
Bachelor Thesis

A keyword query translator for Broccoli

Iradj Solouk
Summer 2014

University of Freiburg
Faculty of Engineering

Reviewer: Prof. Dr. Hannah Bast

Advisor: Florian Bäurle

Abstract

A keyword query translator that is used by the semantic text search engine
BROCCOLI will be introduced. This keyword translator interprets a string,
which is given by the user, in a way that considers the underlying data struc-
ture of BROCCOLI and tries to consider the context of the given information.
A GOOGLE-like keyword search field will be used. The keyword translation leads
to user friendliness in terms of not requiring knowledge about the concept of the
underlying ontology and the possibility of using keywords or parts of phrases as
an input. This process provides a service that can be used in place of the normal
incremental query creation process.

The semantic interpretation of the input string requires natural-language-processing.
WordNet, a lexical dabase for English words, and the Stanford part-of-speech tagger
is used for part-of-speech tagging.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einem für die Suchmaschine BROCCOLI
erstellten Keyword Translator. Dieser Keyword Translator interpretiert die vom
Benutzer eingegebene Phrase oder Worte so, dass die verwendeten Datenstrukturen
des BROCCOLI-Systems berücksichtigt werden. Des Weiteren wird dabei auch die
Bedeutung der Eingabe interpretiert. Ein Texteingabefeld wie das von GOOGLE
wird verwendet. Dadurch dass kein Verständnis über die im Hintergrund verwen-
dete Ontologie nötig ist, führt der Prozess der Übersetzung zu einer Erhöhung der
Benutzerfreundlichkeit. Das System ermöglicht die Verwendung von Sätzen oder
Schlagwörtern als Eingabe. Der Keyword Translator soll als Alternative für den
manuellen Prozess der Suchanfragenerstellung dienen. Der manuelle Prozess der
Suchanfragenerstellung erfolgt durch inkrementelles Aufbauen der Suchanfrage.

Das semantische Abbilden der Texteingabe gebraucht natürliche Sprachverarbeitung.
Hierfür werden die lexikalische Datenbank WordNet und die Stanford Wortarten-
erkennung von englischer Sprache verwendet.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Main challenge & line of attack . 2
1.3 Natural-language-processing . 2

1.3.1 WordNet . 3
1.3.2 Part-of-speech Tagger . 3

1.4 BROCCOLI . 3
1.4.1 Definition & functionality . 3
1.4.2 Semantic Full-Text Search . 4
1.4.3 User Interface & query construction 4

1.5 Structure . 6

2 Related Work 7

3 Keyword Translation 9
3.1 Initial point . 9
3.2 General problems with language . 10
3.3 Resource oriented problems . 11

3.3.1 Ambiguous mapping . 11
3.3.2 Missing relation . 12
3.3.3 Dealing with stop words . 12
3.3.4 Different vocabulary . 13

3.4 Algorithm . 13
3.4.1 Instance as root . 14
3.4.2 Class as root . 14
3.4.3 Instance recognition . 18

4 Analysis 21
4.1 Theoretical analysis . 21

4.1.1 Analyzing instance and class recognition 21
4.1.2 Analyzing the inference of relations 21

4.2 Empirical analysis . 22
4.2.1 Problems . 22
4.2.2 Evaluation setup . 22
4.2.3 Quality & runtime performance 23
4.2.4 Discussion of the quality performance 24
4.2.5 Comparison to other approaches 27

5 Outcome 28
5.1 Future Work . 28
5.2 Conclusion . 30

A Appendix: SemSearch Queries 31

1. Introduction

“People can’t share knowledge if they don’t speak a common language.”

— Thomas Davenport

The thesis will deal with a special component of a certain type of search engines.
This certain type of search engine is called semantic search engine. Our search
engine deals with a large amount of data[2]. The data elements of the used search
engine are structured and linked together according to the structure of an ontology.
By ontology a knowledge base is meant. We think that using such a data structure
is promising in terms of information provision. It permits complex querying in
an intuitive way. The reason why the formerly mentioned special component of
semantic search engines is developed will be presented in the following paragraph.

1.1 Motivation

There are different user interface elements for semantic search engines such as facets,
graph browsers, breadcrumbs or simple input fields. The semantic search engine we
work with is called BROCCOLI. Querying it with the current user interface can
be performed incrementally via a facet-like box[4]. Let us suppose to query the
following example: “Football players with goalkeeper position”.
At the moment, one can manually select the class “football” player and add the
relation “position” and add the instance “goalkeeper” via the facet-like box. The
internal query consists of the search elements that are going to be presented in 1.4.3 .
This procedure is the incremental and manual construction of the query where the
user has to click and type in the terms of the elements. Therefore we develop a
special component for BROCCOLI called the keyword translator. This translator
has to handle the internal logic of the queries in respect to the input string. One
can monitor the current query via a breadcrumb panel that visualizes the latter
mentioned elements of the query. But for this kind of querying the user requires
some understanding of the concept of ontology. Keyword search solely via a single
input field like GOOGLE and YAHOO is still a common and effective way to
find useful information on the internet. Most people are using text keyword search,
which means that in order to provide an accessible method of querying, we think a
keyword translator has to come up. The search application BROCCOLI combines
different user interface elements and also makes use of a keyword translator on which
we will focus.

At the moment, a prototype for the keyword translation is already in use. It uses
a straightforward approach which does not take synonyms into account. Thus the
keyword translation will be redone. It brought forth this thesis.

1

1.2 Main challenge & line of attack

The main challenge is the mapping of a string onto an internal query. How this is
done and problems that one may face overcoming this challenge are presented in
chapter 3. One of those problems is that the user has her/his own vocabulary or
language when typing in the input string. He may use a sentence structure or just
keywords and she/he may paraphrase what he/she wants to query. The quote from
the beginning by Thomas Davenport states that a common language is necessary
in order to share knowledge. Thus the quote explains the problem at its core. The
resources which the user wants to query may be stored and named with terms that
do not have morphological similarity with the vocabulary entered by the user.

The approach to solving this combines the analysis of phrase structures, semantic
mapping and the communication with the resource container. Semantic mapping
means the usage of the correlation of input words and words which are semanti-
cally related to them in order to find resources for these input words. The first two
parts are perfomed while using a lower number of backend communications than are
needed for the third part. The combination of them is a highly dynamic process and
promises a good translation process. This is why the next subsections serve as a
basis for understanding the problems and the approaches for solving them in detail.

1.3 Natural-language-processing

This section shall give a basis for the terms used in the linguistic analysis. Semantic
relations are being used in order to map words onto a resource of the search engine’s
resource container. Some of these expressions will be mentioned later on. Now a
list of semantic relations towards the target expression is presented[8].

Synonymy: The synonym of a target expression is another expression that can
substitute the target expression without changing the truth value of a sen-
tence in which the target expression has been used. The definition of this
can be widened in respect to a certain context. E.g. “car” is a synonym for
“automobile” and vice versa.

Antonymy: Examples are used to give the idea of an antonym. The expression
“rise” can be an antonym of “fall”. But “rise” cannot be an antonym of
“descend”. That antonyms have the opposite meaning towards each other is
a necessary condition but not a sufficient one.

Hyponymy: An example is used to give the idea of a hyponym. The expressions
“dog”, “pig”, “chinchilla”, “baboon” and “elk” are hyponyms of “animal”. A
hyponym is a more specific, less abstract expression for the target expression.

Hypernymy: An example is used to give the idea of a hypernym. The expression
“animal” is a hypernym of “dog”, “pig”, “chinchilla”, “baboon” and “elk”. A
hypernym is a more abstract, less specific expression for the target expression.

There are even more relation expressions, but the use of them will not be mentioned
in this work.

2

A common english sentence consists of a subject, predicate and an object. Con-
sider the sentence “The snow is white”. The word “snow” is the subject, the word
“is” is the predicate and the word “white” is the object.

1.3.1 WordNet

The (Princeton)WordNet [7] is a lexical database for the English language. The
database contains more than 118,000 word forms. Colloquially it can be described
as a “social network” for words. It is possible to find antonyms, hyponyms, hy-
pernyms, synonyms, meronyms, troponyms and entailments for words that do have
these. WordNet does not only get the semantically related words, one can also re-
trieve descriptions and usage phrases of certain words. Using WordNet amplified
the finding of resources in the ontology which will be addressed in chapter 3.

WordNet is also used to receive the base form of a word. Even if a word is in
past tense or has an irregular plural form WordNet will have the base form. E.g.
for a word like ”cacti” or ”cactuses” the base form ”cactus” can be obtained.

1.3.2 Part-of-speech Tagger

Another tool used during the translation is the (Stanford)part-of-speech tagger [11].
One can pass a phrase to the part-of-speech tagger in order to find out what kind of
part-of-speech a certain word in the phrase has. This simplifies the query translation
and resource recognition.

1.4 BROCCOLI

1.4.1 Definition & functionality

BROCCOLI [2] is the semantic search engine which has been developed by the
chair of algorithms at the University of Freiburg. It is the successor of SUSI [6].
The combination of traditional full text search and ontology search together with
its user interface provides a search application of its own kind. They use a modified
version of the freebase ontology[3]. And for the text search part the english wikipedia
is used. The search process works with four kinds of search elements:

• word

• class

• instance

• relation

Classes, instances and relations are used for the ontology search part, whereas the
regular words are used for the text search part. There is a special kind of relation
named co-occurs with which is used for the words element.
We will use the formerly mentioned elements in order to build a query. Such a query
can be described as a tree, which uses the relations as arcs and an optional set of
these elements as nodes. That tree will have a single root node which can have

3

arcs that only point away from the root node. This allows the user to query in an
intuitive and easy way due to visual feedback.

In this application if one builds a query with only one element, e.g. the “film”
class, then instances that are films will retrieved. This implies that classes can be
regarded as sets of instances. These classes may have superclasses which denotes a
hierarchy of classes1. A member of the “computer scientist” class is also a member
of the “person” class unless intelligent non-humans lived on earth. Suppose we have
this set of instances and would only like to query certain instances, e.g. instances
of the class film, that are from a certain genre. Then we can add another search
element to the query tree which in this case is the relation “genre”. If one wants to
query for “fantasy” films, then she/he can add the “fantasy” instance to the query
tree. This search element combination can be regarded as an instance filter, which
only allows film instances that are related to the “fantasy” relation. The query
construction and the user interface are presented later on.

1.4.2 Semantic Full-Text Search

The analysis of web search query logs showed that most highly correlated items are
constituents of phrases[10]. Thus regarding search words as parts of phrases may
increase the quality of a search engine. Therefore the following described approach
of BROCCOLI solves this problem.

In order to use the text search natural language processing has been done in the pre-
processing step. For improvement of the quality sentence constituent identification,
which is the decomposition of the sentence, is applied. It helps to find the context
of the words. In this way the document of an instance(rhubarb in this case) like

“The usable parts of rhubarb, a plant from the Polygonaceae family,
are the medicinally used roots and the edible stalks, however its leaves
are toxic.”

which has been adapted from the paper about our system [2] will not return a
matching context for the keywords ,,plants with edible leaves”. This can be regarded
as semantic interpretation. As a result the interpretation solves the problem of
missing relations inside the ontology. The co-occurs with-relation can be used to
simulate a relation with a class or an instance.

1.4.3 User Interface & query construction

For deeper understanding of the keyword translation the introduction of the user
interface is inevitable. Figure 1.1 reflects the user interface of BROCCOLI . The
boxes are color coded. Each color code represents one of the previously mentioned
search elements. The red elements refer to a class, blue elements refer to an instance
and green elements refer to a relation. The yellowish elements refer to the word-
elements. An instance can also be a value which is handy if one wants to find people
with a small height. Here one can see a constructed example query.

1 This is called a taxonomy.

4

Figure 1.1: The BROCCOLI user interface is shown. The user interface is divided
into four boxes. These boxes are numbered. The box (1) is the input field
which allows keyboard input. Box (2) is the query panel which visualizes
the current query. Box (3) shows boxes which propose possible search
elements, that can be used to refine the query. The proposals update
according to the keyboard input of the input field. Box number (4)
depicts the actual results of the query.

The interface consists of:

1. Input Field : Here the user can either type in the strings she/he wants to
find a single search element for or the whole keyword query.

2. Query Panel : This panel helps the user to monitor his own query. It depicts
the dependencies of the single search elements. As soon as the query tree
consists of at least one node the query has one active node. It is also possible
to mark an element that is not the active node as the active element. From
this active node on the query construction will be resumed. In Figure 1.1 the
active element is the class named “Film”, which is depicted by the black
frame around the red box, that is labeled with “Film”. And one can remove
or manipulate single search elements if desired.

3. Proposal Boxes : Here proposals of search elements are shown. These
proposals incorporate the current query of the active search element and the
input which has been typed in by the user into the formerly mentioned input
field.

4. Hits Area : The actual query results that are returned. Links to their
freebase page, a picture if it is given and an excerpt of their corresponding

5

wikipedia documents are shown. These excerpts contain highlighted words
which refer to the semantic context of the word search element via sentence
decomposition.

The user interface has a clear design. A lot of possibilities to refine queries are offered
as well. It supports visual feedback via breadcrumb panel. The facet-like box will
help choosing the right elements and there is a single text input field which will
provide the users input string to the keyword translator. For further investigation
one can find the master’s thesis from which the UI emerged in [4].

1.5 Structure

Chapter 1:
The main line of attack, semantic relations and applications that will help
throughout the translation process have been introduced and BROCCOLI,
its user interface and an example query have been shown.

Chapter 2:
Related work will be presented and compared to our work.

Chapter 3:
The actual keyword translator is introduced. The problems and how the attack
of line is turned into an algorithm are described.

Chapter 4:
Theoretical analysis and an evaluation has been done here. Quality and run-
time are measured and discussed. And the obvious high level approaches for
solving our problem are described and compared to our approach.

Chapter 5:
Open ends and the amount of time implementing them are listed and a personal
conclusion finalizes this work.

6

2. Related Work

In this section, other works dealing with the problems occurring within the scope of
this thesis will be demonstrated and compared to this work. Thus this section will
additionally define this thesis.

SPARK [14] is a semantic search system that offered an automatic translation of
keyword queries into SPARQL1 queries. In order to keep a consistent terminology,
the technical terms used by the developers are stated and then explained. Their
formal query construction module uses three major steps, that will be presented in
the following. They call these steps: term mapping, query graph construction and
query ranking.
The first step of the formal query construction module, called term mapping, is
about assigning of terms, which were extracted from the input string, to the ontol-
ogy resources. Such an ontology resource can pertain to the following types: class,
instance, property or literal. For further simplification, literals will be treated as
instances. Regarding morphological similarity of used terms via stemming, edit dis-
tance and semantic similarity via the application of thesauri like WordNet,[7] will
increase the number of results. Zhou’s Paper[14] mentions a vocabulary gap and a
lack of relation. The vocabulary gap is the user’s absence of knowledge about the
exact names of the ontology resources. In order to consider the distinctions of direct
mapping and semantic mapping, the direct one will have a higher rating. Probabil-
ities are used for the rating. The lack of relation problem occurs when given the
keyword query only non-relation mappings are found.
The second step of the formal query construction module called query graph con-
struction is about collecting all combinations of possible resources. The sets in which
they are collected only consists of mappings where each term has only been mapped
once. Now the mappings, which are ontology resources, can be represented as nodes
and arcs of a graph. The minimum spanning tree algorithm is deployed on these
sets and afterwards SPARQL code is generated.
Finally the third step of the formal query construction module called query ranking
is using a probabilistic model. The queries will be ranked with the help of Baye’s
formula.
Obviously, a keyword query translation depends on the input-string. This is where
the term mapping is employed. Also morphological and semantic mapping is used
for finding the matches. Graph construction and some ranking is also done but
will be presented in chapter 3. By analogy, similar steps as the three elementary
steps of the SPARK translator are performed in our work. But they are not used
as three elementary steps, which are processed in series within the pipeline. For

1 SPARQL is a query language for RDF. RDF stands for Resource Description Framework[13].
RDF is used in order to specify Metadata. The specification enables logical inference.

7

BROCCOLI these three major steps of the SPARK translator are used iteratively
and in an intertwined way. First all possible classes will be collected. Then for
each of these classes the non-used words are mapped onto relations and instances.
Throughout the mapping, morphological and semantic similarity is also considered.

In the following, we will refer to a more recently designed search engine system called
SEMSEARCHPRO [12]. Their system supports features called keyword translation,
query visualisation and query refinement. By analogy these features are also sup-
ported by BROCCOLI. Concerning the keyword translation of SEMSEARCHPRO
three steps should be mentioned: construction of the query space, top-k query graph
exploration and query graph ranking. The keyword translator we use is working in
a similar way if the user wants to query the instances of a certain class. The query
space is constructed based on morphologically or semantially matching keywords. If
the second translation step is transferred onto BROCCOLI , then finding the top
queries would contain some ranking. The results are ranked e.g. by the number of
words matched and the BROCCOLI proposal-hit-count. The application of graph
exploration onto queries makes this step expensive compared to the first and the
third one. The proof for that is found in the theoretical analysis 4.1. Our translator
returns a list of queries which went through ranking.

There is also an approach for keyword search over relational databases [5]. They
use weighted scores for the ranking considering synonyms, hyponyms, hypernyms
or high similarity of words. BROCCOLI also works with synonyms, hypernyms
and words which occur in the description of the used word, for which we searched
the synonym. Eventually one can type in “born” for the relation “date of birth” or
“place of birth”. BROCCOLI uses the synonym if a relation is found and a value
or an instance can be attached to it, which corresponds to adjacent terms of the
word we find a synonym for. Using this approach combinations of the root class, a
relation and an instance or a value can be found, which corresponds to the user’s
input, which makes them probable.

The well known and minimalistic search application by GOOGLE also uses se-
mantic web features. It is possible to query an instance like “Bob Dylan” and a
relation like “songs” via keyword translation. Obviously, the keyword input for the
previously mentioned query has been something like “bob dylan songs” or “songs
bob dylan”. Eventually a list of songs by Bob Dylan is retrieved. This is a straight
and simple query which might be handy for the user and is also supported with our
keyword translator.

Comparing related works and our work revealed common traits and distinctive traits
that have been highlighted. The most defining trait of the BROCCOLI system is
the use of the word search elements. The next chapter will introduce our own
translation approach.

8

3. Keyword Translation

3.1 Initial point

The actual translation is the projection of the input string onto the internal query
supported by BROCCOLI. The mapping of the input string onto the search query
will be described in the following.

“films by steven spielberg” 7→ Film directed-by Steven Spielberg

The colored nodes depict an internal query(query tree). Defining the logics or the
algorithm of this mapping is the actual task. Because given the internal query,
Broccoli will return hits belonging to instances which fit to the query. These hits
will appear as shown in Figure 1.1, which can be found in the first chapter. In the
case of this example, obviously only films directed by Steven Spielberg will be listed.

A simplified structure of the BROCCOLI-User-Interaction system, in the case of
keyword translation, will be shown in the following. Figure 3.1 represents a block
diagram of the system. The components are user, UI, keyword translator, communi-
cator and resource container. The user formulates a query in form of English words.
These words build the input string which is sent to the UI. The UI passes the input
string to the keyword translator. There the input string is processed. By splitting
the input string into the occurring terms that are separated by a space a set of
terms can be extracted. Furthermore the base form and alternate forms for each
term in the extracted set of terms have also been derived throughout the processing.
All these derived expressions will potentially be compared to the resources of the
resource container. In order to do this the functionality of the communicator is
used. Later this will be presented as the “semantic mapping”. The keyword trans-
lator passes a string of a derived expression and a query to the communicator. The
communicator processes the given string and query in order to ask the resource con-
tainer for proposals. When the resource container provides the proposed resources,
it considers the current query tree sent by the keyword translator to the communi-
cator. The communicator parses the data, which will eventually become the list of
proposals, from the resource container so that it can make the proposals available
for the keyword translator. The mechanism used for comparing the derived terms
with the resources in respect to given query trees is applied iteratively for each of
the derived words. In this way a query tree may grow and can be sent to the UI so
that the user can extract the result.

9

In the case of a user manually constructing the query tree via the UI, the UI com-
ponent is directly connected to the communicator and the keyword translator box
can be skipped.

User
User
Interface

Keyword Translator

Communicator
Resource
Container

Figure 3.1: Block diagram of the system. The system consists of the user, the UI,
the keyword translator, the communicator and the resource container.
The user sends a string that is composed of keywords or is a phrase
to the UI. The UI sends the string to the keyword translator. The
keyword translator derives terms from the input string and sends them
to the communicator where these terms are processed. The resource
container responds to the communicator via provision of data which
is parsed by the communicator. Eventually resources will be returned
to the keyword translator. There the resources are integrated into the
query if possible. This is done iteratively for each of the derived terms.
Then after constructing possible queries, they will be returned to the
user via the UI.

The final query tree should represent the input string in a “meaningful” way. If it
is desired only to use keywords in comparison to natural language, even then some
interpretation in reference to the keywords shall be done. Florian Bäurle, the
advisor of this thesis, provided the functions for the communicator part. He also
implemented the whole UI[4].

3.2 General problems with language

A problem-oriented section will start now because these were the problems which we
faced while developing the translator. Some problems may be related to each other
but within our frame of reference we will state them independently. Firstly, general
problems in context of language and communication are mentioned, then resource
oriented problems are presented.

We have to think about the general ambiguity of language within phrases or key-
words, even if it describes what the author of this phrase thought of. For example
a possible input string

“penalty for fighting dogs”

in which the “fighting dogs” may refer to: fighting with dogs, dogs that fight other
dogs or a wild rock band. In fact it could refer to any thing,thought or idea that is
named after it.

10

One additional problem which is inferred by the example is the missing predicate.
In most cases a correct sentence consists of a subject, a predicate and optionally an
object. The use of single keywords is a sort of casual language. If the user from the
example wanted to know which penalty one should expect for keeping or training
hunting dogs, then the predicate is missing. Syntactic and semantic ambiguity may
be nice in arts but is a major problem for semantic search.

From the view of a communication scientist the user is the encoder of his mes-
sage and the keyword translator is the decoder of the message[9]. They say that
external noise is added to the message, which can be ignored in this case due to
digital technology. But in Rusch’s book[9] it is mentioned that individual actions
and the intelligence of encoder and decoder will make things more complicated. The
problem of interpretation is of subjective nature.

3.3 Resource oriented problems

The main resource we work with is the bag of search elements given by BROCCOLI.
Starting from the input string, then communicating with the backend(feedback by
the resource container) to retrieve the search elements will display the following
problems:

3.3.1 Ambiguous mapping

The input string entered by the user could be the name of an instance, e.g. the title
of a book. At the same time it could be mapped to a class-relation-instance query.
For the string “arab states of the persian gulf” the backend finds an instance. One
may try to decompose the query into some sort of location class and try to find
instances for the unmapped words. If no proper instances can be found, then we
can use a word node. Here the two possible queries are shown:

• Arab states of the persian gulf

• Country occurs-with arab* persian gulf

One approach to solve these problems is to process various possible interpretations
which leads to increased runtime.
Suppose the user queries “films directed by Francis Ford”. The resource container
of the BROCCOLI system does support the following queries:

• Film directed-by Francis Ford

• Film directed-by Francis Ford Coppola

We have to wonder whether the well known Francis Ford Coppola is the right in-
stance or the actor Francis Ford who was born in the century before Coppola has
been conceived. Now the query has to be ranked. Different metrics can be used.
One would be the score provided by BROCCOLI . It uses the term frequency[2].
This would represent the general popularity of the strings concerning the documents.
Another metric would be the conformity of the substrings, which is good assuming
the user utilizes the exact terms of the instances in the ontology.

11

3.3.2 Missing relation

This problem may be on hand of the input string or it may be on hand of the on-
tology meaning that no direct relation between the root node and the instance can
be found. The missing relation problem due to the input string exist in the “film
by steven spielberg” example. The predicate is missing. A naive approach for this
problem would be to try the available relations and check whether an instance called
“Steven Spielberg” is found, if yes then add this relation to the query tree. Although
the naive approach is guessing it does work in many cases, because the proposals are
sorted by the Broccoli score, so the more popular relations are the relations which
are tested first. The missing relation on hand of the ontology, meaning that not a
single relation pointing from the root node to the instance is also a hard challenge.
Except for the usage of brute force either one will create a search element of the
type word and save the effort of using any further backend operations or one will
try to apply an instance-oriented approach. This approach aims to find the instance
independently from the relation and tries to find an indirect relation. E.g., consider
the input strings “female computer scientist” and “apollo astronauts”. The query
trees would appear as below:

• Astronaut space mission Event space program Apollo Program (Q1-3.3.2)

• Computer Scientist gender female

Regard the query tree Q1-3.3.2 . The constructed query consists of only four search
elements. These are “Astronaut”, “space mission”, “space program” and the “apollo
program”. The “Event” element has not to be added. The logic of the backend takes
care of it. While constructing the query an abstract class element has been added
to the query tree. It is labeled with “Entity”. It represents a set of possible classes.
If via further containment, which means adding relations and so on to the query
tree, a single class can be found that the queried instances belong to, then it will
substitute the “Entity” class element.
Solving the issue of missing relation is a way to transfer the concept of fuzzy search
for words to semantic search because the predicate has to be inferred. If a lot of
relations have to be inferred it may lead to an increase of runtime.

3.3.3 Dealing with stop words

We process keywords and partially natural language. In order to do this we remove
the stop words and only regard the leftover words. In this way less backend commu-
nication is done. E.g. finding the instance called “system of a down”(Band) would
be then about mapping “system down” to the wanted instance. If the instance can-
not be queried with “system down” we reverse the order of the terms which would
be “down system”.

One problem is about deciding which occurring words are stop words. If they do
not provide information then we can ignore them. But if the input string of the user
utilizes the syntax of natural language then it might be helpful to use these words.
They can imply a delimiter for predicates or objects in a sentence. On the other

12

hand, if they are contained in the string of an instance, then stop words should not
be treated as a delimiter. The instances “System of a down” and “The Who” would
be hard to find.

3.3.4 Different vocabulary

This problem mainly occurs when mapping words to classes or relations. The user
does not have to know in advance how a certain relation or class is named. E.g. if
the user wants to find the class “soccer players” , but the class in the ontology that
fits to “soccer player” is called “football player”, then different vocabulary has been
utilized. Using a thesaurus could be useful. Thus we make use of the (Princeton)
WordNet. We only use it for class names and relation names because for instance
names synonyms are hardly used. The names of instances are more robust due to
the fact that proper nouns are often used for them.

Finding a synonym for the word which should be mapped to a class is mostly
easy. The WordNet API allows an easy retrieval of synonyms for words.Then these
synonyms will be used to collect possible classes.

A more interesting approach is used when it is about finding the right vocabulary
for the relations. Suppose the input string passed by the user is “astronaut born
1925-1930”. And the class named “astronaut” has already been detected. Then the
leftover substrings are “born” and “1925-1930”. What we simply do is counting.
We check the substring “born” in WordNet and collect all the words of the first
two synonym sets and their description. Words like “give”, “birth” and “bear” are
listed. Then the top-k relations, where k is an arbitrary number, of the “astronaut”
class are obtaining a point for each word of the former collected words they contain.
A threshold is set relative to the highest number of collected points. Then only the
relations above this threshold are stored and assigned to the users substring. In
our example “born” is mapped to “date of birth” and “place of birth”. Then the
query construction continues. The leftover substring is “1925-1930”. Now the two
relations are queried in combination with “1925-1930”. Now the type of instance
that is expected for the “date of birth” relation and the “place of birth” relation is
checked. In this way the “date of birth” relation will be confirmed and the mapping
is done successfully. Although this easy approach is simply counting, it works quite
well to some extend because WordNet already gathered semantically related infor-
mation and because of the previously mentioned confirmation of the mapping. This
will be explained in the following chapter.

3.4 Algorithm

This section will reveal the actual keyword translation algorithm. The root node of
a query tree either has to be an instance or a class. This implies that there are only
two kinds of queries. Therefore the algorithm is separated into two parts. The two
parts are named “instance as root”(IAR) query and the “class as root”(CAR) query.

At the beginning we prepare the user input string. It will be formatted, filtered,
trimmed and split. Another static adjustment of the input string is the replacement

13

of certain words at a certain position. This enables us to process queries that have
an interrogative structure. The question “Where is Claude Debussy born?” is an
example for that. The word “where” as the first word in the input string will be
exchanged for the word “location” which is the name of a frequently used class.
Also the word “who” as the first term in the input string will be replaced by the
word “person” which is the name of a frequently used class. These adjustments are
hard coded just to be able to process interrogative clauses. The two parts of the
algorithm are working with the result of the string preprocessing.

3.4.1 Instance as root

The task of this part of the algorithm is to return a query with an instance as the
root node.
We simply try to map the words to instances and compare their substrings. If the
user queries “angela merkel spouse”, an instance “angela merkel” will be found. But
it is possible to find several instances. For each of these instances we proceed as
follows. We try to map the words that have not been used to find the instance onto
a relation. If in this way all leftover words have been consumed the IAR query has
been constructed successfully. The query trees for the input strings “angela merkel
spouse” and “rhine length” are:

• Angela merkel spouse (Q1-3.4.1)

• Rhine length (Q2-3.4.1)

The query tree (Q1-3.4.1) points to other instances that belong to the class ”Per-
son”. Whereas (Q2-3.4.1) points to an instance of the type value. An instance of
the type value can be compared by the backend.
If such a query could not be constructed, then the (CAR) query is executed. The
class-as-root part of the algorithm will be presented in the following.

3.4.2 Class as root

This kind of query consists of a class as the root node of the query tree. The query
tree has instances, that are are connected to a relation, as its leaves. We will show
the functionality of the algorithm by the example of the user input:

“female computer scientist born in >=1970” (E1-3.4.2)

The tasks we have to cope with are done in succession. They are described in the
following:

Finding of possible classes:
We start with a natural language approach. Usually the structure of a sentence
is subject-predicate-object. So we assume that the class can be found within
the first few words of the input string. The part-of-speech tagger helps us to
find the first occurring word that is neither a noun nor an adjective. We use
the found string as a separator to regard all the leading words as legal terms
that can be mapped onto classes. With the help of WordNet we use the base

14

form of a word.

Now ranking and culling of the collected classes is done. They get a score
of +1 per leading word that matches to the class name and score of -1 per
class term that is not matching to the leading words. If several classes are
found then the top-two, evaluated by their scores, are taken. Only two are
taken in order to reduce runtime.

If no classes have been found we assume that the wrong expression for the
class has been used. In this case we apply WordNet to obtain synonyms and
collect classes for them. They will be culled and ranked in respect to the
synonyms and the leading words. The outcome of this step is a list of classes
culled into the top-two classes. Such a class will become the root node of the
query tree. These query trees potentially grow in the two following steps.

How the terms of (E1-3.4.2) have been tagged can be seen here:

(E1-3.4.2) female computer scientist born >=1970

tags(E1-3.4.2) adjective noun noun verb number

The word “born” is the separator due to the fact that it is neither an adjective
nor a noun. Then the leading string is “female computer scientist”, for which
the class “computer scientist” will be found. The stop word “in” has been
filtered.

Consumption of mapped relation-instance combinations(semantic mapping):
This is a statistical approach. For each class Ci in the set of classes(the index
i stands for the index in the set of classes, in order to differentiate the sin-
gle elements) that are found we proceed as followed. Let Wf (the index “f”
stands for “following”), be the set of words which occur after the words that
have been used for the mapping of Ci. We aim to map words to relations,
on the condition that words, that are adjacent to relation-mapped word, are
mapped onto an instance. The words-to-relation mapping will not only be
morphological, it will also be semantical. First all words except stop words
from the top-two synonym sets of a word Wf,i from Wf and their descriptions
are collected. Let such a collection be Ws, where “s” stands for semantic or
synonym. Add the word Wf,i to its Ws.

Then for every word of Wf we rate all possible relations of the root class
in respect to Ws. For each term in top-m relation of Ci contained in Ws the
relations rate will be increased by one. The number m is the maximum number
of relations which are checked. In other words, each relation of all relation from
Ci will have an integer rate that is greater than or equal to zero that is assigned
to a word of Wf .

If adjacent words of Wf have the same relations with scores greater than

15

zero, then they will be aggregated. In this way e.g. the two adjacent words of
a user input string “date birth” will be aggregated into one relation. This is
done in order to avoid the multiple use of the same relation.

The metric for the culling of the relations is presented in the following. Let
Scoremax be the maximum rate of all words in Wf . Collect the relations for
a word in Wf with a score greater than or equal to 75% of the highest score
of all relations for a single word in Wf and greater than Scoremax

20
. Let these

collected relevant relations be RR.
To give an intuition of the culling parameters, the score of a relation in respect
to the word which is mapped is only relevant if its value is in the range of the
highest score for the relation in respect to that word. And it is only relevant
if its value has reached a critical value compared to Scoremax. If this kind
of culling is not done, then a lot more relations have to be processed, which
would lead to a higher runtime and may decrease the quality due to misinter-
pretation. Moreover, then we could have used brute1 force in the first place.
These parameters were found empirically.

For each word Wf from which a relation in RR came let the relevant adja-
cent words be WR,A. For each of those relevant relations relation RR,i in RR

try to map words of WR,A onto instances given a query that has a Ci as the
root node and the relation RR,i connected to it.

Let us apply the algorithm for (E1). Then the set of classes would be {(C1)}.
Therefore we have only one class C1, where C1 is: Computer Scientist . Wf is

{“born”,“>=1970”}. The Ws for “born” is {“born”, “bear”, “give”, “birth”,
“deliver” , “birth”}. WordNet provided these words. The Ws for “>=1970”
can be neglected due to the fact that WordNet did not find words for it. Here
we denote the list of relations that can be found for our class C1 and their
scores for each of the words in Wf :

• Profession CB
Wf “born” “>= 1970”

scores 0 0

• Gender CB
Wf “born” “>= 1970”

scores 0 0

• Country of Nationality CB
Wf “born” “>= 1970”

scores 0 0

• Date of birth CB
Wf “born” “>= 1970”

scores 2 0

• Place of birth CB
Wf “born” “>= 1970”

scores 2 0

•

There are more relations, but we neglect them now, because they will not
change the result. The culling occurs via comparison of the scores. Scoremax

1 Using brute force in this context means the computation of all possible outputs, given the
inputs. Depending on the problem it will lead to a solution, but will increase runtime.

16

equals two. Hence relations like Profession will be removed. Now the set of

relevant relations RR that were mapped by the word “born” is { Place of birth ,

Date of birth }. The set of adjacent strings of “born” is {“>=1970”}. The
one string will be mapped onto an instance of the type value in respect to the
relevant relation and its class. Thus it fits to the Date of birth relation. All
the strings of Wf have been consumed. The intermediate query would be:

Computer Scientist date of birth >= 1970

The semantic mapping of the relations via WordNet vocabularies is only work-
ing in combination with the mapping of the words that are adjacent to the
words that were used to find the relation onto instances. This can be seen as
a confirmation of a successful mapping.

Inference of relations via instance mapping:
The idea of overcoming this task is to map the leading words and the Ws, that
have not been consumed for a query, to independent instances and try to find
a connection between these instances and the root class. Finding the inde-
pendent instances will be called “instance recognition” and will be explained
later.
The search for a connection between the instances and the root class can be
time consuming, due to the fact that we do not know how many relations
are needed between the instance and the class in the query tree. This is why
we set a limit for the number of relations allowed between instance and root
class. We assume that the more relations used, the less probable it is that
they semantically belong together. The limit we chose is two, because two
relations have a reasonable distance and can be processed in reasonable time.
Another problem concerning the runtime is that we do not know how many
relations take the root class as the starting point. So we also limit the number
of relations that will be taken into account.

For our example we would map the string “female” onto the instance that
is called “female”. Now we iterate over the top-k relations that are proposed
by the backend in respect to a query with the instance female as the root

node. If there is a relation that is connecting female and Computer scientist ,
then we have inferred the relation. All words have been consumed and the
final query would look like this:

Computer Scientist date of birth >= 1970

gender female

A connection between the instance and the root class is wanted. If not a sin-
gle connecting relation can be found, then we would seek a pair of relations
that connects female and Computer scientist . On top of each of those top-k
relations we would seek the top-j relations to find the connecting pair. An ex-
ample query for this is (Q1-3.3.2) given the input string “apollo astronauts”.

17

There the pair of relations that connect the instance named “apollo program”
and the class node named “Astronauts” are shown.

Appending unmapped words:
If after the previous processing there are strings in Ws or Wf of a class Ci

found, then use the special relation called occurs-with which uses the word
search elements for text search. Currently these word search elements are
added to the root class node. One can improve this by analyzing the linguistic
structure. Thus the word search element of a word that refers to a search
element that has been found already and integrated into the query tree can
be appended to it via marking of the search element as the active node.

Evaluate multiple queries:
The result of the preceding steps is a list of query trees. The quality of such
a query tree is evaluated by the number of non-word search element nodes in
the query tree. We assume that if it is possible to map independent terms
of the input string to resources which can be combined in a low-depth query
tree. Ideally an admissible query is found after these steps. The most vital
step is the first one because finding the intended class will point into the right
direction regarding the accessibility of the resources.

3.4.3 Instance recognition

As mentioned in the inference step of the class-as-root part, instances are found
independently from a root node. The idea is to find the instances which have a
name which uses more terms before finding the instances that use less terms for
their name. Imagine someone wants to query “star wars IV”. If one tries to find
instances that have only two strings in their name before finding instances with
more than two strings in their name, then the instance called “star wars” is found
before the instance that fits better to the input string “star wars IV”. We assume
that the given class has been found and that we will process a list of strings which
has no stop words like “a”, “the” and “of”.

Four stages are used. Suppose k is any number that is not greater than the num-
ber of all strings that is in the list that is being processed. The first stage uses all
occurring units of k adjacent strings respecting their order in the list. We use these
units only to point the ranking of the proposals in the right direction. What we
do next is to obtain an arbitrary number j of proposals for a unit. Now we only
regard the instances that have at least k + 1 strings in their name. Then each of
these instances will be rated with a score. That score will be incremented by one
if a string of the instance name is contained in the list of strings that we process.
After that we remember whether the string has already been used, so that the score

18

is only incremented once for every occurrence in both the list and the strings of the
instance. Then we only regard the instances with a score greater than k. Out of
these instances we will regard the instances with the highest occurring score. Out
of these highest scoring instances we will only regard the instances with the least
number of strings in their name. Then we pick the first element of this selection,
that represents the instance with the highest priority by the backend. In our exam-
ple the list of words that we process is “star wars IV”, k equals two and j equals
13. The first unit is “star wars”. The 13 proposals for this unit that are sent by the
backend are:

• Star Wars

• Star Wars The Old Republic

• Star Wars Episode I The Phantom Menace

• Star Wars Episode IV A New Hope

• Star Wars Episode III Revenge of the Sith

• Star Wars Episode VI Return of the Jedi

• Star Wars Knights of the Old Republic

• Star Wars Galaxies

• Star Wars Episode II Attack of the Clones

• Star Wars The Clone Wars

• Kinect Star Wars

• Star Wars The Force Unleashed

• Star Wars Episode V The Empire Strikes Back

The first proposal can be neglected, because it has less than k + 1 strings. Then
after rating the other instances we have the instance with the highest score and that
has a score greater than two, which is called “Star Wars Episode IV A new hope”.
Now all the strings that have been used for the ranking are removed from the list
that we process. If no match would have been found for the unit ”star wars” then
the next unit would have been “wars IV”.

Now we assume that all the instances with names consisting of at least k+ 1 strings
are found. The second stage is about using k adjacent strings, in respect to their
order in the list, to find instances with exactly k strings in their name.
The proposals of the backend are sensitive to the order of the strings that are typed
in. If k equals two, which is used in our program, then the third stage uses units of
two adjacent words but in reversed order. Then we will take the top proposal that
has less than five strings in its name as the mapping. Although this stage allows
the usage of instances with more than k(equals two in our work) it is there to map

19

two words onto instances with two words in their name. The reason for that is that
we filtered the stop words before processing the list. Consider a user wants to find
instances named “System of a Down”, “Simon and Garfunkel” or “Church of Ire-
land”. The filtering of stop words will return the lists “System”, “Down”, “Simon”,
“Garfunkel” and “Church”, “Ireland”. Then the reversed order of these strings will
help us find these instances.

The last stage uses units of single strings. They are mapped to instances with
one or two strings in their name.

We could also try to use a brute-force approach which would be the usage of units
that represent all combinations of the strings. But for performance reasons we use
these units of k strings.

The algorithm of the keyword translation has been presented by an example. The
next chapter is the analysis of the work.

20

4. Analysis

4.1 Theoretical analysis

4.1.1 Analyzing instance and class recognition

Suppose that we have t terms within the input string. The number of operations
needed for the class recognition is asymptotically the same as the number of opera-
tions needed for the instance recognition. This holds true because both steps iterate
a constant number of times over all t terms which means that it is in O(k · t) where
k is an arbitrary constant and stands for the number of substeps in the recognition
algorithm. For example, one of those substeps in the instance recognition algorithm
is the finding of instances which have a name consisting of more than two terms.
The constant k can be neglected asymptotically indicating that the recognition steps
are in O(t).

4.1.2 Analyzing the inference of relations

For this analysis a single query construction process with given instances and root
node has been assumed. Suppose a query is given which has a class as the root node.
If the user input string does not contain information on the relation between the
instance and the root class, then it may be that more than one relation is necessary
in order to connect the instance and the root class. Whether such a connecting path
exists depends on the completeness of the used ontology. But for now assume that
the target instance and the root class are contained in the same connected compo-
nent. Furthermore assume that each node of the tree except the leaves will branch
out into n nodes.

Then the number of operations needed to find the connecting path is in O(nd),
where d is the depth of the tree. This is why we limited d in our algorithm. The
depth d is only two because we assume that with a higher d the semantic meaning-
fulness of the resulting query will decrease.

root
...

1

...

n

1

...

...

n

The running time of finding a connecting path highly depends on the taxonomy
of the ontology. The reason for that will be presented in the following. Consider

21

the user enters an input string which contains the class and the instances the user
thought of. If the ontology does not contain a directly connecting relation between
those, then the distance of the connecting path increases. Hence the distance is the
depth of the tree, the number of operations also increases.

This chapter stated the theoretical problems of performance. The next section will
consist of an evaluation of the algorithm.

4.2 Empirical analysis

4.2.1 Problems

An element of scientific work is the evaluation. Evaluating the translation is not
trivial. There is no “ground truth” for the queries and we cannot use the commonly
used metrics: precision and recall. Hence, one has to face different problems when
building a query tree:

1. Coverage of the data the user wants to find.

2. Consistent taxonomy.

3. Several ways to construct a query tree that returns hits that satisfy the user’s
request.

The first problem is about whether the classes and instances do exist in the ontol-
ogy. Not all instances that should be returned by a query do exist. In one case the
second problem is apparent when direct relations between the resources are missing.
Then word search elements can help or sometimes more relations between the target
resources are necessary. In another hand the second problem is apparent when in-
stances do not belong to classes they should belong to. The first and second problem
are dependent on the ontology. The third problem is about the fact that a query
is adjustable even if a certain relation is missing. This adjustment is done via the
word search elements. If they are used, then one has to think of which strings are
used for the search element.

These problems of building a query tree which satisfies the user’s query, lead to
a highly dynamic behavior when a user utilizes the manual query construction.

4.2.2 Evaluation setup

This subsection is about how the translations are measured. A result is determined
by comparing the manually constructed query and the translated one. In order to
compare the quality of a result, manually constructed queries have been made to
the best of our knowledge and belief.

The data set used for testing is comprised of 50 input strings from the SemSearch
Benchmark[1]. Some of their queries contain names of instances spelled in a slightly
different way than the names used for these instances in the ontology. These spelling

22

mistakes have been adjusted while testing. This adjustment occurred to SemSearch-
21, for which the name ”Lilli Allen” has been changed to ”Lili Allen” and SemSearch-
48, for which the name ”Jackie Weaver” has been changed to ”Jacki Weaver”. The
table of the manually constructed queries and the translated queries can be found
in Appendix A . The first line of an entry contains the query identifier and the
input string. The second line shows the translated query and the third line shows
the manually constructed query. Remarks are found in the fourth line. Whether
the query input has been adjusted is denoted in the remark line of the table. The
benchmark inputs are classified into three types:

Optimal These results are in accordance with their manual and translated query.

Sufficient These results return similar hits for their manual and translated query.

Insufficient These results do not return similar hits for their manual and trans-
lated query.

Impossible No manual query could be constructed for this input.

The input queries that are of the type “impossible” will be neglected, because of
limited resources. But even for query inputs that are classified as impossible, the
translated query, if it exists, can be found in the appendix.

Let N be the total number of queries minus the number of impossible ones. Let
NO be the number of results that are classified as optimal. Let NS be the number
of results that are classified as sufficient. Let NI be the number of results that are
classified as insufficient. Then we use the following performance metrics:

O-to-N ratio =
NO

N

OS-to-N ratio =
NO + NS

N

I-to-N ratio =
NI

N

The finding of the right root node can be used as the metric for a sufficient result,
because the hits returned in the end are utterly dependent to the root node. But in
this case we use the finding of a query tree that returns similar or nearly the same
results as the manual constructed query tree. The next subsection will present the
performance of the translation.

4.2.3 Quality & runtime performance

First, the quality performance is presented. The manual query construction of the
SemSearch query inputs has not been possible in eight cases. After the assignment of
results to the different types the results are aggregated into the following parameters:

NO NS NI N
14 7 21 42

23

The values of the formerly defined metrics are:

O-to-Nratio OS-to-N ratio I-to-N ratio
0.3333 0.5 0.5

The O-to-Nratio states that 33.33% of the translations are optimal. The OS-to-N ratio
states that 50% of the translations are admissible. In this context “admissible”
means that the manual and the translated query return nearly the hits. The
I-to-N ratio states that 50% of the queries either could not be translated prop-
erly or could not be translated at all. The reasons for that will be discussed in the
next subsection 4.2.4 .

Another target that was measured is the runtime of the translations. The program
was executed on a local machine. Peaks of several hundred milliseconds for one
backend operations occurred. Another cause of increased runtime may be the use
of this specific part-of-speech tagger. The main specifications of the used machine
are: 4GB RAM, Intel(R) Core(TM) i3-2310M CPU @ 2.10GHz. The download rate
is 149.148 kbits/s and the upload rate is 15.574 kbits/s. The provider is MyWire.

All translations have been executed three times. Then the arithmetic mean of the
three values is the value that has been used as the runtime for that translation. The
arithmetic mean of the runtime of all translations that have been measured is 4.18
seconds. This runtime is higher than expected. There are several reasons for that.
The runtime of a translation that led to a IAR query tree is always lower than the
runtime for the translations that led to a CAR query. The reason for this is because
the IAR part of the algorithm is executed before the CAR part. Another reason
for increased runtime occurs when using synonym mapping in order to find the root
class. Then for each of the words that are used as semantically related words of the
used terms that are contained in the input string a backend communication oper-
ation will be done. Another reason for this occurrence is due to the necessity of a
large number of operations in order to compute a pair of relations which connects
the root node and an instance.

4.2.4 Discussion of the quality performance

There are different reasons for the translation failure of certain queries. Some prob-
lems may overlap with each other, but still they will be presented as they are,
because they can be regarded as adequate samples of their kind of problem. Several
reasons and a solution for their problem will be presented.

The first reason is that no semantic mapping is done if the morphological string
mapping of the leading words is successful. This explains why the translation for
the input string of SemSearch-4(“Axis powers ...”) , SemSearch-9(“Degrees of ..”)
and SemSearch-17(“Houses ...”) has failed. There are classes that are named “Axis”
and “Degree”. Hence they are chosen as the root node. More feedback from the
backend or a stronger use of WordNet(semantic mapping) could be used to avoid
this failure. Using more feedback from the backend means, in one case, that we
detect that the query returns no instances and so on. Then the root node can be

24

discarded and a new approach can be used. One new approach would be the usage
of a highly abstract class as the class named “Topic”. Then appending the exact
input string as a word search element via an “occurs-with” relation may return
instances. Then an arbitrary number of the top instances can be analyzed by its
class. If most of these instances are from one class it may be the wanted class. For
SemSearch-4(“Axis powers ...”) this approach would find the class called “Country”
as the most likely class. This may increase the runtime. This exact same approach
would work with the input string of SemSearch-50(“Wonders of the ancient World”).
Then the most likely class would be the class called “Location”. The input strings
of SemSearch-4, SemSearch-9, SemSearch-50, SemSearch-22(“major league...”) and
SemSearch-41(“four of the companions of the prophet”) have in common that they
consist of specific expressions that are often used in its arrangement and that do
not necessarily denote a class node that fits. Hence the usage of the word search
element will solve the problem.

The second reason is that the semantic mapping for the root class is only performed
via the usage of hypernyms and synonyms of individual words. And each word is
processed individually. Hence they do not affect each other. Consider the input
SemSearch-19(“Kenya’s Captain...”) where the semantic mapping of “Kenya” is re-
sponsible for finding a class that contains “republic”. Consider the input SemSearch-
22(“Major league...”) where this phenomenon also occurs. Only the semantic map-
ping of “league” that is responsible for finding a class that contains “conference”.
Aggregated semantic mapping may be necessary. Rating class proposals for the
occurrence of synonyms, hypernyms and other related words of the words that are
mapped and then aggregating the rating for same topics would be the approach.
This might solve the problem of mapping the input SemSearch-24(“tv series ... ”)
onto the class named “TV Program”.

The third reason is that the morphological mapping is not efficient enough or that
semantic information about the other instances that are mentioned is not used.
Consider the input of SemSearch-32(“Presidents depicted on mount rushmore...“).
Either the president may be mapped morphologically onto the class named “US
President” or the instance called “Mount Rushmore” is used for finding the class
named “US President”. Another way would be the usage of WordNet that has in-
formation about Mount Rushmore and who is carved in it. There are multiple ways
to solve this.

The fourth reason is that the analytic approach for finding the subject is prone to er-
rors. Consider the input of SemSearch-41(“four of the companions of the prophet”).
Here the approach cuts the words after the first “of” away and tries to find a class for
the leading words. Either a more sophisticated use of natural language processing
may help here or an independent search for resources in respect to the order of the
words may solve the problem.

25

The fifth reason is that the consumption of the relations does not use semantic map-
ping processing for the instance-as-root queries. Consider the inputs of SemSearch-
18(“John Lennon, parents”), SemSearch-21(“Lilli Allen parents”) and SemSearch-
23(“Manfred von Richthofen parents”). In these three cases the “parents” should be
mapped onto the relation named “Children(reversed)”. The “(reversed)” in a rela-
tion implies a logical negation of it. In case a reversed relation is used the antonym
of a word should be used for the mapping.
Now consider the input of SemSearch-48(“who has jackie weaver been married to”).
The relation for “married to” is called “Spouse(or domestic partner)”. To solve this
related terms for the terms of each relation has to be looked up and compared to
the related terms of the words that are being mapped.

The sixth reason is that conjunction words are not processed in a logical way. Con-
sider the input of SemSearch-15(“Henry II’s brothers and sisters”) or SemSearch-
33(“Provinces and territories ...”). Here we seek terms that describe several in-
dividual words that occur in the conjunction with a single idea or concept. The
intersection of more abstract hypernyms of the individual words that are the targets
of the conjunction will solve the problem. This step should be at the beginning of
the class-as-root part of the algorithm.

The seventh reason is that no acronym recognition is done for the common acronyms.
This problem occurs when translating the input of SemSearch-31(“permanent mem-
bers of the UN Security Council”) or SemSearch-7(“Branches of the US military”).
Looking up the acronym in WordNet would be a possible solution. If there are
several possibilities for mapping the acronyms then obtaining feedback from the on-
tology with word search elements can be used.

The eighth problem occurs if semantic mapping is needed in order to find the root
for a class-as-root query. Consider the inputs of SemSearch-7(“Branches of the...”),
SemSearch-12(“First targets ...”) and SemSearch16(“Hijackers ...”). Right now di-
rect hypernyms are used for the semantic mapping. The usage of more abstract
hypernyms will solve the problem.

Another problem that can be solved via data feedback refers to the word search
elements way of working . A lot of natural language processing is done in order to
consider the context of words in a phrase when using word search elements. This
implies that the precise use of words in a word search element may have a dras-
tic effect on the hits that will be displayed by the backend. Consider the input of
SemSearch-12(“First targets of the atomic bomb”). Suppose we already mapped
“target” to the class named “location”. The usage of the keywords “first target
atomic bomb” as a word search element will return different hits than the usage of
“first target nuclear bombing” as word search element. In this case the latter used
keywords will lead to the receipt of the correct hits. Suppose that the user knows for
certain which hits are wrong. If the user’s feedback is used then several translations
could be done. Synonyms and word proposals of the backend can be used. Then
the “atomic” is replaced by “nuclear”, because it is a synonym, and the backend
proposal suggests using “bombing” instead of bomb.

26

4.2.5 Comparison to other approaches

Another approach for solving the problem of keyword translation is to collect first
ontology resources independent from each other. The advantage would then be the
quality performance in case a good rating formula is used for the ramification of the
resources. The disadvantage would be increased running time. This approach is less
prone to syntax errors of the input string.

The other extreme is a rather naive approach. It is about integrating any ontol-
ogy resource that is found into the main query as soon as it is found. Less rating
has to be done and less possible query trees are qualified. The advantage of this ap-
proach is less running time. The disadvantage is a lower quality performance. This
approach may be more dependent on the syntax of the input string. The formerly
used keyword translator used this approach.

Our approach is combining both approaches to some extent. For the queries that
have a class as the root our approach is to find the words for the class mapping in
the first words which are neither nouns nor adjectives. In this way not all words
are used for the mapping and we assume a certain syntax of the input string. But
still for the inference step it is trying to find the instances independently. And the
gain of the semantic mapping of the words that are mapped onto relations is that
less relations have to be inferred due to the fact that the information about which
relation should be picked is in the input string.

27

5. Outcome

5.1 Future Work

This section is about possible improvements. The various approaches will be listed
and ordered by importance. The estimated amount of time needed to realize the
approach, if only one person is conducting the taks, is found at the end of a para-
graph.

Provide several queries

In fact, the algorithm returns a query tree for each of the classes that the mapping
found. Consider the user enters an input string that contains “football player” in the
beginning . Then it will compute queries for root classes that are named “american
football player” and “football player”. Providing both queries is a convenient way
to let the user choose which one she/he thought of. Furthermore the quality of
semantic mapping onto the relations and the inferred relations of two queries can be
monitored. The realization of this will only take a small amount of time, because
the feature only has to be integrated into the user interface. An estimation of the
required amount of time is less than a few hours.

Adjust translation pipeline to improved quality

If the pipeline starts with an accurate and efficient entity recognition step, then
the quality of the queries could be improved. Instances can have atypical names
like “the Who”(band) or“System of a Down”(band) or long names like “Star Wars
Episode IV A New Hope”. Applying natural language processing on user inputs
containing mentioned names of instances is prone to errors. Filtering common stop
words may totally remove the instance “the who”. Working with elementary stages
may increase the running time, which is why other improvement methods should
be taken into account. Some helpful improvements for this approach are also going
to be listed below. Combining this approach with the semantic mapping of the
words onto relations via WordNet, which is done in our algorithm, will prove to be
very powerful. This idea of adjusting the pipeline is based on the pipeline of the
SPARK system. Conducting this change of pipeline would require one to rewrite a
large amount of code and could potentially take several weeks

Instance recognition via offline database

E.g., WordNet stores a lot of names for instances. Recognizing instances in the
input string with offline databases would mean that less backend communication
has to be done. This would lead to the reduction of running time. Given that the

28

translation pipeline has a step where all operations that depend on the instance are
processed, realizing this will take a few hours. Otherwise it will be hard to estimate
the effort.

Apply more natural language processing

Using more natural language processing(NLP) could be helpful. It might be helpful
for resolving the references in a phrase of words like “it”(pronouns) and “and”(conjunction).
A lot of those stop words might help. Prepositions can denote relations.

A noun in combination with the by-agent may refer to a missing relation. An exam-
ple for that is “composition by Bob Dylan”. Here the predicate is missing, “made”
would roughly fit. Thus analyzing relations with WordNet may work. WordNet
would find for the relation called “composer” a derivational form of type verb, which
is “compose” and its hypernym is “make”. This is the base form of the missing pred-
icate “made”.

The article “the” can imply an instance which, for example, exists in instances
that have a name like “The Who”(Band)

The occurrence of numbers in the input string may either imply the part of an
instance name or an instance of the type value.

Whether a class or an instance is the root node of a query has to be worked out.
NLP in combination with instance recognition can help with that. A noun in combi-
nation with a by-agent in the input string may suggest that the root node is a class.
Otherwise with a pipeline that uses a certain series of stages the query recognition
may become redundant. Working on that improvement may take a few days.

How much time the realization of such a natural language processing engine takes
depends on its capabilities. For building a powerful NLP engine from scratch at
least a few weeks may be necessary.

Semantically mapped relation instance-as-root query

Our algorithm did semantic mapping of words onto relations only in the class-as-
root queries. This can also be done for instance-as-root queries. Doing this should
be precise, because for this type of query tree there will be no instance on top of
the relation that is confirming the mapping. If this improvement is implemented,
then a formula has to be developed to compare the class-as-root query and the
instance-as-root query. Implementing this may take a few days.

Using ontology feedback

The idea of this improvement is to work more closely with the proposals of BROCCOLI.
One way to do this is the use of the word search element. Suppose we have the user
input string “composition by System of a Down” and we found that “composition”
should be a class, then building a query in the document class with the rest of the
words will return an instance named “System of a Down”. This also works with

29

the input string “books of Jewish Canon”. If it is entered as a word search element
then the top instance is “Hebrew Bible” which corresponds to the input string, al-
though morphologically they look totally different. But using WordNet may find
hypernyms for “bible” in order to find out that both input strings should return the
same instance.

Without doing that the algorithm would return a query with the class named “book”
as the root node. This is actually not wrong, but a single instance may also be ex-
pected.

Implementing, testing and tuning this may take a few days.

5.2 Conclusion

The reason why a keyword translator should be used, the benefit of it, has been ex-
posed. Several non-trivial problems concerning the keyword translation have been
revealed. An algorithm which combines several approaches has been introduced as
the main core of the work. The semantic mapping has been introduced which uses
the occurrence of words that are semantically related to each other in order to find a
proper relation instance pair. It uses one expensive operation which is the retrieval
of the relations by the backend. The text processing is done offline and is rather
cheap compared to the receipt of relations by the backend. The decomposition of a
sentence in a more sophisticated way will also improve the quality of the translation.

An evaluation has been done. This brought up the problem of how to measure the
translations. After that several kind of issues that are supposed to be addressed have
been revealed. Out of that numerous ideas and approaches to solve the occurring
problems have been mentioned. I think that improvement of the class recognition
and a stronger utilization of resource feedback via search elements on the part of
the backend will cover a lot more cases. The improvement of the recognition class
would in many cases only be the use of more abstract hypernyms. They should
have a certain degree of concreteness. But research could be done about this. The
application of the resource feedback in general may also be very helpful. In fact it
may be of help in various creative ways.

The pros and cons of using the lexical database WordNet have been implied. But
the utilization of a thesaurus-like database is essential for semantic keyword trans-
lation.

30

A. Appendix: SemSearch Queries

SemSearch-1 Apollo astronauts who walked on the Moon

Translated query Astronaut Space Mission Entity Space Mission Apollo Program

occurs-with walk* moon

Manual query Astronaut Space Mission Entity Space Mission Apollo Program

occurs-with walk* moon

Remark optimal translation

SemSearch-2 Arab states of the persian gulf

Translated query Administrative Division occurs-with persian gulf

Manual query Administrative Division occurs-with arab state persian gulf

Remark sufficient translation

SemSearch-3 Astronauts who landed on the moon

Translated query Astronaut occurs-with land* moon

Manual query Astronaut occurs-with land* moon

Remark optimal translation

SemSearch-4 Axis powers of world war II

Translated query Axis occurs-with world war

Manual query Country occurs-with axis power world war II

Remark insufficient translation

SemSearch-5 Books of the jewish canon

Translated query Book occurs-with jewish canon

Manual query Book occurs-with jewish canon

Remark optimal translation

SemSearch-6 Boroughs of new york city

Translated query Administrative Division contained by New York City

Manual query Administrative Division contained by New York City

Remark optimal translation

SemSearch-7 Branches of the US military

Translated query Administrative Division occurs-with military

Manual query Organisation occurs-with united states military

Remark insufficient translation

SemSearch-8 Continents in the world

Translated query Continent occurs-with world

Manual query Continent

Remark sufficient translation

SemSearch-9 Degrees of eastern orthodox monasticism

Translated query Degree occurs-with eastern orthodox monasticism

Manual query -

Remark impossible relation

SemSearch-10 Did nicole kidman have any siblings

Translated query Nicole Kidman Sibling

Manual query Nicole Kidman Sibling

Remark optimal translation

SemSearch-11 dioceses of the church of ireland

Translated query Religious Jurisdiction Organisation Church of Ireland

Manual query Religious Jurisdiction Organisation Church of Ireland

Remark optimal translation

SemSearch-12 First targets of the atomic bomb

Translated query -

Manual query Location occurs-with first target nuclear bombing

Remark insufficient translation

SemSearch-13 five great epics of Tamil literature

Translated query -

Manual query -

Remark impossible relation

SemSearch-14 gods who dwelt on mount olympus

Translated query Deity occurs-with olympus

Manual query Deity occurs-with olympus

Remark optimal translation

SemSearch-15 Henry II’s brothers and sisters

Translated query -

Manual query Henry II of England sibling

Remark insufficient translation

SemSearch-16 Hijackers in the september 11 attacks

Translated query Agent occurs-with september 11 attack

Manual query Person occurs-with hijacker september 11

Remark insufficient translation

SemSearch-17 Houses of the russian parliament

Translated query House occurs-with russian parliament

Manual query Governmental Body Jurisdiction Russia

Remark insufficient translation

SemSearch-18 John Lennon, parents

Translated query -

Manual query John Lennon Children(reversed)

Remark insufficient translation

SemSearch-19 Kenya’s captain in cricket

Translated query Russian republic occurs-with cricket captain

Manual query Sport team captain occurs-with cricket kenya

Remark insufficient translation

SemSearch-20 Khublai Khan siblings

Translated query Kublai Khan Sibling

Manual query Kublai Khan Sibling

Remark optimal translation

SemSearch-21 Lilli Allen parents

Translated query -

Manual query Lili Allen Children(reversed)

Remark insufficient translation , the subterm “Lilli” has been adjusted to “Lili” for this query.

SemSearch-22 Major leagues in the united states

Translated query Conference Event occurs-with united states

Manual query Sports Association occurs-with united states major league

Remark insufficient translation

SemSearch-23 Manfred von Richthofen parents

Translated query -

Manual query Manfred von Richthofen Children(reversed)

Remark insufficient translation

SemSearch-24 Matt Berry TV series

Translated query Broadcast

Manual query TV Program Starring TV role (reversed) Matt Berry

Remark insufficient translation

SemSearch-25 Members of u2?

Translated query U2 Member of(reversed)

Manual query U2 Member of(reversed)

Remark optimal translation

SemSearch-26 Movies starring Erykah Badu

Translated query Film Film performance(reversed) Erykah Badu

Manual query Film Film performance(reversed) Erykah Badu

Remark optimal translation

SemSearch-27 Movies starring Joe Frazier

Translated query Film Film performance(reversed) Joe Frazier

Manual query Film Film performance(reversed) Joe Frazier

Remark optimal translation

SemSearch-28 Movies starring Rafael Rosell

Translated query Film Film performance(reversed) Rafael Rosell

Manual query Film Film performance(reversed) Rafael Rosell

Remark optimal translation

SemSearch-29 Nations where portuguese is an official language

Translated query Country Official Language Portuguese Language

Manual query Country Official Language Portuguese Language

Remark optimal translation

SemSearch-30 orders (or ’choirs’) of angels

Translated query -

Manual query -

Remark impossible relation

SemSearch-31 permanent members of the UN Security Council

Translated query Military Unit occurs-with un security council

Manual query -

Remark impossible relation

SemSearch-32 Presidents depicted on mount rushmore who died of shooting

Translated query Business Executive occurs-with rushmore shooting

Manual query US President Dedication Mount Rushmore National Memorial

Cause of death Assasination

Remark insufficient translation

SemSearch-33 provinces and territories of Canada

Translated query Domain occurs-with territory canada*

Manual query Canadian Territory

Remark insufficient translation

SemSearch-34 ratt albums

Translated query Book

Manual query Musical Album Artist Ratt

Remark insufficient translation

SemSearch-35 republics of the former Yugoslavia

Translated query Russian republic occurs-with former Yugoslavia

Manual query Administrative Division occurs-with former Yugoslavia

Remark insufficient translation

SemSearch-36 revolutionaries of 1959 in Cuba

Translated query Revolutionary Spouse Person Country of nationality Cuba

occurs-with 1959

Manual query Revolutionary occurs-with Cuba 1959

Remark sufficient translation

SemSearch-37 standard axioms of set theory

Translated query -

Manual query -

Remark impossible relation

SemSearch-38 states that border oklahoma

Translated query Administrative Division occurs-with border oklahoma

Manual query Administrative Division adjoins Oklahoma

Remark sufficient translation

SemSearch-39 ten ancient Greek city-kingdoms of Cyprus

Translated query -

Manual query Location occurs-with ancient greek

Contained by Cyprus

Remark insufficient translation

SemSearch-40 the first 13 american states

Translated query -

Manual query -

Remark impossible relation

SemSearch-41 the four of the companions of the prophet

Translated query -

Manual query person occurs-with companion prophet

Remark insufficient translation

SemSearch-42 twelve tribes or sons of Israel

Translated query -

Manual query -

Remark impossible relation

SemSearch-43 what books did paul of tarsus write?

Translated query Book occurs-with paul tarsus write*

Manual query Book occurs-with paul tarsus

Remark sufficient translation

SemSearch-44 what languages do they speak in afghanistan

Translated query Human Language Main Country Afghanistan

occurs-with speak*

Manual query Human Language Main Country Afghanistan

Remark sufficient translation

SemSearch-45 what tv shows has thomas jane been in

Translated query Entertainment Lawyer Profession Entity People With This Profession Thomas Jane

Manual query TV Program Starring TV role(reversed) Thomas Jane

Remark insufficient translation

SemSearch-46 where the British monarch is also head of state

Translated query Location occurs-with british monarch state

Manual query -

Remark impossible relation

SemSearch-47 who created stumbleupon

Translated query Person occurs-with stumbleupon

Manual query Person occurs-with stumbleupon

Remark sufficient translation

SemSearch-48 who has jackie weaver been married to

Translated query Person Profession Entity People With This Profession Jacki Weaver

occurs-with marry*

Manual query Jacki Weaver Spouse

Remark insufficient translation , the subterm “Jackie” has been adjusted to “Jacki”

SemSearch-49 who invented the python programming language

Translated query Person occurs-with python programming language

Manual query Person Developer(reversed) Python (Programming Language)

Remark sufficient translation

SemSearch-50 wonders of the ancient world

Translated query -

Manual query Location occurs-with wonders of the ancient world

Remark insufficient translation

Bibliography

[1] Krisztian Balog and Robert Neumayer. “A test collection for entity search in
dbpedia”. In: Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. ACM. 2013, pp. 737–740.

[2] Hannah Bast et al. “Broccoli: Semantic full-text search at your fingertips”. In:
arXiv preprint arXiv:1207.2615 (2012).

[3] Hannah Bast et al. “Easy access to the freebase dataset”. In: Proceedings of the
companion publication of the 23rd international conference on World wide web
companion. International World Wide Web Conferences Steering Committee.
2014, pp. 95–98.

[4] Florian Bäurle. “A user interface for semantic full text search”. In: Mas-
terarbeit, Albert-Ludwigs-Universität Freiburg, Lehrstuhl für Algorithmen und
Datenstrukturen (2011).

[5] Sonia Bergamaschi et al. “Keyword search over relational databases: a meta-
data approach”. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. ACM. 2011, pp. 565–576.

[6] Björn Buchhold. “Susi: Wikipedia search using semantic index annotations”.
In: Masterarbeit, Albert-Ludwigs-Universität Freiburg, Lehrstuhl für Algorith-
men und Datenstrukturen (2010).

[7] George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM 38.11 (1995), pp. 39–41.

[8] George A Miller et al. “Introduction to wordnet: An on-line lexical database*”.
In: International journal of lexicography 3.4 (1990), pp. 235–244.

[9] Gebhard Rusch. “Kommunikation und Verstehen”. In: Die Wirklichkeit der
Medien. Springer, 1994, pp. 60–78.

[10] Craig Silverstein et al. “Analysis of a very large web search engine query log”.
In: ACm SIGIR Forum. Vol. 33. 1. ACM. 1999, pp. 6–12.

[11] Kristina Toutanova and Christopher D Manning. “Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger”. In: Proceedings of
the 2000 Joint SIGDAT conference on Empirical methods in natural language
processing and very large corpora: held in conjunction with the 38th Annual
Meeting of the Association for Computational Linguistics-Volume 13. Associ-
ation for Computational Linguistics. 2000, pp. 63–70.

[12] Thanh Tran, Daniel M Herzig, and Günter Ladwig. “SemSearchPro–Using se-
mantics throughout the search process”. In: Web Semantics: Science, Services
and Agents on the World Wide Web 9.4 (2011), pp. 349–364.

38

[13] W3C. Accessed: September 2014. url: http://www.w3.org/RDF/.

[14] Qi Zhou et al. “The Semantic Web”. In: ed. by Karl Aberer et al. Vol. 4825.
Lecture Notes in Computer Science. Springer, 2007. Chap. SPARK: Adapting
Keyword Query to Semantic Search, pp. 694–707.

http://www.w3.org/RDF/

Declaration

I hereby declare that I am the sole author and composer of this thesis and that no other sources

or learning aids, other than those listed, have been used. Furthermore, I declare that I have ac-

knowledged the work of others by providing detailed references of said work.

I hereby also declare that this thesis has not been prepared for another examination or assignment,

either wholly or excerpts thereof.

Place, Date Signature

	Introduction
	Motivation
	Main challenge & line of attack
	Natural-language-processing
	WordNet
	Part-of-speech Tagger

	BROCCOLI
	Definition & functionality
	Semantic Full-Text Search
	User Interface & query construction

	Structure

	Related Work
	Keyword Translation
	Initial point
	General problems with language
	Resource oriented problems
	Ambiguous mapping
	Missing relation
	Dealing with stop words
	Different vocabulary

	Algorithm
	Instance as root
	Class as root
	Instance recognition

	Analysis
	Theoretical analysis
	Analyzing instance and class recognition
	Analyzing the inference of relations

	Empirical analysis
	Problems
	Evaluation setup
	Quality & runtime performance
	Discussion of the quality performance
	Comparison to other approaches

	Outcome
	Future Work
	Conclusion

	Appendix: SemSearch Queries

