

Bachelor's Thesis Krisztina Agoston Problem definition

Approaches

Machine Learning Solution

Evaluation

Conclusion

NLP = Natural Language Processing

Sentence segmentation:

- find the sentence boundaries in the input text
- divide the input text into individual sentences
- Formal definition:

map the input text x to $y_1 \dots y_n$ sentences

Sentence segmentation example

LORANSTA Marcus Island was billeted for 23 U.S. Coast Guard personnel. The commissioning commanding officer was U.S. Coast Guard Lieutenant Commander Louis. C. Snell.

Complexity

Ambiguity examples:

- Abbreviation: U.S. Special Operations Forces
- Abbreviation at sentence end: in Washington D.C.
- Initials: J. F. Kennedy
- Ordinal numbers: 1. Section
- Ellipses: I have a dream....I have a dream today.
- Quotes: [...] 24 years later in his "Tear down this wall!" speech.

How many punctuations do not denote a sentence end? It depends...

- Brown: 12%
- Wall Street Journal: 42%

Problem definition

Approaches

Machine Learning Solution

Evaluation

Conclusion

• Approaches for sentence segmentation

Rule based

• Find sentence boundaries with predefined rules

Statistical

- Collect statistics from the text
- Calculate probabilities to disambiguate punctuation

Machine learning

- Use neural networks
- Train the automated system

Machine learning in a Nutshell

Based on neural networks

Neurons (nodes) build up a network

Each neuron calculates $y = \sigma(\Sigma(w_i \cdot x_i) + b)$

Goal: given the input $x_1 \dots x_n$ predict the output y

i is the index of the sample
 w_i ∈ ℝ is some weight to determine

the input's importance bias $b \in \mathbb{R}$ is a constant value

Nonlinear activation function f for creating probability $\sigma(z) = \frac{1}{1 + e^{-z}}$ for the classes

Approaches

Machine Learning Solution

Evaluation

Conclusion

Long Short-Term Memory Neural Network (LSTM)

- preferred to be used for sequential data
- capable of learning long-term dependencies

Ct

ht

- distinguished by its gated structure:
 - Forget gate f_f
 - Input gate f_i
 - New candidate f_{nc}
 - Output gate f
- and its cell state c_{t}
 - = memory

Ct+1

ht+1

tanh

fnc

fo

fi

 $\mathbf{f}\mathbf{f}$

Xt

Context windows

Character- or token-based

- For every unit in the text
- For every punctuation
- For every possible sentence end marks

The 35th U.S. President J. F. Kennedy died in 1963.

Window size = 6:	the	35th	u		died	in	1963	
Labels:				↓ 0				↓ 1

Layers in the LSTM model / 1 Input layer provides data in the correct form context windows in batches 0 Embedding layer encodes the units Creating embedding vectors LSTM layer perform a non-linear computation 0 for each unit in a batch

Linear layer

 transforms the output of the hidden layer to the label space

Bidirectional-LSTM hidden layer

Approaches

Machine Learning Solution

Evaluation

Conclusion

Domains

Wall Street Journal (WSJ)

Sentences from the journal

Brown

Works published in the USA in 1961

Europarl

Irregular example: Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

V.N. 1992, Astroph. Space Phys., Sov. Sci. Rev. E, ed. R.A.Sunyaev 8,1 [...]

- Extracted from the proceedings of the European Parliament Wikipedia
 - paragraphs from Wikipedia entries

arXiv

• paragraphs from scholarly articles from several research domain

Divided: 80% for training

- 10% for development
- 10% for final test

Training set from paragraphs:

- Take paragraphs shorter than 100 characters
- split paragraphs on punctuation + whitespace + sentence starter (however, because, the, she)
- Errors : sentence starts with a word not in our set punctuation followed by word from our set (not significant)

		sentences
-	WSJ	3.914
	Brown	56.323
	Europarl	1.906.966
_		paragraphs
-	arXiv	1.006.228
	Wikipedia	45.676.715

Hard cases from the result of NLTK and spaCy segmentizers

Random cases

Size of the test subset with random sentences and hard cases

	hard o	cases	random				
corpus	paragraphs	sentences	paragraphs	sentences			
Wall Street Journal			571	3.914			
Europarl			1043	6.876			
Brown			1.409	9995			
arXiv	1.000	4.091					
Wikipedia	775	2.928	929	3.267			

Predicted

 $Error rate = \frac{FP + FN}{FP + FN + TP}$ $\frac{\text{TP}}{\text{FP + TP}}$ Recall = $\frac{IP}{FN + TP}$ F1-score = $\frac{TP}{TP+\frac{1}{2}(FP+FN)}$ Accuracy = Correct sentences

Metrics

		Positive	Negative
tual	Positive	TP	FN
AC	Negative	FP	TN
		Сс	nfusion matrix

True positive:

correctly predicted boundary

False positive:

no actual sentence boundary predicted as one

False negative: missed sentence boundary

True negative: most of the cases not a sentence boundary, not predicted as a sentence boundary

Baseline systems

Baseline algorithm

- Define a lower bound
- Split on punctuation + whitespace + capitalized letter $r''([\. \? \. \)]) \s+([A-Z])''$

NLTK

- Complete NLP toolkit
- Statistical segmentizer: Punkt sentence tokenizer
- Trainable with unsupervised training
- spaCy
 - State-of-the-art system with diverse components
 - Senter trainable neural network-based segmentizer

• Accuracy by growing context size

Character-based models

Token-based models

context window created only for punctuation, trained for 10 epochs on 500,000 Wikipedia sentences

- The larger context improves accuracy values by both LSTM models
- Over the optimum the uni-LSTM's accuracy drops

Training data size

Model trained on Wikipedia corpus, evaluated on the development set (2753 sentences with hard cases) Small dataset trained for 100 epochs, large for 10 epochs

Larger training data improves accuracy, especially by LSTM Character-based models perform better

Comparison of accuracy of different systems on various corpora

Uni- and bi-STM models: character-based context window on punctuation, trained with early stopping

				default	trained	senter
Corpus	Baseline	LSTM(9)	bi-LSTM(15)	NLTK	NLTK	spaCy
Europarl	90.98	95.72	96.80	95.39	95.68	95.10
arXiv hard	92.30	90.37	92.91	74.31	87.29	91.93
Brown	67.43	92.17	93.94	85.01	83.91	93.84
Wikipedia hard	80.12	82.04	90.64	84.19	89.07	79.44
Wikipedia rand.	91.86	93.44	96.94	99.42	97.86	95.56
WSJ	69.79	72.75	89.29	92.79	91.74	80.32

* bi-LSTM was trained on 500.000 sentences

Bi-LSTM model outperforms other systems on most of the corpora Cross-corpora evaluation: trained on Wikipedia, evaluated on WSJ Review

Automated, trainable, easily adaptable solution for SBD

Deal with sequential data

Involve not only the previous inputs in the current calculation, but also the upcoming context

Irregular domains

 \rightarrow Neural Networks (NN)

 \rightarrow Special kind of NN: LSTM

 \rightarrow Bidirectional LSTM

→ arXiv, Wikipedia

Conclusion

Approach:

 Character-based approach improves recall and decreases error rate

Context

۲

Using previous and next context improves precision by bi-LSTM, that outperforms other systems

Training:

 large training data to get an accurate model

Domains:

 The type of the domain determines the taskcomplexity

Goal of future work: general purpose model with improved runtime

Sources

- Speech and Language Processing.
 Daniel Jurafsky & James H. Martin. Copyright © 2021.
- Wong DF, Chao LS, Zeng X.
 iSentenizer-µ: multilingual sentence boundary detection model.
 ScientificWorldJournal. 2014

Extra slides

Rule-based approach Statistical approach **Dependencies Embeddings** Data preparation Context window 1 <u>Context window 2</u> F1 score FB score

Baseline performance Training time - context size Systems on Wikipedia Hard cases vs. random

<u>Dimensionalities</u> <u>Threshold</u> <u>Training setup</u> <u>Early stopping</u> Bi-LSTM Common Errors - uni LSTM vs. Bi-LSTM

Unidirectional LSTM:

several punctuation marks next to each other

- It was as if he didn't want the guests to be there. \parallel "
- Give the enemy no rest . ||.. Do all the

Period after a number

• or VBLANK interrupts on IRQ 5. This allows the use

Bidirectional LSTM

split after semicolon

• Sergio Ortega; || Leon Schidlowsky;

Common errors

False negative predictions are the missed sentence boundaries:

- ... translated as "Q ing Chéng" () The name...
- at all hazards. ... Give the enemy no rest ...
- "the sexiest man on TV." As Eddie films
- in Washington D.<u>C. Before and</u>

False positive ||

- "chenel" || "canal".
- "Do You Miss Me?" || became a Top 40 hit
- including Yahoo! Wireless in London, Splash! || in Germany,

Character based bi-LSTM(15) model evaluated on different corpora

Corpus	Error rate	rate Precision		F1-score	Accuracy								
Context window on punctuations													
arXiv hard	0.05	0.98	0.97	0.97	92.91%								
Europarl	0.02	0.99	0.98	0.99	96.80%								
Wikipedia hard	0.08	0.94	0.97	0.96	90.64%								
Brown	0.03	0.99	0.97	0.98	93.94%								

Character-based bi-LSTM model, Context window size is 15 trained with the early stopping method on the corresponding corpus

 Wikipedia hard has lower precision because in text set we do not split on semicolon, but in training set there are many such cases

Compare systems on the Wikipedia corpus

Character-based models, context for sentence ending punctuations, trained on 500,000 Wikipedia sentences with early stopping method, Evaluated on the Wikipedia test ground truth with hard cases.

Type	Error rate	Precision	Recall	F1-score	Accuracy	Accuracy
Baseline	0.16	0.88	0.93	0.91	80.12%	100
LSTM(9)	0.19	0.82	0.97	0.89	80.00%	90
$\operatorname{Bi-LSTM}(15)$	0.07	0.95	0.97	0.96	91.39 %	
NLTK default	0.15	0.87	0.98	0.92	84.87%	70
NLTK trained, customized	0.09	0.94	0.97	0.95	89.07%	60
spaCy parser default	0.23	0.81	0.94	0.87	73.53%	50
spaCy senter default	0.16	0.90	0.92	0.91	80.84%	speaking Stands Stands Regarding there we are a serie
spaCy senter trained	0.18	0.88	0.92	0.90	79.44%	the hard and hard and hard and hard

- Bi-LSTM has the best precision
- LSTM: low precision due to false positive predictions
- trained NLTK second best
- spaCy parser dependency tree is broken by abbreviations, quotes

Test on hard cases and random sentences from the Wikipedia corpus

Context window	error rate	precision	recall	F1	Acc									
Test set with hard cases	Test set with hard cases (2928 sentences)													
bi-LSTM(17)														
for each basic unit	0.0737	0.9534	0.9703	0.9617	90.95%									
for punctuations	0.0880	0.9349	0.9738	0.9540	90.37%									
for sentence end marks	0.0699	0.9537	0.9741	0.9638	91.36%									
LSTM(9)														
for sentence end marks	0.1707	0.8497	0.9719	0.9067	81.90%									
Test set with random ca	uses (3267 se	entences)												
bi-LSTM(17)														
for each basic unit	0.0182	0.9867	0.9950	0.9908	98.03%									
for punctuations	0.0222	0.9830	0.9947	0.9888	97.68%									
for sentence end marks	0.0145	0.9882	0.9972	0.9927	98.28%									
LSTM(9)														
for sentence end marks	0.0511	0.9561	0.9878	0.9717	93.88%									

The bi-LSTM models are trained on 500,000 Wikipedia sentences for 10 epochs the LSTM model on 3,787,371 sentences for 10 epochs.

- All systems perform better on random sentencesLSTM improved most
- ⇒ SBD highly syntax dependent

Training data size/2

Training	1	token bas	sed	character based					
sentences	full text	punct.	end marks	full text	punct.	end marks			
			LST	$\Lambda(9)$					
7,000	75.41	75.52	75.48	78.59	77.52	78.50			
500,000	80.02	78.28	79.30	81.11	81.04	81.18			
3,780,371	80.28	82.67	79.99	81.40	82.49	82.02			
			bi-LST	M(17)					
7,000	88.59	87.29	87.47	85.47	87.90	87.40			
500,000	89.83	90.45	91.25	91.90	91.97	91.68			
3,780,371	89.90	91.32	91.54	91.54	90.74	91.97			

Graph on the slide 22

۲

	Context window created for every												
Number of	chai	racter	toke	n	punctuation								
sentences	Memory	Window	Memory	Window	Memory	Window							
7,000	$28 \mathrm{MB}$	790k	$10 \mathrm{MB}$	282k	$1 \mathrm{MB}$	25k							
500,000	$1{,}25~\mathrm{GB}$	$34,\!952k$	$472~\mathrm{MB}$	13,133k	$48~\mathrm{MB}$	$1,\!334k$							
3,780,371	$9~\mathrm{GB}$	254,460k	$3~\mathrm{GB}$	95,308k	$336 \mathrm{MB}$	9,338k							

With different methods for creating the context window we optimize the memory usage and the training time

Rule-based approach

Find sentence boundaries with predefined rules:

Sentence end mark + whitespace + capital letter: The sun is shining. The weather is sunny. But: Mr. Brown is reading.

- Handcrafted rules, time and effort consuming
- Use a list of abbreviations
- Difficult to cover each case
- System is fragile due too many special cases
- Hard to maintain and customize

Statistical approach

Collect statistics about:

- occurrences of tokens, punctuations,
- token length,
- casing
- collocations of tokens

Calculate probabilities and test some assumptions:

- frequent sentence starter
- token's collocation with a period

Trainable with unsupervised training (NLTK)

• No annotation needed

Dependency tree

how the words within a sentence are related to each other

 $\hat{\Pi}$

Embeddings

- Vector representation for words or characters
- capture meaningful information
- Learned during the training process

Embeddings Input Word to index in 7 3 the 4 3 52 U 6 ٠ S 34 6 8 Α 6 3

[0.342 -0.025 -1.690 0.717] [-0.643 2.726 0.074 0.696] [1.497 1.344 -0.965 3.453] [-0.643 2.726 0.074 0.696] [0.342 -0.025 -1.690 0.717] [0.222 - 3.025 - 1.650 0.237] [0.543 -0.021 -1.950 0.377] [0.222 -3.025 -1.650 0.237] [-0.112 -0.032 1.690 0.754] [0.222 - 3.025 - 1.650 0.237] [-0.643 2.726 0.074 0.696]

17

Load Raw Data	Split Data	Create vo	cabulary	Encode v	vocabular	y	Encode units	Create context windows
Input:							Input:	
A cat has nine	[['A', ' ', 'cat', ' ',	unit	#	word	index		[['A', ' ', 'cat', ' ',	[[0, 0, 0, 0, 5]
lives. A journey	'has', ' ', 'nine', '		occurr ence	PAD	0		'has', ' ', 'nine', '	[0, 0, 0, 5, 3]
of thousand	`, `lives`, `,`], [``,						`, `lives`, `,`], [```,	[0, 0, 5, 3, 9]
miles begins	A', ',		3095		1		A', '', 'journey',	[0, 5, 3, 9, 3]
with a single	'journey', ' ',	,	295	_DIG	2		'', 'of', '',	[5, 3, 9, 3, 13]
step.	'of', ' ',	a	1563	<i></i>	3		 Output:	[3, 9, 3, 13, 3]
Output:	'thousand', ' ',	of	E10					[9, 3, 13, 3, 16]
[f'A cat has nine	'miles', ' ',			,	4			[3, 13, 3, 16, 3]
lives' 'A jourpou	'begins', ' ',	begins	2	a	5		16, 3, 23, 7],	[13, 3, 16, 3, 23]
of thousand	'with', ' ', 'a', ' ',	lives	63	of	6			[3, 16, 3, 23, 7]
	'single', ' ',						3, 1, 3, 14, 3, 6, 3,	······.]
miles begins	'step', '.']]						5, 3, 12, 3, 19, 7]]	
with a single		miles	1					
step.']								

F_{\Box} -score / 2

apply additional weight β to consider recall β -times more than precision

$$F_{\beta}$$
-score = (1 + β^2) — Precision · Recall β^2 ·Precision + Recall

 β > 1 weighs recall higher than precision

 \bigcirc

Threshold ∈ [0.01, 1[steps of 0.01 Calculate F1-score Save the threshold belonging to the best F1-score

Training setup

batch size of 256:

number of context windows in one iteration of the training,

embeddings size of 256:

the length of the feature vector encoding a basic unit

number of units 128: the LSTM layer includes this number of neurons (dimension of the hidden layer)

number of layers 1

learning rate 0.01: the size of the steps in adjusting the weights during the training in order to minimize loss

stochastic gradient descent (SGD) optimizer algorithmus to minimize loss cross entropy loss function to measure the correctness of the prediction during the training

Early stopping

Loss

- difference between the labels and the model output
 Validation
 - Calculate loss after a certain number of epochs
- Early stopping
- If the validation loss not decreasing, stop the training process Patience
 - Number of epochs we wait before we stop the training

Token-based context window

Input text:	ſ.	ne a	ver	age	tem	perat	ure	is 20.7 °C.', 'Most rain falls in the winter.'						er.'	
	LSTM								bi-LSTM						
For each basic	PAD	PAD	P,	AD	PAD	The				PAD	PAD	The		averaç	ge
unit		PAD	P,		PAD	The					PAD	The		averaç	ge
For punctuations		is		20							20	. 7			
	20		7		0					7		• (C		
For sentence end		is		20							20	. 7			
marks	20		0	с						0	c		1	Most	

 $\widehat{}$

Character based context windows

LSTM							bi-LSTM					
		r				1						ן ק ו
For each basic	PAD	PAD	PAD	PAD	Т			PAD	Т	h	е	
unit		PAD	PAD	PAD	Т	h		PAD	T	h	е	
for punctuations	S		2 0]		2	0	. 7			
	0		7	o]		7	0		;		
for sentence end marks	S	2	0]		2	0.	7	,		
	7		° C				0	с		N	1	

Performance in English

Punkt from NLTK

Error rate 1.02% on Brown and 1.65% on WSJ

spaCy parser

• F1-score 0.90 on OntoNotes 5.0

Our baseline

	Error rate	F1-score
Brown	21%	0.88
Wall Street Journal	24%	0.86

large corpus comprising various genres of text (news, conversational telephone speech, weblogs, usenet newsgroups, broadcast, talk shows)

Baseline algorithm evaluated on different corpora

Corpus	Error rate	Precision	Recall	F1-score	Accuracy
arXiv	0.08	0.94	0.97	0.96	92.30%
Europarl	0.07	0.97	0.95	0.96	90.98%
Wikipedia	0.16	0.88	0.93	0.91	80.12%
Brown	0.21	0.94	0.83	0.88	67.43%
WSJ	0.24	0.83	0.89	0.86	69.78%

- Strong lower bound on Europarl and arXiv
- formulas and variables at sentence end in arXiv do not cause errors
- abbreviations like *Senator J. W. Fulbright* lower precision
- titles without any punctuation cause missed sentence boundaries
- Highest error rate for Brown and WSJ

Context window types

uni-LSTM model(9)	Error rate	Precision	Recall	F1-score	Accuracy	bi-LSTM model(17)	Error rate	Precision	Recall	F1-score	Accuracy
Token based whole	0.1780	0.8591	0.9501	0.9023	80.02%	Token based whole	0.0787	0.9511	0.9671	0.9590	89.83%
Token based on punctuation	0.1906	0.8509	0.9432	0.8947	78.28%	Token based on punctuation	0.0754	0.9528	0.9689	0.9608	90.45%
Token based on end marks	0.2192	0.7994	0.9711	0.8769	79.30%	Token based on end marks	0.0740	0.9481	0.9755	0.9616	91.25%
Character based whol	e 0.1957	0.8283	0.9653	0.8916	81.11%	Char. based whole	0.0720	0.9501	0.9755	0.9526	91.90%
Character based on punctuation	0.1899	0.8333	0.9628	0.8951	81.04%	Character based on punctuation	0.0733	0.9478	0.9766	0.9620	91.97%
Character based on end marks	0.1904	0.8333	0.9660	0.8948	81.18%	Character based on end marks	0.0787	0.9388	0.9802	0.9590	91.68%

• the token- and character-based approaches for creating the input

- three different context window method
 - the character-based models overall better
 - context window for each unit inefficient for memory and time
 - context window for every punctuation mark reduces training data

Why we need sentences?Used in other tasks within NLP

POS-tagging

Book	verb
а	determiners
room.	noun

• Text correction

How much is the temperature?

What is the temperature?

• Sentiment analysis:

It's great!	
We will be there in 5 Min.	••
It was a bad game.	\sim

• Machine translation

Pink ist meine Lieblingsfarbe.

Pink is my favourite color.

• Gates in LSTM

Forget gate:

- $f_f = \sigma(W_f(h_t, x) + b_f)$
- filters the old state c_t and decides what information to discard: c_t
 f_f

element wise multiplication

Input gate:

- $f_{i} = \sigma(W_{i}(h_{t}, x) + b_{i})$
- decides what information to let through from the current input x

New candidate:

- $f_{nc} = tanh(W_{nc}(h_t, x) + b_{nc})$
- Regulate the input between -1 and +1 with $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$

Gates in LSTM

Output gate:

- $f_0 = \sigma(W_0(h_t, x) + b_0)$
- calculates how much of the input is used in our output h_{t+1}

Cell state:

•
$$C_{t+1} = (C_t \otimes f_f) \oplus (f_i \otimes f_{nc})$$

a kind of memory chaining through all the time steps.

Hidden state:

- _h_{t+1} = tanh(c_{t+1}) ⊗ f_o
- Output of the network

Dimensionality and LSTM computation

$$\begin{array}{c} \circ & f_{f} = \sigma(W_{f}(h_{t}, x) + b_{f}) \\ \circ & f_{i} = \sigma(W_{i}(h_{t}, x) + b_{i}) \\ \circ & f_{nc} = \tanh(W_{nc}(h_{t}, x) + b_{nc}) \\ \circ & f_{o} = \sigma(W_{o}(h_{t}, x) + b_{o}) \\ \circ & c_{t+1} = (c_{t} \otimes f_{f}) \oplus (f_{i} \otimes f_{nc}) \\ \circ & h_{t+1} = \tanh(c_{t+1}) \otimes f_{o} \\ & \text{emb.} \\ & \text{dim} \qquad \text{Seq length} \end{array}$$

LSTM Model architecture

 $\overline{1}$