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A review of word embedding and document similarity algorithms applied to
academic text

by Jon Ezeiza Alvarez

Thanks to the digitalization of academic literature and an increase in science fund-
ing, the speed of scholarly publications has been rapidly growing during the last
decade. This is obviously very positive, but it leads to a few logistical problems we
have been tackling lately. Article availability is, for the most part, a solved problem,
a scientist can get access to virtually any publication on demand. There’s also a very
comprehensive tool-set for retrieval of relevant articles by now and the last couple
of years have seen a further surge, with a new wave of AI based retrieval tools.

However, the latest global surveys about reading patterns suggest that it is now
harder than ever for a professional scientist to keep up. There is no human endeavor
that is better publicly documented than scientific progress, yet, we are starting to
loose the grasp of it. It is no longer viable for a single person to keep a global view
of science, not detailed enough or updated enough to be useful at least. Conversely,
recent advancements in natural language processing (NLP) and high volume dis-
tributed computation are starting to open the door to an alternative. We propose the
long term goal of creating an automatic toolbox for indexing, understanding and
interpreting all scientific literature. This work is intended to be a small early step in
that direction.

Word embeddings, which facilitate working with abstract semantic concepts in nu-
merical form, have become the foundation of modern NLP. Here we perform a thor-
ough review of the most pivotal word embedding algorithms and perform an em-
pirical evaluation on academic text to identify the best alternatives for the described
use case. We also extend the concept of word embeddings to documents. We per-
form a similar review of recent document modeling algorithms and evaluate them
on titles, abstracts and full articles.
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Literatura zientifikoaren digitalizazioari esker eta zientziaren esparruan egin diren
inbertsioen ondorioz, nabarmen areagotu da argitalpen akademikoen kopurua azken
hamarkadan. Oso datu baikorra da hori, noski, baina ekoizpenen ugaritzearekin
batera zenbait erronka sortu dira. Artikuluak erabiltzaileen esku egon daitezen
bermatzea da erronka horietako bat. Oro har esan liteke erantzun egokiak eman
zaizkiola eskakizun horri, eta eskuarki zientzialariek badutela aukera beren intere-
seko argitalpenak eskuratzeko aparteko arazorik gabe.

Alabaina, irakurketa joeren inguruko mundu mailako azken txostenek adierazitakoaren
arabera, gaur egun inoiz baino zailago dute zientzialariek haien jakintza-arloan egunez
egun zabaltzen diren berriak eta berrikuntzak jarraitzea. Seguruenez, ez dago giza
jardueraren alorrik zientziarena bezain ondo dokumentatuta dagoena; baina, para-
doxikoki, horrek berak zailtzen du norberarentzat esangarri izan daitekeen infor-
mazioa atzitzea. Izan ere, gaur egun oso zaila da alor askotan zientziaren esparruan
egiten denaren ikuspegi orokorra izatea; are zailago, jakina, informazio xehea esku-
ratzea. Zorionez, Hiztuntza Prozesamenduaren alorrean (HP) hainbat aurrerapen
egin dira eta hasiak dira arazoari nolabaiteko erantzuna emateko bideak zabaltzen.
Ildo horretatik, lan honetan proiektu bat aurkezten da, helburu duena erreminta-
kutxa bat garatzeko literatura zientifikoa automatikoki indexatu, ulertu eta inter-
pretatzea. Proiektua epe luzeko jomugan aurreikusten da, eta lan honetan urrats bat
egin nahi izan da norabide horretan.

Jakina denez, Word embedding da HP garaikidearen oinarri sendoenetako bat gaur
egun. Horri esker, kontzeptu semantiko abstraktuak zenbakizko errepresentazioen
bidez adierazi ahal dira. Helburu horrekin hainbat algoritmo garatu dira. Hain
zuzen ere, lan honetan word embedding algoritmo garrantzitsuenek testu akademikoak
eskuratzeko zereginetarako eskaintzen dituzten emaitza enpirikoen balioespena egin
da. Era berean, word embeddings kontzeptua dokumentuen eremura zabaltzen da,
eta antzeko berrikuste-lana egin da aztertuta dokumentuak modelizatzen dituzten
algoritmoek nolako emaitzak ematen dituzten algoritmo horiek aplikatzen direnean
artikulu zientifikoen tituluen gainean, artikuluen laburpenen gainean eta artikuluen
testu-gorputz osoaren gainean.

http://www.uni-freiburg.de
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Chapter 1

Introduction

Thanks to the digitalization of academic literature and an increase in science fund-
ing, the speed of scholarly publications has been rapidly growing during the last
decade. This is obviously very positive, but it leads to a few logistical problems we
have been tackling lately.

The problem of availability is largely solved, getting access to an arbitrary article is
no longer an issue for a scientist any more in most cases. This is thanks to meta-
data management standards and a special push from the Open Access movement.
PubMed1, ArXiv2 and DBLP3 are some of the leading indexers and aggregators for
their respective fields, and act as the primary hosts of Open Access publications.
All this coordination would not be possible without standards like OAI-PMH4 or
Dublin Core5.

There is also a comprehensive set of tools for retrieval of relevant articles. Classic
academic search engines like Web of Science6 or Google Scholar7 still stand strong
and the last couple of years have seen a surge in progress in this front, with the
launch of a new generation of retrieval tools based on AI like Semantic Scholar8

from the Allen Institute.

However, the latest global surveys (Ware and Mabe, 2015) about reading patterns
suggest that it is now harder than ever for a professional scientist to keep up. It is
not uncommon to be confronted with a few hundred new publications on a daily
basis in some fields, such as materials engineering or machine learning. Because of
this, it is reported that each article is read only five times on average.

There is no human endeavor that is better publicly documented than scientific progress,
yet, we are starting to loose the grasp of it. It is no longer viable for a single person to
keep a global view of science, not detailed enough or updated enough to be useful
at least. Conversely, recent advancements in Natural Language Processing (NLP)
and high volume distributed computation are starting to open the door to an alter-
native. We propose the long term goal of creating an automatic toolbox for indexing,
understanding and interpreting all scientific literature. A solution that goes beyond
retrieval and that can dive into the semantic content, to identify overarching trends,

1PubMed: https://www.ncbi.nlm.nih.gov/pubmed/
2ArXiv: https://arxiv.org/
3DBLP: http://dblp.uni-trier.de/
4OAI-PMH: https://www.openarchives.org/pmh/
5Dublin Core: http://dublincore.org/
6Web of Science: https://apps.webofknowledge.com
7Google Scholar: https://scholar.google.com
8Semantic Scholar: https://www.semanticscholar.org/

https://www.ncbi.nlm.nih.gov/pubmed/
https://arxiv.org/
http://dblp.uni-trier.de/
https://www.openarchives.org/pmh/
http://dublincore.org/
https://apps.webofknowledge.com
https://scholar.google.com
https://www.semanticscholar.org/
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understand how progress in science works and how to optimize scientific perfor-
mance.

This work is intended to be one of the small first steps in this direction. Word embed-
dings, which facilitate working with abstract semantic concepts in numerical form,
have become the foundation of Modern NLP. We have therefore focused on doing a
thorough review of the mayor word embedding algorithms. We give an overview of
the intuition behind the algorithms, their mathematical core and, most importantly,
we do an empirical evaluation on academic text. This last task is especially relevant
as most of the focus in the research community has been on general purpose text,
such as news or social media activity. Scientific text is notably different, with a much
higher density of specialized terminology. We check this assumption and see what
algorithms perform best in this context.

It also stands to reason to extend the concept of word embeddings to documents,
such as titles, abstract or full articles. We have also endeavored to perform a lit-
erature review on semantic document models and, more specifically, on semantic
textual similarity (STS) based on word embeddings. Word embedding composition-
ality is still considered an open problem though and the size and type of documents
plays a considerable role. Nevertheless, as with word embedding algorithms, we
perform a thorough theoretical and empirical review of the few state-of-the-art algo-
rithms.

1.1 Context

This work has been done under the overarching project of SCITODATE, a startup co-
founded by the author. At SCITODATE we set out to build an AI toolbox and a large
scale data infrastructure to extract business and research insight from large amount
of academic articles. Currently SCITODATE finds customers for highly specialized
providers of research equipment, materials and services. This offering is intended
to be one of many business intelligence services in the scientific market that will
fund our overarching goal of building a digitalized global high resolution view of
all scientific progress.

This research work has been done in parallel and does not contain the core work
that supports the main customer discovery service. The author declares that he has
been the sole contributor to everything described in this document. However, both
works are clearly aligned and SCITODATE has influenced some of the priorities of
this sub-project. Particularly, it has led to the empirical review being focused on
the biomedical field, where SCITODATE has most of its clients. Nevertheless, it
also turns out that the biomedical field is the most developed in terms of metadata
infrastructure and data availability, so it is the best choice, in any case.

1.2 Scope

This work has been divided in two review sections: one for word embedding al-
gorithms and another one for document similarity algorithms. For each algorithm
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we give an intuition of its rationale and inner workings, a summary of the mathe-
matical foundations and an empirical benchmark of predictive and computational
performance.

To perform such a review we have created our own training and evaluation datasets
for the lack of standard datasets in the scientific domain. The creation of these
dataset is also considered a core contribution of this work, so special attention has
been given to the process of data collection and cleaning. The datasets are con-
strained to the biomedical field, where data availability is most developed. We have
created a large corpus of 2M full articles and 26M abstracts from PubMed9. The
word embedding evaluation dataset was created using the UMLS knowledge base10

as a gold standard. The document similarity evaluation has been done using author
linkage, with authenticated ORCID11 author profiles.

This work only reviews corpus-based word embedding algorithms. There is a healthy
ecosystem of word embedding algorithms trained on knowledge bases and there are
big and very high quality knowledge bases in science to train on. However, corpus-
based algorithms are more popular in the community, because their input is easier
to acquire and they have better prediction performance overall. Therefore, knowl-
edge base word embeddings are deemed outside the scope of this project and left as
future work.

We also focus only on unsupervised document similarity models. Unsupervised
models only rely on the knowledge mining performed by the word embedding al-
gorithms, instead of training an end-to-end similarity estimator. The rational for
this is data availability. Article linkage is weak by nature. Here we focus on au-
thor linkage, which ensures a similarity signal, but is somewhat loose. This could
be improved by using authors in combination with publication dates. References
can also be a good source of semantic linkage, although bibliographic references are
often bloated and reference information is hard to acquire in any case. It may be
possible to collect a big enough training gold standard, specially when centralized
author IDs become more prevalent in the following years. However, in this work we
deem that going to such lengths is out of the scope and we only use such linkages
for evaluation.

Semantic textual similarity (STS) and word embedding compositionality is consid-
ered an open problem. It is still early days for STS and the state-of-the-art is fairly
sparse compared to the word embedding scene. The STS problem is also frag-
mented, as not every word collection can be treated equally. The academia now
distinguishes phrases, sentences, paragraphs and documents as different instances
of text with independent solutions. The focus of this work is in the paragraph and
document levels but the state-of-the-art here is fairly narrow. Because of this, it was
also deemed interesting to explore algorithms that act at different levels, particularly
on sentence similarity, which is a more active subfield. This diversity opens the door
to do further experimentation with titles, abstracts and full articles, which gives a
more complete picture.

In general, this is not intended to be a full comprehensive listing of the current state-
of-the-art. We hand-pick a set of pivotal algorithms from the last five years, and
explore their differences. Inspecting all the iterative improvements would be too

9PubMed: https://www.ncbi.nlm.nih.gov/pubmed/
10UMLS: https://www.nlm.nih.gov/research/umls/
11ORCID: https://orcid.org/

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.nlm.nih.gov/research/umls/
https://orcid.org/
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much work and its value would be questionable. Instead, we try to focus on algo-
rithms that introduce new ideas and have, to some extent, influenced the community
in a significant way. Finally, we have also limited ourselves to algorithms that are
already implemented. There is a few interesting solutions only described on pa-
per. Implementing such algorithms would steal too much time from doing a global
review, though, and could be very error prone if not given its due attention.
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Chapter 2

Foundations

The following chapter briefly covers the foundations needed to understand the rest
of the work. We explain the basic classical notions of natural language processing
(NLP) in a bottom-up approach, starting at character level and building up to more
abstract understanding.

We also give a short primer on Neural Networks (NN), Deep Learning (DL), back-
propagation and gradient descent optimization. Deep learning has become the core
of modern NLP in the last five years. It has almost completely replaced three decades
of rule based and statistical NLP work it terms of language understanding. This
work is, in fact, focused on reviewing the lower level components of the DeepNLP
ecosystem. Therefore, it is specially relevant to give a briefing on these topics too.

2.1 Preprocessing

Real world text is cumbersome to deal with. Language is highly inconsistent, even
in the most formal settings. In this section we cover the standard NLP tool-set that
is used to transform text from a raw sequence of characters to a form that is cleaner
and easier to deal with computationally.

2.1.1 Tokenization

Tokenization is the task of splitting the text into more meaningful character sequence
groups, usually words or sentences. It is almost always the first step in any NLP
pipeline. Characters are hard to interpret by a computer on their own, but words
mostly self-contained semantic units. It is a comfortable level of abstraction to work
at, a lot of NLP operations act directly on words.

A naive approach to tokenization would be simply to split by spaces and remove
any punctuation. It is a good baseline, but not ideal. Even for common English there
is a number of tricky cases. For example, the use of apostrophe for contractions.
Should "aren’t" be a single token or two ("are", "n’t"), meaning "are not". What about
the different cases of hyphenation like "co-occurrence", "Bellman-Ford" or "five-year-
old kid". Or composite borrowed names like "Los Angeles" or "in vitro". What about
numbers, serial codes, mathematical notation or protein names.

Such corner cases are language and domain specific. It also is unclear how smart a
tokenizer should be, if it should detect common phrases or composite words. The
treatment of such corner cases is also ambiguous, depending on the desired use-case.
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In practice, tokenization is largely considered a closed problem in academia. There
is always some unavoidable mess in language, but there is good efficient tokenizers
that output relatively clean results. The current approach is fairly pragmatic. NLP
libraries like NLTK1 offer a variety of language specific tokenizers that cover most
of the corner cases. Each implementation has different priorities and one can choose
the most appropriate one for each use-case. In the case where standard tokenizers
are not sufficient, it is not too hard to implement your own.

Most tokenizers are rule based and tuned by humans. It is common to simply use
a well designed regular expression. There is also more advanced implementations
though. Simple statistical models are not uncommon, especially to take care of more
complicated cases, such as proper sentence tokenization in corrupt text.

Our focus is in English, but each writing system has their own challenges. For ex-
ample, Chinese writing has no spacing in it. There is also a fair amount of ambiguity
on what characters should go together as words. In such cases, it is common to use
a large word dictionary for tokenization instead.

2.1.2 Normalization

Isolation words is not enough for certain use-cases. Formatting and morphologi-
cal variations can hinder matching, indexing or similarity tasks. A linguistic model
should, for example, be able to identify that "fox" and "foxes" are the same substan-
tive or "have" and "had" are the same verb.

Normalization, in general, is the exercise of removing undesired variation from text,
so that slight linguistic differences do not get on the way of matching what are ef-
fectively the same concepts. This is usually done by removing or transforming some
parts of the word so that only a common root is kept. However, normalization in-
herently leads to information loss, which is not always desirable.

An obvious first step is to lowercase or uppercase all characters, so that capitaliza-
tion is not a problem. Removing morphological variation is more tricky though, we
distinguish two types of techniques of doing so.

Stemming removes morphological variation by algorithmic means. Most languages
have patterns on how they transform words based on morphology. Plurals, for ex-
ample, seem to be relatively easy to normalize, just remove the trailing "s" or "es".
It is true that there is a lot of ambiguity though. For "foxes" the "es" should be re-
moved and for "chocolates" only the "s" should be removed. There is also words
Latin words like "corpus" that have a different plural "corpora". These corner cases
are not easy to deal with, but a fairly good baselines can be implemented with rule
based methods. Granted, they cause significant information loss and the roots may
not always be correct. However, such simple implementations are very efficient and
scale well to most domains. This is usually the preferred method of normalization
for large scale indexing and matching applications.

Lemmatization is an alternative method that uses human curated dictionaries to
extract the correct lemmas or roots from known words. A common vocabulary used

1NLTK: http://www.nltk.org/

http://www.nltk.org/
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for this task is WordNet2. This approach is obviously more accurate than stemming,
but such dictionaries can be fairly limited, specially in domain specific text. Lemma-
tization is also considerably heavier than simple rule based stemming. For maxi-
mum accuracy, it is not uncommon to use both methods in conjunction.

2.2 Parsing

After isolating and cleaning words, it is common to add yet another layer of pro-
cessing to be able to work at higher abstraction levels. Parsing encompasses a set of
annotation tasks to identify the role of each word with respect to its context in some
text, usually a sentence.

Parsing is usually the core of NLP tasks that require deep understanding. Probabilis-
tic language parsers where one of the big breakthroughs in NLP during the 1990s.
Such parsers where one of the main components that enabled high quality machine
translation for the first time.

POS tagging or Part-Of-Speech tagging is the computational equivalent of mor-
phological linguistic analysis. It annotates each token with a morphological class,
say substantive, adjective or verb. Some taggers also go deeper and specify substan-
tive properties, such as plurality, or verb tenses.

POS tagging is usually implemented using a reference dictionary, a few morpholog-
ical heuristics and a disambiguation component. Even using a dictionary, words can
have ambiguous morphologic types. An example: "she sat on the back seat" and "he
was hit on the back". Disambiguation is the most challenging part.

Historically disambiguation has been done probabilistically, by estimating co-occurrence
probabilities. More recently, the state-of-the-art in disambiguation has been beaten
by models using word embeddings or end-to-end deep models.

Syntactical analysis is the second step of parsing. Much like in linguistic analysis,
syntax follows after morphological analysis. The task here is to determine the role
of each word in the sentence and capture dependencies between each component.

This is an even harder challenge than POS tagging. Probabilistic methods where a
good baseline but high quality results have not been achieved until recently start-
ing to use deep supervised models. However, complete syntactical analysis is not
required for many use-cases. For example, probabilistic models that extract subject-
verb-object triplets have been effective for a while. Such triples are already extremely
useful for most information extraction tasks.

Abstract meaning representation is the unification of POS tagging and syntactic
parsing with real world information via Named Entity Recognition and word sense
disambiguation, explained further below. It is the closest thing we have to real struc-
tured understanding of text. It is still early days for abstract meaning representation
though. Even modern models struggle to put all these components together and

2WordNet Lemmatizer: http://www.nltk.org/api/nltk.stem.html#module-nltk.
stem.wordnet

http://www.nltk.org/api/nltk.stem.html#module-nltk.stem.wordnet
http://www.nltk.org/api/nltk.stem.html#module-nltk.stem.wordnet
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produce usable results. As a reference, it has been one of the tasks in SemEval only
since 2015. Partial solutions do exist, however, as exemplified by the new natural
language audio assistants that are starting to come out now to consumer markets.

2.3 Word senses

A sense or concept is the purest form of semantic unit. Words and senses are highly
correlated, as there is a one-to-one mapping between both in most cases. However,
this is not always the case. Some words have multiple senses (polysemy) and mul-
tiple words can mean the same sense (synonymy). Language is highly ambiguous
and being able to distinguish and isolate senses is key to achieve complete under-
standing.

Knowledge graphs are a good resource to serve as reference for word senses. Each
node in a knowledge graph represents a sense and the edges define relationships
between these concepts. Knowledge graphs, also called knowledge bases, are a way
to encode real world information in a structured machine understandable format.
Some graphs focus on collecting common knowledge about the world, like Freebase
or DBpedia. Other graphs such as WordNet3 focus more on distinguishing word
senses and defining concept hierarchies. An ontology such as UMLS fills both roles.

Word sense disambiguation is the task of annotating each word with their respec-
tive sense in a reference vocabulary or knowledge graph. Like POS tagging or syn-
tactic analysis, sense disambiguation is a key part of tasks that require deep under-
standing, such as machine translation.

Sense disambiguation is performed much like POS tagging, which is also a disam-
biguation task. Classic probabilistic methods rely on collecting language statistics
such as coocurrence probabilities. These prior probabilities are then used to com-
pare a word to its context and predict the most likely sense. The same idea can also
be implemented with word embeddings, which inherently contain such probabili-
ties.

Named Entity Recognition or NER is an application of word sense disambigua-
tion. The idea with NER is to annotate text to link words or word sequences to
real world concepts. This is very interesting for retrieval and information extraction.
With NER, search queries can use real world information instead of basing every-
thing on word indexing. There are two parts to NER. First there is Recognition,
matching the vocabulary to the text efficiently and in a robust manner, without be-
ing too sensitive to noise. Only once Recognition is done is Disambiguation applied.

Embeddings are numerical representations of semantic units. The most common
form embeddings are word embeddings. Word embeddings assume that there is no
ambiguity, so they end up capturing multiple senses in the same vector represen-
tation, which is not ideal. However, this is a good baseline and sense embeddings

3WordNet: https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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are much harder to train anyways. Word embeddings can be efficiently learned just
by scanning big corpora. There are sense embedding algorithms that utilize some
form of clustering to distinguish senses, either during or after training. In a way,
word embeddings implicitly encode the same information as knowledge graphs. In
fact, there is a healthy ecosystem of word and sense embedding algorithms that use
knowledge bases as input data.

Semantic embeddings are the focus of this work. They will be explained more thor-
oughly in section 2.5 and thought the literature review.

2.4 Vector Space Model

The Vector Space Model (VSM) is a model for representing documents in algebraic
form. It is a widely accepted standard that is used whenever a numerical represen-
tation of text is needed. The basic idea of the VSM is to represent text as a Bag of
Words (BoW). In order to have a compact representation, the ordering of the words
in a document is ignored and the document is represented by a vector of word fre-
quencies. More formally, a vocabulary is established where each wi word or term
has a unique integer index i. A document dj is represented by a column vector vj
where each element vij stores the tf(i, j) frequency of word wi in document dj .

For the standard VSM model, BoW is generalized such that each vij value does not
necessarily show the exact term frequency, but stores a weight that represents a rel-
evance measure of the term in the document. Some of the most popular weighting
schemes are Tf-idf and BM25.

Tf-idf stands for term frequency - inverse document frequency. The motivation be-
hind Tf-idf is that the BoW weighting scheme gives more weight to naturally more
frequent words, which are not necessarily more relevant, such as stop-words. The
presence of such frequent words clouds the detection of truly relevant differences.
Because of this, Tf-idf introduces the idea of document frequency, which is the num-
ber of documents containing a particular term. Using this additional measure, we
can detect which words are naturally more common thought the whole dataset and
are given less weight in favor of terms that stand out and mark the difference be-
tween documents.

Let tf(i, j) be the frequency of a word wi in document dj and df(i) be the docu-
ment frequency of word wi. Being N the total number of documents, the inverse
document frequency is defined as idf(i) = log2(N/df(i)). Finally, Tf-idf is defined
as tfidf(i, j) = tf(i, j) · idf(i). There are some variations of Tf-idf where the tf and
idf components are normalized to reduce the influence of document size. It is also
possible to use binary tf .

BM25 was also designed to polish the rough edges of the BoW weighting scheme.
It expands the Tf-idf scheme and it is considered to be the ideal weighting for search,
found after a long process of academic iteration. It keeps the idf component and
parametrizes the tf component as tf∗. The tf∗ component depends on the free
hyper-parameters k and b with default values of k = 1.75 and b = 0.75. It is defined
like so: tf∗ = tf(k+1)

k(1−b+ b·DL
AV DL

)+tf
where DL is the document length and AVDL is the
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average document length. The intuition behind the formula is that k makes sure
that tf∗ is monotonically growing and bounded and that b parametrizes the level
of document length normalization. Finally, BM25 is defined like Tf-idf: BM25 =
tf∗ · idf .

Document comparison is an important aspect of the VSM model. In fact, simple
algebraic comparison in the VSM is the de facto similarity method for many use-
cases and is a very good baseline if the weighting is well chosen. The standard com-
parison metric is cosine similarity, which is equivalent to dot product if the vectors
are normalized. Euclidean distance can also be used as well as the less well known
Tanimoto similarity, which is analogous to cosine similarity but with a different nor-
malization factor.

The VSM is widely used in machine learning. It is a very convenient representation
as it fits perfectly with the standard feature vector representation, which is the input
format of most machine learning algorithms. VSM ignores word ordering but this
is not a problem for most prediction tasks. In recent years new neural models such
as CNNs and specially RNNs have enabled introducing ordering into the equation
once again, but the VSM format has been the standard for most of NLP history.

VSM is also the standard representation of text in information retrieval. In fact, the
model was devised to enable highly efficient similarity and search queries. Docu-
ments are commonly indexed as a big term-document matrix where each column is
a VSM document vector and each row corresponds to a term. If a query is also en-
coded in the VSM form, a simple vector-matrix multiplication yields a ranking of all
the documents in the index. Such linear algebra operations have very efficient im-
plementations via low level instructions. These kind of operations are also very easy
to parallelize and distribute at high scale. The ever present MapReduce framework
was, in fact, born at Google to do such matrix multiplications at web scale.

2.5 Deep Learning

Deep Learning (DL) is a label given to a special kind of Neural Networks (NN) that
has driven breakthroughs in the state-of-the-art of many predictive tasks. There is
still no clear theoretical foundation that explains why Deep Neural Networks (DNN)
are so unreasonably effective. Anyhow, DNNs conquered the field of computer vi-
sion with the introduction of Convolutional Neural Networks a few years ago. By
now, DNNs have replaced most classical algorithms for pattern recognition tasks
such as object recognition. The same thing has happened in NLP with the introduc-
tion of Recurrent Neural Networks.

Thanks to DNNs many old prediction problems are now are considered as solved
in academia, leading to a new wave of deeper prediction tasks. Machine transla-
tion between common languages is now almost seamless. Translation is now being
linked to speech recognition and audio translation devices are starting to enter the
consumer market, which has been a long term dream. There is work on document
and image question answering, where the DNN seems to understand the contents
in great detail and can retrieve or generate short snippets that answer very specific
details about the media. DNNs have also lead to breakthroughs in algorithmic stock
trading and music processing, from classification to style transfer and composition.
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Deep learning has kept breaking barriers during the last five years. It is only beaten
careful feature engineering and large ensembles of Decision Trees or Support Vector
Machines. However, probably because of it, saying that deep learning is hyped is
an understatement. It is becoming a global phenomenon and it has started to enter
mainstream media. People are starting to expect the world from deep learning, but
its already starting to show its limitations. DNNs are highly effective at pattern
recognition, but they do not have the capacity to do proper planning or reasoning.
It is very possible that deep learning will soon start not meeting expectations. This
might mean the end of another AI wave like the Expert System wave from the 1980s.
Let us see how things progress.

Going back to the science, in this section will cover the basics of what neural net-
works are and how they are trained in a bottom-up approach. It is not intended to
be a thorough explanation, though, it is just meant to build up the necessary vocab-
ulary to understand the inner workings of the algorithms described in this work.

2.5.1 Neural networks

Neural networks have existed for a while. Perceptrons, the building blocks of NNs,
where developed during the 1950s and 1960s by Frank Rosenblatt, following some
earlier work by Warren McCulloch and Walter Pitts. Backpropagation, the algorithm
to extract gradients from NNs and optimize them, has been around since the 1970s
in different scientific domains and was introduced to machine learning by the fa-
mous 1986 paper (Rumelhart, Hinton, Williams, et al., 1988). NNs have stayed as
competitive algorithms for machine learning for a while, but they have not been a
stand-out until computational power and data availability have grown enough.

The original design for perceptrons has largely stayed unchanged. Neural networks
are named as such because perceptrons are heavily inspired by the electromechanics
of biological neurons. The field was in fact born from neurology. It started as an ex-
periment to replicate brain functions through simulating small networks of neurons.

A perceptron is, in essence, a parametrized linear algebra operation that aggregates
a set of input scalars and outputs another scalar value. More formally,

y = wTx+ b

In this equation x refers to an input column vector and y is the output scalar. The
w column vector contains the weights, the coefficients of the linear combination of
the input, and b is a scalar called bias. w and b are free parameters that are learned
through a supervised optimization process.

In practice, though, there is a final element to a perceptron called an activation func-
tion a.

y = a(wTx+ b)

There is a series of valid activation functions. The original perceptrons for example
made a binary decision, the output was 1 or 0 depending on the condition wTx +
b > 0. Modern activation functions are chosen based on three criteria: they are
differentiable, they bound the output and they are non-linear. Bounding the output
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is important to make sure that the optimization does not diverge and that unit scale
is not a concern. Differentiability is key to be able to learn the parameters, as will be
explained later. Finally, adding non-linearity to the model increases its capacity for
generalization, this is a common practice in machine learning, it can make simple
linear models very effective.

Activation functions are not designed on a case-by-case basis, there is a set of stan-
dard functions to choose from. For example, the sigmoid function (σ(x) = 1

1+e−x )
compresses the input smoothly to the range [0, 1] and the hyperbolic tangent (tanh(x) =
ex−e−x

ex+e−x ) compresses it to the range [−1, 1].

Neural networks are created by stacking perceptrons or neurons into a graph, where
an edge points out that the output of a neuron should be fed as the input of another
one. The most common structure is called Feed-Forward Neural Network (FFNN).
In FFNN neurons are organized in layers, where every neuron in a layer aggregates
all the outputs of the previous layer. The first layer is called input layer, it is where
a data point is introduced in vectorial form. The last layer is called output layer, it is
the result of the computation. Any intermediate layers are called hidden layers.

It is proven that a FFNN with a large enough hidden layer can be trained to emulate
any possible function. In practice, however, it is preferable to add more consecutive
hidden layers. This is where the term deep learning comes from, a neural network
with more than one hidden layer, where, the deeper you go into the network, the
more abstracts representations you find.

2.5.2 Neural network optimization

Neural networks can be used to perform any machine learning supervised learning
and prediction task. A learning task is supervised when there is a training dataset
with pairs of example input and output pairs that are guaranteed to be correct. With
a big enough training set and enough computation time, a machine learning model
will then learn the implicit function defined by the pairs and hopefully generalize it
to new data points.

We’ve already discussed that neural networks learn by optimizing their weights
such that the complete network approximates the desired function. This is possible
thanks to two algorithms: backpropagation and Stochastic Gradient Descent (SGD).

Backpropagation is a surprisingly simple algorithm. It has been reinvented several
times in physics, maths and computer science. It is an efficient algorithm to compute
the partial derivatives of the weights with respect to the accuracy of the output.

Let us start by defining loss. A neural network optimization algorithms needs to
know how well it is doing. For this purpose, a function called loss is selected to com-
pare the networks output to the gold standard output given in the training dataset.
Much like activation functions, loss functions need to be differentiable and there is
a set of standard functions to choose from, depending on the use-case. As the name
suggests, the loss function informs about how bad are the predictions, so the objec-
tive is to minimize it.

Thanks to the loss, we know how well or badly we are doing, but we also need to
know how we can improve. This is where backpropagation comes in. The whole
neural network is composed by many simple differentiable operations. Given some
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input, first, a forward pass is performed and a loss is computed. Then, on the back-
ward pass, the partial derivatives of each intermediate result with respect to the loss
are calculated by simply using the chain-rule. After the backward pass, we have the
partial derivatives of all the weights with respect to the loss, which means that we
know the direction to move in to reduce the loss.

wi+1 = wi − γ∇F (wi)

The idea is to make small steps towards the gradient until arriving to a minimum,
this is called gradient descent. It is an iterative process because the gradient will not
stay constant, it needs to be recomputed at each position. The step size is specified
by the learning rate γ. Choosing a correct learning rate is one of the challenges of
building a good neural network. If the learning rate is too small, it will take longer
than necessary to arrive to the minimum; but if the rate is too large, the descent will
be more chaotic and it may jump over minima. Modern gradient descent algorithms
have dynamic learning rates based on the current and past gradients to achieve con-
vergence faster.

We have explained how the optimization is performed based on a single input-
output pair. Ideally, we would evaluate each gold standard pair on each iteration
and average all the gradients. This is fairly costly however. A key discovery is
that this is not strictly necessary. It is proven that by only using one data sample
per iteration the algorithm will arrive to the minimum eventually. This is called
Stochastic Gradient Descent (SGD). It is true that it may need more iterations than
pure gradient descent to achieve convergence, but it is computationally cheaper and,
in practice, much faster. The current trend is to use a compromise between both ap-
proaches, called mini-batch SGD. The idea is to use a few samples per iteration, a
batch, instead of a single one. This is more robust and still fairly cheap.

An important point against gradient optimization is that we assume that the op-
timization space is convex. This is a strong assumption, many academics where
skeptical of the idea in its beginnings because of this, there is no guarantee that the
minimum that is found is the global minimum. It turns out, however, that this is a
lesser issue than was expected. If the weights are initialized randomly, the learning
rate is well managed and the gradient descent algorithm is further tuned to avoid
local minima, by adding momentum to the descent for example, it is uncommon to
get stuck in a sub-optimal setting.

2.5.3 Deep learning patterns

Neural networks have not been stand-out machine learning algorithms until vast
computational power and have become readily available. However, those resources
have not been the only factor of the success of neural networks. Simply stacking
many neuron layers into a deep feed-forward network is not enough, these kind of
architectures only beat the state-of-the-art if a few tasks. Proper regularization like
drop-out is vital to avoid overfitting and make sure that the learning is propagated
through the network correctly. The real breakthrough has been the introduction of
more complex architectures that are designed to work with specific formats of data,
such as Convolutional NNs or Recurrent NNs.
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Convolutional networks or CNN where the first NN architecture to become a true
phenomenon. In just a few years, CNNs have beaten the state-of-the-art in most
computer vision tasks by a large margin. The naive way of working with images
would be to simply take the image as an input vector and introduce into a big Feed-
Forward network. This, in practice, is infeasible and wasteful. Even moder compu-
tational resources could not train a model with such high dimensionality. CNNs fix
this my taking a page from classical computer vision, they train kernels.

A kernel in the context of image processing is a small matrix of weights. The general
idea is that kernels are passed over an image to transform them in some way. Kernels
have odd sizes and are usually two dimensional, but not always. When they are
places over a set of pixels, the values of those pixels are multiplied by the kernel
weight on top of them, summed and the central pixel’s value is replaced by that
sum. This way, pixels can be transformed with awareness of their neighboring pixels
while keeping the whole process very efficient. Kernels have been heavily used in
computer vision for tasks like edge detection.

In a CNN a neuron is a kernel that is passed over the whole image. Each neuron
layer produces a set of alternative representation of an image, which are then fur-
ther transformed by later layers. Labeling an image is essentially a dimensionality
reduction task, so, to progressively reduce the dimensionality, CNNs also include
pooling nodes. The most common pooling method is max pooling, where the size of
an image is reduced by selecting the pixel with the larges value between its neigh-
boring pixels.

This is an extremely powerful way to model images and other fixed size high dimen-
sional data. A common visual example for the power of deep learning is showing
the intermediate representation of a CNN trained to perform object recognition. It
can clearly be seen that the first layers distinguish low level features such as lines
and angles, later layers distinguish rough shapes and textures and the final layers
show images of generic examples of the object they detect.

CNNs have also been used for other types of media with relative success, like lan-
guage or music. However, both of those mediums have an inherent temporal di-
mension that CNNs do not capture well. They are also not fixed in size.

Recurrent networks or RNNs are the solution that was proposed to deal with tem-
poral sequences and variable sized input. An RNN layer trains a single cell, which is
an arbitrarily shaped NN that takes an element in a sequence represented as a vector
and outputs another vector of the same size. The key is that an additional vector of
the same size called state is transferred from one instance of the cell to another. A
cell processes a sequence of input vectors in sequence, changes the state and it keeps
it to process the next element. It is an implementation of temporal memory.

RNNs are used in a variety of ways. They can be used to read text and output a
single labeling represented by the last state. They can also be used to take in a fixed
size input in the first step and generate a sentence. They can take in a sentence and
produce another one, like in translation. RNNs have been used for generating text
too, but providing a random input at first and then feeding the last generated word
to the next cell.

There are also more complex RNN architectures. A bidirectional RNN processes a
sequence forwards and backwards. An encoder-decoder architecture has two RNNs,
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the encoder takes a sequence and generates an abstract vectorial representation, the
decoder then produces an output sequence based on this intermediate representa-
tion. Both of these elements are used to enable modern state-of-the-art translation.

RNNs have revolutionized natural language processing as CNNs revolutionized
computer vision. However, a naive RNN architecture does not perform as well as
one would expect. Keeping track of information over long sequences is challenging.
The real breakthrough was the design of the standard Long-Short Term Memory
(LSTM) cell architecture. LSTMs have several neural layers called gates that control
what is forgotten from the state, what is added to the state and what is outputted
from the state in each iteration.

2.6 Word embeddings

Word embeddings are vectorial representation of the meaning of words. This is a
fuzzy notion; in practice, this usually means that word embeddings are placed in
a high dimensional space where the embeddings of similar or related words are
close to each other and different word embeddings are placed far from each other.
Word embeddings also acquire more complex geometric structures as a side effect
of some algorithms. A typical example for this are real world analogies that can be
discovered using simple vector arithmetics: king - man + woman = queen.

Word or sense embeddings can be trained on knowledge graphs, but the most pop-
ular algorithms learn these vectorial representations just by scanning big corpora.
All of these algorithms rely on a single assumption: words that appear in similar
contexts have similar meanings. Most state-of-the-art corpus word embedding algo-
rithms are variations of the original Word2Vec. Later more formal theoretical work
has extracted a generalized framework that most of these algorithms fit in.

The task is always to factorize a word-word matrix that contains cooccurrance counts,
Point-wise Mutual Information (PMI) or similar metrics. The factor matrices are usu-
ally called U and V , which define two distinct embedding spaces. U is a matrix that
contains the final word embeddings and V is a temporal set of embeddings that
contains the representations used for context words.

GloVe and a few other algorithms perform the matrix factorization explicitly. How-
ever, Word2Vec and most other embedding algorithms do the factorization implic-
itly. They do this by scanning the corpus with a fixed sized window. The window
has a central word, called the target and a few neighboring words that are called
the context. Both target and context embeddings are initialized randomly in U and
V respectively. The goal is to minimize the distance, usually dot product, between
words and their contexts. This is done by performing stochastic gradient descent,
where each stochastic sample is a consecutive window in the corpus. Each time a
target word is found with a context, their vectors are pushed together slightly, de-
pending on the learning rate. These models are very simple and, therefore, very
efficient. They can run through very big corpora and they only need a few scans
to achieve convergence. This is precisely the key to the success of this new wave
of embedding algorithms. Shallow models like these win over more complex deep
neural models by being far faster and by consuming far more training data.
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Although technically senses are the purest form of semantic unit, it is often assumed
that there is a one-to-one correlation between words and senses and word embed-
dings are used as the basic input for many tasks. This is a reasonable assumption,
as polysemy and synonymy are relatively rare. It is also far easier to train word
embeddings using the framework described above.

Word embeddings can then be composed into more abstract structures, such as
phrases, sentences, paragraphs or documents. Compositionality is still an open
problem, the state-of-the-art is fairly narrow in this task. A lot of unsupervised
sentence and document embedding algorithms still use a very similar framework
to word embedding algorithms inspired by the original Word2Vec. In fact, some
document embedding algorithms are specialized word embedding algorithms that
optimize word embeddings such that just averaging them or performing a similar
simple composition provides meaningful document embeddings.
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Chapter 3

Evaluation framework

This chapter discusses the process building a framework for reviewing the state-of-
the-art in semantic document similarity measures. This work focuses on reviewing
document similarity in the medium of scientific texts or, more concretely, peer re-
viewed academic literature.

We will also primarily focus on abstracts as the target of similarity measurement.
This is mostly due to availability, but it is also because abstracts are a condensed ver-
sion of a publication’s contents and have a good balance between length and amount
of information. However, titles are also widely available and the sources that have
been selected also provide preprocessed full-text content. Therefore, although it is
not the main focus, we will also do some testing with titles and full-texts.

It is relevant to mention that to ensure generality and flexibility context information
will be encoded in the form of word embeddings. During the process of offering
service through SCITODATE, we have come to the conclusion that even the most
complete knowledge bases in science are not broad enough for our use-cases. Cov-
erage of different fields of science is also highly inconsistent. Because of this, special
emphasis has been put on word embeddings and the review of the state-of-the-art
in embedding training is also a significant part of this work.

Due to the lack of reliable and abundant training data in the realm of scientific texts,
this work will look at unsupervised document similarity models that mainly rely on
the underlying word embeddings for knowledge mining. However, we do consider
that there is enough data to create a good evaluation dataset.

After a thorough search, it was concluded that there’s no standard training or testing
data in the scientific domain that fulfills the requirements described above. There-
fore, this chapter discusses the collection of data and creation of all the necessary
training and testing datasets. Special care was taken in creating a quality evalua-
tion framework in the scientific domain, both for this review and future work by the
community. It is intended to be one of the core contributions of this work.

3.1 Training corpus

The most prevalent word embedding algorithms learn the implicit meaning and con-
text of words by scanning through large collections of free text. The key assumption
made by the majority of these algorithms is that words that appear in similar con-
texts have similar meaning.
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Even if this idea has been around since the 50s, Word2Vec (Mikolov, K. Chen, et
al., 2013) was one of the first that used it efficiently to train word embeddings. Al-
though, simple, the idea is surprisingly effective and it is the discovery that kick
started the word embedding field. This simple co-occurrence technique not only
yields vectors that encode similarity or relatedness, but, somewhat unexpectedly,
also encodes more complex semantic relationships. All this will be further elabo-
rated on with each individual algorithm.

As mentioned above, due to a lack of training datasets, document similarity models
often rely on this knowledge mining quality that embeddings have. Word embed-
dings have, in fact, become one of the foundations of modern NLP.

Most academic work focuses on general purpose word embeddings and resources
for that purpose are widely available. The most common sources of free text are
the Google News corpus and the Wikipedia dump1. This sources are so standard
that there’s high quality pretrained word embeddings available2 and they are often
relied upon.

However, this work focuses on scientific content, which requires special treatment
due to the abundance of highly specific terminology that cannot be found in other
media. A quality specialized training corpus is key to ensure a reliable review. This
section discusses the process of creating such a dataset.

3.1.1 Sources and rationale

ArXiv In the context of the overarching SCITODATE project intensive work has
been done using the arXiv metadata stream3. The stream is updated daily and con-
tains around 1M records as of date, 800K of which are physics articles, around 120K
computer science and the rest is a mix of maths, chemistry, biology and economics.
A vast majority of these records contain abstracts, which are the interesting part if
we want to construct a corpus.

ArXiv is the biggest database of physics articles and the second biggest in computer
science, behind DBLP. It is one of the best sources of scientific text available, and
training on the abstracts has yielded reasonably high quality embeddings. However,
using the whole database introduces too much noise due to the high variance in
topics and even the 800K physics abstracts do not produce as big a corpus as would
be desirable.

CORE Another good alternative is the CORE database4. It is a large meta aggre-
gator of open access database and even contains a large number of preprocessed
full-texts. However, again, the high variance in fields contained here makes it diffi-
cult to work with. A good subset is the one coming from PubMed, but it is not as
big as the original one, so it’s better to go to the source.

1Wikipedia dump: https://dumps.wikimedia.org/
2Word2Vec repository: https://code.google.com/archive/p/word2vec/
3ArXiv OAI-PMH: https://arxiv.org/help/oa/index
4CORE: https://core.ac.uk/

https://dumps.wikimedia.org/
https://code.google.com/archive/p/word2vec/
https://arxiv.org/help/oa/index
https://core.ac.uk/
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PubMed PubMed5 probably the biggest database of open access articles in science.
It specializes in the biomedical and pharmaceutical fields. The Open Access subset
called PubMed Central contains 1.2M metadata records with more details than any
other database. Most interestingly, the vast majority of those records contains high
quality full-text bodies extracted from the original PDFs. PubMed has been identi-
fied as the best source for our current purposes.

3.1.2 Technical aspects

Data acquisition Fortunately there is a very well designed protocol exclusively
used for sharing metadata of academic publications. It is, in fact, one of the main
reasons why big aggregators such as Crossref, PubMed, DBLP or CORE can unify
different databases with relatively low development costs.

The protocol is called OAI-PMH6. It keeps a sequential feed of metadata records and
record updates. Each record has a timestamps expressing when it was added to the
feed, which enables the user to easily retrieve date ranges or keep a local copy of
the data updated. It is also a very convenient way of retrieving the whole database
by not specifying dating information. The protocol takes care of keeping the server
load at reasonable levels, which is why it is so widely adopted. But it is also usually
reasonably fast to retrieve the whole repository.

Parsing The main obstacle is dealing with the schema. OAI-PMH usually deals
with XML records, which is fairly standard. However, it can be problematic when
your main data format is JSON or a similar dictionary-list nested structure, as con-
version is non-trivial with complex schema.

There are some schema standards in the academic metadata environment. One of
the most widely used is Dublin Core7. However, it is far too limited for many use
cases. Because of that, aggregators tend to combine different standards, like CORE
does8, or define a very complex superset schema like the one from PubMed9. This
second case is common, specially in cases where commercial sources are involved.
Publishers usually deal with more complex metadata and each one has their own
in-house schema.

Parsing the PubMed data has been time consuming. Extracting the title or the ab-
stract is not too challenging. But converting more complex data such as authors,
affiliations or references into a usable format is non-trivial. Such data is not too rel-
evant for the corpus but a great deal of effort has been invested in this aspect in the
context of the SCITODATE project. This metadata, specially the authors, is also used
for training and evaluating document similarity models.

The full-text body is relevant for the purposes of this review though, and it is also
hard to deal with. Fortunately, PubMed already takes the work of extracting the
content from the original PDFs. However, the output XML has a custom schema that

5PubMed: https://www.ncbi.nlm.nih.gov/pubmed/
6OAI-PMH: https://www.openarchives.org/pmh/
7Dublin Core: http://dublincore.org/
8CORE schema: https://blog.core.ac.uk/files/data_schema_v0.2.png
9PubMed schema: https://jats.nlm.nih.gov/archiving/tag-library/1.1d3/

element/article.html

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.openarchives.org/pmh/
http://dublincore.org/
https://blog.core.ac.uk/files/data_schema_v0.2.png
https://jats.nlm.nih.gov/archiving/tag-library/1.1d3/element/article.html
https://jats.nlm.nih.gov/archiving/tag-library/1.1d3/element/article.html
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is not documented. Work was done to analyze the schema empirically, to convert it
into a much simpler nested section format and to render it into plain-text.

Cleaning Once the corpus has been created by converting all content bodies into
plain-text and concatenating them, some further work needs to be done to clean and
normalize the text. The cleaning function was designed empirically, by looking at
large amounts of samples and adding rules until a reasonable level of cleanliness
was observed.

After some cleaning, standard sentence and word tokenizers are applied, imple-
mented in NLTK10. Some testing was done with lemmatization, but most implemen-
tations use WordNet11 or similar KBs as reference data12, which is not very effective
in the scientific medium. After experimenting with a few alternatives, an English
Porter stemmer was finally chosen for normalization, also implemented in NLTK.

Pruning It is common practice to do some simple frequency based word filtering
when training word embeddings. Very frequent words, such as stop-words, do not
hold much semantic meaning and end up adding noise to the system. Very infre-
quent words also cause issues, as there’s not enough samples to train them correctly.
Furthermore, in the scientific domain, we are most interested in established techni-
cal vocabulary, therefore, a word that is rarely mentioned is not very relevant in this
context.

It is also important to create a central vocabulary so that the training and testing
data, as well as the models, are correctly synchronized.

We solve both tasks by using the dictionary implementation from the Gensim library.
It takes care of indexing the vocabulary and pruning.

The corpus creation is, therefore, done in 3 passes:

1. Extract the text fields, render to full text and clean in parallel.

2. Read the corpus sequentially to create the dictionary.

3. Re-create the corpus removing all the words that are not in the dictionary.

The first and second passes could have been done at the same time. However, the
dictionary implementation is most likely not fork-safe, and using multi-processing
accelerates the first pass considerably.

3.2 Word embedding evaluation

There doesn’t seem to be a clear standard for word embedding evaluation.

10NLTK: http://www.nltk.org/
11WordNet: https://wordnet.princeton.edu/
12WordNet Lemmatizer: http://www.nltk.org/api/nltk.stem.html#module-nltk.

stem.wordnet

http://www.nltk.org/
https://wordnet.princeton.edu/
http://www.nltk.org/api/nltk.stem.html#module-nltk.stem.wordnet
http://www.nltk.org/api/nltk.stem.html#module-nltk.stem.wordnet
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Analogy The original Word2Vec article proposes an evaluation based on what they
call analogy tests. They create a dataset were each records is composed by two pairs
of words, such that both pairs have an equivalent internal relationship. Evaluation
is done by checking the quality of prediction of the second pair by using vector
arithmetics.

Such an approach ensures that the embeddings encode complex semantic meaning,
instead of only similarity. However, the original dataset was relatively small. Other
well known word embedding algorithms such as GloVe have also used this dataset,
but no one seems to have invested time in extending it. Further research into such
complex semantic relationships also suggests that the algorithm inherently may not
learn the same intuitive relationships a human would expect (Fu et al., 2014). This
may introduce further noise and decreases the usefulness of such an evaluation.

Models It is also a common approach to evaluate word embeddings as the input
to a more complex model, and evaluate that model instead. For instance, GloVe pro-
poses a Name Entity Recognition task for evaluation, and classification, sentiment
analysis or clustering are also commonly used for evaluation. This may be easier
to evaluate in some cases, but it gives more options to the authors, which leads to
further noise and inconsistency.

Similarity datasets There is a collection of word similarity and relatedness avail-
able that has been commonly used for word embedding evaluation, the most com-
plete one being WordSim13. WordSim or WS353 is very standard and is used in
most evaluation procedures, but there’s a collection of smaller datasets that are used
more inconsistently, which makes different embedding algorithms hard to compare.
GloVe from Standford, for instance, uses WS353, RG, SCWS and RW . FastText from
Facebook, also uses WS and RW for English, but also focuses on other major lan-
guages: Gur65, Gur350 and ZG222 for German, RG65 for French and WS353 again
for Spanish.

Unfortunately, these datasets are fairly small. WordSim itself only has 353 word
pairs. These datasets are also very general,and do not cover specialized domain vo-
cabulary. There is also the issue of similarity versus relatedness. Word embeddings
do not distinguish between both and these datasets do. This can be a real issue as,
for example, antonyms are considered to be highly related but completely dissimilar.

Effort for standardization is underway. The SemEval workshop14 is a major effort to
unify the semantic analysis field, and has a monolingual and cross-lingual similarity
task. However, the scale of the datasets provided in the last iteration of the compe-
tition in 2017 are similar in scale to the ones mentioned above. Most importantly,
they deal with very general vocabulary and the focus of this work is to evaluate all
available techniques in the scientific domain.

A custom dataset Because of the lack of an appropriate standard for domain spe-
cific word embedding evaluation, the decision is made to create a custom one. A
hand-made knowledge base is the effective equivalent of word embeddings when
it comes to encoding semantic meaning. Knowledge bases are heavily curated and,

13WordSim: http://alfonseca.org/eng/research/wordsim353.html
14SemEval: http://alt.qcri.org/semeval2017/

http://alfonseca.org/eng/research/wordsim353.html
http://alt.qcri.org/semeval2017/
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even if they don’t cover as broad as a vocabulary, they should be the quality ideal
trained word embeddings should strive for.

A knowledge base could, of course, be used for analogy evaluation, as described
above. However, this work focuses on document similarity, so word embeddings
will be evaluated and optimized exclusively to encode a semantic similarity rela-
tionship.

3.2.1 Sources and rationale

The UMLS metaontology from PubMed has been selected as a source of reference
data. As mentioned before, PubMed is probably the biggest and most detailed Open
Access database in science. Equivalently, it is also safe to say that UMLS is the most
complete knowledge base in science.

Like PubMed, UMLS is focused on the biomedical and pharmaceutical fields and
is a perfect fit for our training corpus. UMLS is called a metaontology because it is
designed to be a superset of all mayor knowledge bases in the field (LOINC, CPT,
ICD-10 and SNOMED CT to name some). This makes it a bit more cumbersome to
work with, but it also means that it has maximum coverage.

All data will be extracted from the Metathesaurus, which is the section of UMLS that
contains the vocabulary.

3.2.2 Technical aspects

Data acquisition Access to UMLS is open but an explicit access application has
to be sent and it takes a few days for it to be reviewed and accepted. After gaining
access and downloading all the data, all the CONSO and REL files are extracted. The
CONSO files contain the vocabulary itself divided into concepts. Concepts are sets
of lexical representations and strings, equivalent to the synset concept in WordNet.
The REL files store all the edges in the knowledge graph, the relationships between
concepts. The data is stored in a relational format as CSV files, in the RRF schema.
This data is enough to create the evaluation dataset.

Cleaning Unfortunately, the UMLS vocabulary is far from being clean. Many dif-
ferent sources are combined in UMLS.

The text cleaning for the creation of the training corpus was done empirically, and
the same approach is taken to clean this vocabulary. Large amounts of samples have
been observed and simple rules have been set that remove most of the noise.

The same tokenization and stemming from the corpus is applied here too, so that
both vocabularies match as best as possible.

Pruning is then performed using the vocabulary extracted from the corpus.
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Synonym extraction First, all equivalent string sets are extracted from the CONSO
files and permutations are created to collect synonym pairs. The next step is to gen-
erate pairs using synonymy relationships.

A recent article that uses UMLS data to train a medical synonym extraction system
has been identified (Wang, L. Cao, and Zhou, 2015). This article conveniently names
the set of relationships that express synonymy based on their analysis. This same set
of relationships is used to find synonym concepts in REL. More pairs are produced
by taking this concept pairs, retrieving the set of strings they correspond to and by
computing the product between the two sets.

The processing is performed with the aid of a SQLITE3 database. This database is
easy to work with and offers a much higher performance than a naive solution.

Triplet creation The last step to have a usable test dataset is to create the triplets.
The reason for this triplets is explained in section 3.4. We need to create triplets such
that the first two elements are synonyms and the first and third aren’t.

Due to the architecture of the knowledge base, finding synonym pairs is relatively
easy, but identifying all synonym sets is a bit more complex. It involves finding
all the connected components. It is not an expensive operation, it can be done by a
simple BFS or a disjoin-set data structure, which is even more convenient in this case.
However, the data is stored in a relational format. Doing this computation would
require using an extra graph processing library and converting the data to a more
graph-friendly format. Furthermore, we would need to do the whole computation
in-memory and keep the sets stored while creating the triplets, which is non-trivial
for the size of this knowledge base.

A naive stochastic approach is taken instead. We convert the synonym pairs into
triplets by appending a random word from the vocabulary as the third element. The
size of the vocabulary should ensure that the probability for an erroneous sample is
trivially low.

3.3 Document similarity evaluation

Document similarity evaluation is, across the board, even more inconsistent than
the evaluation of word embeddings. This is, in part, because document similarity
falls under the field of document embeddings, which are not exclusively used for
similarity. Similarity measures and document embeddings are the bases for common
NLP tasks such as text classification or sentiment analysis. That’s why similarity
models are often evaluated by feeding them into more complex learning tasks.

Evaluation for classification or sentiment is far more established, and raw similarity
datasets are sparse, so this makes evaluation easier. However, much like with word
embeddings, this increases the options authors have for evaluation, which leads to
further inconsistency. The case of Doc2Vec one of the most well known document
similarity algorithms, showcases this issue.

Doc2Vec The original Doc2Vec article (Quoc V. Le and Mikolov, 2014) proposes
three independent evaluation tasks: sentence sentiment analysis on the Standford
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Sentiment Treebank Dataset, document sentiment analysis on the IMDB dataset and
document similarity based on the queries and results of an unnamed search engine.

There’s also a few third-party evaluations of Doc2Vec: (Lau and Baldwin, 2016) and
(Dai, Olah, and Quoc V Le, 2015).

The first evaluation, (Dai, Olah, and Quoc V Le, 2015), does qualitative and quanti-
tative analysis.

The qualitative analysis is anecdotal. They plot embeddings using t-SNE to look
at patterns and do some simple Nearest Neighbor and analogy exercises with two
short phrases: Machine Learning and Lady Gaga.

The quantitative analysis is somewhat more thorough. They create 172 triplets of
ArXiv articles based on the author’s domain knowledge. They also create 20K triplets
with at least one ArXiv category in common. Finally, 19,876 more triplets are ex-
tracted from Wikipedia based, again on categories. A simple prediction task is then
applied to these datasets for evaluation.

The second review article, (Lau and Baldwin, 2016), evaluates with a Forum Ques-
tion Duplicate Detection task. They sort pairs by similarity score and use AUC and
ROC as measures. They also use the SemEval dataset of human annotated document
similarity.

SemEval Like with word embeddings, SemEval is one of the main drivers in stan-
dardizing semantic analysis work. The first task in SemEval 2017 is, precisely, a doc-
ument similarity task. It includes a large quality dataset called STS of 8,628 sentence
pairs extracted from news, media captions and forums.

It is exceptional work, and one of a kind in this field. However, it is, again, inap-
propriate for our use case. It focuses on sentences, while we attempt to establish
similarity between abstracts or full-texts. And, like always, it is not domain specific,
we need something exclusive to the scientific domain.

3.3.1 Sources and rationale

The focus of this work is to evaluate the document similarity state-of-the-art applied
to academic publications. Unfortunately, as stated above, there’s no standard dataset
that could be used to evaluate such a task. We therefore, set out to create one of our
own.

Data Raw data is the starting point. As we’ve already established when creating
the training corpus, article metadata is widely available. Not all metadata is equally
available though. Title, authors and date are common fare. Abstracts are not always
available for subscription journals, but are otherwise common to come by. However,
full-texts are hard to come by, and the same happens with references, which are only
available in high quality Open Access databases such as PubMed.

Similarity link To evaluate document similarity, we need to identify an attribute
that links articles to one another expressing some kind of semantic relationship. It
is clear that collecting scored similarity pairs is nigh impossible with the available
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data. Creating a human scored dataset is also beyond our means. However, we can
find pairs which are likely far more similar than a random pair.

This type of reasoning is not uncommon. We have applied the same logic for eval-
uating word embeddings using a Knowledge Base. (Dai, Olah, and Quoc V Le,
2015) this Doc2Vec third party evaluation creates some datasets using categories
from ArXiv and Wikipedia.

(Dann, Hauser, and Hanke, n.d.) cites (Carpenter and Narin, 1973) proposing the
following assumptions for journal similarity: similar journals will have similar jour-
nal referencing patterns and similar journals will refer to each other. Inspired by
this, they propose the following assumptions to evaluate document classification
and clustering: articles from the same category are related and articles from the same
journal are related.

Linking fields There’s four metadata fields that could be used for this purpose.

The most obvious one would be to use categorization from the source database.
Categorization is common, and there’s some that are very thorough, like PubMed,
which even has a custom ontology called MeSh describing the categorization. Cat-
egories are still broad though, some of the lowest level sub-fields in ArXiv, such as
condensed matter, receive upwards of 200 new publications daily.

Another link could be journal information. However, journals are broad, even broader
than categories, and this metadata is harder to index, is more error prone and is
harder to come by.

References would be ideal. They are the closest equivalent to human scoring for
article similarity. However, references are the single hardest piece of metadata to
get hold of. When indexed, they are usually behind a pay-wall. It is possible to ex-
tract references from raw Open Access PDFs, but processing is expensive as machine
learning models need to be used. Even when extracted and available, the greatest
challenge is to cross-reference those citations to the abstracts or full-texts they corre-
spond to.

Authors are also a good source for semantic linking. Authors most often than not
stay in the same field of research throughout their career, so most of their articles
should be considered similar. This is even truer if we combine author information
with publications dates, as articles written by the same author in close succession
should indeed be very similar.

3.3.2 Author link dataset

Acquiring author information comes with it’s own challenges. Author names are
available in almost all metadata databases, however, the names are all that is given.
Authors often just state their initials and they aren’t always consistent when writing
their name throughout their career. Information about their institutions is provided
some times, which solves some of the cases. However, this is still a grave problem
with Asian names for example.

Author disambiguation is still an open problem and it has started to receive consid-
erable attention both in academia and in industry.
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PubMed comes to the rescue though, yet again.

Thanks to the ORCID15 project there’s now a unified ID systems for scholarly au-
thors. ORCID requires authors to sign up and register their publications manually,
which has been an obstacle for adoption. However, very recently big publishers
have started to require this linking, and ORCID has quickly grown in the last two
years because of it.

PubMed metadata includes these unique IDs when available. The amount of IDs is
still very low. From analyzing the whole historical PMC dataset, we have observed
that only about 1.5% of author mentions contain any kind of ID. We have only found
13K IDs which are mentioned more than once.

That amount should be enough for evaluation, but it would have been tight for
training. This work focuses on unsupervised methods, so we are in no need for such
training data. However, for future reference, there might be two more sources to
draw from.

ORCID publishes a data dump since 2013. It includes article DOIs, so more seman-
tic links could be established with a big enough article database. For this work we
have also only looked at the PMC PubMed Open-Access subset, of around 1.2M arti-
cles. There’s a bigger MEDLINE/PubMed database of 26M non-open-access records
which may also contain author IDs.

3.4 Evaluation metric

The most common approach for evaluating word embeddings is to have a dataset
of word pairs which are given similarity scores by humans. In this case, a simple
Spearman correlation is computed to measure the difference between the human
and embedding based similarity scoring.

However, as mentioned above, we have chosen not to rely on standard human
datasets, as they don’t extend to the scientific domain, where more technical vo-
cabulary is required. Instead, we’ve used a well established Knowledge Base as a
sample of human curated data and we’ve extracted synonym pairs from it.

The case with our document similarity dataset is also almost equivalent. We lack an
explicit human scored dataset, but we extract human supervision from the author
data.

In both cases, there’s a semantic link. The assumption is that two linked elements
are considerably more similar than most random pairs.

As referenced when creating the document similarity test data, this practice is not
uncommon. Likewise, the community seems to have converged to a standard way
to evaluate such a test dataset. Triplets are created, where the first two elements are
linked and the first and third are not. This becomes a simple classification problem,
where the error unit is the case where the first and second element are scored less
similar than the first and third. The evaluation is a simple error rate measure.

15ORCID: https://orcid.org/

https://orcid.org/
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3.5 Computational benchmark

Computational performance benchmarks where performed while training all mod-
els and during evaluation when relevant. For all tests we record the maximum mem-
ory usage and the User CPU time. We elect to focus on User time because Kernel
time is almost zero for most of the implementations and User time sums up the time
spent on each CPU. User time also ignores waits. Therefore, this time measurement
was deemed the most representative for the general performance of any model.

All benchmarks where performed at least three times to increase generality; the re-
sults where then averaged. The tests where performed on clean AWS m4.2xlarge
Ubuntu instances. This instance type a general purpose computer with 32GB of
RAM and 2.3 GHz Intel Xeon E5-2686 v4 (Broadwell) or 2.4 GHz Intel Xeon E5-2676
v3 (Haswell) CPUs with 8 cores. The time measurements were done with the time
command line tool.

In general, we have chosen to use the default hyperparameters proposed by the au-
thors. This was considered the most practical option, as performing hyperparameter
search for each algorithm would have considerably increased the amount of work
and the size of this document, to an extent were its value would be questionable. The
default hyperparameters are considered as part of the model design, so performing
the experimental review with default values would still be a meaningful compari-
son. However, for fairness, we do lock the embedding size of word embeddings to
100 dimensions and the embedding size of documents to 800 dimensions.
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Chapter 4

Review of word embedding
algorithms

In this chapter we review the state-of-the-art in corpus word embedding algorithms.
For each algorithm we give an intuition of the inner workings, a formal specification
of the model, a complexity analysis, and an experimental benchmark.

4.1 Word2Vec

4.1.1 A bit of history

Word embeddings have a long history in academia. The Neural Network Language
Model (NNML) (Bengio et al., 2003), for example, was a very influential work. It is
a neural architecture that simultaneously learns word embeddings and a statistical
language model, and it was made back in 2003. Over the last two decades, many
iterations on this seminal model have been proposed, such as the replacement of a
simple feed-forward network with an RNN.

However, word embeddings did not take off until (Mikolov, K. Chen, et al., 2013)
proposed two very simple log-linear models that outperformed all previous com-
plex architectures and, most importantly, drastically reduced the time complexity.
The newly increased scalability made it possible to use much bigger corpora, which
opened the door to more accurate embeddings, embeddings that could reliably be
used as the basis for all kinds of NLP models.

Since the publication of the article in 2013, word embedding have become the foun-
dations of modern deep-NLP. Of course, there has been many more proposals to
improve on Word2Vec, but after 4 years it has proven to be a solid baseline and is
still used regularly as the default source of embeddings.

4.1.2 Intuition

The main assumption that Word2Vec (Mikolov, K. Chen, et al., 2013) relies upon is
the following one: words with similar contexts have similar meaning. This is not a
new idea, it was proposed back in (Harris, 1954). However, training a model on this
premise has proven to be surprisingly effective.
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Word2Vec starts with a set of word vectors that are initialized randomly. It scans
the corpus sequentially, always keeping a context window around the each word
it looks at. At this point, there are a few differences between the BoW and Skip-
gram models, but, in essence, the algorithm computes the dot product between the
target word and the context words and tries to minimize this metric performing
Stochastic Gradient Descent (SGD). Each time two words are encountered in in a
similar context, their link, or spacial distance, is reinforced. The more evidence is
found while scanning the corpus that two words are similar, the closer they will be.

There is a last challenge to address. The basic model we just described only provides
positive reinforcement towards making the vectors closer. With an infinite corpus,
the minimum state would be that all the vectors would be in the same position,
which is obviously not the desired effect.

To address this Word2Vec initially proposed a Hierarchical Softmax regulator. Later
on, they proposed an alternative method called Negative Sampling. This last one is
simpler and has been shown to be more effective. The basic premise is that each time
the distance between to vectors is minimized, a few random words are sampled and
their distance to the target vector is maximized. This way, it is ensured that non-
similar words stay far from each other.

4.1.3 The maths

Word2Vec is trained by scanning the corpus with a fixed sized window. The window
has a central target word and a few neighboring words called the context. There is
usually the same amount of context words at both sides of the target. The optimiza-
tion is performed by SGD where each sample is a window and a loss function is
defined between the target and the context vectors.

The original Word2Vec paper (Mikolov, K. Chen, et al., 2013) proposes two alter-
native loss functions CBoW and skip-gram. CBoW stands for Continuous Bag of
Words and learns the word embeddings such that given the context the target word
is predicted. Conversely, skip-gram predicts each context word given the target.

A following paper (Mikolov, Sutskever, et al., 2013) gives a more formal description.
Let there be a corpus, a sequence of words w1, w2, ..., wT . The window is defined by
parameter c, where c words at the right and left of the target are taken.

In CBoW the context vectors are summed and used to predict the target. This is the
objective function to be maximized.

1

T

T∑
t=1

log p(wt|
∑

−c≤j≤c,j 6=0

wt+j)

For skip-gram, in contrast, each context is predicted independently given the target.

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

The probability is defined as a Softmax, where uw is a target embedding vector for
w and vw is a context embedding vector. The uw embeddings are the ones that are
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kept, vw is a side product. The following definition is used for skip-gram, for cBoW
the target and context vectors would be swapped.

p(wc|wt) =
exp(vTwc

uwt)∑W
w=1 exp(vTwuwt)

However, Softmax is too expensive to use as a loss function, as computing the gra-
dient has a complexity proportional to the vocabulary size W . The second paper
(Mikolov, Sutskever, et al., 2013) proposes two solutions. One is to use Hierarchi-
cal Softmax, which is a O(log2W ) algorithm for estimating Softmax. The second
alternative, and the most popular one, is negative sampling or, more formally, Noise
Contrastive Estimation (NCE). The following is the objective function per window
to be maximized in the case of negative sampling.

log σ(vTwc
uwt) +

k∑
i=1

Ewi ≡ Pn(w)[log σ(−vTwi
uwt)]

k is a hyper-parameter that specifies the number of random negative samples to use
in contrast to the positive pull between the target and the context. The negative sam-
ples are pulled from distribution Pn(w). The authors found that using a transformed
unigram distribution U(w)3/4/Z performs best.

One last detail worth mentioning is word subsampling. In practice, just scanning
through the corpus does not achieve a good balance of evidence. Frequent words
like stop-words (and, the, in...) have very generic meanings that do not contribute
much to semantic content, they are essentially noise. However, those frequent words
also have a big influence simply because they appear in more contexts. To avoid this
issue Word2Vec simply ignores or deletes words randomly using a probability based
on the frequency. Frequent words will be ignored more often so that they do not
upset the balance with noise. Let f(wi) be the frequency of a word wi in the corpus
and let t be a hyperparameter.

P (wi) = 1−

√
t

f(wi)

4.1.4 Computational complexity

The first Word2Vec article (Mikolov, K. Chen, et al., 2013) gives a very detailed
overview of the computational complexity of Word2Vec and its predecessors, Neural
Language Models. We define the complexity of these algorithms with the following
formula.

O = E × T ×Q

WhereE is the number of training epochs, the number of times the corpus is scanned,
T is the size of the corpus andQ is specific for each model. This is intuitive, there will
beE×T windows and, therefore, update steps to be performed. Q is the complexity
of a single update step in the SGD.
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For cBoW: Q = C ×D +D × log2(V ) For Skip-gram: Q = C × (D +D × log2(V ))

C is the window or context size, D is the dimensionality of the embeddings and
V is the vocabulary size. Both models have very similar complexities. In cBoW
we first average all the context embeddings and compute the dot product between
the target and the context centroid, which translates to computing C dot products,
each with D floating point operations. The C × D part also appears in Skip-gram.
This is because we need to compute the dot product between the target and each
context, which is the same number of operations. The D× log2(V ) part corresponds
to the Hierarchical Softmax. Skip-gram performs this operation C times because it
technically has C independent loss functions per window.

Both components have a similar effect on complexity. The window size C is usually
on the range of [5, 20] and the corpus we have been working with has approximately
2M distinct tokens, which computes to log2(2M) ≡ 21. Here it can be seen that the
introduction of the Hierarchical Softmax has a great effect on performance.

In the case of large vocabularies negative sampling can work even better. We would
replace the log2(V ) with the K hyperparameter, which is usually set in the range
[3, 15].

4.1.5 Experimental review

In this section we present all the experimental results from applying Word2Vec to
our dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu.
We have individually tested cBoW and Skip-gram with embedding size of 100. We
have also chosen to perform benchmarks with different sizes of corpora, so that we
can inspect how the algorithm scales, both in terms of the computational resources
needed and the accuracy of the evaluation. The original implementation provided
by the authors1 was used for all benchmarks.

4.1.5.1 Computational benchmark

The following diagrams (4.1 and 4.2) show the training time and maximum memory
of cBoW and skip-gram.

Execution times clearly scale linearly, surprisingly clearly. Training was performed 3
times for each instance and results were consistent. This makes sense however. The
algorithm needs a pass to build a dictionary and then a number of training passes,
depending on the number of epochs chosen. The same update operation is per-
formed on for each window and word in the corpus. Word2Vec is also implemented
on clean C++ with minimum dependencies, so it is not surprising that there is no
noisy overhead and that the scaling is so clear.

The memory requirements seem to scale at O(
√

(n)) in both cases, although it is not
as clear. This also makes sense, as most of the memory is consumed by the vocabu-
lary of embeddings. The vocabulary will increase as we explore bigger corpora, but
there will be less and less new terms at large scales.

1Word2Vec repository: https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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FIGURE 4.1: Computational benchmark of cBoW

FIGURE 4.2: Computational benchmark of skip-gram

4.1.5.2 Evaluation

The figures (4.3 and 4.4) show how the accuracy of the word embedding scales with
respect to the amount of tokens in the training corpus. The evaluation was per-
formed by comparing the word embeddings with the UMLS triplets. It is important
to mention that for smaller corpora there’s a significant portion of the test words that
are unknown to the model. We include both the total accuracy and the accuracy by
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ignoring any triplet that has an unknown word.

FIGURE 4.3: Evaluation of cBoW

FIGURE 4.4: Evaluation of skip-gram

The results here are also very similar for both models. The results seem to improve
logarithmically in both cases. In isolation, the performance of Word2Vec for scien-
tific vocabulary seems to be excellent, even without hyperparameter tuning. Con-
sider that the training and testing data where extracted from totally different sources
and that there are 3,649 test triplets, which translates to 7,298 comparisons. A 90%
accuracy in such conditions is worth noting. The exact accuracies can be seen in
table 4.1.

Word2Vec evaluation 1M 10M 100M 1B 2B
cBoW - Total 0.03 0.17 0.46 0.83 0.89
Skip-gram - Total 0.04 0.18 0.46 0.83 0.89
cBoW - Known words 0.67 0.73 0.80 0.85 0.90
Skip-gram - Known words 0.67 0.79 0.80 0.88 0.90

TABLE 4.1: The Word2Vec evaluation accuracies by the number of
tokens used for training, including total accuracy and known word

accuracy.

4.2 GloVe

It is safe to say that GloVe (Pennington, Socher, and C. Manning, 2014) is the second
most well known word embedding algorithm, after Word2Vec. Standford proposes
a different take on the same underlying concept. The algorithm itself does not have
to many similarities on the surface, but Word2Vec and GloVe are two sides of the
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same coin. Because of this, both are currently considered equivalent for all intents
and purposes. They both perform similarly on most tasks, although the popular
perception seems to be that GloVe is marginally faster to train.

4.2.1 Intuition

In the original paper (Pennington, Socher, and C. Manning, 2014) the authors dis-
tinguish two model families for training word embeddings: global matrix factoriza-
tion methods (such as LSA) and local context window methods (such as Word2Vec).
They claim that both suffer significant drawbacks. While context window meth-
ods like Word2Vec perform well on the analogy task, they do not take advantage of
global word co-occurrence statistics. The main motivation for GloVe is to find a mid-
dle ground: an algorithm that acts on global statistics but achieves the same vector
space semantic structure as Word2Vec (analogies). GloVe also surfaces the reason
why these kinds of semantic vector structures are created, by making the properties
co-occurrence probabilities explicit.

Their main measure for similarity is co-occurrence probability. This can be better
understood with an example, and the original paper gives an excellent one.

Consider two related words i = ice and j = steam (see table 4.2). We can examine
the relationship between these words by looking at their co-occurrence with a set of
k probe words, Pik

Pjk
. If we imagine that i and j define a semantic axis of physical

state, we can observe that the word k = solid we observe that for the specified
ratio will be large, meaning that it is strongly positioned at the positive end of the
scale. Likewise, we observe that for the word k = gas, the fraction will be small,
indicating that it is semantically at the other end of the scale. Unrelated words such
as k = fashion will display a value close to one. The same happens with the word
k = water which is obviously highly related to both words, but it is redundant and
irrelevant to express the relationship between both words, which is, again, degree of
physical state.

Probability and Ratio k = solid k = gas k = water k = fashion
P (k|ice) 1.9x10−4 6.6x10−5 3.0x10−3 1.7x10−5

P (k|steam) 2.2x10−5 7.8x10−4 2.2x10−3 1.8x10−5

P (k|ice)/P (k|steam) 8.9 8.5x10−2 1.36 0.96

TABLE 4.2: From the original paper (Pennington, Socher, and C. Man-
ning, 2014)

GloVe formalizes the phenomenon described above and trains the embeddings so
that they simulate such a structure. This may seem a bit convoluted at first, it is hard
to see directly where the similarity distance property comes from. But if you follow
the maths, as we will do below, you can clearly see that the initial equation directly
leads to optimizing the dot product between a word vector and its context vectors
to be as close as their co-occurrence probability as possible.

We propose that the reason why GloVe and Word2Vec perform so similarly, is that
they are essentially optimizing the same objective. They both act under the assump-
tion that words with similar contexts have similar meaning.

The authors of GloVe initially claim that Word2Vec does not take advantage from
global statistics, but sequentially scanning the corpus does implicitly capture those
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statistics, as more frequent evidence of similarity further reinforces distances be-
tween embeddings. What GloVe does with explicit probabilities, Word2Vec does by
actually encountering text structures with different frequencies.

Although the GloVe paper starts criticizing Word2Vec for not using the potential of
global statistic, later on in the paper the authors do emphasize this close relationship
between both models.

4.2.2 The maths

After defining an intuition for the algorithm, we will dive deeper into the maths
of the optimization problem the algorithm is solving. We will follow the reasoning
from the original GloVe paper, but we will try to summarize and simplify as much
as possible.

Above we have described a property in co-occurrence probabilities that can be used
to define semantic relationships. We have established a semantic axis with the words
i = ice and j = steam and we put them against a set of probe words k to observe
how they relate to this axis. This concept is formalized with the following equation.

F (wi, wj , w̃k) =
Pik
Pjk

This equation describes the target optimization problem. In short, a yet undefined F
function should be applied to the word vectors and the output of F should approx-
imate the probability fraction.

There is a vast number of possibilities for F , but the paper proposes a few properties
that simplify the equation and removes the need to directly specify F .

First, F is reduced to taking a single scalar parameter for simplicity. Given the in-
herent linear nature of a vector space, the difference and dot product operations are
chosen to combine the arguments.

F ((wi − wj)T w̃k) =
Pik
Pjk

If we require F to be a homomorphism between the groups (R,+) and (R, X) we
see that F can only be F = exp.

F ((wi − wj)T w̃k) =
F (wTi w̃k)

F (wTj w̃k)

F (wTi w̃k) = Pik =
Xik

Xi

wTi w̃k = logPik = logXik − logXi

WhereXi is the total frequency of word i andXik is the count of the instances where
i is in the context of k.

This equation can be further simplified by observing that logXi is not dependent on
k, so it is replaced by a bias bi. For symmetry, another b̃k bias is added.
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wTi w̃k + bi + b̃k = logXik

If we stop to look at this transformation, we will see that the optimization problem
is actually quite simple. F (wTi w̃k) = Pik implies that the dot product between two
vectors is optimized to correlate to the probability of their co-occurrence. This is
what we where referring to when we discussed the intuition and what links this
algorithm to Word2Vec.

This equation is already simple enough, but there are two more factors that could be
improved.

First, logXik diverges when there are no co-occurrences between i and k. To fix
this the standard log x → log 1 + x is made. Second, very frequent co-occurrences
are not too relevant and mostly contribute to increased noise. A weighting function
f(Xij) is added to compensate for this. There are many options for such an f but
the authors converged on the following function.

f(x) =

{
(x/xmax)α if x < xmax
1 otherwise

The authors fixed xmax = 100 and they empirically found the most appropriate
α = 3/4. Curiously the same scaling was found to be the best for Word2Vec.

The last step is to just convert the equation into a least squares optimization problem.
This is the final GloVe model.

J =
V∑

i,j=1

f(Xij)(w
T
i w̃k + bi + b̃k − log(1 +Xik))

2

4.2.3 Computational complexity

While typical window based methods like Word2Vec scale on corpus size, GloVe
scales on vocabulary size. This is because GloVe keeps a co-occurrence matrix for
all word pairs and uses this matrix for training. Therefore, a simple upper bound to
complexity would be O(|V |2), V being the vocabulary.

Having a word embedding algorithm that scales on vocabulary size is very handy.
After all, the vocabulary size stops growing on bigger corpora. Thanks to this, we
could use arbitrarily large corpora for arbitrarily accurate co-occurrence statistics.
However, it is common for real-world vocabularies to have hundreds of thousands
of words, which would scale up to hundreds of billions in complexity, which is big-
ger than almost all current corpora.

It is possible, however, to establish a tighter upper bound in complexity. A typi-
cal co-occurrence matrix is bound to be sparse if the co-occurrence window is small
enough. Therefore, the complexity will depend on the nonzero elements of the ma-
trix, not all.

The authors take the two following assumptions to approximate the number of
nonzero elements in the matrix:
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1. The number of words in the corpus is proportional to the sum over all elements
in the co-occurrence matrix. It is trivial to see that the corpus size should be
double the sum.

2. The co-occurrence of two words can be approximated by a power-law function
of the frequency rank of that word pair. Power-law patterns in language statis-
tics are a well observed phenomena and this kind of modeling is standard in
NLP.

Parting from those assumptions the authors arrive to a model of nonzero elements.

The authors mention that their training corpora was best modeled by α = 1.25. Be-
cause of this, they conclude that GloVe’s complexity upper bound is O(|C|0.8), C
being the corpus. This explains the popular perception that GloVe is usually slightly
faster than Word2Vec, because the complexity of window based methods is approx-
imately O(|C|).

4.2.4 Experimental review

In this section we present all the experimental results from applying GloVe to our
dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu. We
use the standard embedding size of 100. We have also chosen to perform bench-
marks with different sizes of corpora, so that we can inspect how the algorithm
scales, both in terms of the computational resources needed and the accuracy of the
evaluation. The original implementation given by the authors2 was used in all the
benchmarks.

4.2.4.1 Computational benchmark

Figure 4.5 shows the execution time and maximum memory usage of the training
procedure of GloVe.

Much like with Word2Vec we see that clearly GloVe scales linearly on the corpus
size. Both in time and memory, the scaling pattern of Word2Vec and GloVe is almost
identical. However, GloVe needs around double the memory and almost six times
the processing time. This directly contradicts the popular believe in the academia
that GloVe is equivalent or slightly faster than Word2Vec.

4.2.4.2 Evaluation

Figure 4.6 shows how the accuracy of GloVe scales with corpus size. Again, we both
show the total accuracy and the accuracy when ignoring test samples that contain
unknown words.

Both the scaling pattern and the total accuracies are remarkably similar to Word2Vec’s.
This is consistent with the popular perception that Word2Vec and GloVe produce
word embeddings with almost the same quality. The close correlation makes sense,
as both algorithms essentially perform the same operation through different means.
Table 4.3 shows the exact accuracies from evaluation.

2GloVe repository: https://github.com/stanfordnlp/GloVe

https://github.com/stanfordnlp/GloVe
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FIGURE 4.5: Computational benchmark of GloVe

FIGURE 4.6: Evaluation accuracy of GloVe

GloVe evaluation 1M 10M 100M 1B 2B
Total accuracy 0.04 0.17 0.45 0.80 0.87
Known words 0.71 0.73 0.78 0.85 0.88

TABLE 4.3: The GloVe evaluation accuracies by the number of tokens
used for training, including total accuracy and known word accuracy.

4.3 FastText

FastText (Bojanowski et al., 2016) is one of most recent mayor advances in word em-
bedding algorithms. It was published this year (2017), again, by a group supervised
by Tomas Mikolov, like Word2Vec, but this time at Facebook AI Research.
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4.3.1 Intuition

The main contribution of FastText is to introduce the idea of modular embeddings.
They are not the first ones to implement modular embeddings, there has been ex-
tensive work on morphologically sensitive embeddings during the last few years
(Lazaridou et al., 2013; Luong and C. D. Manning, 2016; Botha and Blunsom, 2014;
Qiu et al., 2014). However, they recently used this approach to beat the state-of-the-
art in most mayor word multilingual similarity datasets while also reducing compu-
tational cost. Even if they did not invent the concept, they have showed its potential
to the community.

The basic idea behind modular embeddings is that instead of computing an em-
bedded vector per word, a vector is computed for subword components, usually
n-grams, which are later combined by a simple composition function to compute
the final word embeddings. This approach has multiple advantages.

One advantage is that the vocabulary tends to be considerably smaller when work-
ing with large corpora, which makes the algorithm more computationally efficient
compared to the alternatives, although embedding retrieval is usually slower be-
cause of the need to compose. It also means that each component in the vocabulary
will be repeated more, so less training data is needed.

Another big advantage is that subword information, such as morphological varia-
tions, are captured correctly. Other word embedding algorithms just take standard
tokens as words, and may create different embeddings for morphological variations,
which increases the noise. In the case of FastText, morphological variations keep
most of their common components and have slight alterations applied to their em-
beddings based on the differences, such as different prefix or suffix. Using n-grams
to capture morphological features may seem crude, as there are other models that do
explicit morphological segmentation. This is intentional, though, as the simplicity
of the method also increases generality. It is thanks to this generality that FastText
performs well in vastly different languages. Thanks to dealing with subword com-
ponents, it is also possible to reliably predict the embedding of previously unseen
variations.

FastText is also a big step towards solving the problem of word embedding compo-
sitionality. If subword embeddings can be composed into word embedding, why
not compose embeddings to create phrase embeddings? Or document embeddings?
Indeed, even if it is not emphasized in the original paper, the official implementation
includes a document embedding functionality, which will be reviewed in the next
section. Phrase embeddings are also specially interesting in the scientific domain, as
many technical concepts are identified by multi-word terms.

4.3.2 The maths

FastText uses the skip-gram model with negative sampling proposed for Word2Vec,
which has, by now, become a standard base algorithm for many embedding tech-
niques. The skip-gram model was explained in detail in the Word2Vec section 4.1.3.

The following is the specific skip-gram loss function used by FastText.
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T∑
t=1

[
∑
c∈Ct

l(s(wt, wc)) +
∑
n∈Nt,c

l(−s(wt, n))]

Given a word vocabulary of size W where each word is represented with an index
w ∈ {1, ...,W}. The model is trained on a corpus of size T with a sequence of words
w1, ..., wT . A sliding window technique is used, where Ct is the set of word indexes
surrounding a wt target word from the corpus. To perform the negative sampling, a
random set of Nt,c words is selected from the vocabulary for each window. l(x) =
log(1 + e−x) represents the logistic loss function. s is a similarity measure between
two words, in the case of vanilla skip-gram, s(wt, wc) = uTwt

vwc , where u and v are
the sets of embedding vectors for each target word and context respectively.

The main difference between Word2Vec and FastText is the subword model. Each
word is subdivided into a series of n-grams. Given a vocabulary of G n-grams,
Gw ⊂ 1, ..., G is the set of n-grams contained in word w. In practice, for FastText,
special boundary symbols < and > are added to all words at the beginning and the
end respectively, to distinguish n-grams that are part of the prefix and suffix. Let us
denote a word with boundary symbols as an augmented word. Gw will contain the
full augmented word and all n-grams for 3 ≤ n ≤ 6.

The n-grams are stored in a hash map of size K = 2 · 106 to bound the memory
requirements. The Fowler-Noll-Vo variant 1a hash function is used.

To complete the model the s similarity function is replaced to include the subword
embedding composition. The composition is done by simply summing up all the
pairwise dot product similarities between the target n-grams and the context vector.
Let zg be the embedding vector corresponding to the n-gram g.

s(w, c) =
∑
g∈Gw

zTg vc

4.3.3 Computational complexity

The computational complexity of FastText is effectively the same as the complexity
of the skip-gram variant of Word2Vec as the learning procedure is effectively the
same (section 4.1.4).

The main difference, again, is the added cost of splitting each word into its compo-
nents, fetching their corresponding embedding vectors and compose them into the
final word embedding. Let |Gw|avg be the average number of n-grams per word.
This is only a linear increase in cost, as |Gw|avg would barely change in different cor-
pora if they are big enough, so the complexity class stays the same. When a word
embedding would be fetched in the hash map (O(1)) in vanilla skip-gram, in Fast-
Text |Gw|avg vectors would have to be fetched and composed (O(2|Gw|avg)).

4.3.4 Experimental review

In this section we present all the experimental results from applying FastText to our
dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu. We
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use the standard embedding size of 100. We have also chosen to perform bench-
marks with different sizes of corpora, so that we can inspect how the algorithm
scales, both in terms of the computational resources needed and the accuracy of the
evaluation. The original implementation given by the authors3 was used in all the
benchmarks.

4.3.4.1 Computational benchmark

Figure 4.7 shows the execution time and maximum memory usage of the training
procedure of FastText.

FIGURE 4.7: Computational benchmark of FastText

The scaling pattern is the same as with Word2Vec and GloVe, which is consistent
with what we have seen in the theoretical analysis. However, it is twice as slow as
GloVe and three times as slow as Word2Vec. Memory consumption is not too high
though. This is surprising as the embedding vocabulary of FastText should be much
bigger, as it stores both full word embeddings and n-gram embeddings. However,
it sits squarely between GloVe and Word2Vec in memory requirement.

4.3.4.2 Evaluation

Figure 4.8 shows how the accuracy of FastText scales with corpus size. In the case
of FastText, it does not make sense to distinguish the total accuracy and the known
word accuracy, as FastText can infer the embedding of new words using n-gram
embeddings.

FastText seems to be considerably superior to Word2Vec and GloVe. The accuracy
at 1B tokens is notably higher than the accuracy of the other two with 2B. It also

3FastText repository: https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
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FIGURE 4.8: Evaluation accuracy of FastText

considerably outperforms the other two models in smaller corpora. From previous
test we know that when training on a 1M token corpus only 5% of the test triplets
are known. FastText achieves a 81% accuracy in this case while having to infer the
rest of the 95% words only using n-grams.

It is possible that FastText may be specially effective on scientific text, as most tech-
nical words are derivative and share many of the same subword components. It is
worth noting that all the work we have done has been with stemmed words. It is
very likely that FastText would compared much better if we were working with non
normalized words.

Table 4.4 shows the exact evaluation accuracies.

FastText evaluation 1M 10M 100M 1B
Accuracy 0.81 0.88 0.90 0.93

TABLE 4.4: The exact accuracies of FastText.

4.4 WordRank

WordRank (Ji et al., 2015) is a state-of-the-art word embedding algorithm. It is in
many ways similar to the algorithms described until now, particularly it uses a con-
text window to scan through corpora and optimize its word representations. How-
ever, the function WordRank optimizes for is different and novel. Inspired by stan-
dard evaluation methods, WordRank trains embeddings such that for each target
word, all its context words are ranked by relevance. It is designed to be optimal
for retrieving the most similar words to any target word. It also optimizes for pre-
cise distinction between the highest ranked similar words. Thanks to these features,
WordRank achieves very similar performance to the rest of the state-of-the-art em-
bedding algorithms while using much smaller noisy corpora.
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4.4.1 Intuition

Almost all algorithms in the current wave of word embedding algorithms have a
common framework. In essence, all these algorithms perform a matrix factorization
operation on a matrix that relates words to each other. This matrix can be a co-
occurrence matrix, like with GloVe, or a point-wise mutual information matrix, like
with Word2Vec. GloVe does this factorization explicitly, but the rest usually do it
implicitly by scanning corpora with a fixed size window, where the central word is
distinguished as the target and the rest are the context. In the end, they train word
embeddings such that their pairwise dot products approximate this matrix.

WordRank keeps the window based training framework, but optimizes for a differ-
ent kind of similarity measure. Instead of approximating a pairwise measure be-
tween target and context words, it approximates a ranking of contexts per target
word. In other words, all context words are ranked by relevance to each target word
and WordRank enforces this ordering. This decision was inspired by how word simi-
larity is usually evaluated using human similarity datasets. This priority for ranking
is also a desirable feature for many higher level tasks.

Focusing on ranking makes WordRank much more resilient to noise. Thanks to this,
it is able to perform as well as other state-of-the-art algorithms with much smaller
and diverse corpora. The authors mention an example where a WordRank model
trained on 17M tokens perform almost as well as a Word2Vec model trained on 7.2B.
Granted, WordRank does not perform much better than the alternatives with big
corpora. In any case, this robustness to noise can be very desirable for many use-
cases.

WordRank goes further and tunes the balance of resolution in the ranking. The au-
thors observe that it is more desirable to have a well distinguished ranking between
the most similar words, while more different words do not need as much polishing.
This is consistent with human intuition. We can clearly distinguish and rank highly
related words but the difference in similarity between two very distant concepts is
highly ambiguous. This is achieved by selecting a concave loss function, where loss
is most sensitive when rank is small (at the top of the list).

4.4.2 The maths

Like most other word embedding algorithms, WordRank scans the corpus with a
fixed sized window. The central word in the window is called a target and is denoted
as w. The rest of the words are the context c. ω is the set of all target-context pairs
in the corpus. ωw will contain all the context words paired with w. Similarly ωc
contains all the words paired with a context c.

Also like most other word embedding algorithms, WordRank approximates the ma-
trix factors U and V . U contains all the embeddings for targets denoted uw and V
contains all the embeddings for contexts vc.

The dot product between two embeddings < uw, vc > is interpreted as a relevance
score of the pair. Therefore, we compute the rank by counting the number of context
words that are more relevant than the chosen context.
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rank(w, c) =
∑

c′∈C{c}

I(< uw, vc > − < uw, vc′ ≤ 0) =
∑

c′∈C{c}

I(< uw, vc − vc′ >≤ 0)

Given a function I that returns 1 or 0 depending on the condition being true or false.
I is not differentiable, so, like in neural binary classification tasks, a differentiable
upper bound is selected. In this case, the logistic loss l(x) = log2(1 + 2−x) is used.

rank(w, c) ≤ ¯rank(w, c) =
∑

c′∈C{c}

l(< uw, vc − vc′ >)

Finally, the following objective function is chosen as a ranking loss.

J(U, V ) =
∑
w∈W

∑
c∈ωw

rw,c · ρ(
¯rank(w, c) + β

α
)

rw,c is a association measure between a (w, c) pair. This same weighting has been
mentioned before for some of the other word embedding models.

rw,c =

{
(Xw,c/xmax)ε ifXw,c/xmax
1 otherwise

Where Xx,c is the co-occurrence count matrix. For WordRank xmax = 100 and ε =
0.75 are chosen.

ρ is a monotone concave ranking loss function. It is concave so that the loss is most
sensitive at the top of the ranking. Any loss function with these properties is valid,
several options are explored in the original paper. In practice, the summation over
the context in the objective function is hard to compute when ρ is non-linear, so a
first-order Taylor expansion is used as an approximation.

Finally, α and β are hyperparameters that tune the balance in accuracy resolution.
As mentioned before, WordRank focuses on distinguishing lower rank elements (at
the top of the list) by using a concave loss. α and β tune the scale of this contrast
and how fast the focus decays as it goes down the list. α defines scale and β defines
the offset of decay. The authors report that α = 100 and β = 99 is the best setting for
their experiments.

4.4.3 Experimental review

In this section we present all the experimental results from applying WordRank to
our dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu.
We use the standard embedding size of 100. We have also chosen to perform bench-
marks with different sizes of corpora, so that we can inspect how the algorithm
scales, both in terms of the computational resources needed and the accuracy of the
evaluation. The original implementation given by the authors4 was used in all the
benchmarks.

4WordRank repository: https://github.com/shihaoji/wordrank

https://github.com/shihaoji/wordrank
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4.4.3.1 Computational benchmark

Figure 4.9 shows the resource consumption of the training process of WordRank. It
is worth noting that WordRank reuses part of GloVe’s implementation to produce a
co-occurrence matrix.

FIGURE 4.9: Computational benchmark of WordRank

There is nothing much remarkable about this analysis compared to the rest of word
embedding algorithms. The scaling seems mot similar to GloVe’s, most likely be-
cause of the reuse of the code. However, it looks like it has needed 4 times the
resources for training.

4.4.3.2 Evaluation

Figure 4.10 shows how the accuracy of WordRank scales with corpus size. Again,
we both show the total accuracy and the accuracy when ignoring test samples that
contain unknown words.

FIGURE 4.10: Evaluation accuracy of WordRank
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For all intents and purposes, the results of WordRank are equivalent to Word2Vec
and Glove. It looks like the advantage of WordRank on smaller corpora is not ap-
parent for our dataset. Table 4.5 shows the exact accuracies from evaluation.

WordRank evaluation 1M 10M 100M 1B 2B
Total accuracy 0.02 0.21 0.45 0.78 0.89
Known words 0.69 0.75 0.77 0.84 0.90

TABLE 4.5: The WordRank evaluation accuracies by the number of
tokens used for training, including total accuracy and known word

accuracy.

4.5 Summary and conclusions

In this chapter we have analyze four pivotal state-of-the-art word embedding algo-
rithms.

We first explored Word2Vec. You could say that Word2Vec is one of the main factors
for the recent transformation of NLP towards Machine Learning. It was not the first
word embedding algorithm by any means, there were well known neural models
since the early 2000s. However, Word2Vec proved that a shallow model that can go
through more training data is considerably superior to more complex deep models.
It was also one of the first algorithms to produce embeddings of high enough quality
to use as the foundation of many other tasks.

Word2Vec establishes a formula that is replicated by many algorithms after it. It
computes word embeddings by scanning a fixed sized window over the corpus. A
window has a central target word and a set of context words. Each window is a
sample for SGD, where the loss of a window brings the target and context vectors
closer.

GloVe was one of the next important word embedding algorithms. The authors real-
ized that Word2Vec was factoring a PMI word-word matrix implicitly. They argued
that window based methods do not capture global language statistics well enough.
Therefore, they proposed factoring a co-occurrence matrix explicitly.

FastText is another very well known word embedding algorithm. It followed Word2Vec’s
window based framework, but it popularized the idea of modular embeddings by
introducing subword components. Apart from having a single vector per word,
FastText keeps embeddings of n-grams and it combines them together for each word.
This introduces a minimal added overhead, but it considerably improves the model’s
practicality. In fact, FastText effectively outperformed all the other algorithms in our
tests, likely because scientific terminology is even more regular than general purpose
text.

The last word embedding algorithm we have explored is WordRank. It takes a
somewhat different approach from the rest by optimizing nearest neighbor ranks
instead of co-occurrence statistics. They also tune the loss function such that there
is more resolution between words that are close to each other. This is supposed to
make WordRank perform much better than the other algorithms in smaller corpora,
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but the our benchmarks have not reflected that. In fact, even if the mindset is dif-
ferent, it turns out that WordRank performs a very similar operation to the rest, and
the test show exactly that.

Overall, we see that most algorithms for word embedding in the current state-of-
the-art closely follow the Word2Vec model. There are many alternatives with dif-
ferent tweaks, but most algorithms perform equivalently in most cases. The four
years since the publication of Word2Vec have produced a few breakthroughs as well
though, as exemplified by FastText. All the evaluation results have been unified in
4.6 for reference and to make comparisons easier.

Word embeddings 1M 10M 100M 1B 2B
W2V cBoW - Accuracy 0.03 0.17 0.46 0.83 0.89
W2V cBoW - Known 0.67 0.73 0.80 0.85 0.90
W2V Skip-gram - Accuracy 0.04 0.18 0.46 0.83 0.89
W2V Skip-gram - Known 0.67 0.79 0.80 0.88 0.90
GloVe - Accuracy 0.04 0.17 0.45 0.80 0.87
Glove - Known 0.71 0.73 0.78 0.85 0.88
FastText - Accuracy 0.81 0.88 0.90 0.93 -
WordRank - Accuracy 0.02 0.21 0.45 0.78 0.89
WordRank - Known 0.69 0.75 0.77 0.84 0.90

TABLE 4.6: All results from word embedding evaluation unified.
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Chapter 5

Review of document similarity
measures

In this chapter we review the state-of-the-art in Semantic Textual Similarity (STS). We
focus on unsupervised algorithms that only use the information extraction done by
word embedding to compute semantic similarities between sentences, paragraphs
or documents.

Like with word embedding algorithms, we provide an intuition, a formal specifica-
tion, a complexity analysis, and a benchmark for each model.

5.1 Baseline: VSM and embedding centroids

It is still early days in solving the problem of Semantic Textual Similarity (STS). A
few novel solutions have been published during the last few years with the raise of
word embeddings and deep learning. These new algorithms often report beating the
state-of-the-art in certain select tasks, but the community has not yet seen ground-
breaking results, specially with longer text at the paragraph and document levels.
More classical document similarity methods still stand relevant and competitive, so
we would be remiss to ignore them in a comprehensive review.

We establish a baseline with a few simple but effective methods and check how they
compare to more modern solutions at different text sizes.

5.1.1 Baseline algorithms

VSM We start by resorting to the standard Vector Space Model (VSM). It is a sim-
ple model that represents each piece of text as a weighted distribution over the vo-
cabulary. Each document is represented as a vector with the size of the vocabulary,
where each element gives the frequency of a word in the document or some weight
derived from the frequency. Apart from a numerical representation, the VSM also
gives a few alternative similarity metrics, being cosine similarity or dot product the
most popular ones. This type of text encoding is widely used as input for classical
machine learning algorithms and is the de facto representation and similarity metric
in information retrieval. The VSM is described in further detail in section 2.4. We
experiment with the three mayor weighting schemes: BoW, Tf-idf and BM25.



50 Chapter 5. Review of document similarity measures

Embedding centroids We also experiment with a naive approach of integrating
word embeddings with the aforementioned classical similarity algorithms. Word
embeddings are powerful representations and contain a great deal of contextual in-
formation. The intuition is that word embeddings will help in shorter technical text
such as titles or abstracts, where exact word overlap may not often be enough. One
simple way to compose word embeddings is to directly compute the centroid be-
tween all the word vectors. It follows that we may compute a weighted centroid
using the VSM vectors as coefficients.

5.1.2 Experimental review

Table 5.1 shows the evaluation results of our baseline methods. Not surprisingly,
VSM methods perform poorly on titles. This is simply because titles are short and
word overlap is minimal even for related articles, specially in technical domains.
However, simple VSM similarity performs very well on longer text, even at the ab-
stract level, where word overlap is considerably less abundant than in article bodies.
The advantage of more advanced weighting schemes is apparent, but not remark-
able. The improvement also seems to reduce as the document is longer and when
using embeddings.

VSM similarity BoW Tf-Idf BM25
Titles 0.59 0.60 0.60
Abstracts 0.90 0.92 0.93
Bodies 0.95 0.95 0.96

TABLE 5.1: Document similarity accuracy for VSM cosine similarity.

For the embedding centroids, we used the Word2Vec Skip-gram embeddings after
training on 2B tokens from our corpus. As table 5.2 shows, word embeddings clearly
help a lot in cases where exact word overlap is rare, their performance on titles is
much better. However, at abstract and body level, the performance of embedding
centroids is equivalent or even worse than VSM similarity. It is likely that using em-
beddings adds some degree of noise and computing a centroid may lead to some
information loss. It is also worth noting that embeddings, although harder to com-
pute, are a dense representation. This is a practical advantage over sparse VSM vec-
tors. It also means that, for longer text, VSM representations contain significantly
more information than the compressed 100 dimensional embeddings. Embedding
centroids perform competitively considering that they are much smaller than article
body VSM representations.

Embedding centroids BoW Tf-Idf BM25
Titles 0.91 0.91 0.60
Abstracts 0.91 0.92 0.93
Bodies 0.94 0.94 0.95

TABLE 5.2: Document similarity accuracy by using weighted embed-
ding centroids.
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5.2 Doc2Vec

Paragraph Vector (Quoc V. Le and Mikolov, 2014), as it is better known, Doc2Vec is
a proposal for paragraph level embeddings from the research team responsible for
Word2Vec. Doc2Vec, although well known, has not been as influential as Word2Vec.
This is mostly because its performance for cosine similarity comparisons is some-
what underwhelming compared to more classical methods. Doc2Vec embeddings
have been more useful as feature vectors of deeper machine learning algorithms in-
stead.

In any case, it is relevant to review it, as it was one of the first steps in the new field
of document embeddings. Word embedding compositionality is still an open prob-
lem, and Doc2Vec has merit in proposing one of the few unsupervised document
embedding algorithms.

5.2.1 Intuition

Like with Word2Vec the authors propose two different models for training document
embeddings in an unsupervised manner. In fact, the authors state that skip-gram
was the inspiration for PV-DBOW while PV-DM has great resemblance to cBoW.

The Distributed Bag of Words (PV-DBOW) model proposes training the paragraph
vectors having them as the input to a simple classification task that tries to predict
other words in the paragraph. In practice, this implies minimizing the cosine dis-
tance between the document embedding and the word embeddings it contains. This
is very similar to Skip-gram, which proposes using the target word to predict the
words in a fixed size window around it.

The Distributed Memory model (PV-DM) looks at the problem from another angle.
Like with cBoW a context window is used as input to predict a target word. In this
case, the context is a fixed size window and the target is the word that comes next, so
that some sequential information is preserved. In reality, the context words are either
averaged or concatenated and the cosine distance to the next word is optimized.
The difference between PV-DM and cBoW is that, along with the context words, the
paragraph embedding is also introduced to the mix. Therefore, we can imagine the
paragraph embedding as the vector that would correspond to a word that appears
in all the contexts of a given paragraph.

In PV-DM the word embeddings are created together with the document embed-
dings. Intuitively, these word embeddings turn out to be almost equivalent to word2vec
embeddings. In any case, the model always gives the option to use precomputed
embeddings.

PV-DM usually performs better than PV-DBOW and it is the one that is usually used
in practice. Even the original paper notes this, and states that PV-DM is superior on
its own, but concatenating the embeddings of both models gives the best results.
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5.2.2 The maths

The internals of Doc2Vec are extremely similar to Word2Vec (section 4.1.3). The word
embedding training is done in the exact same way, with the same loss function, neg-
ative sampling regularization and word subsampling. As mentioned before, PV-
DBOW is equivalent to Skip-gram and PV-DM is equivalent to cBoW. The only prac-
tical difference is that a paragraph vector is added to the context of each window.

5.2.3 Computational complexity

Doc2Vec has effectively the same complexity as cBoW (section 4.1.4). It is effectively
the same algorithm, the only difference is that an extra global paragraph context
vector is added to the window.

However, there are two differences that are worth noting. One important note is that
in Doc2Vec the memory requirements scale linearly to the number of documents in
the training corpus, which is not ideal. Inference of new document embeddings is
also costly and potentially inaccurate. New document embeddings are inferred by
running a few epochs on the document while locking the word embeddings.

5.2.4 Experimental review

In this section we present all the experimental results from applying Doc2Vec to our
dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu. We
use the standard document embedding size of 800. We have performed three sepa-
rate scalability benchmarks on titles, abstracts and bodies to see how the algorithm
performs with different types of text.

There is no original implementation given by the authors. The only public release of
code was a forum post1 by Tomas Mikolov where he provides an adapted version
of the original Word2Vec implementation to train the Doc2Vec model. The accepted
standard implementation for Doc2Vec is the one in the Gensim library2. This is the
implementation we have used for benchmarking.

5.2.4.1 Computational benchmark

Figures 5.1, 5.2 and 5.3 show how the training of Doc2Vec scales for titles, abstracts
and bodies respectively.

The most immediate realization is how fast the training is. The algorithm scales
linearly on corpus size, like the rest, but the absolute time needed is much lower
than alternatives such as Doc2VecC or Sent2Vec. This is somewhat surprising, as
both Doc2VecC and Sent2Vec are designed to be shallow and fast and they are both
implemented in clean C++ with almost no dependencies. In contrast, the implemen-
tation of Doc2Vec that was used was implemented using Python and Cython for the
performance critical segments.

1Doc2Vec by Mikolov: https://groups.google.com/forum/#!msg/word2vec-toolkit/
Q49FIrNOQRo/J6KG8mUj45sJ

2Doc2Vec in Gensim: https://radimrehurek.com/gensim/models/doc2vec.html

https://groups.google.com/forum/#!msg/word2vec-toolkit/Q49FIrNOQRo/J6KG8mUj45sJ
https://groups.google.com/forum/#!msg/word2vec-toolkit/Q49FIrNOQRo/J6KG8mUj45sJ
https://radimrehurek.com/gensim/models/doc2vec.html
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FIGURE 5.1: Computational benchmark of Doc2Vec applied to titles.

FIGURE 5.2: Computational benchmark of Doc2Vec applied to ab-
stracts.

The memory scaling is very similar to Word2Vec, GloVe and the rest of the window
based embedding algorithms. However, it looks more linear, specially with smaller
sized documents. This makes sense as the document embedding matrix grows lin-
early, but the vocabulary most likely is the dominating factor in memory consump-
tion with larger texts. In theory, memory consumption should grow linearly once
enough text has been read to have a complete vocabulary. It looks like these tests are
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FIGURE 5.3: Computational benchmark of Doc2Vec applied to bod-
ies.

before that point.

5.2.4.2 Evaluation

The following figures 5.4, 5.5 and 5.6 show the accuracies of Doc2Vec embeddings
for the document similarity tasks between titles, abstracts and article bodies, respec-
tively. It is worth noting that embeddings of the documents in the testing dataset
were not trained during the training phase. They were inferred after the fact instead,
which was considered a more realistic setup.

FIGURE 5.4: Accuracy of Doc2Vec applied to titles.

The results are rather poor for titles, which is not surprising. The algorithm is de-
signed to work at the paragraph level and titles are considerably shorter than the
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FIGURE 5.5: Accuracy of Doc2Vec applied to abstracts.

FIGURE 5.6: Accuracy of Doc2Vec applied to bodies.

other types of text, so there were less tokens to learn word embeddings from. The
accuracies at the abstract level are better, but even after training on the full dataset
(1.1M abstracts) the evaluation is still under the naive baseline. The performance
on bodies is surprisingly good, however. Only 500 full article bodies where enough
to outperform the accuracy of the other two models. It is worth noting that article
bodies are several tens of times bigger than abstracts, but it is still impressive. The
last model stays almost at perfect accuracy since the beginning. Table 5.3 shows the
exact accuracies.

Doc2Vec evaluation 500 1K 5K 10K 50K 100K 500K 1M
Titles - 0.49 0.49 0.49 0.58 0.66 0.67 0.65
Abstracts - 0.50 0.71 0.82 0.89 0.88 0.89 0.86
Bodies 0.91 0.90 0.94 0.97 0.96 0.96 0.97 0.96

TABLE 5.3: Exact accuracies of Doc2Vec.
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5.3 Doc2VecC

Doc2VecC (M. Chen, 2017), not be confused with Doc2Vec, stands for Document
Vectors through Corruption. It is a recently published unsupervised document em-
bedding algorithm. The Doc2VecC embedding of a document is simply computed
by averaging the embeddings of its component words. However, the key aspect of
Doc2VecC is that it trains its word embeddings precisely for this purpose. Doc2VecC
enforces that a meaningful document representation is formed when averaging. This
is done in an unsupervised manner by using corruption, an extension of Word2Vec
word subsampling that has been applied on a few document and sentence embed-
ding algorithms lately to aid unsupervised learning.

5.3.1 Intuition

Even if the main purpose of Doc2VecC is to generate document embeddings, it is, in
fact, a word embedding algorithm like Word2Vec or FastText. The difference is that
the word embeddings are specially trained such that averaging a document yields a
meaningful representation with minimal noise.

Doc2VecC’s architecture looks strongly like Doc2Vec’s. They are both based on the
C-BoW Word2Vec model, where a fixed size window is used to scan a corpus. The
model learns to predict the central word in the window, the target, given the words
around it in the window, the context. In Doc2Vec, document embeddings are trained
by attaching a shared vector as a word embedding to every context in a document.
After training, this document vector will contain the global information of the docu-
ment that fills the missing information in local contexts and helps predict the target
word. However, Doc2Vec has a serious downside: inferring the embedding for a
new document is expensive as the optimization problem needs to be solved again
for this new document while keeping the embeddings locked.

Doc2VecC addresses this with a simple modification. Instead of learning these global
document vectors from scratch, they are created by averaging all the word embed-
dings in the document. For the same reason Doc2Vec generates good global rep-
resentations, Doc2VecC will train word embeddings that are optimal for averaging
into a global semantic sense of the document. This makes the model easier to train,
because more information is shared. It also trivializes the task of inferring new doc-
ument embeddings.

Another key aspect of Doc2VecC is the use of corruption. To decrease computational
cost Doc2VecC randomly ignores significant parts of the text and deliberately zeros
out dimensions from the document embedding while training. Introducing such
noise may seem counterintuitive, but it is common practice in many areas of machine
learning. It avoids over-fitting, improves generality and creates random variations
of the training data to effectively increase the number of data samples and make the
most of the dataset. It is equivalent to adding Gaussian noise to linear regressors or
using drop-out in deep neural models. The authors also prove that the corruption
applies an implicit regularization with desirable properties, such as reducing the
influence of very frequent words.
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5.3.2 The maths

The implementation of Doc2VecC is very similar to CBoW and Doc2Vec. The main
difference is that a distinct global document embedding is generated by averaging
and combined with all context windows in that document. It also applies mask-out
corruption to that document embedding before doing the combination.

Like with all shallow bilinear embedding algorithms, a matrix factorization is per-
formed, usually implicitly. The goal is to train the factor matrices V and U , where
V contains the desired embeddings of target words and U is a side product that
contains the embeddings of context words.

Training is done by passing a fixed size window through the corpus. The central
word in the window is the target wt and has the corresponding embedding vector
vw. The rest of the words around it are averaged into the context embedding ct. For
each document, a document embedding xd is also created by averaging all the words
in it.

Corruption is then applied on xd through an unbiased mask-out. The mask-out is
performed by zeroing out some dimensions of xd with probability q and normalizing
the rest to remove any bias:

x̄d =

{
0 with probability q
xd
1−q else

5.3.3 Experimental review

In this section we present all the experimental results from applying Doc2VecC to
our dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu.
We use the standard document embedding size of 800. We have performed three
separate scalability benchmarks on titles, abstracts and bodies to see how the algo-
rithm performs with different types of text.

We use the original implementation given by the authors3. The implementation is
based on the first available implementation of Doc2Vec by Tomas Mikolov4, which,
in turn, is an adaptation of the original Word2Vec code.

5.3.3.1 Computational benchmark

Figures 5.7, 5.8 and 5.9 show how the training of Doc2VecC scales for titles, ab-
stracts and bodies respectively. Unsurprisingly, the scaling pattern is very similar to
both Doc2Vec and Word2Vec, as the implementation is just an adaptation of both.
The main difference is in scale, Doc2VecC has needed between on average 12 times
longer to train approximately. Although this may be simply because they were im-
plemented using different technologies.

3Doc2VecC repository: https://github.com/mchen24/iclr2017
4Doc2Vec by Mikolov: https://groups.google.com/forum/#!msg/word2vec-toolkit/

Q49FIrNOQRo/J6KG8mUj45sJ

https://github.com/mchen24/iclr2017
https://groups.google.com/forum/#!msg/word2vec-toolkit/Q49FIrNOQRo/J6KG8mUj45sJ
https://groups.google.com/forum/#!msg/word2vec-toolkit/Q49FIrNOQRo/J6KG8mUj45sJ
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FIGURE 5.7: Computational benchmark of Doc2VecC applied to titles.

FIGURE 5.8: Computational benchmark of Doc2VecC applied to ab-
stracts.

5.3.3.2 Evaluation

Figures 5.7, 5.8 and 5.9 show the accuracy of Doc2VecC on titles, abstracts and bod-
ies respectively. Although the embeddings of the test documents were inferred in
the same run as the training, their contents were not used as training data and the
inference was done in isolation. The internals of the implementation were checked
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FIGURE 5.9: Computational benchmark of Doc2VecC applied to bod-
ies.

to make sure of it.

FIGURE 5.10: Accuracy of Doc2VecC applied to titles.

Compared to Doc2Vec, Doc2VecC seems to be more consistent across the board. We
see the same trend of improved results with bigger documents, most likely because
the algorithm was designed for paragraphs and full documents, and because there
are more tokens to train word embeddings in longer text. However, the contrast
between types of text is not as big in this case. The evaluations with titles are still
below the baseline, but they are not bad accuracies. Abstract accuracies manage to
achieve the same results as the baseline. Finally, body evaluations are very good
overall, even with low training data, but not as good as with Doc2Vec.

Table 5.4 shows the exact accuracies on evaluation. The gaps in the table are due
to the high cost of training Doc2VecC. Training abstracts and bodies with the whole
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FIGURE 5.11: Accuracy of Doc2VecC applied to abstracts.

FIGURE 5.12: Accuracy of Doc2VecC applied to bodies.

training dataset was too time consuming. In both cases, however, the model seems
to achieve convergence anyways.

Doc2VecC evaluation 500 1K 5K 10K 50K 100K 500K 1M
Titles - 0.67 - 0.75 - 0.88 - 0.87
Abstracts - 0.74 0.87 0.90 0.92 - - -
Bodies 0.90 0.92 0.94 0.94 - - - -

TABLE 5.4: The exact accuracies of Doc2VecC.

5.4 Word Mover’s Distance

While most document similarity methods focus on word embedding compositional-
ity, Word Mover’s Distance (WMD) (Kusner et al., 2015) proposes a physically moti-
vated distance function that directly acts on two sets of word embeddings, without
computing intermediate representations.

Because of this, it is no longer possible to store a simple vector representation for
each document and compare them with a constant-time operation. The similarity
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function is expensive to compute, and the need to compute it for each pair separately
makes it inconvenient for some use cases, such as clustering.

However, it turns out that WMD is actually very effective and stays competitive
between more modern deep learning alternatives. Although slow, it stays to this
day the preferred method for content based recommendation at SCITODATE.

WMD’s simplicity is also an added advantage. It is hyperparameter free and per-
forms well at sentence, paragraph and document level. The physical motivation
behind the similarity function makes it easy to interpret, debug and even visualize
in great detail. It also makes it easy to extend and improve.

5.4.1 Intuition

The WMD similarity function is just a special case of the well known Earth Mover’s
Distance transportation optimization problem, also known as the Wasserstein met-
ric. The Wasserstein metric is a common mathematical construct that can be used to
compare two probability distributions. It is often used in computer science to com-
pare discrete distributions such as images (Rubner, Tomasi, and Guibas, 1998) or, in
this case, sets of embeddings. However, as the name suggests, the Earth Mover’s
problem has a simple physical intuition.

Let there be a given mass of earth. The earth is distributed in discrete piles, each
with a different portion of the total mass. A goal is set to move all that earth to a
different region and be organized there into a different distribution of piles. The
distance between each pile of the first region and each pile of the second region
is known. Moving earth takes effort or cost, based on the amount of mass moved
and the distance traveled. The Earth Mover’s Distance will be the minimum cost of
redistributing all the earth to the new region in the specified arrangement.

Making a parallel with word embeddings and documents is not too complicated at
this point.

WMD does not take word order into account, so it encodes both documents with
the Vector Space Model. The vector representation could be Bag of Words, Tf-Idf or
any other similar weighting scheme such as BM25. A document is therefore, a set of
word embeddings, each with a distinct weight.

With this setup, the embeddings can be interpreted piles of earth. The embedded
vector represents the position of the pile and distances between piles are defined as
the standard euclidean distance between the embeddings. The mass of each pile will
of course be the weight assigned to each embedding by the VSM representation of
the document.

The goal is to optimally transform (move) the words of one document so that they
become the second document. If two documents are semantically different, their
embeddings will be far from each other, so the cost will be high. The reverse happens
if the documents are similar. This is rather intuitive.

WMD will work best when the structure of the text does not carry most of the seman-
tic information, as with all VSM models. This is the case with technical documents
with very distinctive vocabulary, such as scientific text. The mere presence of cer-
tain technical words already give a strong signal towards predicting the topic of the
document.



62 Chapter 5. Review of document similarity measures

It turns out that for short fragments of such text with specialized vocabulary, words
may not necessarily repeat between two similar texts. For example, a few sentences
on web development will hardly share much vocabulary with some text on machine
code compilation, yet, they are both computer science texts and are strongly corre-
lated compared to other scientific texts. Using word embeddings gives us the nec-
essary resolution to make such distinctions. This makes WMD specially well suited
for academic abstracts compared to more traditional VSM methods, and yet, it stays
simple enough to be highly interpretable.

5.4.2 The maths

To follow, we will give the formal specification of the optimization problem ex-
plained above to complement the intuition.

Let there be two documents D and D′. ci denotes the number of times the word i
appears in documentD. Similarly, ci′ denotes the number of times word i appears in
documentD′. Let us say that both documents are encoded in the VSM in the normal-
ized bag-of-words (nBOW) form. This will be represented by di and di′ respectively,
where di = ci∑n

j=1 cj
.

LetX ∈ Rd×n be a word embedding matrix, where each column xi is a word embed-
ding of d dimensions. We define the pairwise distance between two embeddings as
c(i, j) = ||xi − xj ||2.

Let T be a flow matrix which encodes the solution to the optimization problem.
T ∈ Rn×n is a sparse matrix where Tij ≥ 0 denotes the amount of word i that will be
transferred to word j.

The goal is to minimize the transport cost, while keeping the total earth mass before
and after the transport constant.

minT≥0
∑n

i,j=1 Tijc(i, j)

subject to:
∑n

j=1 Tij = di ∀i ∈ 1, ..., n∑n
i=1 Tij = dj ′ ∀j ∈ 1, ..., n

5.4.3 Computational complexity

Fortunately, this is a well studied transportation problem for which specialized solvers
have been developed. Going into the state-of-the-art solvers and their complexity
analysis is beyond the scope of this work though.

There are many solvers to choose from. The most well known implementation of
WMD resides it the Gensim library5. This implementation directly uses PyEMD
which is the Python port of (pele2009), which has a complexity of O(n3 log n), n
being the size of the vocabulary.

The original paper also proposes two more relaxed distance functions. They are
both proven to be a lower bound of the complete WMD and are considerably faster
to compute. The authors propose a method they call "prefetch and prune" which

5Gensim: https://radimrehurek.com/gensim/

https://radimrehurek.com/gensim/
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involves ranking the documents with the cheaper distance functions to prune the
document set and reduce the number of expensive WMD comparisons.

The first alternative distance function is centroid distance. It involves computing the
embedding centroid for each document weighted by its VSM encoding. Document
similarity is then measured by simply computing the euclidean distance between
centroids. Building the centroids has linear complexity on the size of the document,
but it can be done very efficiently with linear algebra libraries. The actual distance
computation is done in constant time. This means that document ranking can be
done very efficiently using a Nearest Neighbor data structure like the ones offered
by the recently released faiss library (Johnson, Douze, and Jégou, 2017).

The second alternative distance function proposes removing one of the constraints
of the WMD optimization problem. This reduces the complexity to O(n2) and it is
regarded as a good approximation to the slower WMD for most datasets.

5.4.4 Experimental review

In this section we present all the experimental results from applying WMD to our
dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu. We
use the Word2Vec Skip-gram vectors trained on 2B tokens. It was considered that
using Skip-gram would give the most comparable results, as it is still one of the
most popular word embedding algorithms.

We use the WMD implementation from Gensim6, it is considered the standard im-
plementation. Gensim in turn uses the PyEMD7 Earth Mover’s Distance efficient
solver.

A performance benchmark wasn’t considered relevant in this case. There’s no train-
ing phase with WMD, all the heavy lifting is done during word embedding training
and document comparison. Text sizes are fairly consistent in our dataset, so a per-
formance benchmark would not show much variation. Almost all the computing
effort is also done by a well tested standard solver, testing it yet another time would
not bring much value.

We have only evaluated WMD for titles and abstracts. This is mainly because of
the lack of the necessary computational resources. While it took only 3 seconds to
perform 600 title comparisons and 10 mins to perform the same amount of abstract
comparisons, a single article body pair comparison took 8 mins to compute. This is
a clear example of how madly WMD scales on text size. It is a useful comparison
method for sentences and paragraphs, but it is not practical to go any bigger.

WMD evaluation Accuracy
Titles 0.90
Abstracts 0.92

TABLE 5.5: Exact accuracies of WMD evaluation.

Table 5.5 shows the exact evaluation accuracies. They are good results, but they
simply match the naive baseline.

6WMD in Gensim: https://radimrehurek.com/gensim/models/keyedvectors.html
7PyEMD repository: https://github.com/wmayner/pyemd

https://radimrehurek.com/gensim/models/keyedvectors.html
https://github.com/wmayner/pyemd
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5.5 Skip-thoughts

Skip-thoughts (Kiros et al., 2015) is one of a few state-of-the-art algorithms for sen-
tence embedding. Consistent with current trends, Skip-thoughts uses deep learning
to train sentence embeddings in an unsupervised manner. In the case of embedding
algorithms, unsupervised refers to the fact that there is no explicit gold standard
dataset with scored pairs to train from. However, there is always an implicit su-
pervision signal. In the case of Skip-thoughts, like the name suggests, a window
method inspired by Skip-gram from Word2Vec provides this signal. The sentence
embeddings are learned by exploiting the relation between consecutive sentences in
free text.

5.5.1 Intuition

Skip-thoughts learns sentence embeddings very much like Word2Vec learns word
embeddings. The embedding vectors are trained through a stochastic gradient de-
scent (SGD) optimization procedure. A window is passed sequentially through the
whole corpora. This window contains three consecutive sentences, where, much like
in skip-gram, the model attempts to generate the two outer sentences by taking the
central one as input. For each window, a prediction error is computed by the loss
function, which, in turn, drives the SGD process.

Even if the learning procedure is very much like the one proposed for the Skip-gram
model, the main difference between both algorithms lies on the model architecture
itself. Word2Vec stores all the embedding vectors and retrieves each one whenever a
cosine similarity operation between two words needs to be performed. Skip-thought
also has sentence embeddings that are compared by cosine similarity, but it is not
feasible to store the embedding vector for all possible sentences. Sentence embed-
dings always have to be inferred from their word embedding components, which is
where most of the extra complexity of Skip-thoughts is.

Skip-thoughts relies on the now standard encoder-decoder deep neural architecture.
The basic idea behind the design is that there is a deep neural network (DNN) that
takes an input sequence and generates a compact vectorial representation. This vec-
tor embedding is then fed into the decoder which generates another sequence based
on this input. The whole system is evaluated on the accuracy of the generated se-
quence and trained by gradient descent. There are a few alternatives, but the most
common option is that both the encoder and decoder are recurrent neural networks
(RNN). Often, both the encoder and decoder contain several layers of RNN. It is
common practice for example to have two consecutive RNNs in the encoder that
read the input in opposite directions. It is also common to have an attention mecha-
nism in the decoder to decide what parts of the encoding to focus on in each gener-
ation time step.

This architecture was originally designed to perform machine translation and it has
been the main driver of recent breakthroughs in the field. For example, the core of
Google Translate (Wu et al., 2016) is a 8 level bidirectional RNN encoder-decoder
architecture. When trained for long enough with enough data, it yields state-of-
the-art results which are a significant improvement over the previous version based
on classical statistical machine translation. It even makes the whole system modular,
just attach the encoder of the source language and the decoder of the target language.
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Skip-thought uses a similar architecture to train the model to infer sentence embed-
dings. The encoder is an unidirectional or bidirectional RNN. The output of the
encoder is the sentence embedding, which is then used by two single layered RNN
decoders to predict and generate the previous and next sentences in the text. In both
cases, Gated Recurrent Units (GRU) are used as RNN cells. GRU cells are similar to
the standard LSTM cells but are simpler and faster to train.

As described, sentence embeddings are the intermediate representations of the encoder-
decoder architecture. They are the side product of an alternative supervised opti-
mization problem. This is the key of Skip-thoughts’ success, as the training data for
this alternative problem is widely abundant, it is just free text.

Word embeddings are also produced during training. They are randomly initialized
and optimized as part of the training process, although there is also the option of
starting with pre-trained word embeddings. A key aspect that is addressed in the
original paper, is that it is possible to encounter many words during inference that
were not found during training. The authors propose a simple solution where they
train a projection matrix using unregularized L2 linear regression to transform a
large set of pre-trained embeddings to the Skip-thoughts more limited embedding
space. This is specially relevant in the case of Skip-thoughts, as it is very expensive
to train. The authors report training it for a week. This flexibility to work with
arbitrary embeddings makes the model specially flexible and useful.

5.5.2 Model equations and training details

The Skip-thoughts deep neural model can be described in two distinct parts, the en-
coder and the decoder. The following equations describe their exact inner workings.
The structure of both parts is fairly simple. The encoder is a sequence of GRU cells
and there are two decoders that are sequences of conditional GRU cells. Most of the
complexity in these equations is just the specification of the inner workings of a GRU
cell.

While the LSTM cell has three control gates, the GRU cell has only two, which makes
it cheaper to train while keeping a similar functionality. The two gates are named
update gate z and reset date r. The intuition is that the reset gate decides how much
of the hidden state h should be combined with the input x to generate the interme-
diate result h̄. Then, the update gate decides the proportions with which h and h̄
should be combined to generate the next hidden state and output.
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The weights are divided into two, W is applied to the input x and U is applied to
the hidden state h. There are three different weight matrices for eachW and U , for r,
z and h. Let w1, ..., wN be a sequence of words. The GRU RNN will iterate over the
sequence generating outputs ht which should be interpreted as the representation
of sequence w1, ..., wt. Let xt be the word embedding of word wt. The following
equations define the encoder, which is a plain GRU RNN.

rt = σ(Wrx
t + Urh

t−1)

zt = σ(Wzx
t + Uzh

t−1)

h̄t = tanh(Whx
t + Uh(rt ◦ ht−1))

hti = (1− zt) ◦ ht−1 + zt ◦ h̄t

The decoders are almost the same, but they use conditional GRU cells. Conditional
GRU cells introduce three new weight matrices Cz , Cr and Ch. C is used in combi-
nation with hi, the final output of the encoder, to add a bias to each gate. The other
weight matrices are not shared between the two decoders, so they are distinguished
with their respective decoder ID d.

Both decoders start with the last hidden state of the encoder. The first input of the
decoders is a special < eos > symbol and the following inputs will be the outputs of
the previous time-step.

The following equations define the decoders.

rt = σ(W d
r x

t + Udr h
t−1 + Crhi)

zt = σ(W d
z x

t + Udz h
t−1 + Czhi)

h̄t = tanh(W d
hx

t + Udh(rt ◦ ht−1) + Chhi)

hti±1 = (1− zt) ◦ ht−1 + zt ◦ h̄t

Finally, we define the probability of a word wti±1 following the previous t− 1 words.

P (wti±1|w<ti±1, hi) ∝ exp(xti±1, h
t
i±1)

Thus, given a window of consecutive sentences (si−1, si, si+1) the following objective
will be maximized using the training dataset as the source of truth.

∑
t

log(P (wti−1|w<ti−1, hi) +
∑
t

log(P (wti+1|w<ti+1, hi)

The Adam optimization algorithm is used to perform the gradient descent. Adam is
a modification of the base SGD algorithm. It is designed to accelerate convergence
by adding dynamic learning rates, gradient normalization and momentum. It is
inspired by RMSProp. Mini-batches of 128 are used and the gradients are clipped if
their norm exceeds 10.

In the case where unidirectional RNNs are used, the uni-skip model is trained with
2,400 dimensions. For bidirectional RNNs, bi-skip, each will have 1,200 dimensions
and the skip-thought vector will be the concatenations of both encodings. The third
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alternative is to train both and concatenate the encodings into a 4,800 dimensional
representation. This third model is called combine-skip and is reported to give better
performance than the other two.

The recurrent matrices are initialized with orthogonal initialization and the non-
recurrent ones with a uniform distribution [−0.1, 0.1]. The model is initially trained
on a limited vocabulary of 20,000 words. The vocabulary is then expanded by
learning a projection matrix to transform a set of pre-trained vectors into the Skip-
thoughts vector space. This projection is learned by simple L2 linear regression.

5.6 Sent2Vec

As the name suggests, Sent2Vec (Pagliardini, Gupta, and Jaggi, 2017) is another
state-of-the-art sentence embedding algorithm. However, even if the original pa-
per focuses on sentence embeddings, the model is also general enough to generate
embeddings of any other semantic unit, such as paragraphs or full documents. It is,
in fact, in many ways like Doc2VecC. The core idea is to simply create document em-
beddings by averaging their component word embeddings, but to train those word
embeddings such that they generate meaningful average document representations.
Sent2Vec differs from Doc2VecC in that it optimizes for more local compositional-
ity, like sentences or paragraphs, while Doc2VecC optimizes for a global view more
appropriate for full document embeddings.

5.6.1 Intuition

The main observation in Sent2Vec is that there are two different trends in the world
of embedding algorithms. Some authors insist in applying deep neural architec-
tures, like Skip-thoughts. These models have more capacity to learn complex pat-
terns but are very expensive to train. In contrast, shallow models are not as powerful
but training them is so cheap that they can take advantage of much larger training
datasets. This exact contrast was exemplified a few years ago with the discovery
of Word2Vec. There were many iterations of neural models for word embeddings
before (Bengio et al., 2003), but the idea of using a much simpler model and vast
amounts of corpora made Word2Vec the breakthrough that it is now.

Sent2Vec is the proposal to do this same thing for sentence or document embeddings.
Models like Skip-thoughts employ deep neural architectures with thousands of in-
ternal weights to train. However, recent publications (Arora, Liang, and Ma, 2016)
have shown that, in many cases, simple weighted embedding centroids outperform
these more powerful models. Much like Doc2VecC, Sent2Vec polishes the concept of
embedding centroids and proposes a simple but efficient model like Word2Vec that
can ingest much bigger corpora and beat the state-of-the-art.

Sent2Vec is, in practice, almost identical to the cBoW model from Word2Vec. Like
in any other window based embedding algorithm, a context window is scanned se-
quentially through the corpus. The central word in the window is the target word
and the rest are the context. In cBoW, the target word is predicted given the con-
text. In practice, this means that the context embeddings are averaged and the dot
product between the target embedding and the context centroid is minimized.
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The authors of Sent2Vec point out that such a model trains optimal embeddings
for additive composition. In other words, the embeddings are optimized such that
when computing the centroid of a set of embeddings, the centroid contains the rele-
vant information to express the meaning of the set. However, cBoW optimizes such
composition for small arbitrary windows of consecutive words, which may not be
semantically significant. Sent2Vec proposes to do the same thing with windows that
are clear semantic units, such as sentences, paragraphs or full documents.

Another main difference between cBoW and Sent2Vec is that the contexts in Sent2Vec
also contain word n-grams not optimized further for compositionality. This is spe-
cially interesting for scientific and technical text, as many concepts are often ex-
pressed by multi-word phrases. It is also worth mentioning that Word2Vec does ran-
dom word sub-sampling as a regularization to improve generality. Random words
are also deleted in Sent2Vec, but the sub-sampling is done on the context once all
the n-grams have been extracted. Thanks to this, the n-grams are kept clean and
potentially relevant syntactic structures are not broken.

5.6.2 The maths

Sent2Vec is, for all intents and purposes, a mere modification of the cBoW algorithm.

In general, Sent2Vec, much like Word2Vec, GloVe and FastText, is a matrix factor-
ization problem. In the case of GloVe, the factorization is explicit, but the other
algorithms do it implicitly by scanning the corpus with a window. We decompose
U and V , where U contains the embeddings for target words and V contains the
embeddings that are in the context window.

min
U,V

∑
S∈C

fS(UV iS)

The composition of the context words is kept unchanged, it is a simple average. The
only differences are how the window is chosen and the inclusion of n-grams. In prac-
tice, only unigrams and bigrams are extracted, as including bigger n-grams would
expand the vocabulary considerably. The sentence embedding vS for a sentence
window S is defined like so, where R(S) is the set of all n-grams in the sentence.

vS =
1

|R(S)|
∑

w∈R(S)

vw

The loss function is also the same, including the negative sampling. Given the binary
logistic loss function l : x→ log(1 + e−x).

min
U,V

∑
S∈C

∑
wt∈S

(l(uTwt
vS{wt}) +

∑
w′∈Nwt

l(−uTw′vS{wt}))

The negative sampling distribution is also kept: qn(w) =
√
fw∑

wi
fwi

. So is the probabil-

ity for not deleting a word: qp(w) = min{1,
√
t/fw + t/fw}, where fw denotes word

frequency and t is a hyper-parameter.
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One notable difference between cBoW and Sent2Vec, is that the V context embed-
dings are kept for Sent2Vec, instead of the U target embeddings. This is because
the V embeddings are the ones that have been optimized for being composed into
a centroid. This structure also enables to compute word-document similarities, by
fetching the word embedding from the U matrix and generating the document cen-
troid embedding from the V matrix.

5.6.3 Computational complexity

The computational complexity of Sent2Vec is the same complexity as cBoW. A no-
table difference, however, is that the inclusion of n-gram increases the vocabulary
size considerably.

In the case of sentence and document embeddings, it is obviously not viable to keep
the vectors pre-trained in a hash table. Sentence embeddings need to be created
from their component word embeddings. However, in Sent2Vec this just means
computing a vector centroid which is a constant operation and can be performed
very efficiently with standard linear algebra tools. This is, in fact, the main advan-
tage of Sent2Vec over deep neural models, where the sentence encoding is much
more involved.

5.6.4 Experimental review

In this section we present all the experimental results from applying Sent2Vec to our
dataset. All tests were done in clean isolated AWS m4.2xlarge with Ubuntu. We
use the standard document embedding size of 800. We use the original implementa-
tion given by the authors8 throughout the benchmark.

Sent2Vec is presented as a sentence embedding algorithm. However, it is in many
ways similar to Doc2VecC and is general enough to apply to any body of text. Be-
cause of that, we decide to evaluate it like the other document embedding algo-
rithms, by performing tree different experiments on titles, abstracts and article bod-
ies.

5.6.4.1 Computational benchmark

Figures 5.13, 5.14 and 5.15 show how the training of Sent2Vec scales for titles, ab-
stracts and bodies respectively. The scaling pattern of Sent2Vec is very similar to
most of the algorithms we have analyzed, including word embedding and docu-
ment similarity algorithms. This makes sense, as Sent2Vec is effectively a word em-
bedding algorithm, optimized for document similarity, like Doc2VecC and Doc2Vec
to some extent.

Its resource requirements are similar to Doc2VecC’s, but a bit lower. It would be
between Doc2Vec and Doc2VecC in terms of efficiency.

8Sent2Vec repository: https://github.com/epfml/sent2vec

https://github.com/epfml/sent2vec
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FIGURE 5.13: Computational benchmark of Sent2Vec applied to titles.

FIGURE 5.14: Computational benchmark of Sent2Vec applied to ab-
stracts.

5.6.4.2 Evaluation

Figures 5.13, 5.14 and 5.15 show the accuracy of Sent2Vec on titles, abstracts and
bodies respectively.

Curiously, Sent2Vec’s learning pattern looks a lot like Doc2Vec and Doc2VecC’s, but
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FIGURE 5.15: Computational benchmark of Sent2Vec applied to bod-
ies.

FIGURE 5.16: Accuracy of Sent2Vec applied to titles.

reversed. Sent2Vec performs considerably better than Doc2Vec and Doc2VecC on
titles and its performance lowers with longer text. Sent2Vec doesn’t match the base-
line with abstracts and bodies, but they are still good results. This makes sense,
Sent2Vec is specially optimized for sentences, but it is general enough to perform
reasonably on larger text too, even if the authors do not mention it.

Table 5.6 shows the exact accuracies on evaluation. The gaps in the table are due
to the high cost of training Sent2Vec. Much like with Doc2VecC, training abstracts
and bodies with the whole training dataset was too time consuming. In both cases,
however, the model seems to achieve convergence anyways.
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FIGURE 5.17: Accuracy of Sent2Vec applied to abstracts.

FIGURE 5.18: Accuracy of Sent2Vec applied to bodies.

Sent2Vec evaluation 500 1K 5K 10K 50K 100K 500K 1M
Titles - 0.64 - 0.72 - 0.87 - 0.91
Abstracts - 0.71 - 0.81 0.87 0.87 - -
Bodies 0.77 0.76 - 0.83 - - - -

TABLE 5.6: Exact accuracies of evaluation of Sent2Vec

5.7 Summary and conclusions

In this section we have performed a literature review of the state of the art in unsu-
pervised document similarity based on word embeddings. It was clear while per-
forming the literature review that it is still early days for Semantic Textual Similarity
(STS). After looking at and evaluating some of the pivotal algorithms in the state-of-
the-art, this assumption is further confirmed.

We have looked at two document embedding algorithms, the first one was Doc2Vec.
Doc2Vec is almost a direct translation of Word2Vec into the context of documents.
The only difference between Word2Vec and Doc2Vec is that Doc2Vec introduces an
extra global vector to the context that represents the document the window is in.
This way, Doc2Vec forces these global vectors to learn the information missing from
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the local context and that is necessary to perform predictions in the global docu-
ment context. Doc2Vec is well known in the community, but mostly because it fol-
lows Word2Vecs fame. In truth, its results are somewhat underwhelming, both in
third party benchmarks and in our own tests. Doc2Vec barely outperforms the naive
benchmark in the best of cases, yet, it is the best performing algorithm we have an-
alyzed, which says a lot about the state of the field. It was also, by far, the fastest
implementation; although it is not clear if it is the fastest algorithm, as it does not
have a clear advantage on theoretical complexity.

The second document embedding algorithm we looked at was Doc2VecC. As the
name suggests, Doc2Vec and Doc2VecC share the same general structure. How-
ever, a key difference is that Doc2VecC does not train its document embeddings
from scratch, but it optimizes the word embeddings such that their average pro-
vides meaningful document representations. It also adds a corruption component,
which heavily deletes random words from the training data to improve generality.
Doc2VecC performed poorly on titles and abstracts, but matched the baseline on
bodies even with very few sample documents.

The third algorithm we looked at was Word Mover’s Distance (WMD), and it was
somewhat of a standout. WMD defines a distance computation between documents
or, more concretely, sets of word embeddings with weights or frequencies. The au-
thors find that the Earth Mover’s Distance optimization problem performs well for
this task, although they do not give a good explanation why it is so effective when
applied to language. WMD performed reasonably well, matching the baseline with
abstracts. However, the scaling issue became immediately apparent on our tests, as
evaluating on bodies became impossibly slow.

The last two algorithms where sentence embedding algorithms. The first of the two,
Skip-thoughts, is the only deep neural model we have analyzed. Using deep mod-
els for tasks like this is popular in academia at the moment, but most of them are
iterative improvements so they were not considered relevant for this work. Skip-
thoughts uses the now standard encoder-decoder RNN architecture used in transla-
tion. It exploits the sequential nature of text to relate sentences to each other.

The last algorithm we analyzed was Sent2Vec. It is advertised as a sentence em-
bedding algorithm but, in fact, it has more in common with Doc2VecC than Skip-
thought. Sent2Vec also optimizes word embeddings such that their centroids pro-
vide meaningful sentence representations. The model is general enough to be ap-
plied to any document type though, it is not locked into the sentence structure like
Skip-thoughts is. Sent2Vec is simply more optimized for small text than Doc2VecC,
and the tests we have done reflect it clearly.

We have analyzed a wide variety of algorithms to solve the STS problem. Overall,
though, the algorithms do not perform too differently to each other and only the
best models with the largest training sets match the naive baseline proposed at the
beginning of the chapter. The work that it is being done is certainly valuable, it will
probably be the foundation to the next breakthrough, but it is still not good enough.

Table 5.7 unifies all the best evaluation results for comparison and reference.
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STS evaluation Baseline Doc2Vec Doc2VecC WMD Sent2Vec
Titles 0.91 0.65 (1M) 0.87 (1M) 0.90 0.91 (1M)
Abstracts 0.93 0.86 (1M) 0.92 (50K) 0.92 0.87 (100K)
Bodies 0.96 0.97 (500K) 0.94 (10K) - 0.83 (10K)

TABLE 5.7: The best results of all the analyzed algorithms. It includes
the amount of training samples between parenthesis when relevant.
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Chapter 6

Conclusions

This work has been performed as a Bachelor’s thesis. As such, the main goal of
this project was to reflect and exercise the competences acquired during my Com-
puter Science degree. By making this project happen, I show that I am capable of
mapping out, reading, understanding and interpreting academic literature. I have
also proven that I have the technical capabilities to collect large amounts of training
data from various complex sources and the ability to find, compile, understand and
adapt widely different program implementations. Finally, I show that I am able to
perform a proper scientific study, with all the implied rigors, and that I can express
my findings thoroughly and formally.

This work was also developed under the bigger SCITODATE umbrella project. SC-
ITODATE is a startup I founded with the goal of extracting deep insight and trends
from large amounts of academic text. This thesis has been written in parallel to SC-
ITODATE work and it is supposed to be another small step in the direction of our
long-term goal.

I have performed a thorough literature review of word embedding algorithms and
solutions to the Semantic Textual Similarity task. I chose some of the pivotal state-
of-the-art algorithm and I performed an in-depth analysis of all of them. I hope
this document serves as reference to future researchers as an aid for understanding
these algorithms, for getting a clearer view of the state-of-the-art, for getting ideas for
future work or for choosing the best algorithms to use for a higher level application.

Another core contribution of this work has been collecting an extensive training and
test dataset in the scientific domain. Most work on semantic language understand-
ing focuses on general purpose language such as news or social media activity. Tech-
nical and scientific language has considerable differences, however, and, considering
the importance of such texts, it was deemed relevant to perform a study applied to
those domains.

Overall, we extract two main conclusions from this study. The first one is about
word embedding algorithms. This field is currently very active in academia, new
approaches to word embedding appear on a weekly basis. However, we see that
most algorithms follow the initial Word2Vec framework very closely and do not offer
any notable improvements over the original. It is true though, that there are a few
standouts. FastText has considerably outperformed the rest and has more practical
advantages.

The second main conclusion is about unsupervised semantic textual similarity. It is
clearly early days for this task. It was clear while doing the literature review and it
was further confirmed by the evaluation results. It is an active field, SemEval is a
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fairly important annual workshop for example, but not as active as other NLP tasks.
The state-of-the-art is narrow and most algorithms barely match the most simple
baseline methods. However, there are many different approaches being explored.
It is likely that we will see a breakthrough coming from this experimentation in the
coming years.

6.1 Future work

The availability of text datasets in the scientific domain is the main barrier for progress
in the quest for deeper automatic understanding of academic publications. We have
build an extensive corpus of biomedical articles that includes separate titles, ab-
stracts and article bodies. We have also built a set of evaluation triplets both for
words and for documents, where the first two elements in the triplet are related and
the third is not.

This is a good approach of working with semi-curated reference data. Knowledge
bases such as UMLS are relatively well maintained, but it is not possible to avoid a
certain amount of inconsistency and incompleteness. The author linking of articles
is also a weak similarity linkage but it seems to have performed consistently on
evaluations. However, distinguishing related pairs from random noise is hardly a
challenge. High accuracies may be misleading in this case. The ideal would be to
build properly curated human rated similarity pair datasets.

It is particularly interesting to extend the work done on article linkage. Using meta-
data like dates or references could yield more and better evaluation data. There is
also room to extend the author linkage dataset to other centralized author identifier
resources. The key advancement would be to collect enough data to be able to test
supervised semantic textual similarity methods, which were left out of scope for this
work.

In the context of SCITODATE this is a small starting step. We have a road-map of
research projects ahead to deepen our automatic understanding of academic text.
We continue by looking into Named Entity Recognition for technical terminologies.
We intend to link text to scientific knowledge bases. After that, we also intend to
automatically extend the knowledge bases and mine relationships and facts. It is
particularly interesting for us to relate research topics with the equipments and ma-
terials needed to perform the research.

There is plenty of work to be done in general in semantic textual modeling, similarity
and word embedding compositionality. They are active fields and they have been
so for a few years now, but the overall conclusion has been that most models barely
match simple baselines. I hope to see a breakthrough for these tasks in the next few
years, a breakthrough like Word2Vec was.
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