o
Merge Result 2

xi

1 Introduction

The organization and managing of public transportation is a well documented and
prevailing field of work. As technology and connectivity increases, so does the need
for managing and organizing the accompanying data sets. In the field of public
transportation, many companies use the General Transit Feed Specification, or GTFS
for short. It contains relevant information regarding trips, stops and routes. This
common format is easy to create, read and use for a multitude of applications, which
is why many companies chose to publish their GTFS feeds to be used by developers
for a range of purposes. This thesis deals with the merging of two overlapping GTFS
feeds.

Different traffic companies tend to create their own GTFS feeds to fit their individual
needs. A feed from the company "Deutsche Bahn" can look very different to a feed

from the Swiss company " VOV UTP".

Problems usually arise when two companies cover the same area or an overlapping
area. Take for example the public transportation between Germany and Switzerland.
Figure 1 shows the different public transport companies for the different regions in
Germany, Austria and Switzerland. Figure 2 shows different IC and EC routes from
Germany to other countries, such as Austria or Switzerland. On figure 3, we see
the IC plan for Switzerland. A German public transport company may choose to
include all of the international stops and trips in its GTFS feed. A Swiss company

may chose to only include local trips.

On listing 1.1 and listing 1.2, we can see a simple example for how two trips from
different agencies could look like. On listing 1.1, we have a trip "FBK" starting in
Freiburg and proceeding to Basel and Ziirich. On listing 1.2, we have a trip "BaZue"
from a different public transportation agency. This trip is starting in Basel and then
proceeds to Ziirich. Since their arrival- and departure times and stops are the same,
it is reasonable to suspect that the trip "BaZue" in feed 2 is included in the trip

"FBK" from feed 1.

trip_id ,arrival__time ,departure_time ,stop_id,hstop_sequence
FBK,8:00:00,8:05:00 , FreiburgHBF |1

FBK,8:45:00,8:50:00 , BaselHBF ;2

FBK,9:50:00,10:00:00 , ZuerichHBF ,3

Listing 1.1: Example for stop_ times.txt for a GTFS feed A

trip_id ,arrival__time ,departure_time ,stop_id,stop_sequence
BaZue,8:45:00,8:50:00, Basel ,1
BaZue,9:50:00,10:00:00, Zuerich ,2

Listing 1.2: Example for stop_ times.tat for a GTFS feed B

If we want to merge those two GTFS feeds, we can end up with a lot of redundant
information, multiple equivalent router and overlapping trips. For that reason, we
need to find a way to compare different trips and merge them, if they are at the same
stops at the same times. This is not as simple as it may seem at first; different GTFS
feeds may have very different values for the same stops or trips. For example, a stop
could be marked as "Freiburg Hauptbahnhof" or as "Freiburg im Breisgau, HBF".

In this thesis, we will discuss an approach to merge overlapping GTFS feeds, using
geological location and stop times to match and merge trips. Our output is a valid

GTFS feed with no redundant information that can be used for other applications.

Verkehrs- und Tarifverbiinde in Deutschland, Osterreich und der Schweiz

* Die TGL und der VRK bieten keinen
Gemelnschaftstarif an, betreiben aber
die Fahrplankoordination fir SPNV und
Regionalbuslinien.

1 Der Landkreis Anhalt-Bitterfeld verfigt
{iber einen Bt der

Legende

[Verbiinde mit SPNV/SPFV-Integration*

] Verbiinde mit SPFV-Integration,
die nur Jahres- und Monatsabonnements anbieten

[Verbiinde ohne SPNV-Integration

[] Verbiinde ohne Gemeinschaftstarif,
die nur Fahrplankoordination betreiben

[Verbundfreie Gebiete

] Teilgebiete eines Verbunds mit SPNV-Integration, in
denen ein weiterer Verbund mit eigensténdigem
Tarif fiir die Regionalbuslinien operiert

[Teilgebiete eines Verbunds mit SPNV-Integration, in
denen einem weiterem Verbund die Fahrplankoor-
dination der Regionalbuslinien obliegt

[ZZ] Gebiete, in denen die Zustandigkeiten fiir Gemein-
schaftstarif und Fahrplankoordination bei unter-
schiedlichen Verbiinden liegen

-

Dachtarife mit SPNV-Integration

Dachtarife werden von mehreren Verbiinden oder Verkehrsunter-
nehmen gemeinsam angeboten und bieten auch fiir den Alltags-
und Berufsverkehr ein umfangreiches Tarifsortiment (d.h. es gibt im
Normalfall Tageskarten, Einzelfahrkarten und Zeitkarten sowie
Sondertarife fiir Rentner, Schiler, Kinder usw.)

*In Deutschland kann in den Verbiinden meist nur der SPNV genutzt werden, in Osterreich und in der Schweiz auch der SPFV.

SPNV = SPFV = Schi
DEUTSCHLAND
Baden-Wiirttemberg VG LandsbergerVG Niedersachsen VGStb VTG Steinburg
bodo Bodensee-Ol mona firden byE Busverkehr Mite/Nord VRK WV Region Kiel
DING Donatlller-NW/ Nahverkehr im Allgiu CeBus CeBus Thilringen
FB FahrBus Ostalb MSP - Maln-Spessart NVG die Offis NV Hameln-Pyrmont GRZ GRZ Service- und Verwaltungs-
Filsl. Filsland Mobilititsverbund MW - Manchner VTV GVH Grofiraum-Verkehr Hannover GmbH Greiz
HNV Heilbronner Hohenloher NWN NVG Weiden - Neustadt a.d. HW Hamburger W PV lim-Krels PersonenVGes
Haller NV Waldnaab ROW-T... ROW-Tarif 9 IVRPV
htv Heidenheimer Vv OVG OstallgiuerVG VBN W Bremen-Niedersachsen Personen\V Siidthiringen e\.
KVSHA Kreisverkehr Schwabisch Hall ~ ROVG Rosenheimer VG VEJ WEms-Jade KomBus KomBus GmbH genet
KW Karlsruher W RW Regensburger W/ VGB VG Grafschaft Bentheim MOV Mitteldeutscher VW
naldo W Neckar-Alb-Donau SW Salzburger W VGC VG Landkreis Cloppenburg RS Regionalbus und Stadtbus GmbH
NV NVHohenlohekreis TON Tarif Oberpfalz Nord VGE VG Emsland-Sud vew VGges Wartburgkrels
Ostalb... OstalbMobil VAB VG amBayerischenUntermain VGV VG Landkreis Vechta wWrow Mmmu,i?,gen
RTK RTKSchwarzwald-Baar-Heuberg VAS VG Ambach - Sulzbach VH VG Heidekreis VWG VWG des OPNV Sommerda mbH
RVF RegioW Freiburg \égzo xg iluﬂawﬁies VLN VGesLandkreis Nienburg
RVL RegioWVLdrrach Itétting VLS VG Landkreis Schaumburg A
60 TVOrenau VGC VG Coburg VNN VG Nordost OSTERREICH
TUTick.. W Tuttlingen VGF VGFichtelgebirge VOS VG Osnabriick 0OW Oberésterreichischer W
VGA VG Aalen VG-GAP VG Garmisch-Partenkirchen VRB VbT Region Braunschwelg SW Salzburger
VGC VGes Baderkreis Calw VGH VG HaBberge VSN WV Siid-Niedersachsen VOR WV Ostregion
vof VG Landkreis Freudenstadt VGl Ve Regrlv" 'ngﬂ‘sla:t Wend... Wendlandtarif WK VWKirnten
oy zﬂf‘"fa““' o Ve otam e Nordrhein-Westfalen WSt W stefermark
gau-Bodensee WI Wil
VPE W PforzheimEnzkreis VGT VGTirschenreuth AW Rachener W VW Whorarlberg
VRN W Rhein-Neckar VKK Verkehrskooperation Kulmbach ';‘I;" Nm‘;d?bmﬂ/”“‘e'
VSB W Schwarzwald-Baar VIC VG Landlaeis Cham e
WR W Rottmel VD VG Landreis Deggendorf Teuto... OstiWestfalenLippe Verkehr SCHWEIZ
WS VIVStuttgart VIK VG Landkreis Kelheim TG MRL TG Miinsterland - Ruhr-Lippe p.yelle Tv A-Welle
Wy Waldshuter TV VLMO VG Landkreis Mihidorf VGWS VG Westfalen-SCd bambus Bahn-mit-Bus Kreuzlingen

Bayern
AW AugsburgerVTV
DING Donau-ller-N

Keinen eigenstindigen Namen trég.

/ 7
engadin
gmbil

unireso

HoT Hochfrankentarif
Kim Kissingen mobil
LAW Landshuter W'

2019

Maximilian Dombecker, Januar 2019
(®(Q)| Lizenz coty i 5)
Kommentare und Fehlerhinweise bitte hier eintragen:
= BY SA ia

hitp:/ide wikipedia.org/wiki/User._talk Chumw

VP VG Landkreis Passau

VRG VG Rhon-Grabfeld

VSL VG Straubinger Land
VSW VG Schweinfurt

wm VUV Mainfranken

WM W Mittelschwaben
Berlin / Brandenburg
VBB W BerlinBrandenburg
Bremen

VBN WV Bremen-Niedersachsen
Hamburg

HW Hamburger W
Hessen

DADINA Darmstadt-Dieburger NVO
KVG KreisVGes Main-Kinzig

WOWL W OstiWestfalenLippe

VRR W Rheln-Ruhr

VRS W Rhein-Sieg

WT Westfalentarif

ZUMBus 2wV SPNV Minsterland - Fach-

bereich Bus
Rheinland-Pfalz
KW Karlstuherw
RMV Rhein-Main-VV'
AN Rhein-Nahe-NVV
VMW W Mainz Wiesbaden
VRM W Rhein-Mosel

VRN W Rhein-Neckar
VRT VVRegion Trier

Saarland
saarVV Saarlandischer W

BeoAbo TV Berner Oberland («BeoAbo»)

BUGA Bundner Generalabonnement

CIM Comunita'tariffale Ticino
Moesano (<Arcobalenos)

Qv CTvaudoise (cmobilis»)

engad... engadin mobil TV

FlexTax TV Schaffhausen («FlexTax»)

frimobil CT fribourgeoise (drimobib)

Libero Libero-Tarifverbund (cLibero»)

Onde... CTintégrale neuchateloise
(<Onde Vertes)

Ostwind Ostwind TV

Passe.. TV Luzem-Obwalden-
Nidwalden (cPassepartouts)

TNW TV Nordwestschweiz

TVSZ TV Schwyz («Schwyzerpass»)

TVZG TV Zug (cZugerpass»)

KVGOF KreisVGes Offenbach Sachsen unireso CT genevoise (unireso»)

NG LNVGKrels Limburg-Weilburg — ppy itteldeutscherW vagA... CTjurasslenne (cvagABONd»)

LNG Fu.. LNVG Fulda VMS VVd Mittelsachsen ZPass Z-Pass

INVG LNVG desKreises GroB-Gerau WO\ Oberelbe W Zircherw

MV Main-Taunus-VGes WY Wvogtland N

NW Nordhessischer v ZVON Zweckverband W Oberlausitz- Abkiirzungen

OREG gg:!‘m\i f:(eglunal Niederschlesien CT = Communauté tarifaire

RMV Rhein-Main-W Sachsen-Anhalt GI' = Gemeinschaftstarif

RNV Reglonaler NV Marburg- ABW Anhalt-Biterfeld-Wittenberg- LNVG = Lokale Nahverkehrsgesellschaft
Bedenkopt Tarlf NV = Nahverkehr

RV Rheingau-T marego Rergional NG = schaft

taffiQ traffiQ - LNVG Frankfurta.Main ~ MDV Mitteldeutscher W WO = Nahverkehrsorganisation

VGO Vees Oberhessen NL NVGJerichower Land NW = Nahverkefrsverbund

VAT Verkehroverband Hochtaunus NWB Neuer Wittenberger Busverkehr RTK = Regional Trfkooperation

VD Wishnol VIO VIGOstharz 6 = Tar\;eer;emds(han

. . TV = Tarifverbun
zm W::e‘l”"zmx:"d“ Schleswig-Holstein TVG = Tarif- undVerkehrsgemeinschaft
HW Hamburger W VbG = Verbundgesellschaft

Mecklenburg-Vorpommern ~ NAHSH Der Nahverkehr in VbT = Verbundtarif

GMS GT Mecklenburgische Schleswig-Holstein VG = Verkehrsgemeinschaft
Seenplatte oL TGLibeck VGes = Verkehrsgesellschaft

KGVP haft VGDmb VG VTG = Verkehrs- und Tarifgemeinschaft
Vorpommern VGNF VG Nordfriesland Reglonal VIV = Verkehrs- und Taifverbund

WW W Wamow VGOH VG Ostholstein VUV = Verkehrsunternehmens-Verbund

VWM VG Westmecklenburg VGRbEF VG Rendsburg-Eckemforde VWG = Verwaltungsgesellschaft

VGSF VG Schleswig-Flensburg

W = Verkehrsverbund

Public Transport Organizations in Germany, Austria and Switzerland,

ICE- und IC/EC-Strecken 2016 “esies e T

& FME'&'N\ = ,
— |CE-Strecken \ e S eneidng
IC/EC-Stracken LTy iy
= = iy Tl nwig
== Schnellfahrstrecken iber 200 km/h ; = =’

=mm= Sechnellfahrstrecken in Bau

3
s vl Rrapin
Apeldearn b Franifurt {0} -
= m—) Gydinia, Gdansk,
Amsterdam Warszawa
) Asmnhsm
Tl s
Hithaigl
Geilankingban O Dresden
Herzogenraih .. DO-Reustadt)
= Bad Schandau®
(i Desin
() Ui mad Labess
Brissel,
Paris
Praha-Halesevie Kalin
Praha'J Q
Brno,
Bratislava,
Budapest
- . Hurnberg
Saarbricken
L Heurm stk
0
) Regensborg
i SErauting
Paris. O o Pattling
B Ingsistas o
il Linz Wien,
- i
Miinchen C Budapest
A ey M- Dt b ahirinat
Frailassirg 1zbur~g
Mulhsuse (3 Prien Trevaam] abary 50d
Halin
Betleri-Meatbdbars b adutein b -. 3
7 Liss
e wa:?:u:ﬂnﬂh-lnq. is ‘ -
Fiitebisal o O Selrthal Lecten
. Kirchberg Binchoishbien Schilsdming =)
Bevangen * Zell e Sae O & St Jehans im Peagau L. e ol
Lyon, Marseille Innsbruck Dorlgastein ° Pz a =518
Venad Bad Holgastein &) Graz
' H mezia, Bad Daitein
Bern . Baologna, ' Klagenfurt,
u Interlaken O Chur Verana Ljubljana, Zagreb

Figure 2: IC and EC routes in Germany, 2016

Figure 3: IC routes in Switzerland, 2018

2 Related Work

After extensive research, we could not find any relevant work that focused on merging
overlapping GTFS feeds. In this chapter, we will have a look at a few thesis’ and
works that revolve around GTFS feeds in general.

On Github, a merging tool simply titled "Merge" [1] exists. This tool is used if an
agency changes their service periods and wants to to merge existing trips to close
gaps in their service times. According to the documentaion, this tool is mainly
intended to merge schedules. New stops will be handled but other changes may cause
problems.

In 2017, Tran et al. [2] published a thesis on semantic comparisons between GTFS
feeds. In this thesis, the contents of trips are compared to each other on a semantic
level. After reading in the feeds, the program starts by comparing the different
routes. For this comparison, the entries for route type, route_short name and
route__long name are compared to each other using the levenshtein algorithm to
allow for small deviations. Then, trips that are stored in hash maps using stop_ times
entries as keys. When comparing the trips to each other, the results are stored as
TripData-Objects that contain additional information like the percentage of differences
in the stop_ times. Stops are compared if two stop time objects have the same
arrival_time and departure_time. Stop objects are matched using their stop names
and the levenshtein algorithm as well as their geographical location using the Vincenty
formula. Finally, the service times are compared using the week days and start_dates
and end__dates.

While this work focuses on finding semantic differences and similarities between

GTFS feeds, our thesis focuses on merging overlapping GTFS feeds.

In 2017, Zhang et al. [3] published a thesis on public-transit data extraction from
OpenStreetMap (OSM for short). In the first step, the relevant information is
extracted from the OSM data and stored in a railway network. The second step
focuses on fixing incorrect entries, such as missing information or gaps. Finally,
the network is transformed into a valid GTFS feed and visualized using Transit
Visualization Client (TVC) and OpenTripPlanner (OTP). The paper also talks about

the limitations of OSM data and the resulting performance.

3 Theoretical Background

We used a number of data structures and algorithms in the implementation of our
program. In the following chapter, we will take a look at the most important ones,

as well as giving a small overview of the most important external libraries used.

3.1 Hash Maps

A hash map is used to store data elements using a key. This key can then be used
to search and access the element. The key is calculated using a hash function. A
hash function usually takes the data to be stored and calculates a key based on that
data itself. This key is used to access the data later on. In our program, we use the
python hash function to calculate a key to store our data into a hash map.

In our program, mostly use python dictionaries, which is a form of a hash map. The
keys are set manually, so that we know the value of the key. When using dictionaries
and hash maps, we have to make sure our keys are well distributed in order to avoid
collisions.

A useful aspect of hash maps is the efficient running time to access a data element.
If we know the key of the element, we can access it in O(1) if the hash map is

constructed well and if the elements are distributed evenly.

3.2 GTFS-Format

The General Transit Feed Specification [4] is a format developed by Google. It is

made up of text files usually compressed into a zip file. The documentation specifies

13 text files containing CSV-data (comma-separated-values), with 7 of these text files

being required, and the other 6 being optional. The files themselves have required

and optional attributes. In this thesis, we will only work with the required files and

attributes, which are as follows:

agency.txt: One or multiple transit agencies that provide the data for the
GTFS feed. Contains the required attributes agency name, agency url and

agency__timezone.

stops.txt: The individual stop locations. Contains the required attributes

stop__id, stop__name, stop_lat and stop_lon.

routes.txt: The transit routes. A route is a group of trips. Contains the required

attributes route_id, route short_mame, route_long name and route_type.

trips.txt The trips for each route. A trip is a sequence of multiple stops for
a specific time. Contains the required attributes route id, service id and

trip__id.

stop__times.txt The different times for when a stop is frequented. Contains
the required attributes trip_id, arrival _time, departure_time, stop id and

stop__sequence.

calendar.txt Dates for services with a weekly schedule. Contains the required
attributes service_id, monday, tuesday, wednesday, thursday, friday, saturday,

sunday, start_date and end__date.

calendar dates.txt Exceptions for the dates specified in calendar.txt. Contains

the required attributes service_id, date and exception__type.

On listing 3.1, we see a section the stop_ times.txt file from the example file sample-

feed.zip from the Google developer site.

10

trip_id ,arrival_time ,departure_time ,stop_id,6 stop_sequence,
stop__headsign , pickup_type ,drop_off time,shape_dist_traveled
STBA,6:00:00,6:00:00 ,STAGECOACH, 1, , , ,
STBA,6:20:00,6:20:00 ,BEATTY AIRPORT,2,,,,
CITY1,6:00:00,6:00:00 ,STAGECOACH, 1, , , ,
CITY1,6:05:00,6:07:00 ,NANAA,2 , , ,,
CITY1,6:12:00,6:14:00 ,NADAV,3, ,,,
CITY1,6:19:00,6:21:00 ,DADAN,4 , , ,,
CITY1,6:26:00,6:28:00 ,EMSL,5, , ,,
CITY2,6:28:00,6:30:00 ,EMSI,1,,,,
CITY2,6:35:00,6:37:00 ,DADAN, 2, , ,,
CITY2,6:42:00,6:44:00 ,NADAV,3 , , ,,
CITY2,6:49:00,6:51:00 ,NANAA,4 ., ,,
CITY2,6:56:00,6:58:00 ,STAGECOACH,5 , , , ,
AB1,8:00:00,8:00:00 ,BEATTY AIRPORT,1,,,,
AB1,8:10:00,8:15:00 ,BULLFROG, 2, , ,,
AB2,12:05:00,12:05:00 ,BULLFROG, 1, , , ,
AB2,12:15:00,12:15:00 ,BEATTY_AIRPORT, 2, , ,,
BFC1,8:20:00,8:20:00 ,BULLFROG, 1, , , ,
BFC1,9:20:00,9:20:00 ,FUR_CREEK RES,2,,,,
BFC2,11:00:00,11:00:00 ,FUR_CREEK RES,1,,,,
BFC2,12:00:00,12:00:00 ,BULLFROG, 2 , , , ,

Listing 3.1: Section of stop times.txt from sample-feed.zip

3.3 Data Structures

Our program is based on the concept of object-oriented programming. In order to

handle the data effectively, we created an object class for every kind of text file in

11

the GTFS feed. Using these classes, we create objects for every entry of a text file.

The object classes are as follows:

12

Stop:

Contains variables for the required and optional attributes of an entry in
stops.txt. Additionally it has a method to change stop name as well as
stop__lat and stop_lon. This method is used for our evaluation, which will be
explained in detail in chapter 5.1.

StopTime

Contains variables for the required and optional attributes of an entry in
stop__times.txt. Additionally it has a method to change the values of ar-
rival__time and departure__time. This method is used for our evaluation, which
will be explained in detail in chapter 5.1.

Route

Contains variables for the required and optional attributes of an entry in
routes.txt.

Agency

Contains variables for the required and optional attributes of an entry in
agency.txt.

Calendar

Contains variables for the required and optional attributes of an entry in
calendar.txt.

CalendarDates

Contains variables for the required and optional attributes of an entry in

calendar dates.txt.

e Trip

Contains variables for the required and optional attributes of an entry in
trips.txt. Additionally, this class contains list variables to store other objects.
Each trip object has a list for stop_times, stops, routes, calendars, calen-
dar_dates, routes and agencies. These are filled with the objects that are
referencing the trip object itself. This way, a trip object contains all of the
other objects relevant to itself. A trip object also has a method to change the
trip_id and a method to create noise in other objects. These methods are
used for our evaluation, which will be explained in detail in chapter 5.1. A
trip object also contains a __key_ attribute with a hash value we use by
hashing the entries for service id, route_id and trip_id. A trip object also
contains a set ___compared__, used to store the trip keys of every trip we
already compared. This allows us to avoid comparing the same trips multiple

times.

3.4 2D Grid

To optimize the running time of our program, we construct a 2D grid using python
lists. A 2D grid is one large list where each element is another list. This creates a
data structure where we can store and access elements using two index, one for the
outer list (or x-axis) and one for the inner list (y-axis).

The grid is used to store keys of trips that have a similar geographical location. Each
field of the grid represents a 20km by 20km area. For each of our stop objects, we
calculate the distance to our starting point (0,0) using the haversine formula. This
distance is then divided by 20, giving us the index for the field in which the stop is
located. Then, every trip that accesses this stop is written into the field.

When comparing our trips, we only compare the trips that are in the same field or
in the adjacent fields. This avoids comparing trips that share no stops among them,

reducing the number of trips we need to compare with each other. This greatly

13

improves our running time.

3.5 Different Types of Trips

In our program, we check the trips for 4 different cases. These cases are as follows:

14

e Case 1: Two trips are equivalent

For two trips to be equivalent, they must frequent the same stops at the same
time at the same dates. Only if every stop and time matches for both trips, we
can make sure that they are equivalent and delete one of the two trips from

the merged feed.

Case 2: A small trip is included in a bigger trip

This is the case when a first trip has less stop_ times than a second trip. Besides
that, the smaller trip needs to frequent the same stops at the same times at
the same dates for every stop_ time. If this is the case, we can conclude that
the smaller trip is included in the bigger trip and delete the smaller trip from

the merged feed.

Case 3: Two trips are partially included in each other

If the end of tripA and the start of tripB are overlapping, then they are partially
included in each other. If this is the case, we create a new trip out of them,
starting from the beginning of ¢ripA, continuing over the intersecting part of
both trips, and ends on the remaining trips from t¢ripB. We append the new

trip to our merged feed and delete tripA and tripB.

Case 4: Two trips are distinct

If none the cases 1-3 applies, the trips are completely distinct and we keep

them both in our merged feed.

3.6 Algorithms

3.6.1 Haversine Formula

The haversine formula determines the great-circle-distance between two points on
a spherical model of the earth, given their latitudes and longitudes. We use this
formula in our program to determine the distance between two stop objects. The
formula looks as follows:

Let the central angle 6 between two points on a sphere be defined as:
_d
0=7

where d is the distance between the two points and 7 is the radius of the sphere.

The haversine formula of © is given by:
hav(©) = hav(pa — p1) + cos(¢1) - cos(p2) - hav(Az — A1)

where 1, o are the latitudes of point 1 and point 2 and A1, Ao are the longitudes of
point 1 and point 2.

The haversine function of an angle 6 is:

hav(0) = sin?(§) = =0

In order to solve for distance d, we apply the inverse function to the central angle

O:
d=r-hav~ ! (hav(©)) = 2 - r - arcsin(y/hav(O))

or, more explicitly:

d=2-r- arcsin(\/sin2(502—;ﬂ) + cos(ip1) - cos(ipa) - sin?(22321))

As mentioned before, the haversine formula calculates the distance between two
points on a perfect sphere. This means that the results will always be a (very close)
approximation, since we know that the earth is not a perfect sphere. To calculate

the distance between two points on the surface of a spheroid, we would have to

15

use the vincenty formula [5]. This would provide us with an even more accurate
distance between two stops. However, we chose not to use this formula since the
calculation of the vincenty formula is iterative and uses a lot more computing power.
Using the haversine formula provides us with a result that is accurate enough to
determine if two stop points are on the same geographical location, while not using

up unnecessary computing power.

3.6.2 Timsort

To sort lists in our programs, we use the python built-in function sort(), which is
using a sorting algorithm called Timsort [6]. Timsort works as follows:

If the list has fewer than 64 items, Timsort will execute an insertion sort. If the list
has more than 64 items, which is mostly the case in our program, Timsort will pass
through the list, checking for parts that are already strictly increasing or decreasing.
If parts are decreasing, those parts are switched. Then the algorithm divides the list
up into block known as Run. The size of run varies between 32 and 64, depending on
the size of the list. The run blocks are sorted using insertion sort and then merging
the run blocks using merge sort.

The time complexity of Timsort is O(n) in the best case and O(n - log(n)) in the

average and worst case.

3.7 Memory Usage

The majority of the information handled by our program comes in the form of strings.
These are stored into our created objects. The largest amount of data we have to
handle are the hash keys in the trip object set __ compared . This set contains
all of the hash keys for the trips already compared to the trip in question. This
means that we have a potential of (m + n)? entries for the combined sets in the
worst case, with n being the number of trips in feedl and m being the number of

trips in feed2. The size of these keys is size_t, which is 64 bit or 8 byte on a 64

16

bit machine. This has the potential to increase memory usage for big data sets.
Imagine two GTFS feeds with 10’000 trips each. This means that we have to store
20/0002 = 400’000’000 hash keys in the worst case. At 8 bytes a key, this equals 3.2
GB of memory storage for the hash keys. While this is an amount most machines
can handle, it is understandable how this can quickly become an issue when dealing
with greater amounts of data. In the average case, we have to only This point is

further addressed in chapter 6.

3.8 External Libraries

® CSV

CSV is a python library to read and write csv files. Since we are dealing
exclusively with csv text files in our GTFS feeds, this tool allows us to easily
read in our text files and create our objects. The first line of a file is taken as
the header, containing the field names of the entries. Then, every line after
the header is split at the comma symbols. Then every entry is mapped to its

corresponding field name from the header. [7]

e haversine

A simple library that uses the haversine formula to calculate the distance
between two points on the Earth using their latitude and longitude. Returns

the distance in miles or kilometers. [8]

e datetime

The datetime module supplies classes for handling and manipulating dates
and times. We mostly use the datetime.time and datetime.datetime classes,
to make comparisons between times and dates easier. The format is [hour,
minute, second, microsecond| for datetime.time and [year, month, day, hour,

minute, second, microsecond] for datetime.datetime. [9]

e memory_ profiler

17

18

This is a python module to monitor memory consumption of a process, or for
a line by line analysis. In our case, we use the function decorator to analyze

the memory consumption of our main function in gtfsMerge. [10]

4 Implementation

In the following section, we will take a look at the implementation of the program.
The program can be split into 3 main parts:

1. Reading the GTFS-Feeds

2. Comparing and merging the trips

3. Creating the output

4.1 Reading in the GTFS-Feed

In this first part of the program, the two zip files are assigned and opened to access
the different text files. Every text file we read has a header, which is the first line in
the file. It provides the field names for the values that follow.

First, we read the trips.tzt file from each of our two feeds, using our function
readTrips(). The bytes are transformed into strings using TextIOWrapper [11]. Since
we are dealing with comma-separated-values, we use the CSV-Reader to read the
string. This gives us ordered dictionaries where the field names are the keys, and the
entries are the values. These dictionaries are then used as input to create the trip
objects.

The trip objects are stored in a dictionary using their trip id as keys. We then
read in each of the required text files, using the same approach: reading the entries,
creating objects, storing them in a dictionary.

After reading every value of every required file in the two feeds, we start filling
the trip objects using the function fillTrips(). The trip objects are filled with the

corresponding stop objects, stop__time objects list, calendar objects, calendar__date

19

objects and route objects. This is done by comparing the dictionary keys with the
values of the trips. Now every trip object has a list with the corresponding stop
objects, stop_ time objects, calendar objects, calendar dates objects and route
objects. The stop_ data list is also sorted in order. This is so that we can iterate
over them and check for matching sequences when comparing two trips.

Additionally, we create stop data tuples. These tuples include a datetime object of
the arrival time of a stop time object, as well as a stop object with the corresponding
stop object. These stop__data tuples allow for an easier comparison between trips,
providing us with a time and a place to compare. The tuples are stored in a list
and added to the trip objects. Now our trip objects are ready to be compared and

merged.

4.2 Comparing and Merging the Trips

In the following section we have a look at the main comparing function compareTrips()
of our program.

We iterate over a dictionary containing our merged stop objects of feed 1 and feed 2.
For every stop, we first take the trips that are in the grid field corresponding to this
stop. Then, we also take the trips of the fields adjacent to the first field. This gives
us all of the trips with a similar geographical location we need to compare. This list
of trips is then sorted by their stop_times, to make that they are in order when we
iterate over the trips. To sort the list, we use the python function sort().

We pop the first item from the list as tripA. Then we compare this first tripA to every
other tripB in the remaining list and check if the trips fall into one of the four cases
we referred to in chapter 3. We also add the keys of tripA to the __ compared___ set
of tripB, so we won’t need to compare the same trips twice.

After iterating through the list once, we pop the next item and repeat the process
again. This is done until every trip has been compared and we move on to the next
stop.

Since we need to compare every trip with every other trip in the grid fields, our

20

comparison function is in O((n +m)?) in the worst case, with n being the number
of trips in feedl and m the number of trips in feed2. This is very rare in practice
however, and our average case is O(g?), with g being the number of trips with a
similar geographical location. This is still not perfect, and the problem of running
time optimization will be discussed in further detail in chapter 6.

The comparisons are using the functions compareStopData() and compareCalendars()

to compare stop__data tuples and calendar objects.

4.2.1 compareStopData

Comparing the stop_ data tuples is done by comparing the arrival times and the stop
objects separately. To compare the arrival times, we subtract one datetime object
from the other and take the absolute difference in unit of seconds. We then divide
this difference by 60, giving us the difference in units of minutes. We check if the
difference is smaller than 3. If the difference is equal or greater than 3, we return
False. We also compare the stop_ objects by calculating their distance to each other.
This is done by taking their coordinates stop_ lat for the latitude and stop_lon for
the longitude and calculating the distance using the haversine formula. This returns
the distance in unit of kilometers. The distance is then multiplied by 1000, giving us
the distance in units of meters. We check if the difference is smaller than 5. If the
difference is equal or greater than 5, we return False.

If both comparisons result true, we conclude that both stop_ data tuples are equal
and return 7True. In essence, this means that two trips arrive at this same stop at

the same time.

4.2.2 compareCalendars

Comparing the calendar objects is done by checking if their day lists are equal and if
their start and stop date are equal. If there are differences, we conclude that the
calendars describe different days and/or dates and we return False. If there are no

differences, we conclude that the calendar objects describe the same time period,

21

and we return True.
This comparison does not handle overlapping start and end dates. This is a case

that will be discussed further in chapter 6.

4.2.3 Case 1: equivalentTrips()

To check if two trips are equivalent, we use the equivalentTrips() function. We start
by making sure that their stop_ data lists have the same length. If they are not the
same length, we already know they cannot be the same trip and continue with the
next case check. If the lists have the same length, we compare their calendar lists
and check if the trips are frequenting on the same week days. If this the case, we
iterate once though both stop_ data lists comparing the stop data tuples at the same
index. Since they are sorted, this iteration will return True only if the sequence of
stop data tuples (and therefor frequented stops) are equal.

If every iteration of stop tuples returns True, we conclude that the two trips are
passing through the same stops at the same time for the same dates. We can then
conclude that the trips are equal, even if their other values may differ from each
other. If this is the case, we delete the trip from the second feed. Since the two trips
are equal, we can merge them by deleting one of them. Then we continue with the
next inner loop iteration over the trip list. However, if one pair of stop_ data tuples

is different, we break and check for the next case.

4.2.4 Case 2: includedTrips()

To check if one trip is included in the other trip, we start by checking if one trip has
a smaller stop_ data list than the other. Having this information, we can start the
included Trips() function. Again, we start by comparing the calendars of the two trips.
If they are equal, we will continue by comparing the actual stop data tuples. Since
the stop data tuples are in order, we check for a matching tuple and then iterate
over the two lists at the same time, checking if the following stop data tuples match

as well. If this is the case for the entire list of the smaller trip, we can conclude that

22

that trip is completely included in the bigger trip, even if their other values may
differ. In that case, we delete the smaller trip and continue our iteration over the

trip list. If not, we continue by checking for the third case.

4.2.5 Case 3: partiallylncluded()

As in the previous cases, we check if the calendars are describing the same dates. If
this is the case, we check if either the first stop_ data tuple of the first trip matches a
tuple in the second trip. If we have a match, we start checking if the following stop
data tuples are matching as well. As soon as we find a unmatching pair after our
first match, we can conclude that the trips are not partially included in each other,
and we break the loop and exit the function.

If we do not find a match for the first tuple of the first trip, we check for the first
tuple of the second trip. In order for two trips to be partially equivalent, at least one
of the two first tuples of the two trips must find a match. If not, we can conclude
that they are not partially equivalent, and do not need to compare the rest of the
stop-data tuples. We can break the function after 2 - n comparisons, where n =
number of stop_data tuples, because it takes us n comparisons to check if the first
tuple of the first trip finds a match, and n comparisons to check if the first tuple fo
the second trip finds a match.

Lastly, if we were able to find a match and iterate through the remaining tuples
without a problem, we check if the number of common stop data tuples is greater
than 1. This condition is important, because if only one stop data is equal in both
trips, we can not definitely say that both trips can be merged. It could be the case
that one trip is ending at the matching stop, and the other trip (on a different vehicle
or on a different platform).

If we have a matching section of stop data tuples, we create a new trip object
containing the whole sequence of stops and stop times. Then we delete both trips

from their lists and append the new trip to the second list.

23

4.2.6 Merging two Trips and creating a new one

To merge two trips and create a new trip, we start by creating a new trip object taking
the values for route_id, service id, trip__headsign, trip__short_mame, direction_ id,
block__id, wheelchair__accessible, bikes allowed from one of the two trips that will be
merged. For a new trip_id, we simply take the two values from the two merged trips
and concatenate the two strings with a "+" in between. This is to make sure that we
won’t accidentally create a trip id that is already taken. (It is not impossible that
an existing trip id is accidentally created, but using the "+" ensures that it won’t
happen in practice.) The value for shape_id will be set to "", because we cannot
simply take one of the shape_ ids from one trip. Creating a new shape_id will be
discussed further in the chapter 6.

For the values of stop_ data, we take the common stop_data of both trips and add
the additional stop_ data from trip 1 and from trip 2. The same is done to the values
of stop__times, this time by only adding the additional values from trip 1 to the list of
trip 2. Afterwards, we sort them by their arrival_time and redo their stop sequence
values. The stop values are gathered by extracting the stop objects from the new
stop__data list. The stop objects themselves remain the same. Finally, we add the
lists for calendars, calendar_dates, routes and agency from one of the two trips to
our new trip object. This is simple, because if we merge two trips, their calendars,
calendar_dares, routes and agency should be the same, so we can simply take over

these values. Thus, our new trip object is finished.

4.3 Creating the Output

Once we have merged our trip dictionaries, we return them as a list of trip objects.
Using this list, we can go through every trip and extract every stop_time object, stop
object, calendar object, calendar_dates object, route object and agency object. This
way, we have only the relevant objects for our newly merged trips. This also means

that every object that did not belong to a trip in the original two feeds will be "lost".

24

This problem is addressed further in Chapter 6.

After extracting all of the values, we start creating the text files. Each file starts by the
appropriate header. After that, we use the ___ toString__ () method of every object to
fill in the entries. After creating every file, we zip them up using shutil.make_archive()
function [12]. Our final output is a zip file called "MergedFeed.zip", containing a
trips.txt, stops.txt, stop_ times.txt, calendars.txt, calendar_ dates.txt, routes.txt and

agency.txt file that contain the entries of the two merged feeds.

25

5 Evaluation

In order to evaluate our program, we merge different GTFS-Feeds and check if their
essential information is retained, while the equivalent or overlapping feeds are handled
in the right way. To achieve this, we have to create a ground truth. However, it
would be impossible to create a real ground truth by merging and evaluating two
real life feeds. We would have to analyze the newly created feed by hand, analyzing
every line of every text file and comparing it to the two lines from the two original
feeds. To avoid this problem, we can generate a "fake" ground truth by splitting an
existing GTFS-Feed and merging it again. Then, we can compare the merged feed

with the original feed and check if the program is working as intended.

5.1 The Evaluation Algorithm

To split a GTFS-Feed and compare it to our newly merged feed, we have created the

Evaluation Algorithm.

5.1.1 Splitting a GTFS-Feed

We can use our algorithm to split an existing GTFS-Feed. This is done by firstly
reading the contents of the zip-file using the same approach as our gtfsMerge algorithm.
The trip dictionary is then split into two lists tripsA and tripsB. Random integers are
used to determine whether a trip is put into tripsA or tripsB. Each trip has a chance
of 40% chance to be put in either tripsA or tripsB. Each trip also has a 20% chance
of being split into two different trips. To split a original trip into two new trips,

we build two new trip objects. The values for route_id, service_id, trip__headsign,

27

direction__id, block_id are kept the same, since they do not need to change to split
the trip effectively. The lists for agency, calendar _dates, calendar and routes are
also kept the same for both trip objects. The first value we change is the trip_id,
since this id should still be unique for this trip. We create two trip ids by splitting
the id of the original trip and assigning each half to one of our newly created trips.
We then select a split point for the stop time list, since this is one of the lists we
have to split to create two distinct trips. If the number of stop times is greater than
4, we split them in a way that they overlap each other (for example a trip with
the stop times "ABCD" will be split into two trips with the stop times "ABC" and
"BCD"). This way, we can evaluate the function of our program to recognize and
merge partially overlapping trips. If the number of stop times is smaller than 4, we
will split the stop times in a way that one smaller trip is included in a bigger trip
(same example: trip with stop times "ABC" will be split into two trips with stop
times "AB" and "ABC'"). This way, we can also evaluate the function of our program
to recognize and merge trips that are included in each other. We then rearrange the
stop__sequence of the stop times so they are in order again, and give each stop time
their new trip_id. After that, we assign the correct stop objects to each trip, since
not every stop should be assigned to the newly created trips. Finally, each trip is
added to either tripsA or tripsB. After every trip has been dealt with, we generate
two GTFS-Feeds using our two lists of trip objects using the same approach as our
main gtfsMerge program, and the final output is two zip files SplitFeedA.zip and
SplitFeedB. zip.

5.1.2 Creating noise while splitting a GTFS-Feed

Another useful feature to evaluate the quality of our main algorithm is the creation
of noise during the splitting process. The term "noise” describes changes in the
original values of the split feed that makes it harder to match and merge trips. Noise
mimics real life problems like spelling errors or small differences in arrival time

or departure__time. In our evaluation algorithm, we implemented 3 modes to add

28

different levels of noise:

Mode 0: no noise

The values of the trips are kept the same (except from the trip_id in the split trips)
Mode 1: small amount of noise

In this mode, we add small amount of noise. With a chance of 30%, a trip will add
small changes, such as mixing up the stop_name for the stop objects or increasing
the arrival__time and departure_time by a few seconds (max. 2 minute difference).
Mode 2: large amount of noise

In this mode, we add a large amount of noise. With a chance of 80%, a trip will
add big changes. These changes include the same alterations as mentioned in mode
1. Additionally, the arrival time and departure_time can be changed by up to
10 minutes. Additionally, we change important values such as trip_id and stop
coordinates. This amount of noise will change two matching trips so much that our
program will not merge them, since the differences are bigger than our tolerance
levels.

On Figure 5.1 we can see a section of the stops.txt from the GTFS feed sample-file.zip
before we added any noise to it. On Figure 5.2, we see the same section after adding
a small amount of noise, namely to the values of stop name. On Figure 5.3, we
see the same section again, after adding a large amount of noise to the values of

stop__name and stop__lat, stop__lon.

29

stop__id ,stop_name,stop_lat ,stop_lon

BEATTY AIRPORT,Nye County Airport ,36.868446,—116.784582
BULLFROG, Bullfrog ,36.88108,—-116.81797

STAGECOACH, Stagecoach Hotel & Casino,36.915682,—-116.75167
NANAA, North Ave / N A Ave,36.914944,—-116.761472

Listing 5.1: Section of stops.tzrt from sample-feed.zip before adding noise

stop__id ,stop__name, stop_lat ,stop_lon

BEATTY_AIRPORT,yN eoCnuytA rioptr ,36.868446,—116.784582
BULLFROG, uBllrfgo ,36.88108,—-116.81797

STAGECOACH, tSgaceaohcH tole& C sani 0D,36.915682,—-116.751677
NANAA, oNtr hvA e / N AvA ¢,36.914944,—-116.761472

Listing 5.2: Section of stops.tzt from sample-feed.zip after adding noise to the
values of stop _name

stop__id ,stop_name,stop_lat ,stop_lo

BEATTY_ AIRPORT,yN eoCnuytA rioptr ,36.870497335,—-116.782659944
BULLFROG, uBllrfgo ,36.881965733,—116.816864765

STAGECOACH, tSgaceaohcH tole& C sani 0D,36.91588751,—116.75167
NANAA, oNtr hvA e / N AvA ¢,36.914944,—-116.761472

Listing 5.3: Section of stops.txrt from sample-feed.zip after adding noise to the
values of stop__name, stop__lat and stop__lon

5.1.3 Evaluating two GTFS-Feeds

To evaluate our main gtfsMerge algorithm, we need to compare the merged feed
to its original form. Our evaluation starts by reading in the two zip files using

the same approach as the gtfsMerge program, giving us the dictionaries containing

30

the trip objects, stop objects, calendar objects etc. we need to compare. After
that, we compare each line of the trips.tzt, stops.txt, stop_times.txt, calendar.tzt,
calendar _dates.txt, routes.txt and agencies.txt files with each other. We check for
each dictionary key if we can find the same key in the second feed. After that, we
compare the lines by creating a string of the object, leaving out punctuation elements
like whitespaces and commata, since they are irrelevant to the information of an
csv-entry and may yet be different from one feed to the other. We then sort the
strings and check for differences between the two. Comparing every line using this
approach, we get the number of equal lines, different lines and additional lines, as
well as a percentage of differences for two GTFS-Feeds. The lower our difference

percentage is, the better our main algorithm has merged the split feed.

5.2 Results

In the following section, we take a look at the results obtained by using the algorithm
on different GTFS-Feeds as well as a running time and storage analysis of the program.
The running time has been obtained by using the program with minimal print()
commands and without the memory profiler, in order to not let these aspects change
the result.

The following results have been obtained using a personal laptop computer with
a Intel Core i5-7200U CPU @ 2.50GHz, 8 GB of RAM and a Windows 10 64-bit
operating system.

The percentages are the differences between the original feed and the merged feed.
It is calculated by dividing the sum of the different and additional lines by the total

number of lines in one feed:

. __ dif fernt_linestadditional_lines
dszerences(%) - total _lines

Table 1 shows the ground truth we created by splitting "sample-feed.zip". Each field
gives the percentages of the differences between the original feed and the merged split
feed, using different kind of comparisons and different levels of noise. The running

time and memory usage are from the last merge operation, with Mode & and Noise

31

2. As expected, we have small differences between the original feed and the merged
feed when we are using Mode 0 and Mode 1. Since not every case is covered, some
trips that should be merged are left distinct. If we use the higher modes, every kind
of case is covered and partially included trips are merged, giving us a percentage
difference of 0% for Noise 0 and Noise 1.

For Noise 2, we have high differences between the original feed and merged feed.
This result is expected as well, since Noise 2 creates large amounts of differences
that are well above our margin of tolerance. The trips are no longer similar enough
to be merged.

Table 2 shows the ground truth we by splitting an official feed ’chilliwack.zip". This
feed has been premerged to allow for a more accurate evaluation. As with table 1,
each field gives the percentages of the differences between the original feed and the
merged split feed, using different kind of comparisons and different levels of noise.
The running time and memory usage are from the last merge operation, with Mode
& and Noise 2.

Again, we can see a small amount of differences with Noise 0 and Noise 1 for Mode 0
and Mode 1. The differences become smaller as we increase the Mode. With Noise 2,
the percentage is higher, again as expected, and decreases with Mode 2 and Mode
3.

We can see that we have an overall higher percentage of differences than in table 1.
This is mostly due to the evaluation algorithm. Since we are dealing with an official
real life feed, certain errors happened in the splitting and evaluation processes, like
split trips being included in other trips, or split trips suddenly becoming equal to
other split trips. These examples are rare and have been checked by hand to make

sure the merge program has handled them correctly.

32

GTFS-Feed 1: sample-feed.zip

file lines
trips.txt 11
stops.txt 9
stop_ times.txt 28
calendar.txt 2
calendar dates.txt 1
routes.txt)
agency.txt 1
Mode |0 1 |2 | 3

Noise 0 5.714% 5.714% 0.000% 0.000%
Noise 1 5.714% 5.714% 0.000% 0.000%
Noise 2 78.571% 78.571% 45.946% 45.946%
running time (milliseconds) 38.86914
memory usage (MiB) 36.1797

Table 1: Ground Truth 1 using "sample-feed.zip"

First table shows the number of lines for each text

file in the GTF'S feed.

Second table shows the difference between the original

GTFS feed and the merged GTFS feed.

Mode specifies what kind of matching trips are handled:
Mode 0 for equivalent trips only, Mode 1 for equivalent and
included trips, Mode 2 for equivalent and partially included
trips, Mode 3 for every kind of trip. Noise specifies the
level of noise added to the feeds before merging: Noise 0
for no noise, Noise 1 for a small amount of noise, Noise 2

for a large amount of noise.

The third table shows the time it took to merge with Mode
3 and Noise 2 in milliseconds and the memory usage in

MiB.

33

GTFS-Feed 2: chilliwack premerged.zip

file lines
trips.txt 462
stops.txt 291
stop_ times.txt 11512
calendar.txt 4
calendar dates.txt 1
routes.txt 10
agency.txt 1
Mode |0 1 |2 | 3

Noise 0 2.414% 2.385% 0.488% 0.454%
Noise 1 2.539% 2.491% 0.548% 0.470%
Noise 2 37.766% 37.696% 16.088% 15.934%

running time (milliseconds)

16633.26716

memory usage (MiB)

Table 2: Ground Truth 2 using "sample-feed.zip"

The First table shows the number of lines for

each text file in the GTFS feed.

Second table shows the difference between the original

GTFS feed and the merged GTFS feed.

Mode specifies what kind of matching trips are handled:
Mode 0 for equivalent trips only, Mode 1 for equivalent
and included trips, Mode 2 for equivalent and partially
included trips, Mode 3 for every kind of trip. Noise
specifies the level of noise added to the feeds before
merging: Noise 0 for no noise, Noise 1 for a small
amount of noise, Noise 2 for a large amount of noise.

The third table shows the time it took to merge with
Mode 8 and Noise 2 in milliseconds and the memory

usage in MiB.

34

47.6719

Feed db_ fv_ premerged.zip

file lines
trips.txt 6925
stops.txt 714
stop_ times.txt 102100
calendar.txt 2557
calendar dates.txt 1
routes.txt 1485
agency.txt 14
Size zipped: 0.672 MB
Size unzipped: 4,28 MB

Feed ch_ fv.zip

file lines
trips.txt 17625
stops.txt 5897
stop_ times.txt 161471
calendar.txt 12455
calendar dates.txt 12346
routes.txt 1544
agency.txt 62
Size zipped: 1,21 MB
Size unzipped: 8,28 MB

35

Merged Feed: "ch_fv + db_ fv_ premerged.zip"

file lines
trips.txt 11448
stops.txt 1862
stop_ times.txt 142879
calendar.txt 3454
calendar dates.txt 1178
routes.txt 2722
agency.txt 76

running time (milliseconds)

38’640°449.180

running time (minutes) 644.007
memory usage (MiB) 4445.705
Size zipped: 1.7 MB
Size unzipped: 6.43 MB

Table 3: Merge result 1 wusing feeds 'ch_fv.zip" and
"db_ fv_ premerged.zip'

First two tables show the number of lines for
each feed as well as the size of the feed

The second table shows the number of lines for each
file in the merged feed as well as the time it took to
merge the feeds,the memory usage and the size of
the merged feed

36

Feed fraser valley feed.zip

file lines
trips.txt 483
stops.txt 243
stop_ times.txt 10461
calendar.txt 5
calendar dates.txt 0
routes.txt 15
agency.txt 1
Size zipped: 0.118 MB
Size unzipped: 0.845 MB

Feed comox_ valley_ feed.zip

file lines
trips.txt 2927
stops.txt 638
stop times.txt 102075
calendar.txt 7
calendar dates.txt 2
routes.txt 23
agency.txt 1

Size zipped: 0.872 MB
Size unzipped: 6,03 MB

37

Merged Feed: "commox_ valley feed + fraser_ valley_ feed.zip"

file lines
trips.txt 1576
stops.txt 878
stop_ times.txt 51350
calendar.txt 12
calendar dates.txt 1
routes.txt 38
agency.txt 2

running time (milliseconds)

2’555°623.13175

running time (minutes) 42.59
memory usage (MiB) 285.4
Size zipped: 0.393 MB
Size unzipped: 3.54 MB

Table 4: Merge result 2 using feeds "com-
mox_ valley_ feed.zip" and "fraser_ valley_ feed.zip"

First two tables show the number of lines
for each feed as well as the size of the feed

The second table shows the number of lines for
each file in the merged feed as well as the time it
took to merge the feeds,the memory usage and the
size of the merged feed.

38

5.3 Conclusion

The goal of this program is to merge overlapping GTFS feeds in a way that the
output is a valid GTFS feed retaining all of the relevant information while merging
and deleting equivalent, redundant and overlapping trips. The data handling has
been achieved using a csv reader and a 2D grid of lists to map the trips using their
geographical location. The matching has been achieved by using datetime objects
and the haversine formula to compare stop times and stops. our output is a valid

merged GTFS feed.

39

6 Future Work

In this section, we will take a look at possible improvements to the program that

could be done in future projects.

6.1 Managing the shape_id for merged trips

GTFS feeds have an optional text file called shapes.txt. In this file, the entries
describe the physical paths that a vehicle takes, consisting of a sequence of points.
Each trip can contain a shape_id, matching it to a shape in shapes.txt.

In our program, we ignore these text files and entries. If we merge two trips and
create a new trip, the shape_id needs to change, since it no longer fits the shape
it references. Since we merged two trips, the referenced shapes need to be merged
too.

Right now, we avoid this problem by setting the shape id of the new trip to "". This
way, the new trip will not reference a incorrect shape from shapes.txt. This is a aspect
of our program that could be improved my creating a function that automatically

merges two shape objects if two trips are merged.

6.2 Managing entries that do not belong to any trip

When reading in our GTFS feed and building the program objects, we fill the trip
object with the other stop-, stop times-, route-objects ect. We only fill them with
the objects that reference that specific trip. This means that entries that do not

match any trip in the feed are ultimately lost.

41

A useful addition to our program would be a function that takes care of "orphaned"
objects and adds them to our output. These objects could also be merged again
to check for duplicates that are already assigned to a trip object, to increase the

accuracy.

6.3 Using optional attributes to put out more data

At the current state of our program, we only manage the required text files from the
two GTFS feeds. We also only return the required text files in our merged GTFS
feed. A useful addition to our program would be a function that would handle the
optional text files by taking into consideration which kind of optional text files and
optional attributes are in the original feeds. This would increase the completeness of

our output.

6.4 Improving the matching of trips using different

attributes

At the current state of the program, we mainly use the attributes arrival_time,
stop__lat and stop__lon. If we wanted to increase running time, we can start looking
for additional arguments that would give us more information on which trips are to
be merged and which are discarded. With additional attributes, it could be possible
to shrink the number of trips to be compared with each other even further.

One way would be to implement a sort of data base or search engine that would
return the closest match for a given stop name. This way, we would not need to rely
on the haversine formula to compare the stop objects and running time and accuracy

would increase.

42

6.5 Managing Overlapping Service Dates

Our current program compares calendar dates by checking if the start- and end dates
of two trips are the same, or if one is included in the other. However, if we have
overlapping dates, the trips are handled as if they have different service times. To
improve accuracy in matching trips, we could check if two trips have overlapping
dates and merge them, taking the earlier start date and the later end date as the

new calendar dates for the trip.

6.6 Improving Memory Usage

Our current algorithm is using hash keys and sets to avoid comparing two trips
more than once. For big data sets, these sets of hash keys can become very memory
consuming. To avoid problems for machines with less memory, it would be advisable
to employ a more efficient way to store the data.

One way to achieve this would be to use data banks in combination with SQL to

store information of bigger feeds efficiently.

6.7 Running time optimization

In programming, running time is always an important area to work on in order to
improve a program. In our case, we do not need to compute and put out results
in real time, so a low running time is not of the highest priority. However, certain
improvements can still be made to decrease running time and increase the usefulness
of the program.

The function that takes the longest time to compute is compareTrips(). In this
function, we have certain nested loops that are running in O(n?) in the worst case,
which is not an optimal complexity. Improving this function can be done by only
comparing trips that are similar in the first place. This means only comparing trips

where we can determine a certain similarity beforehand, and discarding the rest of

43

the trips to be compared differently. This is already done by our 2D grid, but could
be extended even further.

One of these similarities could be the service dates. By using the different kind of
service dates to add another dimension to our 2D grid, we could reduce the numbers
of trips to compare to each other. This would improve our running time, although
we can’t be sure how by how much, since it is probable that the majority of trips

will frequent on the same service days from Monday to Friday.

44

7 Acknowledgments

First and foremost, I would like to thank Prof. Dr. Hannah Bast for enabling me to
work on this project.

I would also like to thank Patrick Brosi for his supervision, creative input and
support.

I would also like to thank my friends and family for supporting me throughout my

studies.

45

Bibliography

[1] Google, “Merge.” https://github.com/google/transitfeed /wiki/Merge.
[2] P. Tran, “Semantischer vergleich von fahrplandaten,” Bachelorarbeit, 2017.

[3] Z. Zhang, “Public-transit data extraction from openstreetmap data,” Bachelo-

rarbeit, 2017.
[4] “General transit feed specification.” https://developers.google.com /transit/gtfs/.

[5] N. A. Rooy, “Calculate the distance between two gps points with python
(vincenty’s inverse formula).” https://nathanrooy.github.io/posts/2016-12-
18 /vincenty-formula-with-python/.

[6] “Timsort.” https://svn.python.org/projects/python/trunk/Objects/listsort.txt /.

[7] “Csv file reading and writing.” https://docs.python.org/3.7/library /csv.html.

[8] B. Rouberol, “Haversine.” https://github.com/mapado/haversine.

[9] “datetime-basic date and time types.” https://docs.python.org/3/library /datetime.html.
[10] “Memory profiler.” https://pypi.org/project/memory-profiler/.
[11] “Textiowrapper.” https://docs.python.org/3/library/io.html.

[12] “shutil.” https://docs.python.org/3/library /shutil.html.

	1 Introduction
	2 Related Work
	3 Theoretical Background
	3.1 Hash Maps
	3.2 GTFS-Format
	3.3 Data Structures
	3.4 2D Grid
	3.5 Different Types of Trips
	3.6 Algorithms
	3.6.1 Haversine Formula
	3.6.2 Timsort

	3.7 Memory Usage
	3.8 External Libraries

	4 Implementation
	4.1 Reading in the GTFS-Feed
	4.2 Comparing and Merging the Trips
	4.2.1 compareStopData
	4.2.2 compareCalendars
	4.2.3 Case 1: equivalentTrips()
	4.2.4 Case 2: includedTrips()
	4.2.5 Case 3: partiallyIncluded()
	4.2.6 Merging two Trips and creating a new one

	4.3 Creating the Output

	5 Evaluation
	5.1 The Evaluation Algorithm
	5.1.1 Splitting a GTFS-Feed
	5.1.2 Creating noise while splitting a GTFS-Feed
	5.1.3 Evaluating two GTFS-Feeds

	5.2 Results
	5.3 Conclusion

	6 Future Work
	6.1 Managing the shape_id for merged trips
	6.2 Managing entries that do not belong to any trip
	6.3 Using optional attributes to put out more data
	6.4 Improving the matching of trips using different attributes
	6.5 Managing Overlapping Service Dates
	6.6 Improving Memory Usage
	6.7 Running time optimization

	7 Acknowledgments
	Bibliography

