
Bachelor Thesis

In-memory OLAP aggregation
on GPUs using CUDA Dynamic

Parallelism

Jérôme Meinke

15 May 2015

University of Freiburg im Breisgau

Faculty of Engineering

Department of Computer Science

Reviewer

Prof. Dr. Hannah Bast

Supervisor

Dipl.-Inf. Steffen Wittmer

Abstract
Most queries involved with Online Analytical Processing (OLAP) depend on the function-

ality of aggregating data along the multidimensional hierarchies of an OLAP cube. In

real-time OLAP, aggregated data for interactive operations e.g. roll-up and drill-down is

computed on-the-fly. Fast response times are essential and can be accelerated significantly

through data-parallel computation on graphics processing units (GPUs). In this thesis, an

existing parallel algorithm is modified to use a technology called CUDA Dynamic Paral-

lelism (CDP). Using this technology, GPU programs can be launched directly from within

other GPU programs to extract more parallelism. Furthermore, we present a preaggrega-

tion method using the CUDA shuffle command to optimize both GPU implementations.

For evaluation purposes, we additionally implement a sequential aggregation algorithm.

Our experiments show that the single-threaded CPU implementation is outperformed by

the GPU implementations by 16 to 218 times. The experiments further show that the

CDP implementation reaches a speedup of 3.72 times over the non-CDP implementation

when processing queries for an artificial OLAP cube. However, using CDP causes an

average of 1.42x slowdown to the processing of queries in a typical OLAP scenario.

i

Zusammenfassung
Bei der Aggregation werden Werte aus einer großen Datenmenge, z.B. aus einem Daten-

lager, zu einem oder mehreren neuen Werten zusammengefasst. Dies kann beispielsweise

durch die Berechnung einer Summe erfolgen. In dieser Bachelorarbeit geht es hauptsäch-

lich um die Berechnung von Aggregationen zum Zeitpunkt der Abfrage unter Benutzung

von Grafikprozessoren. Letztere kann durch die Verwendung von parallelen Algorithmen

zu einer Beschleunigung der Berechnung führen. Seit 2013 gibt es eine neue Technologie

namens CUDA Dynamic Parallelism (CDP), die es einem Programm für Grafikprozessoren

ermöglicht weitere Programme aufzurufen. Es wird untersucht, ob und wie diese tech-

nische Neuerung für die Beschleunigung eines existierenden Berechnungsalgorithmus

von Nutzen sein kann. Dafür werden nötige Änderungen am bestehenden Algorithmus

beschrieben und implementiert. Für die Implementierung werden der zusätzlich nötige

Speicherverbrauch durch die Verwendung von CDP und die Antwortzeiten für verschie-

dene Aggregations-Anfragen analysiert. Weiterhin wird eine schnellere Methode für

die Preaggregation von Werten innerhalb kleinerer Ausführungseinheiten (Warps) auf

Grafikprozessoren beschrieben. Zum Vergleich der Berechnungslaufzeiten der parallelen

Programme mit einem sequenziellen Programm wurde außerdem die Berechnung der

Aggregation für einen Hauptprozessor implementiert.

ii

Declaration:
Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine an-

deren als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die

wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche

kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht,

auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

I hereby declare, that I am the sole author and composer of my Thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore, I

declare that I have acknowledged the work of others by providing detailed references

of said work. I hereby also declare, that my Thesis has not been prepared for another

examination or assignment, either wholly or excerpts thereof.

May 12, 2015, Freiburg im Breisgau
. .

Jérôme Meinke

iii

Contents

Abstract i

Zusammenfassung ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related work . 2

1.3 Thesis structure . 5

2 OLAP 6

2.1 Data storage and in-memory OLAP . 6

2.2 MOLAP data cube . 7

2.3 Aggregation . 9

3 Parallel computation using GPUs 10

3.1 NVIDIA’s GPU architecture and the CUDA programming model 10

3.2 CUDA Dynamic Parallelism . 13

4 Source-based aggregation 14

4.1 Single-threaded CPU algorithm . 14

4.1.1 Run-time and space complexity . 15

4.1.2 Single-threaded OLAP Aggregation Processor 15

4.2 Parallel GPU algorithm . 16

4.2.1 Warp preaggregation . 19

4.2.2 Multiple hash functions for target cells 19

4.3 CDP-enabled GPU algorithm . 20

4.3.1 Problems and solutions . 20

4.3.2 Parent kernel implementation . 21

4.3.3 Child kernel implementation . 24

iv

4.3.4 Warp preaggregation using CUDA shuffle 25

5 Results and Analysis 29

5.1 Test queries . 29

5.2 Test configuration . 30

5.3 Warp preaggregation efficiency . 32

5.4 StOAP and non-CDP GPU implementation 34

5.4.1 Preaggregation using CUDA shuffle 35

5.5 CDP implementation . 36

5.5.1 Optimization of child kernel scheduling 38

5.5.2 Usage of explicit parent-child synchronization 40

6 Conclusion and Future Work 43

A CUDA 45

B Test environment 46

C Optimal page size 47

D Upper bound search implementation 48

E Testing different parallel hash function counts 49

Danksagung 50

Bibliography 51

1. Introduction

1.1. Motivation

On-Line Analytical Processing (OLAP) is an important tool for decision-makers to ensure

commercial success. Efficiency and effectiveness are important characteristics for suc-

cessful businesses in a highly competitive market. These characteristics can be optimized

through the skillful management of financial and human resources. Analyzing business

data using OLAP can help managers of those resources take actions and support them in

the decision-making process. Although the analysis of business data is the main field of

application, OLAP can also be used to analyze other data, e.g. social media data from

Twitter.

One of the most important computational building blocks in OLAP is the aggregation

along multidimensional hierarchies of a data cube. Processing queries, like drill-up and

drill-down, requires the OLAP-software to be able to summarize values of a specified

attribute (measure) along ranges or subsets of other attributes (dimensions). The SUM is

the most frequently used aggregation operation, but other operations, such as AVG, MIN

and MAX also exist. All queries must be computed fast, since OLAP is typically a highly

interactive task expecting fast response times.

The requirements for fast query response times and the ability to collect, store and

analyze growing amounts of business data can only be satisfied by the development of

more powerful hardware and efficient algorithms. Moore’s law [Wik15] states, that the

number of transistors in a dense integrated circuit doubles approximately every two years.

This has been largely the case until now. However, since 2004, manufacturers started

to depart from raising the processor frequency of new products. The costs of increased

power consumption and heat generation that come with the frequency-increase have

outweighed the benefit of gaining more performance. As a reaction to this, manufacturers

have moved away from frequency scaling and turned their focus to parallel scaling. This

means multiple processor cores are integrated into a single Compute Processing Unit

(CPU) circuit. Nowadays, multi-core CPUs and Graphics Processing Units (GPUs) are the

state-of-the-art technology for solving compute-intensive problems cost-efficiently.

GPUs typically provide more processor cores in comparison to CPUs and as such allow

for massive parallelization of computational problems. Although the use of GPUs needs

specialized algorithms and software, the time and work invested for these purposes

1

1.2. Related work 2

is worth the effort. Many compute-intensive tasks from areas, such as bioinformatics,

computational chemistry, machine learning, medical imaging, and weather and climate

simulation see a large performance benefit from using GPUs.

Parallel algorithms for the real-time OLAP aggregation have been developed and enable

fast computation times through the use of GPUs. This thesis evaluates whether a new

technology called CUDA Dynamic Parallelism (CDP) can be used to further accelerate the

aggregation on GPUs.

CDP allows a so-called kernel, the program executed on a GPU device, to be launched

from within another kernel. Until CDP existed, a kernel could only be invoked from

within the program running on the CPU. This new launch capability can be used to

make the GPU device generate more work independently, without further interruption

of and communication with the CPU. Furthermore, CDP allows for more parallelism

to be extracted from a program. Unfortunately, applying the technology comes with

significant overheads in both time and space requirements. The main challenge in using

CDP is to employ it in such a way that the generated efficiencies outweighs the additional

overhead.

Until now, no GPU aggregation algorithm using the CDP technology, introduced in 2013,

was published. Here, for the first time, we provide and analyze such a CDP-enabled

algorithm. We also compare its performance to a CPU-powered variant. However, since

there was no readily available single-threaded CPU implementation, we implemented a

program called Single-threaded OLAP Aggregation Engine (StOAP).

The following section discusses publications on related topics and explains how our work

differs from others. Subsequently, we present the rest of the thesis.

1.2. Related work

The GPU powered computation of aggregated values is a well researched topic. In

[Kac11], Kaczmarski compares the implementation of a parallel GPU algorithm for OLAP

cube creation with its multi-core CPU counterpart. The GPU implementation performs

about ten times faster than the CPU implementation. Kaczmarski deliberately did not

include the time for transferring data from RAM to the GPU via the PCIe bus, which

represents a major bottleneck between CPU and GPU. However, if this time is considered,

the CPU implementation is faster. Thus, Kaczmarski concludes that in-GPU OLAP cube

1.2. Related work 3

creation only makes sense, if subsequent operations are computed on the data at the time,

when it is already present in the GPUs memory. In this thesis, cube computations are only

performed after all cube values have been transferred onto the GPUs memory in an initial

step. After the initial data transfer, only values resulting from subsequent GPU computa-

tions must be retrieved via the PCIe bus. Therefore our test-timings solely include the

query-execution times and the additional time needed to retrieve the results.

Multiple papers describe OLAP cube data structures designed for the incremental compu-

tation of all aggregations of the cube at the time when its values are inserted. However,

in OLAP systems with frequent updates, especially in real-time Business Intelligence (BI),

a great number of aggregations are invalid after each change. Therefore using above

data structures or Kaczmarski’s approach would require the re-computation of a big part

of the cube’s aggregations after every update. The aggregation algorithm presented in

this work supports frequent updates of the cube because it computes only a subset of the

values at the time they are requested. It operates on the GPU OLAP cube data structures

described by Lauer et al. in [Lau+10]. These allow for fast insertions and deletions, thus

enabling frequent changes of cube values.

In the same paper, Lauer et al. also present a target-based GPU aggregation algorithm1.

Their evaluation shows that individual aggregations of a realistic, but still artificial OLAP

scenario could be computed up to 42.6 times faster when using a GPU instead of a

multi-core CPU. Their GPU implementation still reaches a speed of up to 12.9 over the

multi-core CPU variant using data from a real-world company.

Another GPU aggregation algorithm is presented in [WL13]. According to the authors

their source-based approach performs especially well for large and sparse cube areas.

Eichel explains this source-based GPU aggregation algorithm in her master thesis [Eic13]

and enhances the algorithms performance by introducing multiple optimizations. The

main optimization presented in her thesis is the use of a hash table with different numbers

of hash functions for the temporary storage of aggregation results. This reduces the

amount of atomic operations needed for adding values to existing result cells. Although

atomic operations on memory lead to the serialization of work, they are needed to

prevent write-after-write hazards and guarantee the generation of correct values. Eichel

points out that the optimal number of hash functions depends on various factors, such

as the used GPU architecture, the number of kernel threads per block2 and the amount

of source- and target cells of the individual queries. A second optimization presented by

1The difference between target-based and source-based aggregation is explained in section 2.3.
2Details on the GPU programming model are explained in section 3.1.

1.2. Related work 4

Eichel is called warp-preaggregation. It allows to reduce the number of global atomic

memory operations by preaggregating intra-warp values which are to be written to the

same target cell. This second optimization can speed up the aggregation enormously,

if only the values of a few target cells have to be computed. However, if the number

of target cells per source cell varies widely, the warp-preaggregation method by Eichel

might not work well. We explain this problem and present an alternative in section

4.3.4.

In [Bre+14], Bress et al. create a survey about the design of GPU accelerated Database

Management Systems (GDBMS). They conclude that the use of a columnar data storage

is best. This is what we are using here as well.

Several papers dealing with CUDA Dynamic Parallelism have been published. The paper

[WY14] by Wang and Yalamanchili describes the characterization and evaluation of the

implementation of CUDA Dynamic Parallelism in unstructured GPU applications. The au-

thors particularly study the overhead of CDP support in GPUs built on the NVIDIA Kepler

GK110, which is the same architecture we are using for our tests. The experiments in the

paper show that the CDP implementation can generate a speedup of 1.13 - 2.73 times

over non-CDP implementations. The disadvantage however is the non-trivial overhead of

CDP, which slows down the overall performance by an average of 1.21. Wang and Yala-

manchili also point out that they choose the most straightforward CDP implementation.

This means they refrained from controlling the number of child kernels to possibly obtain

better performance. Hence, it is assumed that more sophisticated implementations are

possible. In this work we attempt to minimize the CDP kernel overhead by controlling

the number of executed child kernels.

To our knowledge there exists no publication to date evaluating OLAP aggregation on

GPUs under the aspect of using CDP. This thesis provides the first aggregation algorithm

using this technology. Additionally, none of the presented algorithms were compared to

a single-core CPU equivalent in terms of performance. We have implemented a naive

approach of source-based aggregation as a single-threaded program, which we call StOAP.

In this thesis we compare the GPU powered implementation with this single-threaded

CPU version.

1.3. Thesis structure 5

1.3. Thesis structure

The second chapter explains important background information about in-memory OLAP

and the multidimensional data cube. Chapter 3 gives an overview about GPU computa-

tion, the NVIDIA GK110 microarchitecture, the CUDA programming model and CUDA

Dynamic Parallelism. In the fourth chapter, we present both the single-threaded CPU and

the parallel GPU variant of the source-based aggregation algorithm. Modifications which

need to be applied to exploit Dynamic Parallelism are explained in chapter 4 as well. The

results and the analysis of our work are described in the fifth chapter, which is followed

by the conclusion and the proposal of future work in chapter 6.

2. OLAP
OLAP1 has become an important constituent part of Business Intelligence (BI) software,

as it enables users to conveniently analyze enterprise data on a query-and-report-basis.

Typically three preliminary steps are executed before OLAP can be used in an enterprise:

In a first step business data is extracted from one or multiple data sources, e.g. a data

warehouse system or operational systems. As such, OLAP services are separated from live

transactional systems and inter-dependencies are eliminated. The second step consists

of the transformation of the data to a form suitable for the analysis scenario. In the

third and last step the data is loaded by an OLAP server. These three steps are called an

ETL process. After these steps are completed, an OLAP server is ready to process user

requests.

Commonly, user requests are generated by an OLAP client providing a Graphical User

Interface (GUI) and functionality for querying values and creating different views on

the data. For example, a user can request that data is analyzed to display a spreadsheet

showing all of a company’s products sold in Germany in the month of March, compare

revenue figures with those for the same products in April, and then see a comparison of

other product sales in Austria for the same time period. Furthermore, users might insert

or update data at any time, thus requiring the ability of the server software to re-compute

query results in real time.

2.1. Data storage and in-memory OLAP

The amount of data that can be managed by an OLAP system and the speed of the query

computation depends on the technical implementation of the data storage. It can be

implemented as a relational database (ROLAP), a multidimensional dataset (MOLAP),

or a hybrid of both (HOLAP). Additionally, there are in-memory variants of all imple-

mentation models, where all data is kept in the Random-Access Memory (RAM) for fast

access.

ROLAP software usually relies on a secondary Relational Database Management System

(RDBMS) and communicates with it via Structured Query Language (SQL). Scalable

1The term was defined by the English mathematician and computer scientist Edgar F. Codd and his
colleages in 1993. See CCS93, pp. 14–17.

6

2.2. MOLAP data cube 7

RDBMSs enable the processing of large amounts of data. In contrast, there exists no

scalable MOLAP implementation as yet and thus only a limited data volume can be

managed in-memory2. On the other hand, using secondary software is connected with

additional work and costs and makes ROLAP rely heavily on the RDBMS’ performance.

This work focuses on the in-memory MOLAP approach.

2.2. MOLAP data cube

In comparison to relational databases, where data is stored in tables, MOLAP stores

data in cells of a data cube. A MOLAP data cube C({D1, D2, . . . , Dd;V1, V2, . . . , Vn}) is a

dataset consisting of dimensions Di and measures Vj . Each dimension defines an axis of

the cube and consists of a hierarchy of elements called attributes. A point on the space

spanned by the cube’s dimensions can be uniquely addressed by a spatial key of the form

(e1 ∈ D1, e2 ∈ D2, . . . , ed ∈ Dd). A cube cell represents a key-value pair.

The element hierarchy of a dimension may contain consolidated elements or base elements.
Consolidated elements are composed of references to other elements of the same dimen-

sion. Often weights can be assigned to references, defining the factor of how much a

referenced element contributes to the consolidated parent element.

D0 "Products"

E0 "A"

E1 "B"

E2 "C"

D1 "Years"

E0 "2013"

E1 "2014"

E2 "All"

E0, 1.0

E1, 1.0

D2 "Regions"

E0 "Germany"

E1 "France"

E2 "Spain"

Figure 2.1.: Element hierarchy of dimensions D1, D2, D3.

Figure 2.1 shows the element hierarchy of the three exemplary dimensions Products,

Years, Regions. Together, they represent the structure of a cube. The dimensions and base

elements in the figure are surrounded by a solid, black border. Consolidated elements

are orange. Child elements are surrounded by a dashed border. Child elements consist

of a base element reference and a weight.
2At the time of writing manufacturers like HP and Dell offer server mainboards, which can be equipped

with a total 512GB of RAM.

2.2. MOLAP data cube 8

If the key of a cell contains only base elements, we call this cell a base cell. Conversely, if

the cell’s key contains one or more consolidated elements, then the cell is an aggregated
cell.

The values of base cells are stored in a so-called fact table, whereas the values of aggre-

gated cells must always be computed from the values of the associated base cells. To

reduce the physical space consumption of a cube, only those base cells are stored in the

fact table, which actually contain a value. We call these filled base cells. In practice,

OLAP cubes are very sparsely filled, often less than 1%.

14222

55

164

55

2013 All

France

Spain

BProducts

2014

Years

Germany

Regions

C

A

+

+

+

Base cell Filled base cell Aggregated cell

a)

D0 D1 D2 Value
0 1 0 55
2 0 0 22
2 1 0 142
2 1 1 97
2 1 2 23

b)

Figure 2.2.: Data cube and corresponding fact table

Our exemplary cube is illustrated in figure 2.2a. The cube contains five filled base cells,

which are colored blue. The fact table, containing the corresponding key-value pairs, is

shown in figure 2.2b. The first entry represents the cell with the key (A, 2014, Germany)

and the value 55. Aggregated cells, whose spatial key involves the consolidated element

All with index 2 from dimension D2, are colored orange. The arrows with a plus-sign

represent the aggregation of base cell values along the element hierarchy of the D2

dimension. The following chapter describes this in detail.

2.3. Aggregation 9

2.3. Aggregation

The aggregation of cell values of a specified attribute (measure) along ranges or subsets

of other attributes (dimensions) can be performed using the operators SUM, COUNT,

AVG, MIN and MAX. As the SUM is the most frequently used operator, the aggregation is

explained using summation as example.

Source-
cells

Target-
cells

...

...

55 22 142 97 23

164

+
1.0*22

+1.0*142

+
1.0*55

55

Processing

a)

...

...

55 22 142 97 23

164

+
1.0*22

+1.0*142
+
1.0*55

55

Processing

b)

Figure 2.3.: Real-time aggregation approaches.

There are two different approaches for the real-time aggregation of cells.

The first, source-based approach iterates all cells of the fact table. For each of the source

cells the associated target cells and element weights are looked up. In a next step, each

source cell’s value is multiplied by the associated weight and added to the value of all

target cells.

The second, target-based approach iterates all requested target cells. For each of them,

the contributing source cells are looked up in the fact table. Their values are retrieved

and added to the target cell value, after being multiplied by the associated weight.

The source-based approach is illustrated in figure 2.3a as opposed to the target-based

approach, which is illustrated in figure 2.3b.

Both approaches require the use of an aggregation map, which is constructed at the time

when a query has been received, but before the aggregated cells are computed. The map

contains the query meta data, like information about the requested target cells and the

contributing source cells with the assigned weights3.

3[Lau+10, p. 79] explains in detail how the coordinates of each requested aggregated cell are broken
down into the corresponding ranges of base elements in each dimension along with their weights.

3. Parallel computation using GPUs
NVIDIA, ATI, Intel and other manufacturers have developed a new technology called Gen-

eral Purpose Graphic Processing Unit (GPGPU1) allowing for massive parallel processing.

Two different programming models exist and can be employed to use this technology:

NVIDIA’s CUDA, which specifically targets NVIDIA GPUs, and OpenCL, which is an open

standard and allows to create programs for CPUs, GPUs and FPGAs from many different

manufacturers.

Parallel processing does not represent a universal remedy for the acceleration of programs.

To be able to benefit from the use of GPUs, the program’s task must be dividable into

sub-problems, which can be computed in parallel on the various GPU cores. The results

of the sub-problems are finally combined together to retrieve the result of the main

problem. This is impossible if every computation step of a problem requires the result

from a previous step to carry on. In this case the computation cannot be parallelized.

Hence, the acceleration of a program depends on how many of its computational work

can be parallelized.

The next section introduces NVIDIA’s GPU architecture together with key concepts and

features of CUDA. Subsequently, CUDA Dynamic Parallelism is explained in more de-

tail.

3.1. NVIDIA’s GPU architecture and the CUDA
programming model

The Compute Unified Device Architecture (CUDA) programming model provides runtime

libraries and extensions to high-level programming languages, including C and C++.

These enable developers to access the computational resources, such as instruction set

and memory of NVIDIA GPUs. Mostly, new GPU architectures support new CUDA features

and are accompanied with the release of a greater CUDA version. The Compute Capability

(CC) designates the general specifications and features of a compute device. At the time of

writing, CUDA 6.5 is the last stable version and detailed documentation for it is provided

in [NVI14b]. All information about NVIDIA’s GPU micro-architecture will be presented

1We decided to solely use the term GPU in this thesis, as the majority of high-end GPUs currently available
can be used for general purpose computing.

10

3.1. NVIDIA’s GPU architecture and the CUDA programming model 11

by the example of GK110, because it is the first architecture supporting CUDA Dynamic

Parallelism.

In CUDA, a program consists of a set of parallel kernels. A single instance of a kernel

is called a thread and is represented by a sequential program. The basic execution

unit, a warp, consists of 32 threads. Up to 1024 threads2 can be grouped together in

a block. Furthermore, multiple blocks can be grouped together into a one-, two-, or

three-dimensional grid. This hierarchical structure is sketched in figure 3.1.

1D-Grid

Thread Thread block Block (0, 0) Block (1, 0) Block (2, 0)

Figure 3.1.: CUDA thread hierarchy, similar as shown in [NVI14b]

Kernel code and launch parameters are usually sent to the GPU device from within a

host program, which is executed on the CPU. The Grid Management Unit (GMU) of the

GPU manages and prioritizes host-originated and CUDA-created work. The CUDA Work

Distributor (CWD) unit receives grids from the GMU and forwards them to a maximum

of 15 featured Streaming Multiprocessor (SMX) units for execution. Figure 3.2 illustrates

a single SMX unit.

While threads are executed, they may access data from multiple memory spaces with

different latencies. This in turn provides various possibilities of intra-thread communi-

cation and data exchange, which are important features for the functionality of parallel

programs. The low-latency, local memory, which each thread might access can be either

registers or L1 cache. It is typically exclusively accessible to every thread on its own, al-

though threads may retrieve register values of other threads from the same warp through

shuffle instructions. Intra-warp thread communication is also possible by reading and

writing the low-latency shared memory. As all threads from a block are executed on the

same SMX unit, this memory space also provides the most important way of intra-block

thread communication. Communication and coordination of all threads, no matter in

what structure and on which SMX unit they are executed, is only possible through the

low-latency global memory, which provides space for up to 16GB of data.

2The maximum number of threads per block has been increased from 512 to 1024 since CC 2.x.

3.1. NVIDIA’s GPU architecture and the CUDA programming model 12

SMX
Instruction Cache

Warp scheduler Warp scheduler Warp scheduler Warp scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

Interconnect Network

64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Register File (65,536 x 32-bit)

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU
Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Figure 3.2.: GK110 SMX architecture from [NVI13]. Each SMX features 192 single-
precision (Core) units , 64 double-precision (DP) units, 32 special function
units (SFU) and 32 load/store-units (LD/ST).

Listing 1 shows the sample code for a kernel that performs N pair-wise subtractions

on the elements of vectors A and B and stores the results into vector R. C Language

extensions provided by CUDA allow developers to define a kernel using the __global__

declaration specifier as shown on line 2. The main function of the host program prepares

the data to be processed and copies it to the device before the kernel is called. Then,

as shown in line 11, the <<<...>>> execution configuration syntax is used to specify

the number of CUDA threads that execute the vecSub kernel. The host program can

retrieve the resulting data from the device after the kernel was executed.

GPUs are based on Single instruction, multiple data (SIMD) processors3, however they sim-

ulate multi-threading on divergent threads (SIMT) through the use of lockstep-execution

and masking of active and inactive threads. In the SIMD multiprogramming context,

multiple processing elements simultaneously perform the same operation on multiple

data points. This requires the data to be stored as array structures in the device’s memory.

Consequently threads of a kernel can address the data point or range on which they

should work on, by calculating an array position from their individual thread index as

seen on lines 3 and 4 of listing 1.

3SIMD is a classification of computer architectures of Flynn’s taxonomy presented in [Fly72].

3.2. CUDA Dynamic Parallelism 13

1 // This is a CUDA kernel definition.
2 __global__ void vecSub(int* A, int* B, int* R) {
3 int index = threadIdx.x;
4 R[index] = A[index] - B[index];
5 }
6 // This function represents the host program.
7 void main() {
8 // initialize A and B and copy them to the devices global memory
9 ...

10 // CUDA kernel invocation with one block of N threads
11 vecSub<<<1, N>>>(A, B, R);
12 // retrieve R from the devices memory and process the results
13 ...
14 }

Listing 1: CUDA kernel definition and invocation

3.2. CUDA Dynamic Parallelism

CUDA Dynamic Parallelism (CDP) is the ability to launch a new GPU kernel from within

another kernel without the need to communicate with the host. The feature was first

introduced with the Kepler microarchitecture (CC4 3.5). The predecessor of Kepler, Fermi

only allowed the launch of a new kernel from within host code executed by the CPU.

A child kernel can be launched from within a thread of another kernel, which we call the

parent kernel.

The problem in using CDP to accelerate an existing algorithm are the costs of starting a

new kernel. According to [WY14] the kernel overhead comprises of parameter parsing,

calling cudaGetParameterBuffer and cudaLaunchDevice, as well as the process

that device runtime manager setups, enqueues, manages and dispatches the child kernels.

Other problems of using CDP are described in section 4.3.1.

In order to benefit from CDP the launching and execution time of the sum of child kernels

must be smaller than the execution time of the code which does not make use of CDP.

This can only be achieved if more parallelism is extracted and successfully exploited by

child kernels. Thus, the new CDP ability must be used with care and we an algorithm

must be found that benefits more from CDP than the associated overheads.

4See figure A.1 for a detailed table of features supported per CC.

4. Source-based aggregation
The first two sections in this chapter describe a single-threaded CPU and a parallel GPU

algorithm for source-based aggregation. Modifications needed to use CDP and further

optimizations follow in the third section. We have recognized a straight-forward oppor-

tunity to employ CDP within the source-based aggregation approach, hence this work

focuses on that. Without loss of generality, we assume that the aggregation operator is

summation. All implementations described in this thesis consider weighted summations;

for reasons of simplicity we do not consider weights in this chapter.

4.1. Single-threaded CPU algorithm

The single-threaded aggregation on the CPU works in a Single Instruction, Single Data
(SISD) context. As explained in section 2.3, the aggregation map is computed on the host

before the actual computation process starts. Furthermore, a hash table for holding the

results is allocated. Only then, the computation of target cells starts: One filled source

cell after another is iterated. For each of them the value is added to all assigned target

cells.

The above procedure is described by listing 2.

1 // iterate entries of the fact table
2 foreach(cell in cube) {
3 // find and iterate target cells
4 while(nextTargetExists(cell->path)) {
5 // build the target path
6 int[dimCount] targetPath;
7 for(dim in dimensions) {
8 targetPath[dim] = getTargetId(cell->path, dim);
9 }

10 // add the cells value to the target cell
11 aggregate(targetPath, cell->value);
12 }
13 }

Listing 2: Single-threaded, source-based aggregation

14

4.1. Single-threaded CPU algorithm 15

4.1.1. Run-time and space complexity

If there are n filled source cells in the cube’s fact table and a query with m target cells

must be processed, then in the worst case each of the n source cells contributes to

all m target cells. Retrieving the relevant target cells requires the iteration over all d

dimensions of the cell’s key. Hence, assuming the fact table can be iterated in O(n) time,

the run-time complexity of the single-threaded algorithm is O(mnd). Since the execution

time depends on n and m, the algorithm is input- and output-sensitive.

Only filled target cells are stored in the hash map containing the aggregation results.

Since the maximum of filled target cells is m, the space complexity is O(m).

4.1.2. Single-threaded OLAP Aggregation Processor

The C++ implementation of the single-threaded aggregation in StOAP is based on a

heavily stripped-down mix of open-source code from versions 3.1 and 5.1 of the OLAP

server1 by Jedox AG. All features not related to the loading and processing of cube data,

such as user management, HTTP request handling, caching, and many more have been

removed. We have implemented both a new command-line interface with commands for

loading a cube and retrieving cell values and an interface for inter-process communication

with a test-application using named pipes. The code for StOAP is licensed under the GPL2

2.0 and can be retrieved from the GitHub repository at jmeinke/StOAP3 together with

a README markdown documentation file.

Cube Data Structure

As all filled cube cells are iterated during the aggregation algorithm, an efficient data

structure for the cube’s in-memory fact table storage is a key requirement to obtain fast

run-times. Hence, this data structure must provide various features:

• support for keys of arbitrary length, as a cube may consist of a large number of

dimensions

• iteration over all stored keys and values

1Jedox’ source code is available at: http://sourceforge.net/p/palo/code/HEAD/tree/molap/
2The GNU General Public License 2.0 can be found at https://www.gnu.org/licenses/gpl-2.0.html.
3https://github.com/jmeinke/StOAP

http://sourceforge.net/p/palo/code/HEAD/tree/molap/
https://www.gnu.org/licenses/gpl-2.0.html
https://github.com/jmeinke/StOAP

4.2. Parallel GPU algorithm 16

• support for insertion, update and lookup

• space-efficiency, because all data is kept in the limited RAM

Multiple publications, such as [AH13], [Böh+11] and [ZZN14], suggest using extensible

multidimensional arrays, kD-, prefix-, B+-trees and other sophisticated data structures

for the implementation of a multidimensional storage. Despite this, we could not find a

documented, open-source and ready-to-use implementation satisfying all requirements

listed above. Choosing the right data structure and implementing it ourselves would take

us too far off the subject of this thesis, hence we decided to go for a naive implementation

using Google’s fast dense hash map, which is part of [SHP12].

Each entry of the cube’s fact table is represented by an entry in the hash map. In StOAP,

cell keys are implemented as vector<size_t>4, while cell values are implemented as

double. We use the hash function of boost::hash_combine5 to convert a cell key

into a hash map key of type size_t6.

4.2. Parallel GPU algorithm

In this section, we describe the various steps of the parallel algorithm presented in

[WL13] and optimized in [Eic13]. Subsequently, the modifications needed to use CDP

are explained.

The implementation of the algorithm assumes that all source cells are stored as sorted

pages in the global memory of the GPU before an aggregation query is processed. Building

the aggregation map is the first step when a query is received. This step is always

executed on the host. Consequently, the map is transferred to the constant memory of

the GPU to make the data accessible to the aggregation kernel. The read-only constant

memory is well-fitted for this purpose, as low latency access by the threads is possible

and no modifications to the map are performed during the kernel execution. The next

step consists in reserving the space of a hash table for storing all target cell values in the

GPU’s global memory.

4http://en.wikipedia.org/w/index.php?title=Sequence_container_(C++)&oldid=638485765#
Vector, 7th of April 2015

5http://www.boost.org/doc/libs/1_57_0/doc/html/hash/combine.html, 7th of April 2015
6http://en.wikipedia.org/wiki/C_data_types&oldid=654945890#stddef.h, 7th of April 2015

http://en.wikipedia.org/w/index.php?title=Sequence_container_(C++)&oldid=638485765#Vector
http://en.wikipedia.org/w/index.php?title=Sequence_container_(C++)&oldid=638485765#Vector
http://www.boost.org/doc/libs/1_57_0/doc/html/hash/combine.html
http://en.wikipedia.org/wiki/C_data_types&oldid=654945890#stddef.h

4.2. Parallel GPU algorithm 17

Typically, the next step is an optional preprocessing step called prefiltering. Usually only

a subset of the source cells contribute to the target cells of an aggregation. Without

prefiltering, all source cells must be processed by the aggregation kernel. If there are

only a few relevant source cells, this results in a bad performance, because the GPU

resources are not used efficiently. This phenomenon is explained in more detail at the

beginning of section 4.3. Hence, first the pages and then the cells are filtered so that only

relevant source cells serve as the input to the actual aggregation kernel.

Instead of iterating over the source cells sequentially, the aggregation kernel processes

multiple source cells in parallel. As such, each cell is assigned to one thread of a moving

kernel grid. Figure 4.1 illustrates the parallel processing of cells, which are colored blue.

The page size corresponds to the grid size of the kernel launch configuration. This allows

for coalesced global memory access7.

global
memory

Grid

aggregation
map

page 1

block 1 block 2constant
memory

block b

page 2
...source cells ...

...

Figure 4.1.: Processing of source cells by a moving grid of threads, from [Lau+10]

When a thread with index i is executed, it first looks up the cell at index i in the current

page from global memory. It decodes the coordinates of the cell’s key and uses them to

look up the assigned target cells in the aggregation map. If prefiltering is performed,

there is always at least one target cell assigned. In the next step, each thread looks up

the value of its source cell from global memory once and adds it to each of the assigned

target cells. After that, the thread jumps ahead by the size of the grid to work on the

next page.

Recall the smallest execution unit in CUDA is a warp. Hence, threads can only jump to

the next page in groups of 32 threads. Figure 4.2 illustrates how a warp works on the

source cells of one page and finally moves on to process the next pages.

As this is done in parallel for all threads in the grid, it is possible that multiple threads

attempt to add their value to the same target cell at the same time. To prevent race

7Global memory accesses by the threads within a warp can be accelerated, if they are coalesced. Coalescing
memory accesses is only possible if all threads within a warp access consecutive

4.2. Parallel GPU algorithm 18

...

warp 1

page 1 pages 2,...,m

warp w

warp 2

The threads of a warp
proceed to the source cells
on the next page after the
targets have been written.

Source cell
Target cell

+ +

∅ ∅ ∅ ∅ ∅ ∅

+
∅

atomicAdd
No targets for this source*

+ ++ +

*Source cells without target cells only occur when the prefilter step is ommitted.

32 threads each process a source cell

Figure 4.2.: Warp-wise iteration of pages during the aggregation process

conditions, leading to data loss and wrong results, the use of the atomicAdd8 function

is required. This way, the read and write requests required to add a value to an existing

value are paired together. While a memory address is currently accessed by a thread

using atomicAdd, no other thread has access to this address.

Unfortunately, using the atomicAdd function on global memory slows down the kernel

execution. While multiple threads add their value to the hash table in parallel, some of

them address the same target cell and need to wait for the other threads to complete

their atomicAdd command. This serialization of memory requests can severely impede

the amount of parallel work. The resources of the GPU, especially the available memory

bandwidth, are used less efficiently and the kernel execution is slowed down.

[WL13] and [Eic13] describe methods to reduce the negative effect on the kernel exe-

cution time caused by the use of atomicAdd at large scale. One method is the warp

preaggregation of target cells, another one is the use of multiple hash functions for the

8CUDA atomic functions are explained in [NVI14b, pp. 111].

4.2. Parallel GPU algorithm 19

same target cell. Both are described in the next two sections.

4.2.1. Warp preaggregation

Warp preaggregation attempts to reduce the number of accesses to the same hash table

position among the threads of a warp. While one thread writes its n-th target cell, all

other threads of the warp are either also writing their n-th target cell or idle, because the

threads of a warp are executed in lock-step. Shared memory is used such that all warp

threads have access to the key of the target cell from the first thread of the warp. Now,

all warp threads compare their current target cell key to the one of the first warp thread.

The results of the check are saved to a local variable of every thread, however they can

be retrieved by other threads through the CUDA ballot9 function. Hence, all source

cell values from threads sharing the same target cell key with the first thread can be

aggregated in the fast shared memory. Then, only the first thread adds the preaggregated

target cell value to the hash table. Consequently, up to 31 concurrent atomicAdd

operations on global memory can be omitted per warp. Threads not participating in the

preaggregation add their value to the hash table on their own, which is not a problem as

divergent threads are executed sequentially anyway.

...
Same target as
first thread of
the warp?

+

Write operations before

Write operations after

Figure 4.3.: Warp preaggregation, from [Eic13, p. 29]

4.2.2. Multiple hash functions for target cells

Even though atomicAdd guarantees that no race conditions occur, the serialization of

thread operations lessens the amount of parallel work. The magnitude of serialization

can be reduced by using multiple hash functions for the same target cell in the hash table.

However, if more than one hash function is used for writing the same cell, duplicate

9Warp vote functions are explained in [NVI14b, pp. 115].

4.3. CDP-enabled GPU algorithm 20

entries for this cell are created in the hash table. These duplicates represent intermediate

results and must be processed in an additional, final step. This process consists in filtering

and summarizing duplicates into a single target cell value using a parallel building block

called stream compaction10. Finally, the result of the aggregation is ready to be transferred

back to the host.

4.3. CDP-enabled GPU algorithm

The idea of using CDP within the source-based aggregation kernel is to occupy the GPU

resources even more. In an aggregation scenario where adjacent source cells contribute

to different numbers of target cells it is probable that some threads of a warp finish earlier

than others. While some threads are still processing the target cells of their currently

assigned source cell, the threads which have finished their work are ready to jump to

the next cell. However, as threads are instructed warp, they can not move on and thus

stay idle until all other threads of the warp are ready as well. We can transform the

sequential writing of target cells into a parallel process by using CDP and thus reduce

the occurrence of idle threads.

The implementation is realized by shifting the functionality of target cell writing from

the existing aggregation kernel into a new kernel. Since this new kernel is launched from

within the existing one using CDP, we will refer to the two kernels as parent and child
from now on.

Multiple problems had to be solved in order to preserve the functionality of the aggrega-

tion algorithm while implementing the new concept. The following section describes the

problems involved with the use of CDP and the solutions we have found.

4.3.1. Problems and solutions

To begin with, the structure of the aggregation map does not provide the number of

target cells for a source cell. This information is required to communicate to children

how many target cells they are supposed to write and how many threads need to run.

10Stream compaction is the primary method for transforming a heterogeneous vector, with elements of
many types, into homogeneous vectors, in which each element has the same type. A detailed explanation
can be found at http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html.

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

4.3. CDP-enabled GPU algorithm 21

We have solved this problem by counting the amount of target cells for every source cell

in the parent before the child is launched.

Since the invocation of a CUDA kernel only makes sense for relatively big grid sizes11,

launching a child kernel from within each thread for writing its target cells is inefficient.

This issue is solved by accumulating the target cell counts for all source cells of a block’s

page and subsequently launching the child only from within the block’s first thread.

CDP does not allow parent and child kernels to access the shared and local memory of

each other. Data can be passed on from parent to child only via global memory and via

the launch parameters of the child kernel12. Since there is no way around this, we need

to allocate enough global memory for saving the target cell counts of parent grid blocks

before starting the aggregation on the GPU.

Coherent access to global memory with full consistency for parent and child is only

guaranteed when explicit synchronization is requested. Without the latter, the execution

order between child and parent is not deterministic. This means the parent should

not modify parts of the global memory, which are supposed to be read by its child

before a parent-child synchronization was performed. Hence, either points for explicit

synchronization must be specified or the memory space reserved for information transfer

from parent to child can not be reused. We decided to implement both methods.

Finally, the threads of the various child kernels each have their own index, which differs

from the index of the parent threads. A child thread does not know what value it is

supposed to contribute to which target cell, because it can not determine the source

cell from its own index13. This problem is solved by computing the parent thread index

using an upper bound search on the prefix-sum array containing the target cell counts. A

detailed explanation on this follows in section 4.3.3.

4.3.2. Parent kernel implementation

Each thread Ti,p of the CDP-enabled parent kernel, with i being the thread index, counts

the number of target cells Ni,p for the source cell at position i of page p. After that, Ti,p

writes Ni,p to the corresponding index in a shared memory array S. Since this happens

11General guidelines for the grid configuration of a kernel in [Mic12, p. 24] suggest to use 1000 or more
blocks with more than 128 threads each.

12The device runtime reserves global memory space to store the launching information, such as the param-
eters and configurations for launched, but pending kernels [WY14, p. 7].

13Thread and page indices are used to compute the assigned source cell.

4.3. CDP-enabled GPU algorithm 22

block-wise, the size of S corresponds to the block size t. Subsequently, the inclusive

prefix-sum of S is computed in place using a naive block-wise parallel scan14. After

the scan is performed, the last element of S contains the number of target cells to be

processed by the child in page p:

Sb−1 =
b−1∑
i=0

Ni,p (4.1)

In preparation of the child kernel launch, S is copied to the global memory array D.

Finally, the first thread of each parent block calls a child kernel. For reasons of simplicity,

an example for the above process is illustrated in figure 4.4 with a much smaller block

size of 8 threads.

The launching thread uses St−1 and a fixed block size tc to calculate the grid size bc:

bc = d
St−1

tc
e. (4.2)

It is also possible to use a fixed grid size, which is evaluated by us as well. In this case,

the threads of the child kernel repeat their work in a loop until all required target write

operations are done.

Besides a pointer to the global memory array D, multiple launch parameters must be

promoted to the child. The work of the parent kernel happens m times per block, with

m being the number of pages. Hence, the block’s current page index p and the index o of

the block’s first thread are required by the child threads to be able to calculate the index

of the original source cells for their write operations.

Figure 4.4 additionally shows red arrows, which indicate synchronization points. The

use of the CUDA __syncthreads function is necessary to ensure a consistent access

to the values of the shared and global memory arrays by all the threads of a block. The

function acts as a barrier at which all threads in the block must wait before any is allowed

to proceed [NVI14b, p. 12]. The threads must be synchronized at point A, before the first

step of the parallel scan is executed. Additionally, after every of the dlog2(t)e steps of the

parallel scan there must be a synchronization point as well. In the case of figure 4.4 these

are three steps, each followed by either B1, B2 or B3. Another synchronization point, C,

14A scan of an array generates a new array where each element j is the sum of all elements up to and
including j [HSO07]. The result is called inclusive prefix-sum.

4.3. CDP-enabled GPU algorithm 23

Parent grid on page p = 1

block 0
...

source cellsglobal memory

compute target
cell numbers

4 1 3 0 5 1 3 3Ni,1
fill array in
shared memory

4 1 3 0 5 1 3 3
parallel scan

4 5 4 3 5 6 4 6

4 5 8 8 9 9 9 12

4 5 8 8 13 14 17 20
copy S to D in
global memory

Si

step 1

step 2

step 3

4 5 8 8 13 14 17 20

childKernel<<<bc,tc>>>(D, p, o)

Di

...

compute launch
parameters and
call child kernel

Ti,1
0 1 2 3 4 5 6 7

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

cudaDeviceSynchronize()

A

B1

B2

B3

C

P

a b c d e f g h

Figure 4.4.: Example of the work of a parent kernel block

is necessary to make sure all threads have written their value to the global memory array

D before the child kernel is launched.

P is a point for the explicit synchronization of parent and child. The synchronization

method for this purpose is cudaDeviceSynchronize and thus differs from the one

used at the other points. If P is not implemented, it is possible that the launched child

kernel is not executed immediately. Since we do not know when the child is executed

and since it needs the information from D, the space used by D can not be reused by

the parent. If explicit synchronization is implemented at P, we can overwrite and thus

reuse the global memory space required by D after the child is executed. Although this

allows us to save space, synchronization costs execution time. A trade-off can be chosen

if synchronization at P is only carried out every k launches. This way, the space used to

4.3. CDP-enabled GPU algorithm 24

store target counts can be reduced by the factor dmk e. More information on the space

consumption is given in section 5.5.2.

4.3.3. Child kernel implementation

The threads of a child block first copy the array D to a shared memory array S of the same

size. Although this requires synchronization of the threads, it subsequently enables fast

lookups of values in S. No further accesses to the global memory array D are required.

After the synchronization, the threads calculate the index of the source cell they are

responsible for. An upper bound search for the child’s thread index i on S results in the

index Pi of a thread from the parent block. Pi addresses the source cell which is assigned

to the i-th target write operation of the block with offset o on page p. At this point each

thread computes the index c of its assigned source cell using the parameter values p, o

and the page size g = b ∗ t:
c = p ∗ g + o+ Pi. (4.3)

Now, every child thread calculates the coordinates of its individual target cell. This

requires decoding the source cell coordinates first, then looking up and skipping over the

targets in the aggregation map, which are written by other threads, until target SPi − i is

reached. The write operation for this source and target cell combination is exclusive for

every child thread. Finally, the source cell value is retrieved and added to the target cell

using the atomicAdd operation and multiple hash functions, as presented in the original

aggregation kernel. Figure 4.5 illustrates the above steps, continuing the example shown

in figure 4.4.

Figure 4.5 shows a child block of 20 threads which was the number of overall target cell

write operations calculated by the parent block. One can see that threads T5, T6, T7 each

aggregate cell c to one of its target cells and thread T8 aggregates cell e to its fifth target

cell. No thread works on source cell d since it did not have any target cells.

We did not implement warp preaggregation in the child as described in section 4.2.1, be-

cause obviously for many scenarios there are only a few matching target cell coordinates

between the first thread and other threads of a child warp. The preaggregation would

only function well in aggregation scenarios with a few target cells. An alternative, more

dynamic warp preaggregation is presented in the next section.

4.3. CDP-enabled GPU algorithm 25

Child block 0 on page p = 1

block 0

copy Di for i < b
to shared mem

search for i in S
yields thread id
of the parent

Si

4 5 8 8 13 14 17 20Di

retrieve value of
source cell Pi

Ti
0 1 2 3 4 5 6 7

i<8 i<8 i<8 i<8 i<8 i<8 i<8 i<8

Pi

4 5 8 8 13 14 17 20

...

...

...

...
0 0 0 0 1 2 2 2

8

i<8

4

...

19

i<8

7

get coordinates
of the individual
target cell SPi

 - i 4/4 3/4 2/4 1/4 1/1 3/3 2/3 1/3 5/5 1/3

add value to the
specified target

...

...

...

a b c e u

__syncthreads()

+ + + + + + + + + +
atomicAdd()

Figure 4.5.: Example of the work of a child kernel block with 20 threads

4.3.4. Warp preaggregation using CUDA shuffle

For reasons of simplicity, threads within a warp are referred to as lanes with indices from

0 to 31 in this section15. The thread index i of every first lane fulfills the condition i

(mod 32) = 0.

Usually warps of the child kernel attempt to write different targets in the same execution

step. Thus, as opposed to warps of the original kernel, less threads would participate

in the preaggregation. Figure 4.6 illustrates an example scenario where the legacy

preaggregation method is used in the child kernel.

In the scenario each of the source cells c0, . . . , c10 contributes to the target cells x, y and

z. As indicated by the green arrows, lanes 0, 3, . . . , 30 participate in the preaggregation.

Ten atomicAdd operations are saved like this, whereas 19 more could be saved.

The following paragraphs describe an alternative method for warp preaggregation in the

child. In comparison to the legacy method the new preaggregation saves 29 atomicAdd

15Using the term lane for threads of a warp is introduced in [NVI14b, p. 116].

4.3. CDP-enabled GPU algorithm 26

Same target as
first lane?

+

Write operations before

Write operations after

z y x z y x

c0 c0 c0 c1 c1

0 1 2 3 4 5 6

...

30

c1 c2 c10

...

...

...

...

...
z

c10

31Lane

Source cell

z y

Preaggregation

Figure 4.6.: Example of the legacy preaggregation in a child warp with three target cells
for each source cell

operations in the above example scenario. This is achieved by using the target count N

of lane 0 as a heuristic stride for the comparison of target cells.

The target count Ni for the source cell of thread with index i can be determined by the

formula

Ni =

{
Pi − Pi−1 if i > 0

P0 if i = 0
. (4.4)

In the following paragraph, the thread index of lane 0 is called q. We use the warp

shuffle function __shfl to broadcast Nq to all the warp sister threads of lane 0. This

way all lanes have access to Nq in a local variable. Since a comparison stride greater than

31 overflows the warp, all lanes check if the precondition Nq ≤ 31 holds. If the check

was successful, they all proceed with the preaggregation. Otherwise, the preaggregation

attempt is skipped for the whole warp because all 32 target addresses are different.

If the preaggregation attempt is not skipped, the next step is the calculation of the

reference lane index Icmp for the target comparison. Icmp is given by the formula

Icmp = l (mod N), (4.5)

where l is the lane index. Each lane then copies the target cell coordinates from the

lane Icmp to a local variable using __shfl. Afterwards, the lane’s target cell coordinates

are compared with the obtained ones. The result is saved to a boolean variable merge,

which is given as an argument to the __ballot function. It returns a 32bit integer,

4.3. CDP-enabled GPU algorithm 27

which has the l-th bit set, if the merge variable of lane l is true. The above process is

illustrated in figure 4.7 using the same example scenario already presented in figure 4.6.

Subsequently, the source cell values of the warp are aggregated by the first Nq lanes as

described by lines 27-45 in listing 3.

c0 c0 c0 c1 c1

0 1 2 3 4 5 6

...

30

c1 c2 c10 c10

31Lane index l

Source cell

Target count Nq 3 3 3 3 3 3 3 3 3...

lcmp = l (mod 3)

3 3 3 3 3 3 3 3 3...Target count Ni

=__shfl(targetCountL0, 0)

0 1 2 0 1 2 0 0 1...

Target cell path z y x z y x z z y

Path of lcmp

for comparison

=__shfl(targetPath, lcmp)

...

z y x z y x z z y...

join = __ballot(comparison) = (uint32_t) <11111111111111111111111111111111>

1 1 1 1 1 1 1 1 1...comparison
value

Thread index i
...

q q+1 q+2 q+3 q+4 q+5 q+6 q+30 q+31

Figure 4.7.: Example of the strided target path comparison in a child warp with three
target cells for each source cell

There are some restrictions to be considered when using shuffle. As stated in [NVI14b, p.

117], threads may only read data from another thread which is actively participating in

the __shfl command. If the target thread is inactive, the retrieved value is undefined.

Thus, if we want to retrieve values of other lanes for preaggregation, the relevant lanes

must be active. This is possible, if all involved lanes take part in all preaggregations.

Consequently, after one preaggregation step, the values of some lanes might be wrong

and must be reset to their original value and resetting the value of lanes with an index

greater than targetCountL0 is required after every step. This can be seen in line 36 of

the listing. Additionally, a value received by using __shfl should only be preaggregated,

if the lane from which the value was retrieved is also participating in the preaggregation.

This is checked in line 41 before the original value is replaced by the new value of the

lane.

4.3. CDP-enabled GPU algorithm 28

1 // variables for later use
2 gpuPath targetPathCmp;
3 double origValue = value;
4

5 // retrieve the targetCount of lane 0
6 int32_t targetCountL0 = __shfl(targetCount, 0);
7

8 bool writeMerged = false;
9 if (targetCountL0 <= 31) {

10 // compLane is every Nth lane, used for comparison
11 // e.g. for N = 3:
12 // lanes 0, 3, 6, 9, ...
13 // lanes 1, 4, 7, 10, ...
14 // lanes 2, 5, 8, 11, ...
15 int32_t compLane = laneId % targetCountL0;
16

17 // distribute targetPath of the first m lanes
18 targetPathCmp = __shfl(targetPath, compLane);
19

20 // compare own path with the one of compLane
21 bool merge = (targetPath == targetPathCmp);
22

23 // since every mth thread compares with its own target path
24 // joinInfo will always have at least one bit set
25 uint32_t joinInfo = __ballot(merge);
26

27 if (merge && __popc(joinInfo) > targetCountL0) {
28 writeMerged = true;
29 // shuffle only works for active threads
30 // therefore we must loop and recover selectively
31 for (int32_t m = 0; m < targetCountL0; ++m) {
32 for (int32_t t = m + targetCountL0; t < 32; t += targetCountL0) {
33 value += __shfl(value, t);
34 // reset the value for all threads but the m-th one
35 if (laneId != m) {
36 value = origValue;
37 } else {
38 // check if bit t is set in joinInfo,
39 // otherwise lane t is inactive and the
40 // value returned by __shfl is undefined!
41 if (joinInfo & (1 << t)) origValue = value;
42 else value = origValue;
43 }
44 }
45 }
46 }
47

48 // we can only omit the aggregation of a thread
49 // if it has participated in the preaggregation
50 if (laneId < targetCountL0 || !writeMerged) {
51 aggregate(targetPath, origValue);
52 }
53 }

Listing 3: Warp preaggregation using the warp __ballot and __shfl functions

5. Results and Analysis
In this chapter, we first describe our test queries and our test configuration. Afterwards,

we compare the efficiency of both warp preaggregation methods. Beginning with section

5.4, we present, compare and analyze the query response times of StOAP and the different

GPU implementations. Detailed information about the test environment are described in

appendix B.

5.1. Test queries

We have chosen two data cubes with different properties as the basis for our test queries:

• The structure of the Biker cube was built by Jedox AG for demonstration purposes

and reflects a realistic OLAP scenario of a fictitious company. It consists of 8 di-

mensions and a total number of approximately 6 trillion 680 billion cells. However,

the cube actually contains only about 281 million filled cells, corresponding to a

fill-ratio of circa 0.0042 percent.

• The Machines cube consists of 6 dimensions and about 226 billion cells. Only about

41.3 million cells of the cube are filled, corresponding to a fill-ratio of circa 0.01825

percent.

A cube’s dimension order also defines the order of how filled source cell entries are

stored in the fact table, since the fact table entries are sorted by cell keys when using

the GPU implementation. As such, the dimension order of a cube can be beneficial

for the performance of processing one type of aggregation query, while the same order

negatively affects the performance of processing another type of query.

We have specially designed the last dimension of the Machines cube using a PHP script

to simulate an unfavorable dimension order for our test queries relates to that cube.

The dimension contains 64 base elements (components) and 2000 consolidated elements

(machines). Every component contributes to one randomly chosen machine element.

Additionally, every 7th component contributes to exactly 1000 machine elements. This

design ensures that source cells which are being processed by adjacent GPU threads

contribute to different counts of target cells. Dimensions where a few base elements are

29

5.2. Test configuration 30

consolidated in many elements occur in practical scenarios, however they are more irregu-

larly distributed. Still, the Machine cube enables us to evaluate the impact of idle threads

explained at the beginning of section 4.3 on the different GPU implementations.

Table 5.1.: Test-query properties

Query
Source cells Target cells

Relevant Filled Overall
B1 281057088 1 1
B2 281057088 228 228
B3 281057088 17460 17460
M1 41294400 1 1
M2 6216000 2519 2519
M3 29534400 13971 874437

Table 5.1 describes the properties of our aggregation queries. For each query the number

of relevant source cells and the properties of the target area are described. Relevant

source cells contribute to any target cells and are the input to the aggregation kernel

after the initial prefiltering step.

We have named queries related to the Biker cube B1, B2, B3. Analogously, queries related

to the Machines cube are named M1, M2, M3. Since their target area is rather small,

queries B1 and M1 build the group S. Queries B2 and M2 have more target cells and

build the group M . Group L consists of queries B3 and M3. Our analysis focuses on

the individual queries, rather than on groups, because the queries related to the Biker

cube are representative for a practical OLAP scenario, whereas the queries related to the

Machines cube represent a non-optimal OLAP scenario.

5.2. Test configuration

The performance of the source-based GPU implementation depends on various param-

eters, such as the kernel grid and block size and the number of parallel hash functions.

In this thesis, we use a launch configuration of 30 blocks and 768 threads per block.

Appendix C explains the validity of this configuration. Child kernels launched by the

CDP implementation use a fixed block size of 1024 threads, since preceding empirical

tests have shown this block size to result in the fastest processing times for all types of

aggregation queries in comparison to using smaller block sizes.

5.2. Test configuration 31

According to [Eic13], the optimal number of parallel hash functions depends on the

kernel launch configuration, the GPU model and the size of the queries’ target area. The

tests in [Eic13] were performed on a Tesla C2070. Furthermore, grid and block sizes of

84 and 256 respectively were employed for the launch of the aggregation kernel. Eichel

concludes that using 512 parallel hash functions with warp preaggregation is best for

queries with small target areas (1-3 filled target cells), while using 64 parallel hash

functions without warp preaggregation is best for queries with medium to big target

areas (56-22841 filled target cells).

We can not reuse the above results for the number of hash functions as we use other

test cubes and queries, a different kernel launch configuration and because our tests are

performed on a Tesla K40c. We must additionally assume that the optimal number of

parallel hash functions depends on the individual aggregation kernel because the method

how the CDP implementation aggregates target cells differs from the method used in

[Eic13].

In order to fairly compare the non-CDP and CDP implementation, we attempt to find

the best possible performance times for both of them. Thus, we first measure the re-

sponse times of each query-kernel combination once for each hash function number in

{4, 8, . . . , 128, 196, 256, 512, 1024, 2048, . . . , 12288}. Subsequently, a near-optimal number

of parallel hash functions is identified by the fastest query response time. Finally, using

this number, the average of 10 further measurements is calculated and used as the value

for performance comparison.

Figure 5.1.: Subtask durations in percentages of the query response time when using the
non-CDP GPU implementation

Our performance tests focus on the whole query response time, rather than looking at

the performance of individual subtasks involved with the query processing. Like this, the

5.3. Warp preaggregation efficiency 32

tasks of handling the query, prefiltering relevant cells, aggregation, and finalizing results

are considered in the evaluation. This matters, since it could happen that the execution

time of the aggregation kernel is reduced, but in return the time for finalizing results

increases1. Figure 5.1 shows the percentages of the overall response time consumed by

the subtasks at the example of the non-CDP implementation. The figure shows that most

of the processing time is consumed by the aggregation kernel for all queries. The time

for prefiltering only plays a significant role for the queries of group S.

5.3. Warp preaggregation efficiency

Using warp preaggregation in the GPU implementation can significantly influence the

query response time. In [Eic13, p. 30–31], the processing of a query with three target

cells is accelerated by a factor of 1127.8 through using warp preaggregation. We compare

the efficiency of the two warp preaggregation methods first because the results of this

comparison are relevant for the analysis of response times later.

The comparison focuses on the amount of global memory atomicAdd operations per-

formed for each query. In order to obtain the numbers described in table 5.2 we have

replaced the variable holding the aggregation value by a hard-coded 1 in all three GPU

implementations.

The preaggregation method presented in section 4.2.1 uses shared memory for the target

path comparison and preaggregation of values, while the second method presented in

section 4.7 achieves the same using register variables and the CUDA __shfl command.

From now on the methods will be referred to as non-CDP and CDP preaggregation

respectively. In warps of the non-CDP preaggregation all lanes compare their target

cell with the warp’s first lane. Warps of the CDP preaggregation use a stride for the

comparison.

A warp preaggregation efficiency of 100% corresponds to an atomicAdd reduction

factor of 32, as this is the maximum of target cells which can be preaggregated in a warp.

As described in table 5.2, both methods achieve an efficiency of 100% for the queries of

group S, since they reduce the number of atomic additions by a factor of 32.

1The process of finalizing results consists of the compaction of target cell duplicates and the transfer of
results to the host.

5.3. Warp preaggregation efficiency 33

Table 5.2.: Efficiency of warp preaggregation methods

Query
Preaggregation method

none non-CDP CDP
#atomicAdd #atomicAdd efficiency #atomicAdd efficiency

B1 281057088 8783034 100% 8783034 100%
B2 5021960992 324503612 48.36% 3418446050 4.59%
B3 4262699168 142364188 100% 2328197090 5.72%
M1 41294400 1290450 100% 1290450 100%
M2 1418491200 1348573800 0.16% 1418491200 0.00%
M3 4590532800 4568044950 0.02% 4581902770 0.01%

Figure 5.2.: Number of atomicAdd operations for group M and L queries using non-
CDP or CDP warp preaggregation or no preaggregation at all

Figure 5.2 shows that queries B2 and B3 benefit much more from non-CDP preaggrega-

tion in comparison to the CDP one. The latter is less efficient because its strided target

cell comparison works only for source cells contributing to less than 32 target cells. How-

ever, many source cells of queries B2 and B3 have more than 31 target cells. This results

in the relatively low efficiency of CDP preaggregation for these queries. Despite the low

efficiency, the number of atomic additions is reduced by circa 32% for query B2 and

by circa 45% for query B3. M2 and M3 do not benefit at all from any of the methods

because the queries feature a big variance of target cells per source cell, which largely

prevents warp preaggregation.

5.4. StOAP and non-CDP GPU implementation 34

5.4. StOAP and non-CDP GPU implementation

Table 5.3 shows the query response times of StOAP and the non-CDP GPU implementa-

tion. The optimal number of parallel hash functions (#PHF) chosen by us is provided

with the response times for every query-kernel combination2. The star (*) in the table

heading indicates that warp preaggregation was enabled. Bold-printed times indicate

the smallest response time for the corresponding query.

Table 5.3.: Query response times of StOAP and the non-CDP implementation (*with warp
preaggregation)

Query
StOAP non-CDP non-CDP*

Response time Response time #PHF Response time #PHF
B1 110,777 ms 2,133 ms 3072 1,457 ms 24
B2 487,705 ms 22,135 ms 3072 10,394 ms 4
B3 387,305 ms 42,032 ms 36 22,734 ms 28
M1 8,498 ms 283 ms 2048 179 ms 44
M2 793,631 ms 3,634 ms 4 5,484 ms 8
M3 256,578 ms 58,648 ms 4 60,564 ms 4

When looking at StOAP’s response times, we notice that surprisingly the times of group

L queries are smaller than the times of group M queries. StOAP’s query response time

seemingly increases with the amount of addition operations per query, which can be

obtained from the second column of table 5.2. At least this seems to be the case for

queries B1, B2 and B3.

The measurements further show that group S queries are processed most rapidly by the

non-CDP implementation with 24 and 44 parallel hash functions using warp preaggre-

gation. The optimal configuration for queries of groups M and L differs in terms of the

usage of warp preaggregation. Queries B2 and B3 are processed faster with warp preag-

gregation, whereas queries M2 and M3 are processed faster without. This is related

to the efficiency of the warp preaggregation described in table 5.2. Whereas queries

B2 and B3 profit significantly from warp preaggregation, the number of atomicAdd

operations for queries M2 and M3 is only reduced so sparsely that the overheads of

using the preaggregation lower the kernel’s performance.

2Figure E.1 from appendix E highlights the chosen number for the queries processed by the non-CDP kernel
without warp preaggregation.

5.4. StOAP and non-CDP GPU implementation 35

Before moving on to the evaluation of response times using the CDP implementation,

we first evaluate the use of warp preaggregation using CUDA shuffle in the non-CDP

implementation.

5.4.1. Preaggregation using CUDA shuffle

When a comparison stride of one is used by the CDP warp preaggregation, all warp lanes

compare their target path to the one of the first lane, which is exactly the functionality

of the non-CDP preaggregation. Hence, we can use the CDP preaggregation with a stride

of one as a replacement for the existing method to evaluate the effect of using __shfl

versus using shared memory in the non-CDP implementation.

Table 5.4.: Speedup of warp preaggregation using __shfl over using shared memory in
the non-CDP implementation

Query
non-CDP warp preaggregation using __shfl
Response time #PHF Speedup

B1 1,367 ms 24 1.07
B2 8,559 ms 4 1.21
B3 15,209 ms 28 1.49
M1 163 ms 44 1.09
M2 4,392 ms 8 1.25
M3 60,909 ms 4 0.99

The speedup values in table 5.4 relate to the response times described in table 5.3.

Speedups of up 49% can be reached by the non-CDP implementation while employing

the preaggregation method using shuffle as opposed to using the method using shared

memory. We attribute this effect to the omission of multiple thread divergency points

through the use of shuffle.

As a last point, when comparing StOAP’s performance with the fastest response times of

the GPU implementation, the latter is clearly faster reaching speedups from 4 (M3) to

218 (M2) times over StOAP.

5.5. CDP implementation 36

5.5. CDP implementation

In this section, we compare and evaluate the performance of various CDP implementa-

tions. Since we want to fairly compare both GPU implementations, we use the fastest

times presented in tables 5.3 and 5.4 as a reference for the calculation of response time

speedups.

The different CDP implementations originate from two configuration options for launch-

ing child kernels. The first option is related to the grid size of child kernels, which can

be dynamic or fixed. If there are more than 1024 target cells for a page’s parent block,

the work can be assigned to multiple blocks of the child kernel. However, the grid size

of child kernels can also be fixed to a single block. This can influence the scheduling of

child kernels by the GPU’s CWD unit and is evaluated in section 5.5.1. The second option

is represented by the introduction of explicit parent-child synchronization, which allows

to restrict the global memory consumption used by the parent-child information transfer.

This is evaluated in section 5.5.2.

Table 5.5.: Speedup of the CDP implementation over the non-CDP variant (*with warp
preaggregation)

Query
CDP implementation CDP implementation*

Response time #PHF Speedup Response time #PHF Speedup
B1 2,327 ms 6144 0.92 2,083 ms 36 0.66
B2 17,589 ms 108 1.26 16,511 ms 108 0.52
B3 34,804 ms 52 1.20 27,458 ms 48 0.55
M1 273 ms 5120 1.04 239 ms 88 0.68
M2 4,315 ms 8 0.84 4,509 ms 4 0.97
M3 16,101 ms 4 3.64 16,280 ms 4 3.72

We first test the CDP implementation using a dynamic child kernel grid size without

explicit parent-child synchronization. Its response times are shown in table 5.5.

When comparing the best response times of both GPU implementations (non-CDP vs.

CDP), we recognize that only query M3 benefits from the CDP implementation. This can

be seen in figure 5.3.

Several causes explain why the non-CDP implementation processes all queries except

for query M3 faster than the CDP variant. In the first place, the non-CDP kernel does

not need any synchronization points as opposed to the CDP kernel, which synchronizes

5.5. CDP implementation 37

Figure 5.3.: Best response times using the non-CDP and CDP implementations

threads 12 times for each page processed by the parent kernel and once for each child

kernel block. The synchronization using __syncthreads is needed to make sure all

threads of a block have written or read global memory values required for parent-child

information transfer. Synchronizations and global memory accesses are costly in terms

of performance and might be more expensive than the launch of child kernels.

When processing query M3 using the CDP implementation there is a speedup of 3.64

over the non-CDP variant. We conclude the GPU resources are not efficiently used by

the non-CDP kernel, since lots of warp threads are idle while one warp thread performs

sequential contributions to 1000 target cells. All threads of the parent kernel still use a

loop with possibly different iteration count as done by the non-CDP kernel for counting

the target cells. However, only simple write operations are performed for the parent-child

information transfer as opposed to directly writing target cells using the atomicAdd

operation. In this case, the inefficient use of GPU resources caused by idle threads of the

non-CDP implementation has a worse effect on the performance than the overheads of

using CDP. Hence, query M3 is processed faster by the CDP implementation.

5.5. CDP implementation 38

5.5.1. Optimization of child kernel scheduling

In contrast to launching child kernels with a dynamic grid size, the second CDP-enabled

kernel launches all children with a fixed grid size of one block. As such, all the requested

target cell aggregations of the parent’s block are processed loop-wise by 1024 parallel

threads of the responsible child kernel. Yet, idle warp threads are prevented because

all child threads are assigned to target cells without gaps. The corresponding response

times are shown in table 5.6.

Table 5.6.: Speedup of using a fixed grid size of one for children over dynamic grid sizes
(*with warp preaggregation)

Query
CDP implementation CDP implementation*

Response time #PHF Speedup Response time #PHF Speedup
B1 2,430 ms 7168 0.96 2,167 ms 36 0.96
B2 15,603 ms 108 1.13 14,026 ms 108 1.18
B3 32,258 ms 36 1.09 25,298 ms 48 1.09
M1 285 ms 5120 0.96 237 ms 88 1.01
M2 3,685 ms 8 1.17 3,521 ms 4 1.28
M3 19,587 ms 4 0.82 19,257 ms 4 0.85

We have used the NVIDIA Visual Profiler to examine the time-line of the CDP implemen-

tation while query B3 is processed. Both, host-launched and device-launched kernels,

and the parent-child relationship can be visually profiled as seen in figure 5.4.

The comparison of the time-lines indicates that child kernels with a fixed grid size benefit

more from the GPU’s scheduling policy than the child kernels with a dynamic grid size.

In contrast to time-line 5.4 a) less time elapses between the execution of child kernels in

time-line b), corresponding to a higher launch density. Furthermore, more child blocks

are running concurrently. Clearly, using a fixed grid size for the children can accelerate

the processing of queries using the CDP implementation.

Nonetheless, the processing of group S queries is slightly slowed down and processing

query M3 is noticeably slower. We think this is caused by the overheads of looping over

the target cells in the child. The method of processing query S has not changed by fixing

the child grid size. This can be looked up in the last column of table 5.7. The table shows

the number of average child kernels with the number of average child blocks launched

by each of the 30 parent blocks per query. Additionally, the overall sum of launched

child kernels per query and the number of average blocks per child kernel are described.

5.5. CDP implementation 39

a) Children with dynamic grid size

b) Children with grid size 1

Parent

Time

Figure 5.4.: Time-lines of the CDP implementation while processing query B3. Time-line
a) features child kernels with dynamic grid sizes, while in time-line b) they
are fixed to one block. The x-axis represents the number of concurrently
executed kernels (at maximum 30).

The latter also corresponds to the number of loop iterations performed by a child kernel

which has a fixed grid size of one block.

Table 5.7.: Statistics related to the launched child kernels per query

Query
Child kernels Child blocks Sum of Blocks / loops

per parent block per parent block child kernels per child
B1 12199 12199 365960 1
B2 12199 167160 365960 13.7
B3 12199 140687 365960 11.5
M1 1792 1792 53769 1
M2 270 46404 8094 172
M3 1282 149918 38457 117

According to the response times shown table 5.6 it seems advantageous to use a fixed

block size of one for relatively small numbers of child kernels, even if one child block

does the work which is otherwise done by 172 blocks. If many child kernels are executed

as done for the Biker queries and query M3, the launch configuration favored by the

GPU’s scheduling policy seems to depend on the amount of blocks per child. If the child

kernel is supposed to process a high number of target cells (117 ∗ 1024 for query M3), it

5.5. CDP implementation 40

is better to use a dynamic grid size over using a grid size of one. Otherwise, for a lower

number of target cells, it is better to use the fixed grid size.

The profiling additionally indicates that no child kernels are executed while the parent

has not completed its work. This happens because the GPU is fully occupied by the parent

grid and no resources are left to execute child kernels. Hence, all child kernel launches

are saved to the kernel launch queue until the parent has run. In the next section, we

evaluate the use of explicit parent-child synchronization.

5.5.2. Usage of explicit parent-child synchronization

The function cudaDeviceSynchronize allows for explicit parent-child synchroniza-

tion, which causes a parent block to wait for the completion of all child kernel grids it has

launched. In our case the synchronization is primarily useful to control the consumption

of global memory space while a query is processed.

Recall that the CDP implementation uses additional global memory space to transfer

the target counts from a parent block to the child grid. We chose uint32_t, a 4 byte

fixed-width integer, as data type for the target count of one source cell. Since b blocks of

t threads each process the source cells of m pages, a global memory space of 4mbt bytes

is required for the overall parent-child information transfer. E.g. for query B3 on a Tesla

K40c, m corresponds to 12199 pages, b to 30 blocks and t to 768 threads resulting in

roughly 1.124 GB of space. These are 9.37% of the overall global memory space available

on the GPU (12 GB).

Moreover, the employment of CDP requires global memory space to buffer the config-

uration and parameters of every launched, but pending child kernel. We know from

[NVI14b] that the device runtime reserves enough memory to host a fixed-size pool of

2048 pending kernel launches by default. However, in our CDP implementation the

launch queue consists of a maximum of m ∗ b child kernels, a number which can grow

much larger than 2048. If this happens, kernel launches are tracked in a lower per-

formance virtualized buffer, leading to a severe execution slowdown. We can prevent

this by computing the maximum number of child kernels in advance and extending the

reserved memory of the fixed-size pool before processing a query3. To find out how

much memory is used by the kernel launch pool we have repeated the experiment from

3The related configuration option cudaLimitDevRuntimePendingLaunchCount can be set by the
host program using the cudaDeviceSetLimit API. See [NVI14b] for more details.

5.5. CDP implementation 41

[WY14] on the Tesla K40c. The reserved memory size is measured by calling the runtime

API cudaMemGetInfo before and after cudaDeviceSetLimit. Figure 5.5 shows the

amount of memory reserved for different sizes of the launch pool at a synchronization

depth of 2.

Figure 5.5.: Global memory reserved for kernel launches at synchronization depth 2
using CUDA 6.5

In figure 5.5 we can see that about 3 GB are reserved for the launch pool to process query

B3. The overall sum of space needed by CDP to process the query is about 4.1 GB. These

are more than 34% of the overall global memory space.

To evaluate the performance of a synchronized CDP implementation, we chose to syn-

chronize each parent block after it has launched 2048 children. Consequently, the launch

count can be fixed to b ∗ 2048 + 1 independent of which query is processed. For b = 30

this results in a reserved space of 597 MB.

The memory used for the parent-child information transfer can be reduced to

4mbt

d m
2048e

bytes. (5.1)

In case of query B3 these are 187 MB. Like this, instead of requiring a CDP-specific space

of 4.112 GB to process the query, only 784 MB (6.5%) of global memory are used.

5.5. CDP implementation 42

Table 5.8 shows the response times of the synchronized CDP implementation. The

speedup values have been calculated using the response times from table 5.5.

Table 5.8.: CDP implementation using explicit parent-child synchronization after every
2048 child launches (*with warp preaggregation)

Query
CDP implementation CDP implementation*

Response time #PHF Speedup Response time #PHF Speedup
B1 2,060 ms 7168 1.13 1,945 ms 36 1.07
B2 17,550 ms 104 1.00 17,941 ms 108 0.92
B3 54,219 ms 72 0.64 42,732 ms 48 0.64
M1 276 ms 3072 0.99 242 ms 88 0.99
M2 4,347 ms 4 0.99 4,679 ms 4 0.96
M3 16,067 ms 4 1.00 18,749 ms 4 0.87

Surprisingly, the synchronization has a positive influence on the processing of query B1.

We guess this effect is related to a more optimal scheduling of child kernels in relation to

the efficiency of the GPU’s L2 cache. However, this was not verified. A rather negative

effect of synchronization on the processing performance can be observed for the queries

of group L.

6. Conclusion and Future Work
In this thesis, we present and implement an in-GPU-memory MOLAP aggregation algo-

rithm which uses CUDA Dynamic Parallelism. Furthermore, we present and implement

a new warp preaggregation method using the CUDA shuffle command. We addition-

ally describe a sequential aggregation algorithm for MOLAP and publish StOAP, which

represents the algorithm’s implementation. We compare the performance of StOAP, the

non-CDP, source-based GPU implementation and the CDP implementation using queries

with target areas of different size. Furthermore, we evaluate the impact of using differ-

ent child kernel grid sizes on the performance of the CDP implementation. Finally, we

evaluate the use of explicit parent-child synchronization to minimize the CDP overheads

regarding the consumption of global memory.

The experiments show that the single-threaded CPU implementation is outperformed by

the GPU implementations by 16 to 218 times. It is further shown that the preaggregation

method using CUDA shuffle accelerates query-processing by the non-CDP implementation

by up to 49%.

Moreover, we conclude from the tests that queries with medium and big target areas

related to a typical OLAP cube are processed faster by an average of 22% compared to

the non-CDP implementation. This is the case if both GPU implementations do not use

preaggregation. Otherwise, the non-CDP implementation is faster by an average of 42%.

However, if strongly varying counts of target cells for adjacent source cells occur, the CDP

implementation accelerates the query-processing by 372% if preaggregation is used and

by 364% otherwise.

The experiments additionally show that the employment of a fixed child kernel block

size is advantageous for queries with a medium-sized target area. It accelerates their

processing through the CDP implementation by up to 28%. Furthermore, we find that

the memory overheads connected with CDP can be reduced successfully through explicit

parent-child synchronization. It even leads to a speedup of up to 13% for queries with a

small target area. However, synchronization slows down the processing of queries with

medium to big target areas.

After all, the performance of the CDP implementation looks promising and it is highly

probable that a method can be found to dynamically decide in which situation the use of

one or the other kernel is more advantageous.

43

5.5. CDP implementation 44

A future project could be the implementation of both GPU aggregation approaches in

combination. The average count of target cells for the source cells of a block can be used

to calculate the variance of target cells per source cell. If the variance is high and the

average count is low, the parent kernel would launch the child kernel which writes a

single target cell per thread (see section 4.3.3). If the variance is low, the parent block

could either launch a child kernel working like the non-CDP kernel (see section 4.2) or

perform the non-CDP aggregation by itself. Like this, we could provide the algorithm with

the advantages of both, the non-CDP and the CDP approach. Furthermore, if multiple

successive pages of a parent block require the use of the same child kernel, multiple

kernels might be merged to reduce the number of kernel launches.

An alternative to the above idea is to develop and implement a switch for deciding which

algorithm should be used during run-time. The decision mainly depends on the query and

the meta-data of the cube, more specifically the hierarchy of the cube’s last dimension.

This would enable us to get the best performance out of both implementations.

We have found the number of parallel hash functions has a greater impact on the perfor-

mance of the CDP implementation compared to the non-CDP variant. No matter which

one of the source-based approaches is used, the hash function count is a critical parame-

ter for the kernel’s performance. A method for predicting the optimal number of parallel

hash functions should be researched. The latter depends on many parameters, such as

the GPU model, the aggregation kernel, the queries’ target area and the cube’s meta-data.

If suitable metrics for the dependent parameters can be found and after crafting multiple

different cubes and test queries, machine learning could be applied to predict the best

hash function number for every situation.

Furthermore, it could be investigated why the processing time of StOAP for query M2 is

greater than the one for M3. Eventually, the performance of StOAP could be optimized

by developing and implementing a time- and space-efficient data structure for the fact

table. The basis of the data structure could be a prefix tree (trie) for binary keys, which

are mapped to double-precision numerical values.

In this thesis, we evaluate the performance the GPU implementations using CUDA 6.5.

Since new CUDA releases often introduce improvements in terms of performance, it

would be interesting to know how well the described GPU implementations perform using

CUDA 7.0, which was released during the time of writing. Additionally, the performance

using multiple GPUs could be evaluated.

A. CUDA
Feature Support Compute Capability

(Unlisted features are supported for all
compute capabilities)

1.1 1.2 1.3 2.x 3.0
3.5,
5.x

Atomic functions operating on 32-bit integer
values in global memory (Atomic Functions)

atomicExch() operating on 32-bit floating
point values in global memory (atomicExch())

Yes

Atomic functions operating on 32-bit integer
values in shared memory (Atomic Functions)

atomicExch() operating on 32-bit floating
point values in shared memory (atomicExch())

Atomic functions operating on 64-bit integer
values in global memory (Atomic Functions)

Warp vote functions (Warp Vote Functions)

No Yes

Double-precision floating-point numbers No Yes

Atomic functions operating on 64-bit integer
values in shared memory (Atomic Functions)

Atomic addition operating on 32-bit floating
point values in global and shared memory
(atomicAdd())

__ballot() (Warp Vote Functions)

__threadfence_system() (Memory Fence
Functions)

__syncthreads_count(),

__syncthreads_and(),

__syncthreads_or() (Synchronization
Functions)

Surface functions (Surface Functions)

3D grid of thread blocks

No Yes

Unified Memory Programming No Yes

Funnel shift (see reference manual)

Dynamic Parallelism

No Yes

Figure A.1.: Feature support per Compute Capability taken from [NVI14b, pp. 181-182]

45

B. Test environment
All tests were performed on a server running CentOS 6.6 64bit with GNU/Linux kernel

version 2.6.32. The test programs were compiled using GCC version 4.4.7. The hardware

platform was composed of two Intel Xeon E5-2643 Quad-Core CPUs at a clock speed of

3.30GHz with 256GB of DDR3 SDRAM. A NVIDIA Tesla K40c GPU was used for testing.

The server’s CPU frequency scaling was set to performance mode. GPU persistence mode

was enabled during all tests. This ensures that the GPU driver stays loaded and prevents

the GPU from reverting back to idle clocks. The GPU clock has been set to a fixed speed

of 875Mhz. StOAP has been assigned to one processor core to prevent context switching

during the tests. The response times for StOAP were generated by a script using StOAP’s

named pipes as query input and result output interfaces. Another script using GNU Wget

was used to send queries to the GPU-accelerated OLAP server. All query results computed

by StOAP and by the GPU kernels have been compared at least once with the results

of Jedox’ multi-threaded OLAP server using a Perl script to verify the precision of the

results.

46

C. Optimal page size
The page size p is determined by the formula

p = b ∗ t, (C.1)

where b is the number of blocks per grid and t is the number of threads per block. Those

two parameters are used for launching the aggregation kernel on a 1-dimensional grid

and can be freely chosen with certain limits1. However for efficiency, they should be

optimized (e.g. by empirical tests) as described in [NVI14a, pp. 43-48].

The optimal size of t depends on the kernel code and the used GPU. Executing too many

threads per block can result in register spilling, causing the threads to make use of high-

latency GPU memory, whereas executing too few threads per block might result in a low

GPU occupancy. Unpublished empirical tests by Lauer and Strohm suggest that t = 768

results in the best average performance of the aggregation kernel on a Tesla K20c.

Warps can be in a paused or stalled state. The grid size b must be chosen in a way to

ensure there are always enough warps in the work queue for the warp schedulers to

choose from. If no other warps are executed the GPU hardware is not fully occupied. To

maximize the total number of active warps, Lauer and Strohm decided to add two blocks

per available SMX unit to the grid.

Hence, the grid size b is defined by

b = 2 ∗ P, (C.2)

where P is the number of SMX units on the GPU. Substituting b in C.1 with the formula

from C.2 leads to

p = 2 ∗ P ∗ t. (C.3)

Thus, the optimal page size on a Tesla K40c with 15 SMX units is p = 23040.

1t can be a number between 0 and 1024 on GPUs supporting CC ≥ 2.0.

47

D. Upper bound search implementation

1 int32_t first = 0;
2 int32_t count = GPU_THREAD_COUNT; // corresponds to block size b
3 int32_t it = first;
4 int32_t step = 0;
5 while (count > 0) {
6 it = first;
7 step = count / 2;
8 it += step;
9 if (!(targetId < s_targetCount[it])) { // prefix-sum array of the counts

10 first = ++it;
11 count -= step+1;
12 }
13 else {
14 count = step;
15 }
16 }

Listing 4: C code implementation ported from a code example for std::upper_bound
found at http://www.cplusplus.com/reference/algorithm/upper_bound/.

48

http://www.cplusplus.com/reference/algorithm/upper_bound/

E.
Te

st
in
g
di
ffe

re
nt

pa
ra
lle

lh
as

h
fu
nc

tio
n
co

un
ts

Fi
gu

re
E.

1.
:

T
hi

s
is

th
e

pl
ot

fo
r

th
e

no
n-

C
D

P
ke

rn
el

w
it

ho
ut

w
ar

p
pr

ea
gg

re
ga

ti
on

.
R

es
po

ns
e

ti
m

es
of

qu
er

ie
s
B
1
-B

3
an

d
M

1
-M

3
ar

e
pl

ot
te

d
in

re
la

ti
on

to
th

e
nu

m
be

r
of

ha
sh

fu
nc

ti
on

s.
T

he
hi

gh
lig

ht
ed

sp
ot

s
de

sc
ri

be
th

e
am

ou
nt

of
ha

sh
fu

nc
ti

on
s

an
d

th
e

fa
st

es
t

re
sp

on
se

ti
m

e
(s

ep
ar

at
ed

by
a

co
m

m
a)

.

49

Danksagung
An dieser Stelle möchte ich mich besonders bei meinem Betreuer und Arbeitskollegen

Steffen Wittmer, aber auch bei Peter Strohm und Alexander Haberstroh von der Firma

Jedox AG bedanken. Sie haben sich mit mir zusammengesetzt um Themenvorschläge

für meine Bachelorarbeit zu finden. Außerdem standen sie mir beim Einstieg in die

umfangreichen Themen MOLAP und CUDA mit Rat zur Seite.

Weiterhin möchte ich mich bei der Firma Jedox AG bedanken, die mir über die Zeit des

Studiums einen Arbeitsplatz bot und mir auch für die Dauer der Bearbeitungszeit einen

Arbeitsplatz und die nötige Hardware zum Testen zur Verfügung stellte.

Mein Dank geht auch an die Personen, die sich Zeit fürs Korrekturlesen genommen haben:

Steffen, Holger, Alex, und Guido. Thank you very much!

Am allermeisten danke ich aber meiner Familie und meiner Freundin Selly. Sie alle haben

mir in der Zeit des Studiums den Rücken gestärkt und mich immer wieder motiviert.

Celia, meine Schwester, und ihr Freund Patrick wurden am 22. März Eltern des kleinen

Levi. Vielen Dank für den Kleinen, der unsere Familie sehr bereichert und bei mir viel

Motivation hervorruft. Ich liebe euch!

50

Bibliography
[AH13] Sk. Masudul Ahsan and K. Hasan. “An Efficient Encoding Scheme to Handle

the Address Space Overflow for Large Multidimensional Arrays”. In: Jour-
nal of Computers 8.5 (2013). DOI: 10.4304/jcp.8.5.1136-1144. URL:

http://ojs.academypublisher.com/index.php/jcp/article/view/

jcp080511361144 (cit. on p. 16).

[Böh+11] Matthias Böhm, Benjamin Schlegel, Peter Benjamin Volk, Ulrike Fischer, Dirk

Habich, and Wolfgang Lehner. “Efficient In-Memory Indexing with General-

ized Prefix Trees”. In: Datenbanksysteme für Business, Technologie und Web
(BTW), 14. Fachtagung des GI-Fachbereichs "Datenbanken und Information-
ssysteme" (DBIS), 2.-4.3.2011 in Kaiserslautern, Germany. 2011, pp. 227–

246 (cit. on p. 16).

[Bre+14] Sebastian Bress, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and

Gunter Saake. “GPU-accelerated Database Systems: Survey and Open Chal-

lenges”. In: Transactions on Large-Scale Data and Knowledge-Centered Sys-
tems (TLDKS) 8800 (2014). To appear. (cit. on p. 4).

[CCS93] Edgar Frank Codd, S.B. Codd, and C.T. Salley. “Providing OLAP to User-

Analysts: An IT Mandate”. In: (1993). URL: http://www.minet.uni-

jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf (cit. on p. 6).

[Eic13] Susanne Eichel. “Parallele Berechnung großer spärlich besetzter aggregierter

Bereiche mit Hilfe von Grafikprozessoren”. MA thesis. Albert-Ludwigs-

Universität Freiburg im Breisgau, Sept. 2013 (cit. on pp. 3, 16, 18, 19,

31, 32).

[Fly72] M. Flynn. “Some Computer Organizations and Their Effectiveness”. In:

Computers, IEEE Transactions on C-21.9 (Sept. 1972), pp. 948–960. DOI:

10.1109/TC.1972.5009071 (cit. on p. 12).

[HSO07] M. Harris, S. Sengupta, and J.D. Owens. “Parallel prefix sum (scan) with

CUDA”. In: GPU Gems 3.39 (2007), pp. 851–876. URL: http://developer.

download.nvidia.com/compute/cuda/2_2/sdk/website/projects/scan/

doc/scan.pdf (cit. on p. 22).

51

http://dx.doi.org/10.4304/jcp.8.5.1136-1144
http://ojs.academypublisher.com/index.php/jcp/article/view/jcp080511361144
http://ojs.academypublisher.com/index.php/jcp/article/view/jcp080511361144
http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf
http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf
http://dx.doi.org/10.1109/TC.1972.5009071
http://developer.download.nvidia.com/compute/cuda/2_2/sdk/website/projects/scan/doc/scan.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/sdk/website/projects/scan/doc/scan.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/sdk/website/projects/scan/doc/scan.pdf

Bibliography 52

[Kac11] Krzysztof Kaczmarski. “Comparing GPU and CPU in OLAP Cubes Creation”.

In: SOFSEM 2011: Theory and Practice of Computer Science 6543/2011

(2011), pp. 308–319. DOI: 10.1007/978- 3- 642- 18381- 2_26 (cit. on

p. 2).

[Lau+10] Tobias Lauer, Amitava Datta, Zurab Khadikov, and Christoffer Anselm. “Ex-

ploring Graphics Processing Units as Parallel Coprocessors for Online Aggre-

gation”. In: Proceedings of the ACM 13th International Workshop on Data
Warehousing and OLAP. DOLAP ’10. 2010, pp. 77–84. DOI: 10.1145/

1871940.1871958 (cit. on pp. 3, 9, 17).

[Mic12] Paulius Micikevicius. GPU Performance Analysis and Optimization. Presen-

tation at the GPU Technology Conference. June 2012. URL: http://on-

demand.gputechconf.com/gtc/2012/presentations/S0514- GTC2012-

GPU-Performance-Analysis.pdf (cit. on p. 21).

[NVI13] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110.

Whitepaper. Jan. 2013. URL: http://www.nvidia.com/content/PDF/

kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf (cit. on

p. 12).

[NVI14a] NVIDIA. CUDA C Best Practices Guide. Version 6.5. NVIDIA Corporation,

Aug. 2014. URL: http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_

Practices_Guide.pdf (cit. on p. 47).

[NVI14b] NVIDIA. CUDA C Programming Guide. PG-02829-001. Version 6.5. NVIDIA

Corporation, Aug. 2014. URL: http://docs.nvidia.com/cuda/pdf/CUDA_

C_Programming_Guide.pdf (cit. on pp. 10, 11, 18, 19, 22, 25, 27, 40, 45).

[SHP12] Craig Silverstein, Donovan Hide, and Geoff Pike. Google SparseHash: An ex-
tremely memory-efficient hash_map implementation. Feb. 2012. URL: https:

//code.google.com/p/sparsehash/ (cit. on p. 16).

[Wik15] Wikipedia. Moore’s law — Wikipedia, The Free Encyclopedia. [Online; ac-

cessed 20-February-2015]. Feb. 2015. URL: http://en.wikipedia.org/w/

index.php?title=Moore’s_law&oldid=648043129 (cit. on p. 1).

[WL13] Steffen Wittmer and Tobias Lauer. Computation of Large Sparse Aggregated
Areas for Analytic Database Queries. Presentation at the GPU Technology

Conference 2013. 2013. URL: http://on-demand.gputechconf.com/gtc/

2013/presentations/S3088-Computation-Large-Sparse-Aggregated-

Areas.pdf (cit. on pp. 3, 16, 18).

http://dx.doi.org/10.1007/978-3-642-18381-2_26
http://dx.doi.org/10.1145/1871940.1871958
http://dx.doi.org/10.1145/1871940.1871958
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://code.google.com/p/sparsehash/
https://code.google.com/p/sparsehash/
http://en.wikipedia.org/w/index.php?title=Moore's_law&oldid=648043129
http://en.wikipedia.org/w/index.php?title=Moore's_law&oldid=648043129
http://on-demand.gputechconf.com/gtc/2013/presentations/S3088-Computation-Large-Sparse-Aggregated-Areas.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3088-Computation-Large-Sparse-Aggregated-Areas.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3088-Computation-Large-Sparse-Aggregated-Areas.pdf

Bibliography 53

[WY14] Jin Wang and Sudhakar Yalamanchili. “Characterization and Analysis of

Dynamic Parallelism in Unstructured GPU Applications”. In: 2014 IEEE
International Symposium on Workload Characterization. Oct. 2014 (cit. on

pp. 4, 13, 21, 41).

[ZZN14] Tilmann Zäschke, Christoph Zimmerli, and Moira C. Norrie. “The PH-tree:

A Space-efficient Storage Structure and Multi-dimensional Index”. In: Pro-
ceedings of the 2014 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’14. Snowbird, Utah, USA: ACM, 2014, pp. 397–408. DOI:

10.1145/2588555.2588564. URL: http://doi.acm.org/10.1145/2588555.

2588564 (cit. on p. 16).

http://dx.doi.org/10.1145/2588555.2588564
http://doi.acm.org/10.1145/2588555.2588564
http://doi.acm.org/10.1145/2588555.2588564

	Abstract
	Zusammenfassung
	Contents

	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 Thesis structure

	2 OLAP
	2.1 Data storage and in-memory OLAP
	2.2 MOLAP data cube
	2.3 Aggregation

	3 Parallel computation using GPUs
	3.1 NVIDIA's GPU architecture and the CUDA programming model
	3.2 CUDA Dynamic Parallelism

	4 Source-based aggregation
	4.1 Single-threaded CPU algorithm
	4.1.1 Run-time and space complexity
	4.1.2 Single-threaded OLAP Aggregation Processor

	4.2 Parallel GPU algorithm
	4.2.1 Warp preaggregation
	4.2.2 Multiple hash functions for target cells

	4.3 CDP-enabled GPU algorithm
	4.3.1 Problems and solutions
	4.3.2 Parent kernel implementation
	4.3.3 Child kernel implementation
	4.3.4 Warp preaggregation using CUDA shuffle

	5 Results and Analysis
	5.1 Test queries
	5.2 Test configuration
	5.3 Warp preaggregation efficiency
	5.4 StOAP and non-CDP GPU implementation
	5.4.1 Preaggregation using CUDA shuffle

	5.5 CDP implementation
	5.5.1 Optimization of child kernel scheduling
	5.5.2 Usage of explicit parent-child synchronization

	6 Conclusion and Future Work
	A CUDA
	B Test environment
	C Optimal page size
	D Upper bound search implementation
	E Testing different parallel hash function counts
	Danksagung
	Bibliography

