
pdf2gtfs: Timetable Extraction from PDF Files
Bachelor’s Thesis Presentation

Julius Heinzinger

Faculty of Engineering
University of Freiburg

July 2023

1 / 45

Input: PDF Timetable

▶ First problem: Table extraction from a PDF

2 / 45

Input: PDF Timetable

▶ First problem: Table extraction from a PDF

3 / 45

Output: GTFS

▶ Output format: GTFS (= General Transit Feed Specification)

de-facto standard for transit data
GTFS feed: .zip-archive of different files
each file contains a specific part of the transit information

▶ Excerpt of a stops.txt

stop id stop name stop lat stop lon

de:08311:30800:0:1 Moosweiher 48.0288 7.8089
this is an id as well Hauptbahnhof 47.9967 7.8399
de:08311:30300:0:1 Laßbergstraße 47.9846 7.8937
.

stop id is used to reference a stop in other files
location is required

▶ Second problem: Location detection

4 / 45

Output: GTFS

▶ Output format: GTFS (= General Transit Feed Specification)

de-facto standard for transit data
GTFS feed: .zip-archive of different files
each file contains a specific part of the transit information

▶ Excerpt of a stops.txt

stop id stop name stop lat stop lon

de:08311:30800:0:1 Moosweiher 48.0288 7.8089
this is an id as well Hauptbahnhof 47.9967 7.8399
de:08311:30300:0:1 Laßbergstraße 47.9846 7.8937
.

stop id is used to reference a stop in other files
location is required

▶ Second problem: Location detection

5 / 45

Output: GTFS

▶ Output format: GTFS (= General Transit Feed Specification)

de-facto standard for transit data
GTFS feed: .zip-archive of different files
each file contains a specific part of the transit information

▶ Excerpt of a stops.txt

stop id stop name stop lat stop lon

de:08311:30800:0:1 Moosweiher 48.0288 7.8089
this is an id as well Hauptbahnhof 47.9967 7.8399
de:08311:30300:0:1 Laßbergstraße 47.9846 7.8937
.

stop id is used to reference a stop in other files
location is required

▶ Second problem: Location detection

6 / 45

Table Extraction

Background & Approach

7 / 45

Table Extraction: Background 1/2

▶ A PDF file does not store plain text

stores position and other properties of text pieces

▶ Relation between different text pieces is lost

▶ Relevance of text is unclear

▶ We can extract characters or text fragments from a PDF
with e.g., pdfminer.six

8 / 45

Table Extraction: Background 2/2

▶ Table consists of cells

▶ Cells contain one or
more characters

▶ We define a celltype using
content and other cells
(e.g., Time, Stop, Day)

▶ Time cells easy to detect

simple, restrictive format

More on cell types

9 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

10 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

11 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

12 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

13 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

14 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

15 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

16 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

17 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

18 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

19 / 45

Table Extraction: Approach

▶ Idea: Use body (i.e., times)
to detect the table

▶ Run basic type detection

▶ Expand the table until no
more cells can be added

1. Select adjacent cells
in a single direction

2. Add adjacent cell,
if it overlaps
with row/column

▶ Run advanced type
detection using other cells
of the table

20 / 45

Table Extraction

Evaluation

21 / 45

Table Extraction: Evaluation 1/5

▶ Three datasets

VAG Verkehrs AG Freiburg
4 PDFs

RMV Rhein-Main-Verkehrsverbund
3 PDFs

TTT Transposed timetables More on transposed timetables

different US transit-agencies
4 PDFs

▶ PDFs selected based on table features

22 / 45

Table Extraction: Evaluation 2/5

▶ Left: More features
(Connections between normal stops, has route annotations)

▶ Right: Less features (Connections at the start, has no route
annotations)

More on connections

23 / 45

Table Extraction: Evaluation 3/5

▶ No ground truth exists

manually create .csv files for each table

two tables per PDF for VAG/RMV, one table per PDF for TTT

▶ Three table extraction methods:

PDFTables Online solution for (general) table extraction
pdf2gtfs-old previous table extraction algorithm of pdf2gtfs
pdf2gtfs-new new algorithm using the shown approach

▶ Comparison between extracted .csv and ground truth by hand

24 / 45

Table Extraction: Evaluation 4/5

▶ Three measures: Precision, Recall, and F1-score

▶ Compare extracted cells to cells in ground truth (GT)

True Positive (TP)
Correctly extracted cells (content and relative position)
False Positive (FP)
All cells that do not exist in GT or with different
content/position
True Negative (TN)
All empty extracted cells that are empty in GT
False Negative (FN)
All cells that exist in GT but were not extracted

25 / 45

Table Extraction: Evaluation 5/5

▶ Precision: P = TP
TP+FP

relative amount of relevant cells that were extracted

▶ Recall: R = TP
TP+FN

relative amount of correct cells of all extracted cells

▶ F1-score: F1 =
2PR
P+R

Harmonic mean between precision and recall

26 / 45

Table Extraction

Results

27 / 45

Table Extraction: Results 1/2

VAG Precision Recall F1-score

PDFTables 86.84% 57.63% 69.28%
pdf2gtfs-old 99.83% 88.84% 94.01%
pdf2gtfs-new 93.40% 97.78% 95.54%

RMV Precision Recall F1-score

PDFTables 94.03% 85.34% 89.78%
pdf2gtfs-old 98.82% 95.94% 97.36%
pdf2gtfs-new 98.97% 91.05% 94.84%

▶ Similar results for pdf2gtfs’ algorithms

▶ PDFTables (expectedly) worse

28 / 45

Table Extraction: Results 2/2

TTT Precision Recall F1-score

PDFTables 61.36% 43.12% 50.65%
pdf2gtfs-old 22.87% 8.48% 12.37%
pdf2gtfs-new 49.83% 96.76% 65.79%

▶ Clearly worse results than for “normal” timetables

▶ Low precision of pdf2gtfs-new mainly due to
“difficult” time format (e.g., “09.42 A”)

Show Example

29 / 45

Location Detection

Background & Approach

30 / 45

Location Detection: Background & Approach

▶ Timetable does not contain locations

we only have the names and order of stops

▶ First: We need the possible locations of each stop
→ OpenStreetMap (OSM) More on OSM

▶ Idea: Build a graph using these locations More on graphs

each location is a node
each node has an edge to every node of the next stop

→ shortest-path between a start and an end node
(should) give the correct location for each stop

▶ Implementation detail:
we use Dijkstra’s algorithm for the shortest-path search

31 / 45

Location Detection: Background & Approach

▶ Timetable does not contain locations

we only have the names and order of stops

▶ First: We need the possible locations of each stop
→ OpenStreetMap (OSM) More on OSM

▶ Idea: Build a graph using these locations More on graphs

each location is a node
each node has an edge to every node of the next stop

→ shortest-path between a start and an end node
(should) give the correct location for each stop

▶ Implementation detail:
we use Dijkstra’s algorithm for the shortest-path search

32 / 45

Location Detection: Caveats

A1

B1

B2

C1

C2

D1

1

5

13

3

2

2

4

7

▶ Weight of edges is the sum of

difference in stop name vs. node name
available OSM-tags
point-to-point distance to parent node (= previous stop)

▶ interpolate locations if we can not find one for a stop

33 / 45

Location Detection

Evaluation

34 / 45

Location Detection: Evaluation 1/2

▶ Three datasets with different transit agencies

VAG Verkehrs AG Freiburg
5 PDFs: one for each tram line

RMV Rhein-Main-Verkehrsverbund
2 PDFs: one bus line and one metro line

VGN Verkehrsverbund Großraum Nürnberg GmbH
4 PDFs: one bus, one S-Bahn, and two train
lines

▶ Each agency provides the true locations

▶ Problem: GTFS feeds use different IDs

→ need a mapping between the feeds

35 / 45

Location Detection: Evaluation 2/2

▶ Create the mappings between the stop ids of the feeds
manually

search the ground truth for each stop
if there are multiple locations for a stop,
use the station/first location

▶ Create p2g-eval to automatically evaluate a feed

Takes two feeds and the mapping between them
Calculate the distance of the mapped stops

36 / 45

Location Detection

Results

37 / 45

Results: Location Detection 1/4

VAG both detected missing

count 100 98 2

min 2 2 129
max 175 123 175
mean 34 32 152
std 30 25 32

▶ Very close to true location

▶ Almost all stops detected

38 / 45

Results: Location Detection 2/4

RMV both detected missing

count 27 18 9

min 6 6 40
max 1 012 83 1 012
mean 231 39 616
std 319 24 282

▶ ∼ 33% missing locations

▶ Similar results for detected stops

39 / 45

Results: Location Detection 3/4

VGN both detected missing

count 61 40 21

min 4 5 107
max 87 317 260 87 317
mean 3 743 44 10 788
std 14 043 49 22 630

▶ ∼ 33% missing locations

▶ Similar results for detected stops with some outliers

▶ High distance for some missing stops
(Reason: Stops of connections) More on connections

40 / 45

Results: Location Detection 4/4

< 25 < 50 < 100 < 250 < 500 < 1000 < 2500 ≥ 2500

0

10

20

30

40

50

60

70

80

Distance in m

N
u
m
b
er

o
f
st
o
p
s
(t
o
ta
l
=

1
8
8
)

Detected locations

Missing locations

41 / 45

Future Work

42 / 45

Future Work

▶ Location detection:

Automate the stop-mapping creation for p2g-eval using the
stop-times

▶ Table extraction:

Overall stability
Main problem: Type detection and detection of multi-word
cells

▶ Questions?

43 / 45

Future Work

▶ Location detection:

Automate the stop-mapping creation for p2g-eval using the
stop-times

▶ Table extraction:

Overall stability
Main problem: Type detection and detection of multi-word
cells

▶ Questions?

44 / 45

Future Work

▶ Location detection:

Automate the stop-mapping creation for p2g-eval using the
stop-times

▶ Table extraction:

Overall stability
Main problem: Type detection and detection of multi-word
cells

▶ Questions?

45 / 45

Appendix: Connections

▶ not part of the route

▶ usually serviced by fast(er) trains

▶ difficult to detect

Return to table extraction

Return to location detection

46 / 45

Appendix: Transposed Timetable

▶ Stops in the first row

▶ Each row contains a trip

Return

47 / 45

Appendix: Graph

A1

B1

B2

C1

C2

D1

1

5

13

3

2

2

4

7

▶ consists of vertices (or nodes) and edges

▶ directed: edges have a direction

▶ weighted: edges have some weight

▶ Path: list of vertices that are connected by edges

Return

48 / 45

Appendix: Cell Types

▶ Types for route data, e.g., Time, Stop, Days

▶ Types for metadata, all annotation and indicator types

Indicator types (e.g., RouteAnnotationIdentifier):
Indicates cell type of other cells
Detected using user-defined keywords, e.g., ‘Verkehrshinweis’
Annotation types (e.g., StopAnnotation):
Additional info about the data of other cells

Return

49 / 45

Appendix: OpenStreetMap

▶ OpenStreetMap (OSM) provides open map data,
supplied by its users

▶ Information is stored in different types of objects

For us: only Nodes (henceforth OSMNodes) are relevant

▶ OSMNode contains

location of a point of interest (POI)
additional information about that POI using tags:
simple key-value pairs (e.g., ’railway’=’tram stop’)

▶ OSMNodes and their tags can be queried using, e.g., QLever
Return

50 / 45

Appendix: Difficult Time Format

▶ time contains space

▶ no valid strpformat() format code (%p requires AM or PM)
Return

51 / 45

52 / 45

	Introduction
	Input
	Output

	Table Extraction
	Background & Approach
	Background
	Approach

	Evaluation
	Datasets
	Measures

	Results

	Location Detection
	Background & Approach
	Evaluation
	Datasets

	Results
	Future Work
	Appendix
	Appendix

