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Abstract

Within the frame of this thesis, a parser for the SPARQL 1.1 Query Language

(SPARQL QL) was finished. This parser uses the parser generator ANTLR v4. With

the new parser, QLever is able to recognize the complete SPARQL QL. An improved

version of the visitor pattern provided by ANTLR v4 is presented. The improved

visitor makes the visitor type safe, prevents code duplication and provides metadata

for error messages.
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Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Parser für die SPARQL 1.1 Query Language

(SPARQL QL) fertiggestellt. Dieser Parser verwendet den Parser Generator ANTLR

v4. Mit dem neuen Parser kann QLever die ganze SPARQL QL erkennen. Es wird eine

weiterentwickelte Version des ANTLR v4 Besuchers vorgestellt. Die Weiterentwicklung

zeichnet sich dadurch aus, dass sie typsicher ist, Codeduplizierungen vermeidet und

Metadaten für Fehlermeldungen bereitstellt.
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1 Introduction

QLever is a SPARQL engine written in C++. The various parts of SPARQL are defined

in a total of 10 specifications [1]. These include among others a specification for a

query language [2] - the SPARQL 1.1 Query Language (SPARQL QL). As a SPARQL

engine, QLever also must be able to parse SPARQL QL queries. It is expected by the

user that QLever conforms to the standards. Furthermore, users expect meaningful

error messages. The concrete implementation and extent of error messages are not

specified as part of the SPARQL Protocol Specification [3]. Providing meaningful

error messages for parsing errors still must be considered when designing a new parser.

Error messages must give an exact description of what went wrong and where exactly

it went wrong to be useful for the end user.

The QLever project aims to have a high code quality. Achieving a high code quality

requires that new code be easily maintainable and thoroughly tested. Its architecture

must be chosen such that code duplication and the chance that new code introduces

new error are both minimized. To achieve high maintainability the code must have

low coupling.

To achieve this goal of high code quality and a standard compliant parser it was

decided to switch to an ANTLR v4 [4] based parser. ANTLR v4 is a parser generator.

This means that the lexer and parser are generated by ANTLR given the grammar of

a language.
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The resulting parse tree is then parsed using an improved version of the visitor

pattern provided by ANTLR. The visitor pattern was chosen for QLever as it highly

encourages low coupling of the code.

The contributions of this thesis consist of migrating most of the parsing from the old

parser to the ANTLR based parser. This migration for the most part completes the

switch to the new parser for Queries. Only filters are still parsed with the old parser. It

is planned to also migrate this remaining code soon once the required changes in other

areas have been done. The newly written code is thoroughly tested. In the migration

process we improved the visitor pattern from ANTLR. The improvements result in

a type safe visitor and reduce code duplication. The improvements also reduce the

risk of introducing errors, while also making the code more readable. Finally, we

extended the parser to provide metadata in addition to text-based error messages.

This metadata enables front ends using QLever to provide richer information in

error cases. The metadata consists of the exact location of the error in the query.

This information might be used by a front end to highlight the error directly in the

query.
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2 Background

In this Section, we will give a broad overview about underlying technologies or

concepts. These are required to understand what QLever aims to achieve and how

this thesis improves the parser of QLever. This overview will be bottom-up. In

Section 2.1 and Section 2.2, we will introduce RDF and SPARQL. These are the

concepts that are required to understand what QLever does on an abstract level

(Section 2.3). The overview will conclude with Section 2.4 which gives an overview

over ANTLR. ANTLR is the tool used to write QLever’s SPARQL QL parser.

2.1 RDF

The specification states that the “Resource Description Framework (RDF) is a

framework for representing information in the Web” [5]. RDF is standardized by

the W3C in series of documents such as [5, 6, 7]. RDF is used among others by

Wikidata as a format for data dumps and querying the data through the Wikidata

Query Service [8].

Formally, an RDF Graph is a set of RDF triples. RDF triples are made up of these

data types:

IRIs IRIs are Internationalized Resource Identifier as defined in RFC 3987 [9].
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Literals Literals are Unicode strings. They can additionally have a datatype IRI and

in some cases, also a tag denoting the language.

Blank nodes Blank nodes are defined to be disjunct from IRIs and literals. The

meaning of blank nodes is to denote that something exists that satisfies the

relationship without specifying what exactly this is.

IRIs and literals represent objects or attributes of objects of the data that is being

described. An RDF triple consists of three components:

Subject This is an IRI or blank node.

Predicate This is an IRI.

Object This is an IRI, literal or blank node.

“An Olympic gold medal winner exists” can be represented in this triple form. This

sentence could be represented as an RDF triple with a blank node as subject, the

IRI has_won_a as predicate and the IRI olympic_gold_medal as object.

The basic idea of RDF is to represent data as an RDF Graph. The meaning of a

triple is that the subject satisfies some predicate with regard to an object. In the

following, we will illustrate this concept with two examples. They will show how

natural statements could be translated into triples.

• Take the sentence “The Eiffel Tower is 330m high.” It states that the Eiffel

Tower (subject) has a height in meters (predicate) of 330 (object).

• “The University of Freiburg is located in Freiburg which itself is in Germany”.

Notice that this sentence contains two statements. As each triple can only

represent one statement this sentence must be decomposed into two triples.

The University of Freiburg (subject) is located in (predicate) Freiburg (object).

Freiburg (subject) is located in (predicate) Germany (object).
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example.com/
Eiffel_Tower "330"

example.com/
height_in_meters

example.com/
University_of_Freiburg

example.com/
Germany

example.com/
Freiburg

example.com/
located_in

example.com/
located_in

Figure 1: Simple RDF Graph

To construct the RDF graph of these three statements the corresponding triples are

joined into a Graph. Different triples can refer to the same object with their subject

or object. Even though an object is used multiple times it will only be represented

by one node in the graph. In the example, Freiburg is used twice. It is used once

as a subject and once as an object. This means that Freiburg will be joined into

one node for the Graph. The RDF graph resulting from the example could look like

Figure 1.

2.2 SPARQL 1.1

The SPARQL 1.1 standard is a collection of 10 standards. They define standards to

query and manipulate RDF graphs. For this work the current version (1.1.) of the

SPARQL specifications by the W3C from 2013 [1] is relevant. Most of this thesis will

work with the SPARQL 1.1. Query Language (SPARQL QL) specifications [2]. The

SPARQL QL standard defines the format of the query language used to query RDF

graphs.
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There is another standard that defines an extension to the query language and adds

update operations. Update operations allow the modification of the data stored in an

RDF Graph. QLever does not support update operations. Only the query language

without update operations will be considered for this thesis.

Another standard that is of interest for this thesis is the SPARQL 1.1 Protocol [3].

The SPARQL 1.1 Protocol describes how clients should interact with servers that

serve SPARQL requests. The server processing the SPARQL requests is called the

SPARQL protocol service or service. The standard lays out how clients should send

queries to the service and how the service should respond to those queries. The

SPARQL 1.1 Protocol is a protocol defined on top of HTTP. Queries may be sent

as HTTP GET query parameter or as HTTP POST. The response to a query then

contains the result of the query in the response body.

Additional standards for federation, several data formats for the returned, negotiation

of a result format and a mechanism for a SPARQL Protocol Service to provide

metadata about the provided dataset are also available. These standards are not of

interest for this thesis. Most of them are not supported by QLever.

2.3 QLever

QLever [10] is a SPARQL protocol service written in C++. QLever provides a SPARQL

1.1 endpoint for accessing the loaded knowledge graph. It provides context-sensitive

autocompletion via the front end QLever-UI [11] as well as text search in text

documents associated with the knowledge graph. QLever aims to differentiate itself

from other SPARQL engines like Blazegraph by being faster, especially on queries

with large intermediate results. A QLever-UI instance with several QLever back ends

is available[12]. The QLever back ends are loaded with many datasets including the

complete Wikidata, OpenStreetMap and PubChem.
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2.4 ANTLR

ANTLR [4] is a parser generator. This means that given the grammar of a language,

ANTLR generates a lexer and parser which can parse this language. The lexer and

parser can be generated in many programming languages, including C#, C++and Java.

The generated code can then lex and parse any rule from the provided grammar.

A formal grammar G is defined as a 4-tuple (V,⌃, P, S). V a set of nonterminal

symbols and ⌃ a set of terminal symbols with V and ⌃ disjoint. S is a start symbol

from V . P is a set of production rules of the form w ! v, with w, v 2 (⌃ [ V )⇤ and

w 62 ⌃⇤. The language of a grammar is the set of strings 2 ⌃⇤ that can be reached

from the start symbol with repeated applications of the production rules.

A parser usually must answer two questions about a string S 2 ⌃⇤. Is S in the

language of the grammar? If S is in the language, which production rules can be

used to obtain S from the start symbol?

We will illustrate this with a concrete example. For this example, we will use the

grammar in Listing 2.1. The example grammar can parse simple expressions that

add and multiply numbers.

1 Additive: Additive "+" Additive | Multiplicative;

2 Multiplicative: Multiplicative "*" Multiplicative | BracketedValue;

3 BracketedValue: ("0".."9")+ | "(" Additive ")";

Listing 2.1: Example ANTLR Grammar

Each production rule in ANTLR is terminated by a semicolon. The string on the

left side of a : is the left-hand side of a formal production rule (w). The rest of the

ANTLR production rule is the right-hand side of the formal production rule (v). |

is used to separate sequences of symbol where the left or the right side may match.

This means that A: B | C; is equivalent to the two production rules A ! B,A ! C.

7



Strings encased in quotes are terminal symbols. Brackets are used to group symbols.

* denotes the Kleene star and is applied to the previous symbol or group. + denotes

that preceding symbol must be present at least once. Formally, G+ is defined as G

G*. "0".."9" denotes that any character whose codepoint is between 0 and 9 is

matched.

+

1 *

2 3

(a) AST

Additive

Additive

Multiplicative

+ Additive

BracketedValue

Multiplicative

Multiplicative * Multiplicative

BracketedValue BracketedValue1

2 3

(b) Parse tree

Figure 2: Representation of the Parsed Data for 1+2*3

Assume that the string 1+2*3 is parsed as an Additive. Parsing a string as an X

means that we parse the string with the grammar and X is the starting symbol. It

is easy to see that 1+2*3 is in the language of the example grammar. This should

become abundantly clear with the following explanations about how exactly the string

can be derived. To be able to represent the derivation of a string in an easy format,

only a subset of all grammars may be used. These grammars may only have one

nonterminal symbol on the left side of each production rule. The grammars are also

unique. This means that there is only one way to obtain a string for the start symbol.

These two restrictions make it possible to represent the production rules used for the

derivation of a string as a tree. Two common formats are abstract syntax trees (AST)

and parse trees. Both are trees, but the parse tree is more explicit. The parse tree

contains all terminal children and the whole derivation tree. It is shown in Figure 2

how the example string 1+2*3 is displayed in both formats.
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In the AST, every node corresponds to a part of the input string that was parsed

according to the grammar. In parse trees each node corresponds to the left side

of the production rule. The children are the components of the right side of the

matched production rule. These nodes in the parse tree are called Context in ANTLR.

ANTLR uses parse trees to work with parsed input.

The tasks up to this point are done by code provided or generated by ANTLR. The

last step of converting the parse tree into the application specific model must be done

manually. The application specific model is the model that the application uses for

the data that is being parsed. There are many reasons to transform a parse tree into

an application specific model. There might be semantic conditions that are checked,

but cannot be expressed with the grammar. The application might need specific data

structures or helper methods to efficiently handle the data. The syntax might not fit

the model perfectly. The parsed data then must be transformed to fit this underlying

model. Take SPARQL QL filters. Filters used in the body of a query do not apply to

the layer in which they are defined in the grammar. Their scope is larger than their

position in the grammar suggests. To handle the query efficiently, such things must

be corrected.

1 enterAdditive(AdditiveContext);

2 enterAdditive(AdditiveContext); // Begin of Left Subtree

3 enterMultiplicative(MultiplicativeContext);

4 enterBracketedValue(BracketedValueContext);

5 exitBracketedValue(BracketedValueContext);

6 exitMultiplicative(MultiplicativeContext);

7 exitAdditive(AdditiveContext); // End of Left Subtree

8 enterAdditive(AdditiveContext); // Begin of Right Subtree

9 enterMultiplicative(MultiplicativeContext);

10 ...

Listing 2.2: Call Sequence Listener
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ANTLR provides two ways to process these parse trees: parse tree listeners and

visitors.

With a parse tree listener, the parse tree is traversed depth first. The listener has two

methods each for every production rule. One method that is called when this node is

discovered and one that is called when the node is finished during the traversal. The

parse tree in Figure 2b would then be processed as shown in Listing 2.2.

All the methods are called sequentially by ANTLR. The listener must store the

transformed data in instance variables.

Parse tree visitors on the other hand have one function each for the production rules.

This function then transforms the content of this rule into the application specific

model. The visitor functions then return the transformed value. The visitor functions

can also recursively transform any of the children into the application specific model.

This means that the visitor can also decide how, and which parts of the parse tree

are traversed. The transformed values of the children can also be used to compute

the value for the node itself. This may be the case if the right side of the matched

rule contains nonterminal symbols. In that case, the children themselves again must

be transformed.

1 visitAdditive(AdditiveContext); // Root

2 visitAdditive(AdditiveContext); // Left Subtree

3 visitMultiplicative(MultiplicativeContext);

4 visitBracketedValue(BracketedValueContext);

5 visitAdditive(AdditiveContext); // Right Subtree

6 visitMultiplicative(MultiplicativeContext);

7 visitMultiplicative(MultiplicativeContext);

8 ...

Listing 2.3: Call Sequence Visitor

10



Listing 2.3 show how the calls to the visitor could look like. Indented calls were made

by the previous call on the next outer indentation level.
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3 Related Work

There are already several projects that can parse the SPARQL 1.1 Query Language

(SPARQL QL). In this chapter, we will give a brief overview of the parsers of the

most notable open-source SPARQL engines.

Many projects are written using languages that are not compatible with C++. But

there are structural similarities with other projects. It is common to use parser

generators like JavaCC, Bison and ANTLR to write parsers. Some of the projects use

a visitor pattern like QLever. A difference is that QLever uses an improved version

of the visitor pattern. Other projects use more tightly integrated code. These merge

the grammar and the code to transform the parse tree.

JavaCC 1 is a parser generator written in Java. This means that JavaCC generates a

parser given a formal grammar in a specific format. JavaCC can generate parsers in

Java, C++and C#. JJTree is a preprocessor for JavaCC that adds the generation of

parse trees and visitor interfaces to transform those parse trees.

1https://github.com/javacc/javacc
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3.1 Blazegraph

Blazegraph 2 is a graph database written in Java. It is currently used for the official

Wikidata Query Service [8]. The open-source development has been ceased in 2018.

Blazegraph’s SPARQL QL parser is written using the JavaCC parser generator. The

parse tree and visitor of JavaCC/JJTree are used in Blazegraph. This parser is

architecturally like QLever’s new parser but it lacks the more sophisticated features

like the type safety of the visitor and exception metadata. Additionally, it is written

in Java.

3.2 Eclipse RDF4J

Eclipse RDF4J 3 is a framework to handle RDF data written in Java. Like Blazegraph

and Apache Jena, JavaCC uses JavaCC and JJTree for its parser. The generated parser

and visitor are different components. This architecture is similar to Blazegraph’s. In

contrast to QLever, Eclipse RDF4J’s parser is written in Java and lacks some of the

more advanced features present in QLever’s parser.

3.3 Apache Jena

Apache Jena 4 is a project for writing Semantic Web applications. It supports queries

in the SPARQL QL and is written in Java. JavaCC is used for generating a parser for

the SPARQL QL. Jena uses JJTree and a visitor to process the data. Fundamentally

Jena also uses the visitor pattern to process its parse tree, but it is different in that

much of the logic is moved into the grammar file.

2https://github.com/blazegraph/database
3https://github.com/eclipse/rdf4j
4https://github.com/apache/jena

14
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The specification what types are returned by rules and which functions should be

called are all specified in the grammar file. This is a structural difference to QLever.

3.4 Virtuoso

OpenLink Virtuoso 5 is an engine that supports multiple paradigms. It is mostly

written in C. It features a SPARQL QL parser in C written using Bison. But like

Jena, much of the logic of how to handle specific rules is specified in one file with the

grammar itself.

5https://github.com/openlink/virtuoso-opensource

15
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4 Approach

We define the state of the QLever repository [10] directly before this work (commit

hash 1a35ae51) as the initial state. The final state for this comparison is the state

directly after this work with commit hash f9f0a5b2.

In this Section, we will compare the old and new parser on an abstract level. Section 4.1

will give an overview over the structure of the old parser. An introduction into QLever’s

new parser will follow in Section 4.2.

4.1 Old Parser

The old custom written parser from 2019 is comprised of two parts. The structure of

the parser is shown in Figure 3. The first part is the SparqlLexer which performs

the function of a lexer. Its task is to split the query string into tokens. A token is a

part of the query that has a meaning itself. This might be an IRI or a Keyword in a

query.

Figure 3: Structure of the Old Parser

1https://github.com/ad-freiburg/qlever/tree/1a35ae533123dee1d910105c174e79071a0f87f0
2https://github.com/ad-freiburg/qlever/tree/f9f0a5bf2ddfaf363160bc0c2fadcb44c5aadabc
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The types of tokens that exist are defined in the code of the lexer. The individual

token types are detected with Regular Expressions.

The lexer provides two methods to the parser to work with the detected tokens.

Both methods can match on a token with a specific type (e.g., Keyword or IRI) or a

concrete string. The parser can query the next token whether the next token matches.

The parser can also require that the next token matches. If such a requirement is

not satisfied, an exception will be thrown. After a successful match, the token is

consumed and the following token is read. The next operations will query the next

token. Finally, a method to retrieve the last successfully matched token is provided.

The second part of this parser architecture is the SparqlParser. SparqlParser does

the parsing (syntactic analysis), as well as transforming the parsed data into the

application specific model. The SparqlParser used the SparqlLexer to process the

tokens and figure out which production rules were used to obtain the string. This

processing was done in functions. These functions often processed not a single node in

the tree, but a subtree. This design enticed the sharing of state in the function across

the border of different production rules. It also did not require a clear representation

for each production rule in the application’s model.

4.2 New Parser

The new parser uses ANTLRv4. The structure of the new parser is shown in Figure 4.

The query string is first passed through the lexer which is provided or generated

by ANTLR. The tokens are then parsed by the SparqlAutomaticParser which also

is generated by ANTLR. Lastly, the parse tree is transformed into the application

specific model by the SparqlQleverVisitor. The visitor is the only part of the

parsing process that must be implemented manually. For QLever, the visitor pattern

is used to perform this transformation. The SPARQL QL grammar [2] was already

translated into a format suitable for ANTLR by Johannes Kalmbach. The visitor was

also already implemented for some rules by previous contributors to the codebase.
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Figure 4: Structure of the New Parser

The main part of this work was to complete the visitor and to improve it. After the

contributions of this thesis, it is possible to parse complete queries using the new

ANTLR based parser. The visitor can now transform most rules. Only filters are still

parsed separately. Furthermore, this thesis contributes improvements to the visitor

pattern for Qlever. These improvements make the visitor type safe. Finally, code to

make testing easier and provide better error messages was also implemented.

The structure of ANTLR parse tree visitor is quite different to the structure of the

old parser. As described in Section 2.4, the visitor has one method each for the rules

of the grammar. These methods transform the rule (node in the parse tree) into

the application specific model. It can recursively call the visitor to transform the

child rules into the application specific model. The method only uses the already

transformed children to compute its result. It does not access the raw parsed data of

any children. This structure enforces a strict separation between the transformation

of different rules. It also requires a clear model of what each rule in the grammar

represents with respect to the application’s model.
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Lastly, it also makes the individual functions of the visitor shorter. The parser had

functions which had more than 200 lines. Most of the visitor’s functions are no longer

than 25 lines. Many functions have fives lines or less. Although the single functions

of the visitor can not directly share information, the visitor itself can be stateful.

QLever only uses this sparsely. This state is used e.g., to generate integer identifiers

that must be increasing and without jumps. A less complex state is good because it

reduces complexity and makes testing easier.

This new structure has several benefits:

• The small independent functions make the parser much easier to understand

and maintain.

• They enable a deeper level of testing that was not possible before.

• It is directly visible which parts of the grammar are supported or implemented

and which are not.
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5 Technical Contributions

The main part of this thesis was to finish the visitor implementation. In this

Section, we will give a detailed insight into the contributions made by this thesis. In

Section 5.1, we will describe how we made the visitor type safe. Section 5.2 contains

the improvements that we made to error messages emitted by the parser. Section 5.3

describes the improvements we made to the tests for the parser.

All contributions of this thesis are all merged into the respective codebase. Most

of the contributions are made to QLever [10]. Some contributions were also made

to QLever-UI [11]. Guides to utilize the contributions of this thesis can be found

in their respective projects. The contributions can also be tested with the publicly

available QLever endpoint [12]. The endpoint provides QLever-UI as a front end to

several QLever instances.
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5.1 Type safety of the Parser

1 class AdditiveAutomaticVisitor : public antlr4::tree::

AbstractParseTreeVisitor {

2 antlrcpp::Any visitAdditive(AdditiveContext* context);

3 antlrcpp::Any visitMultiplicative(Multiplicative* context);

4 antlrcpp::Any visitBracketedValue(BracketedValueContext* context);

5 }

Listing 5.1: Additive Parse Tree Visitor Interface

The visitor pattern provided by ANTLR has one function each for the differ-

ent contexts. These functions have unique names, e.g., visitAdditive for the

AdditiveContext. They take the respective context as their only parameter. The

return value is a container type that can contain any value. This container type is

named antlrcpp::Any. The visitor interface that ANTLR would generate for the

example in Section 2.4 is shown in Listing 5.1.

Notice that all visitor functions have the return type antlrcpp::Any. The actual

return values are packed into antlrcpp::Any when a function returns. They are

unpacked again when the value is used. This unpacking can cause exceptions when

trying to unpack a value of a type that is not the type of value in the container.

Trying to unpack a float from a container that contains an integer will result in an

error being thrown. This means that handling these values is not type safe and

may result in runtime errors. The advantage of this approach is that it enables

ANTLR to provide some default behavior. The user may choose to only provide an

implementation for certain contexts. For all cases that are not defined by the user,

the result of the last subrule is returned. This approach also allows to return values

of different types.
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However, this manifestation of the visitor pattern is not well suited for QLever. The

antlrcpp::Any type requires unpacking of the actual result every time a sub rule is

processed. This adds code overhead and, even worse, code duplication. Contexts are

often visited from more than one place. The type that is contained must be duplicated

in all the places where it is visited from. The type also must match the type that

is returned by the function. This allows errors to happen while programming or

refactoring code.

Instead, we propose a modified visitor interface to solve these problems. There is

still one function each for the different contexts. They still take the context as the

only parameter. But these functions are now all called visit. The resolution which

function is called is decided by the type of the context which is the only parameter.

The return values are not packed into a container but instead returned directly. This

is also reflected in the functions return type. If required, std::variant is used to

achieve a union of types in a safe way. The modified visitor does not inherit from the

AbstractParseTreeVisitor and therefore does not have any defaults. All rules must

be implemented. An example for this modified pattern for the example grammar in

Section 2.4 is shown in Listing 5.2.

1 class AdditiveVisitor {

2 Expression visit(AdditiveContext* context);

3 Expression visit(Multiplicative* context);

4 Expression visit(BracketedValueContext* context);

5 }

Listing 5.2: Modified Additive Parse Tree Visitor Interface

With the modified pattern, unpacking is no longer required. This removes the need

for boilerplate code and code duplication associated with unboxing. Errors related to

unboxing are now compile time errors instead of runtime errors. This improves or

removes the described problems.
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5.2 Meaningful Error Messages

Meaningful error messages are useful while developing because they allow a quicker

diagnosis when a problem occurs. End users are not familiar with the code or the

implementation details. Meaningful error messages are required for end users to

diagnose errors. If the error is too technical, it is of little use. On the other hand,

clear error messages that pinpoint what exactly went wrong enable users to fix the

problems on their own.

QLever strives to output useful error messages. During this work, the error messages

output by the parsing subsystem of ANTLR were improved. Previously, the error

messages only contained text. The text was made up of a description of the problem

that occurred and the whole query. But this is only sufficient in some cases to quickly

identify the location of the error.

Take “GROUP BY is not allowed when all variables are selected via SELECT

*” as an example. The source is identifiable from the text because there is only one

select and group in the query.

“Variable ?foo is used but not aggregated despite the query not being grouped

by ?foo.” requires the naming of the variable to be able to pinpoint the problem.

The messages would be unclear without the concrete variable, as there may be many

variables selected in a query. This is the current state of the error messages from the

parser.

However, this is still not sufficient. Assume that a query contains a misplaced WHERE.

The error message could look something like Expected a token of type IRI but

got a token of type KEYWORD (WHERE) in the input at pos 120 : [...]. Find-

ing the location of the error by its location is hard. Doing this would require counting

the characters.
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(a) QLever Server

(b) QLever UI

Figure 5: Usage of Exception Metadata for Highlighting of Errors

To solve the problem of finding the location of an error, metadata on exceptions have

been introduced. The metadata contains the query that caused the exception and

the exact location that caused the error. The location is provided as a position in

the query string, as well as line number and position in the line. All positions are

in Unicode code points and not bytes. The metadata is returned by QLever when

an error occurs. Clients using QLever can then use this information to highlight the

error. Usages of the metadata in QLever and QLever-UI are shown in Figure 5. In

both cases, the metadata is used to highlight the position of the clause that caused

the error. This highlighting makes it easy to find the position of the error in the

query.

The metadata is automatically added to errors that are raised by ANTLR. The errors

raised by ANTLR are syntactic errors. While transforming the parse tree to an

application specific model, semantic errors can occur. We have implemented utilities

to raise such errors with metadata.
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5.3 Testing

In this Section, we will give a more detailed explanation on the test written for the

new parser and how the testing code evolved. Section 5.3.1 will describe the style of

the tests written for the old parser. Section 5.3.2 continues with improved tests that

were written for the methods of the visitor. These tests were implemented by other

QLever contributors. This is the starting point for this thesis with regards to tests.

In Section 5.3.3 we will outline the improvements we made to the tests.

Good and thorough testing should be part of any professional software project. Testing

is even more important for QLever, because untrusted user input is processed and

errors could have security implications. The rewriting of the parser is also motivated

by the desire to improve the code quality in general. The most important reason was

to make the parser more compliant with the standard. Conveniently, such a rewrite

with a cleaner architecture also is a very good opportunity to improve the quality

of the tests. Firstly, tests must check whether the tested code behaves as expected.

Apart from that, we formulated three key points that characterize good tests for

QLever:

1. The test must be easy and fast to write new tests.

2. The tests must be easy to maintain.

3. The tests must be easy to read and understand.

GTest 1 is used as a unit testing framework for QLever. GTest provides the TEST

macro to write tests. The first parameter is the name of the test suite and the second

parameter the name of the test. Test suites can group tests together. In QLever, this

is used to group the tests for Components into one test suite. The single tests then

test the individual features of the code.

1https://github.com/google/googletest
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GTest provides a series of assertions to check conditions in the tests. They start with

ASSERT_ or EXPECT_. The only difference between them is that ASSERT_ asserts abort

on a failed condition. EXPECT_ asserts continue after failed conditions. GTest also

introduces the concept of Matchers. A constructed Matcher can be used to check

whether a value fulfills a condition with an EXPECT_THAT. Some basic Matchers are

provided by GTest. GTest for example provides the equality Matcher. To construct an

equality Matcher, the Matchers constructor is passed a value that is then used for the

equality check. Matchers can be combined to represent more complex conditions.

5.3.1 Old Parser

1 TEST(ParserTest, testParse) {

2 [...]

3 auto pq = SparqlParser("SELECT ?x WHERE {?x ?y ?z}").parse();

4 ASSERT_TRUE(pq.hasSelectClause());

5 const auto& selectClause = pq.selectClause();

6 ASSERT_GT(pq.asString().size(), 0u);

7 ASSERT_EQ(0u, pq._prefixes.size());

8 ASSERT_EQ(1u, selectClause._varsOrAsterisk.getSelectedVariables()

.size());

9 ASSERT_EQ(1u, pq._rootGraphPattern._children.size());

10 ASSERT_EQ(1u, pq._rootGraphPattern._children[0]

11 .getBasic()

12 ._whereClauseTriples.size());

13 [...]

14 }

Listing 5.3: Old Test
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The old parser does not have components that can easily be tested independently.

These tests therefore only test the whole parser at once. The general procedure is

always the same. A test query is parsed (line 3) and the result is then asserted (line

4 onwards). The structure of the resulting object is traversed manually and various

fields and properties are asserted for their expected values. While it is also important

to test large components, this form of tests has several drawbacks.

The testing of large components and the manual assertion process produces code that

is sparse with regards to content. Manual assertions also mean that the assertions

are duplicated between tests. This makes it possible to assert a property differently

in different tests by accident. These properties of tests make them not very good

regarding the three criteria. Long tests are neither fast to write nor easy to understand.

They are also not easy to maintain because of their length. The sparsity of the tests

makes maintenance even harder.

5.3.2 Preexisting Tests for the New Parser

1 TEST(SparqlParser, LimitOffsetClause) {

2 string input = "LIMIT 10";

3 ParserAndVisitor p{input};

4

5 auto limitOffset = p.parser.limitOffsetClauses()->accept(&p.visitor).

as<LimitOffsetClause>();

6 EXPECT_THAT(limitOffset, IsLimitOffset(10, 1, 0));

7 }

Listing 5.4: New Test
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1 MATCHER_P3(IsLimitOffset, limit, textLimit, offset, "") {

2 return (arg._limit == limit) && (arg._textLimit == textLimit) &&

3 (arg._offset == offset);

4 }

Listing 5.5: Macro Based Matchers

The tests for the new parser are already a substantial improvement to the tests

described in Section 5.3.1. The tests for the new parser test individual functions of

the visitor instead of the whole component. GTest Matchers [13] are primarily used

for asserting. These tests are more focused, more readable and shorter than the tests

shown in Section 5.3.1. However, there are still aspects left that can be improved.

The tests still have boilerplate code related to parsing (lines 2-5). The Matchers

are defined using macros from GTest. A Matcher is then used to assert the parsed

value (line 6). Listing 5.5 is an example for a Matcher defined with a GTest macro.

Line 1 specifies the number of parameters, the name of the Matcher and the names

of the parameters. Lines 2 and 3 contain the condition that this Matcher asserts.

Constructing the Matcher with this macro has the disadvantages that the parameters

to construct the Matcher (here: limit, textLimit and offset) are polymorphic.

Polymorphic parameters make it impossible to use initializer lists or omit types to

shorten the code. Matchers defined using macros by default only provided a message

that the composite condition failed. This usually requires stepping through the test

case with a debugger to identify the cause of the test failure.
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5.3.3 Improvements to the Tests

1 TEST(SparqlParser, LimitOffsetClause) {

2 auto expectLimitOffset = ExpectCompleteParse<&Parser::

limitOffsetClauses>{};

3 [...]

4 expectLimitOffset("LIMIT 10", m::LimitOffset(10, 1, 0));

5 expectLimitOffset("OFFSET 31 LIMIT 12 TEXTLIMIT 14",

6 m::LimitOffset(12, 14, 31));

7 [...]

8 }

Listing 5.6: New and Improved Test

1 auto LimitOffset = [](uint64_t limit, uint64_t textLimit,

2 uint64_t offset) -> Matcher<const

LimitOffsetClause&> {

3 return testing::AllOf(

4 AD_FIELD(LimitOffsetClause, _limit, testing::Eq(limit)),

5 AD_FIELD(LimitOffsetClause, _textLimit, testing::Eq(textLimit)),

6 AD_FIELD(LimitOffsetClause, _offset, testing::Eq(offset)));

7 };

Listing 5.7: New Matchers

To solve the problems that are present in the tests of Section 5.3.2, we introduced two

main improvements to the testing code of the parser. An example of an improved

test case is in Listing 5.6. The first improvement is ExpectCompleteParse (line 2).

ExpectCompleteParse encapsulates the process of parsing a string as a specific rule

and then asserting the parsed data with a Matcher. A template parameter allows to

specify as which type of clause the queries should be parsed.
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The ExpectCompleteParse object can then be called with a string and a Matcher.

The string is parsed as the specified clause and matched against the Matcher. Notice

that in Section 5.3.2, checking an input required lines 2 to 6. With the improved

tests for the new parser, the same test only requires line 4. In the improved version,

a different case is checked for lines 4 and 5.

Listing 5.7 shows an improved Matcher. This Matcher is made up of three Matchers

that each check a field of the LimitOffsetClause (lines 4-6). The Matcher only

succeeds if every field matches (line 3). QLever’s Matchers are now in the matcher

namespace which is abbreviated to m in the tests. The Matcher is now being con-

structed of different Matchers that are provided by GTest in the testing namespace.

AD_FIELD is a helper for the testing::Field Matcher. The construction of the

composite Matcher is wrapped in a lambda. This way of constructing Matchers has

the benefit that the error messages are very detailed. The message now also contains

information on the exact condition which has failed. These errors are precise enough

to find the cause from only the message in most cases. The lambdas also explicitly

specify the parameter and return types. This makes it possible to omit types in the

tests in some cases. E.g., for vector initializer lists can be used.

These tests provide an improvement with regard to the three criteria for good tests.

The improved way of constructing Matchers and the easy creation of ExpectCompleteParse

make it fast and easy to write new tests. The abstraction of creating the Matchers

through lambdas also are a central place for changes if the application model changes.

This makes the tests easy to maintain for most smaller changes like renaming of fields.

Because the Matcher mimics the actual structure of the data, they are a natural,

compact and easy to understand way to represent the expectations.
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6 Evaluation

This chapter will contain an evaluation of the new parser. Section 6.1 will briefly

evaluate the impact of the new parser on the total execution time of a query. After

that, Section 6.2 will evaluate the old and new parser based on their compliance

with the SPARQL QL standard. The quality of the parser is finally evaluated in

Section 6.3.

The main criterion for the new parser is quality. For QLever, four aspects define the

quality of the parser code:

• correctness of the code

• resilience against programming errors

• resilience against user errors

• maintainability

Speed is a less important factor. The actual execution of the query takes much longer

than the parsing of the query (see Section 6.1).
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Query parsing (ms) Total execution time (ms) Share query parsing of total
execution time

1 116 0.86%
1 114 0.88%
2 98 2.04%
1 98 1.02%
2 31 6.45%
1 18 5.56%

(a) Olympics ( 2 mio. Triples)

Query parsing (ms) Total execution time (ms) Share query parsing of total
execution time

16 24351 0.07%
1 24710 0.00%
2 362 0.55%
1 353 0.28%
78 1205 6.47%
3 1123 0.27%
1 8541 0.01%
1 8638 0.01%
2 399 0.50%
1 454 0.22%
1 1471 0.07%
1 1420 0.07%

(b) DBLP ( 350 mio. Triples)

Table 1: Share of Query Parsing of the Total Query Execution Time
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6.1 Speed

Table 1 shows the execution time of select queries without caching, the time required

for parsing the query and the fraction of the parse time in the total execution time.

The queries used for testing are the example queries provided by QLever-UI for the

respective dataset. The cache of QLever was cleared before each measurement. The

times were measured by extending the code that is already used to measure the

total execution time of the query. Commit c6376e41 was used as a base for the

measurements. The QLever instance was running on a Linux system with an Intel

i7-11700. The index was stored on an NVME SSD. Table 1a contains the result

with the “Olympics” dataset. This dataset contains information on athletes at the

Olympic games and has about 2 mio. triples. Table 1b shows the measurements

with the “DBLP” dataset. The DBLP dataset contains bibliographic information

on computer science journals. It has about 350 mio. triples. QLever can handle

datasets that contain billions of triples like the complete Wikidata (17 billion triples).

The tested queries are the provided examples when using an unmodified QLever-UI

instance. Most of the queries are between 200 and 400 characters long. Queries on

more complex datasets can also reach a length of around 1500 characters.

We can observe that the parsing of the query only is an insignificant part of the total

execution time for a query in all the measured cases. The parsing only took more

than 1% of total time in 5 out of 18 measurements. But in 4 of these 5 cases, the

total execution time was smaller than 100ms. This has the effect that even queries

that are parsed in 1ms are over this threshold.

1https://github.com/ad-freiburg/qlever/tree/c6376e46aefc7c15bbbce0eb84eb6422845d2367
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6.2 Standard Compliance

These comparisons will reference Rules of the SPARQL Query Language’s grammar.

The grammar of the SPARQL QL can be found in Section “19.8 Grammar” of the

SPARQL QL [2].

There are two dimensions along which the parsers will be compared. These are

Recognition and Support. Recognition shall be the ability of the parser to correctly

identify the input that it is presented. Recognition of the current rule is in most cases

required to be able to provide useful error messages. Lacking recognition is always a

deficit of the parser. Support shall be the ability of the parser to correctly processes

the input and transform it into the application specific model. Only in some cases

can missing support for a feature be fixed by changing the parser. In most cases the

underlying problem is that the engine code does not support the feature that is being

parsed.

The cell values yes or no note that the specific aspect for this feature is implemented

according to the SPARQL QL specifications or not. partially describes that a

certain aspect is only supported for a subset of the cases specified by the standard.

With the new parser, this means that the backing code only supports a subset of the

features specified by the standard. not standard compliant denotes that a feature

is implemented in a way that is not conform to the standard. Like partially, this

is also a deviation from the standard. In this case, the cause for the deviation is

that the parser is more lenient than the standard. Inputs that should have been

rejected according to the standard are still parsed successfully. The reason for this

may be errors in the parser or an extension of the grammar by QLever in the case of

LimitOffsetClause.
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Feature Before After
Recognition Support Recognition Support

a as alias for rdf:type no no yes yes
LimitOffsetClause not stan-

dard com-
pliant

yes not stan-
dard com-
pliant

yes

OrderCondition partially partially yes yes
GroupCondition partially partially yes yes
PropertyPath partially partially yes partially
DataBlock partially partially yes partially
SelectClause not stan-

dard com-
pliant

partially yes partially

TriplesSameSubjectPath partially partially yes partially
PrefixDecl not stan-

dard com-
pliant

yes yes yes

WhereClause partially partially yes partially

Table 2: Standard Compliance of Select Aspects of the Old and New Parser

6.3 Code Quality

The code quality is of great importance for the parser. For the parser, the quality

criteria are correctness of the code, resilience against programming errors, resilience

against user errors and maintainability. In contrast to speed, these criteria are much

more fuzzy and therefore harder to evaluate in a scientific manner.

The switch to ANTLR (Section 4.2) has the effect that much of the parser code is

generated. Code that is not written reduces the risk to introduce programming errors.

The modification of the visitor pattern to make it type safe (Section 5.1) also makes

it significantly harder to introduce programming errors when handling the return

values of recursive visitor calls. Rigid testing (Section 5.3) of the written code also

makes it harder to introduce errors in the existing code.
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Providing the user with improved error messages (Section 5.2) improves the ability of

the user to detect and correct errors in the query.

The switch to ANTLR and the visitor pattern also has the added benefit that it

encourages low coupling. Compared to the old parser, the new parser has much lower

code coupling. The old parser would parse and transform many rules in one function.

The old parser has also shared state in its functions. This means that there were

shared variables between the parsing and transformation of different rules. In the new

parser the transformation into the application specific model is a separate function

for each rule. Separate functions also enforce clear decision on what each rule should

be transformed into. This architecture improves maintainability and decreases the

coupling. Low coupling is a sign for high code quality.

For this evaluation, we will use the code coverage of the tests as an approximation

for the correctness. One disadvantage of code coverage is that it does not take the

quality of the tests into account. There are different levels of precision. Some criteria

may only measure on the level of functions while others measure the execution of

single statements. If we have good tests, it can be assumed that the code is probably

correct. Despite these methodical flaws, the test coverage is a good approximation

to measure for which fraction of the code we can assume that the code is probably

correct.

Table 3a and Table 3b show the coverage of the old tests on the old and new parser.

Table 4 shows the code coverage for the new tests on the new parser. The old tests

test the parser as one unit. They can therefore be run against both the old and the

new parser. The new tests specifically test single functions of the visitor. Therefore,

these tests can only be run against the new parser.

After analyzing the old tests in Table 3, we can see that the tests achieve relatively

high coverage of the lexer. Weighting the coverage by the number of lines, we get a

line coverage of approximately 81% and a branch coverage of approximately 33% for

the lexer.
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File Line Coverage Branch Coverage
SparqlLexer.cpp (218 Lines) 73% 29%
SparqlLexer.h (96 Lines) 100% 43%
SparqlParser.cpp (939 Lines, cor-
rected for unused Code)

60% 38%

(a) Old Parser

File Line Coverage Branch Coverage
SparqlLexer.cpp (241 Lines) 63% 26%
SparqlLexer.h (102 Lines) n.a. n.a.
SparqlParser.cpp (302 Lines) 44% 26%
SparqlQleverVisitor.cpp (1734
Lines)

67% 30%

SparqlQleverVisitor.h (485 Lines) 50% 13%
(b) New Parser

Table 3: Coverage Old Test Suite

File Line Coverage Branch Coverage
SparqlLexer.cpp (241 Lines) 63% 20%
SparqlLexer.h (102 Lines) n.a. n.a.
SparqlParser.cpp (302 Lines) 38% 20%
SparqlQleverVisitor.cpp (1734
Lines)

84% 39%

SparqlQleverVisitor.h (485 Lines) 95% 14%

Table 4: Coverage New Test Suite on the New Parser
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The more complex parser only has a line coverage of 60% when correcting for unused

code. This is a problem because the parser is the more complex component and thus

it is more likely to introduce bugs there.

A second observation is that the new tests reach a high coverage on the new parser.

The coverage is 24% higher than the coverage of the old tests on the old parser before

this work. SparqlQleverVisitor.h can be ignored for this inspection because only a

small fraction of SparqlQleverVisitor.h (less than 50 lines) is code. The majority

of SparqlQleverVisitor.h are function definitions.

In conclusion, it can be said that investigated metrics all suggest that this work

increased the quality of the parsing code in QLever.
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7 Further Tasks

• Implementation of missing built-in functions. The SPARQL QL defines around

60 built-in functions. These include hashing operations, string operations

(upper/lower casing, regex matching, length), mathematical functions (absolute

value, ceiling function, floor function), time operations (get components of a

timestamp) and more. Most of them are currently not supported by QLever.

Work has already been to make the implementation of additional functions

quick and easy. Some work is currently also being done on implementing some

of the more requested functions. The scope of this task should be manageable,

and the work required should be on the order of several weeks. One area where

we see problems arising is if data types required for a function are not at all or

not sufficiently implemented. This could require changes to the data types and

would result in an extended amount of work required.

• Filter parsing using ANTLR. Filters are the only parts of a query that are

still parsed with the old parser. Once the necessary changes on the engine side

are done it should be possible to also parse filter using ANTLR. This would

make it possible to support a wider range of filters. Additionally, this would

make it possible to remove the old parser and lexer entirely. The scope of

this task is highly dependent on the scope of the changes on the engine side.

Adding expressions that work with Boolean values is currently still required.

Implementation of some built-in functions can also be required. The general

idea is to replace the custom SparqlFilter with expressions.
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A short term solution might be to bind the filter condition to an internal

variable. This variable can then be used in a filter that only filters on a variable.

This short term solution should be implementable in a few days. A long-term

solution for filters would also have to support query optimization. This includes,

among other things, heuristics for how expensive it is to evaluate the filter and

how many elements the filter filters out.

• Implementation of missing features of the SPARQL QL. QLever currently does

not support every feature of the SPARQL QL standard. With regard to the

missing features, the built-in functions are one of the more often requested

features. There are still other features of the SPARQL QL standard that QLever

does not support or where QLever deviates from the standard. One example to

illustrate this is the Values Clause. Empty values clauses are not supported.

Only IRIs and RDF literals are currently allowed in values clauses. Numeric

and Boolean literals as well as undefined values are not yet supported. Another

example is the Where clause. The implementation currently requires that a

Where clause must not be empty although it may be empty according to the

standard. The features for named graphs and federation can be used inside a

Where clause. They are also not supported.

These two examples show the big scope of this task. Single subtasks should be

completable in a couple of weeks. But achieving conformity with the standard

in all areas would take many months.

• More consistent use of strong types. There are two classes of types which we

distinguish when talking about the modeling of data in QLever. The concept is

similar to the concept of weakly and strongly typed programming languages.

IRIs, variables, and literals can all be represented through a single string. But

in that case, the context of the string is required to be able to know what the

string represents. From a type perspective, strings that contain a variable or

an IRI cannot be discerned. We call this a weak type.
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Strong types on the other hand would have distinct types for IRIs, variables,

and literals. These types can then enforce invariants like the property that

variables names must start with “$” or “?”. These types can also provide helper

functions specific to the type. There are already strong types for many objects

like IRIs and variables, but they are not used consistently. The parser uses

these strong types in most places. The downstream engine only rarely uses the

strong types. It is often the case that the strong types are converted to strings

for their future usage at some point. Most of this work will be in the code of

the engine. Applying this consistently over the whole codebase should be a

matter of many weeks, to a couple of months.

• Rewriting the existing tests for the old SPARQL parser using Matchers and

merge them with the tests write for the new ANTLR based parser. This task

can also be extended to rewrite the tests for other components using Matchers.

Only knowledge about GTest is really required to rewrite the tests. Rewriting

the tests should be completable in a few days.
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