
Bachelor’s Thesis

Web Visualization Of Geographic Data
Implementing A Thin Client Architecture

Hendrik Jan Henselmann

Examiner: Prof. Dr. Hannah Bast

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair for Algorithms and Datastructures

June 02nd, 2023

Writing Period

02. 03. 2023 – 02. 06. 2023

Examiner

Prof. Dr. Hannah Bast

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

We present a system for efficiently visualizing large amounts of geographic data on a

Web page. Our Web application implements a suitable architecture, the thin client

architecture, that performs all computationally intensive operations on the server.

These operations include requesting, processing and storing geographic data. The

resulting image is then transmitted to the client and is finally displayed.

In this thesis, we specifically deal with the visualization of OpenStreetMap data.

OpenStreetMap is an open-source project regarding geographic data. We utilize the

query engine QLever to execute queries that return a subset of the data. We highlight

this subset on an interactive world map.

Our results show that our approach is suitable for visualizing even millions of objects

in seconds. It visualizes 2,000,000 points defined by 2,000,000 geographic coordinates

in about half a second and 2,000,000 more complex geometries, like polygons, defined

by about 8,500,000 geographic coordinates in about two seconds.

iii

Zusammenfassung

Wir stellen ein System zur effizienten Visualisierung großer Mengen an geografischen

Daten auf einer Webseite vor. Unsere Webanwendung implementiert eine geeignete

Architektur, die “thin client” Architektur, die alle rechenintensiven Arbeitsschritte

auf dem Server ausführt. Diese Arbeitsschritte beinhalten die Anfrage, Verarbeitung

und Speicherung der geografischen Daten. Das dabei entstehende Bild wird dann an

die Webseite übermittelt und muss dort nur noch angezeigt werden.

In dieser Arbeit beschäftigen wir uns speziell mit der Visualisierung von Open-

StreetMap Daten. OpenStreetMap ist eine frei verfügbare Quelle von geografischen

Daten. Zur Abfrage der Daten benutzen wir die Abfrage-Software QLever. Die

Anfragen liefern eine Teilmenge des OpenStreetMap Datensatzes zurück, welche

unsere Anwendung auf einer interaktiven Weltkarte hervorhebt.

Die Ergebnisse zeigen, dass unser Ansatz dafür geeignet ist mehrere Millionen Ob-

jekte in Sekunden zu visualisieren. Wir visualisieren 2.000.000 Punkte, die durch

2.000.000 geografische Koordinaten definiert sind, in ungefähr einer halben Sekunde

und 2.000.000 komplexere Geometrien, wie zum Beispiel Polygone, die durch ungefähr

8.500.000 geografische Koordinaten definiert sind, in ungefähr zwei Sekunden.

v

Contents

1 Introduction 1

1.1 Web Application Terminology . 2

1.2 Motivation . 2

1.3 Objective . 3

1.4 Approach . 4

1.5 Chapter Overview . 4

2 Related Work 7

2.1 Web GIS: Technologies and Its Applications 7

2.2 Web Visualization Tools for Geospatial Data 8

2.2.1 Overpass API and Overpass turbo 9

2.2.2 Leaflet and OpenLayers . 9

2.2.3 Efficient Presentation of GeoSPARQL-Results 11

3 Background 13

3.1 OpenStreetMap . 13

3.2 QLever . 14

3.3 Well-Known Text Representation . 16

3.4 Map Projection . 18

4 Approach 23

4.1 Concept . 23

4.2 Web Page . 24

vii

4.3 Server . 25

4.3.1 Server Workflow . 25

4.3.2 Parsing a QLever Response 27

4.3.3 Image Generation . 27

4.3.4 Time Complexity . 30

4.4 Optimizations . 32

4.4.1 Caching . 32

4.4.2 Code Parallelization . 33

4.4.3 Extension of Requested Area 34

5 Evaluation 37

5.1 Setup . 37

5.2 Measured Values . 38

5.3 Queries . 39

5.4 Baseline . 40

5.5 Results . 42

6 Conclusion 45

7 Future Work 47

Bibliography 50

viii

List of Figures

1 Client and Server . 2

2 Highlighted Buildings and Trees . 4

3 Web GIS Architectures . 8

4 Leaflet Polygon . 10

5 Leaflet Markers . 11

6 Leaflet Marker Cluster . 12

7 Shapes in WKT Representation . 21

8 Building in Freiburg, Germany . 22

9 Latitude and Longitude . 22

10 Server Flow Chart . 26

11 Images of Leaflet Map With and Without Highlighted Data 30

12 Highlighted Data Depending on Zoom Level 35

13 Adapted Server Workflow . 36

ix

List of Tables

1 Display time for points using Leaflet markers 41

2 Display time for points using Leaflet marker cluster 41

3 Generation and display time for points 42

4 Generation and display time for all kinds of objects 44

xi

List of Algorithms

1 Map projection to specific area . 20

2 Searching for visible objects . 28

3 Generating the data highlighting image 28

xiii

1 Introduction

Today we have access to an incredible amount of geographic data that is digitally

available. However, the data alone is not sufficient. An appropriate system is needed

to leverage the informative power of available data. Such a system is called Geographic

Information System (GIS). A GIS is responsible for storing, querying, analyzing and

visualizing geographic data [1].

The use of a GIS usually requires the installation of an application. Furthermore,

the inspected data, which is often huge, has to be locally available. Moreover,

the computer running the GIS needs to fulfill the respective software requirements.

Therefore, Web GIS applications gained popularity - applications that provide remote

access to a GIS through the World Wide Web. They come with multiple advantages.

But the main difference is that the demanding task of data processing is carried out

by the computer providing the Web application. [1, 2]

This thesis proposes a Web application implementing one typical feature of a GIS,

the visualization of geospatial data on an interactive map. Geospatial data is data

with a spatial scope and geographic information about the location. We face the

problem of a great number of objects that shall be visualized in a short amount of

time. For that reason, an appropriate Web application architecture is required.

Section 1.1 introduces Web application terminology used throughout this thesis.

Section 1.2 and Section 1.3 present the motivation and the objective of this thesis,

1

Request

Client Server
Response

Figure 1: Client and Server. Illustrating two components of a Web Application.

respectively. Section 1.4 provides an overview of the approach elaborated in this

thesis. Finally, Section 1.5 outlines the content of upcoming chapters.

1.1 Web Application Terminology

A Web application is an application that is accessible through the World Wide

Web, usually by using a Web browser. Web applications rely on two fundamental

components: the server and the client, illustrated in Figure 1. The server is a

computer or a software program responsible for data storage and management. It

provides Web pages and other resources in response to a client’s request. The client

is the device or software program requesting resources from the server, for example,

the Web browser requesting a Web page. The part of a Web application that the user

sees and interacts with is called the frontend of the application. Whereas the parts

that are hidden from the user, mainly the server-side components, are commonly

referred to as the backend. 1

1.2 Motivation

OpenStreetMap2 is one of the major open-source projects regarding geographic data.

Numerous data querying tools are available for OpenStreetMap, including the query
1https://www.britannica.com/topic/Web-application
2https://www.openstreetmap.org

2

engine QLever. An essential feature improving the user experience of such a tool is the

visualization of the query result. Especially interactive maps are a great enhancement,

allowing the user to inspect the query result thoroughly. However, since the number

of objects that must be visualized may exceed the millions, the naive approach of

one-by-one object rendering within the user’s Web browser is inadequate due to

unacceptable long render times [3]. Even though a more sophisticated approach

proposed by Denis Veil in [3] improves the render time, it is still restrained by Web

browser capabilities and the resources of the client’s computer.

1.3 Objective

We aim to develop a Web application implementing geospatial data visualization.

The data results from the query engine QLever, executing queries about the Open-

StreetMap data. Query results can contain geospatial information about all kinds

of objects, for example, buildings, streets and even smaller objects like trees and

post-boxes. The application’s Web page shall display an interactive world map

highlighting the geospatial information in the query result.

Figure 2 shows the visualization of an exemplary query result that contains trees and

buildings. The images show the location of trees highlighted with green circles and

the location and shape of buildings highlighted with blue polygons on top of a world

map on two different zoom levels.

We want the map to be user-friendly, with fundamental map interactions, zoom and

pan, and short display times. The display time refers to the time it takes to display

updated visual information from when the user changes the view of the map.

3

Figure 2: Highlighted buildings and trees. The images show the location of
trees in green and the location and shape of buildings in blue. The
interactive map in the background is provided by the mapping service
Leaflet and OpenStreetMap.

1.4 Approach

This thesis proposes a Web application that visualizes query results containing

geospatial data on top of an interactive world map. To cope with a potentially great

amount of data, we use a Web application architecture called thin client, which

performs the data management and data processing solely on the server. The client is

just displaying the results received by the server. That approach avoids bottlenecks

on the client side, such as the relatively slow execution speed of JavaScript code in

the Web browser.

1.5 Chapter Overview

In Chapter 2, we describe and discuss related work. We present other available

visualization tools for OpenStreetMap data and a paper concerned with Web GIS

application architectures, shedding light on the software architecture of the application

4

proposed by this thesis. Chapter 3 introduces the background knowledge needed

to understand the details of our work. Chapter 4 is the main body of this thesis.

It presents our approach to how to visualize geospatial data on the Web. The

performance of our approach is evaluated in Chapter 5. Finally, Chapter 6 summarizes

this thesis and Chapter 7 lists potential improvements to our approach.

5

2 Related Work

In Section 2.1, we study a paper concerned with Web GIS application architectures

in general. Two architectural designs are listed together with their advantages and

disadvantages. The application proposed by this thesis implements one of these, the

thin client architecture.

Many visualization tools are available for all the major geographic data resources.

Section 2.2 presents common tools developed to visualize geospatial data on a Web

page.

2.1 Web GIS: Technologies and Its Applications

In their paper “Web GIS: Technologies and Its Applications” [2], Alesheikh et al. study

Web GIS technologies, especially their architectural design. They address multiple

Web GIS architectures, including the thin client and the thick client architecture.

These two architectures differ in the component that is processing data. That is

illustrated in Figure 3. Applications implementing the thin client architecture perform

the data processing on the server. The results are then sent to the client, which

presents the results on the user interface. Thick clients, on the other hand, can

process the data on their own, using the server mainly to request the data in the

first place. These two approaches have strengths and weaknesses affecting the user

experience. First, since the thin client’s job is just the presentation of the server’s

computation results, the installation size of a thin client’s frontend application or

7

Figure 3: Web GIS Architectures. General overview of the thin client (A) and
thick client (B) architectures. Source: [4]

Web browser extension is relatively small. Furthermore, the size of transmitted data

and therefore, transmission times between client and server are usually lower on a

thin client architecture. Computation results, for example, in the form of an image,

are usually way smaller than the original data size. However, the frequency of data

transmissions on a thin client architecture is higher because most user actions trigger

a request for computations on the server. In a thick client architecture, the client

carries out most computations. Requests are only needed if the user wants to work

on a new data set. [2]

2.2 Web Visualization Tools for Geospatial Data

In this section, Web visualization tools are listed. Section 2.2.1 looks at the Overpass

API and its Web application, Overpass turbo, providing an interactive map showing

data from query results. Then, we introduce OpenLayers and Leaflet in Section 2.2.2.

8

These popular Web mapping services provide an interactive map with many valuable

features. Nevertheless, their data highlighting features are very limited when the

number of data points exceeds hundreds of thousands. Therefore, Denis Veil presents

an approach utilizing a clustering technique that performs better than Leaflet [3].

We summarize his thesis in Section 2.2.3.

2.2.1 Overpass API and Overpass turbo

The Overpass API 1 is a tool designed to query OpenStreetMap data. The search

criteria may include location, object type, tag properties and more. The response to

a query request contains objects that match the search patterns. Overpass turbo2

is a Web application using the Overpass API to answer queries. Additionally, the

requested data is visualized on an interactive world map. Problems arise when the

data set surpasses tens of thousands of data points. On such queries, scroll and zoom

updates take multiple seconds, a major drawback to the user experience.

2.2.2 Leaflet and OpenLayers

Leaflet3 and OpenLayers4 are client-side mapping libraries for JavaScript. Both are

open-source libraries developed by a large community. They provide many features

regarding their primary focus, the interactive map. These features include data

highlighting in various forms. The object of concern can be drawn by its geospatial

information, which includes coordinates and shape. For example, a building can

be represented as a polygon, illustrated in Figure 4. On the other hand, an object

can also be highlighted using a marker that points to the object’s location. That is

illustrated in Figure 5. This method is sufficient to highlight the location of objects,

1https://wiki.openstreetmap.org/wiki/Overpass_API
2https://wiki.openstreetmap.org/wiki/Overpass_turbo
3https://leafletjs.com
4https://openlayers.org

9

Figure 4: Highlighting buildings using Leaflet. The image shows the loca-
tion and shape of buildings in Freiburg, Germany, highlighted in blue.
The interactive map in the background is provided by Leaflet and Open-
StreetMap.

but it is inadequate to inform the user about the detailed distribution of objects,

indicated by the image on the right.

On a greater scale, a marker cluster, provided by a Leaflet plugin5, can give a nice

overview of the local distribution of multiple objects. That is illustrated in Figure 6.

A cluster is indicated by a circle containing the number of trees that the surrounding

area of the circle contains. Zooming either splits clusters to show a more detailed

distribution or merges clusters to show less detail but give a better overview of the

distribution on a greater scale.

We measure the performance of Leaflet methods in Chapter 5. Visualizing hundreds

of thousands of objects on an interactive map using Leaflet is unsuitable due to high

rendering and response times that negatively affect the user experience.

5https://github.com/leaflet/Leaflet.markercluster

10

Figure 5: Leaflet markers indicating the location of trees. The images show
the location of trees in Germany, highlighted with markers on three
different zoom levels. The interactive map in the background is provided
by Leaflet and OpenStreetMap.

2.2.3 Efficient Presentation of GeoSPARQL-Results

In the thesis “Efficient Presentation of GeoSPARQL-Results” [3], Denis Veil is con-

cerned about visualizing subsets of the OpenStreetMap data in a Web browser, in

particular larger subsets obtained from the query engine QLever that potentially

exceed one hundred thousand objects. He concludes that the visualization tools

provided by Leaflet are insufficient for that task. So he proposes a method that uses

a clustering algorithm to manage the data stored in memory. Based on the area

that is visible to the user, clusters are dynamically loaded and dropped. That is

combined with an extension of the query utilizing a filter function provided by QLever

to restrict the search area to the area of interest. This approach reduces the size of

data in memory and optimizes data requests, decreasing the response and render

time of the application. However, Denis Veil admits that the proposed algorithm

limits the number of objects in memory to increase the application’s performance,

which is especially noticeable when the user increases the zoom level. [3]

11

Figure 6: Leaflet marker cluster indicating the location of trees. The images
show the location of trees in Germany displayed as a marker cluster on two
different zoom levels. The interactive map in the background is provided
by Leaflet and OpenStreetMap.

12

3 Background

This section provides relevant information necessary to understand our work, described

in Chapter 4.

The web application we develop as a result of this thesis visualizes geospatial data.

The visualized data results from queries about the OpenStreetMap database presented

in Section 3.1. Section 3.2 presents the query engine QLever, which is used to execute

those queries. The result of a query is a set of tuples that satisfy the formulated

search patterns. Such tuples can contain geospatial information in Well-Known Text

representation, illustrated in Section 3.3.

Geospatial data visualization on a flat map requires projecting the earth’s spherical

surface to a two-dimensional planar. That is the purpose of a map projection described

in Section 3.4.

3.1 OpenStreetMap

OpenStreetMap1 (OSM) is a project that aims to build a geographic database that

is available for everyone for free. That is without having to pay for access or being

bound to legal restrictions like copyright protection. These are the main differences

from many other sources of geospatial data.

1https://www.openstreetmap.org

13

At first, the goal was to cover primarily street data. Nevertheless, over time the

project expanded to cover many different types of objects, including buildings,

post-boxes, and even individual trees. The data is collected mainly by volunteers.

Additionally, governmental bodies and commercial organizations also contribute to

the project. Many tools were developed to facilitate the contribution process and

also the accessibility of the data, for example, Osmium2. Anyone can add data to

the project and edit the existing data. The editing history is recorded to cope with

mistakes or vandalism, allowing uncomplicated rollbacks.

The three fundamental building blocks of the OpenStreetMap data are nodes, ways

and relations. Nodes represent one point on the earth’s surface, denoted by latitude

and longitude. A way is an ordered list of nodes. It can represent linear features, such

as streets, but it can also represent polygonal areas, such as buildings, in case the first

and last node match up. A relation adds information about the relationship of the

relation members. The members are represented as an ordered list containing nodes,

ways, relations or a mix of those. Furthermore, any OpenStreetMap element, that is,

a node, a way or a relation, may have one or multiple tags. A tag is a key-value pair

adding information to one element.

3.2 QLever

QLever [5] is an efficient query engine developed by Bast et al. at the University

of Freiburg. It can execute queries about the OpenStreetMap data. However, the

OSM data format is not compliant with the expected data input format of QLever.

QLever requires that the data is in the form of Resource Description Framework

(RDF) triples. An RDF triple consists of a subject, a predicate and an object. We use

the tool osm2rdf [6] to convert OSM data to a database consisting of RDF triples.

2https://osmcode.org/libosmium/

14

Listing 3.1 illustrates a set of RDF triples. It describes the entities: personA, personB

and apple. The four predicates type, name, likes and knows add information about

the entities and their relations. For example, Maria is the name of personA. She

knows Tom, personB, who likes apples.

personA type person .
personA name "Maria" .

personB type person .
personB name "Tom" .
personB l i k e s apple .

apple type f r u i t .

personA knows personB .
personB knows personA .

Listing 3.1: Exemplary RDF database. It describes two persons: Maria and
Tom. They know each other.

QLever is an implementation of the SPARQL Protocol And RDF Query Language3

(SPARQL), which is basically the standard query language for RDF databases.

Listing 3.2 shows an exemplary SPARQL query that can be executed using QLever.

This query returns all trees present in the queried data. The first two lines define

prefixes with the keyword PREFIX. These are shortcut abbreviations for the following

Uniform Resource Identifier, identifying the resource location. In general, the result

of a SPARQL query is in tabular form, with rows and columns. The attributes listed

in the SELECT clause, in this case ?osm_id and ?geometry, are part of the result.

They specify the columns of the resulting table. Note that variables in SPARQL

are indicated with a question mark as a prefix. The rows of the resulting table

contain information about those objects that satisfy the patterns in the WHERE

clause. A full stop separates multiple patterns. The patterns are structured like

RDF triples, but they include variables. In this case, the first pattern matches all

3https://www.w3.org/TR/rdf-sparql-query

15

OpenStreetMap IDs ?osm_id for which the underlying data contains a triple ?osm_id

osmkey:natural "tree". That returns IDs of objects that are tagged as being a tree.

Additionally, the corresponding ?geometry is matched by the second pattern. So

every row of the result contains the ID and the geometry of an object tagged as a

tree in the underlying data.

PREFIX geo: <http ://www. openg i s . net /ont/ geo sparq l#>
PREFIX osmkey: <https : //www. openstreetmap . org / wik i /Key:>
SELECT ?osm_id ?geometry WHERE {

?osm_id osmkey:natura l " t r e e " .
?osm_id geo:hasGeometry ?geometry .

}

Listing 3.2: SPARQL query. Returns ID and geometry of all trees present in the
queried data.

Additionally, Bast et al. propose the user interface QLever UI [7] to facilitate using

the QLever engine. Advanced auto completion allows people unfamiliar with SPARQL

syntax or the queried data’s content and properties to construct SPARQL queries.

3.3 Well-Known Text Representation

Well-Known Text (WKT) is a representation standard of 2-dimensional (2D) geometric

objects. A WKT literal is a human-readable string literal. Four types of objects are

relevant to our work: point, linestring, polygon and multipolygon. A point represents

a point in the underlying two-dimensional coordinate system. A linestring is an

object that consists of straight lines connecting multiple sequential points. These

points form the WKT representation of a linestring. A polygon defines a polygonal

area potentially together with a hole. A multipolygon is a set of multiple polygons.

Figure 7 shows examples of shapes that can be represented by a WKT literal. Point

A can be represented as POINT (1 1), following the scheme POINT (x0 y0) with the

16

x coordinate x0, the y coordinate y0, and a space between them. A linestring is a

collection of points connected by lines in the order they are listed. So the shape B can

be denoted as LINESTRING (1 2, 2 2, 4 1, 5 1), following the scheme LINESTRING

(x0 y0, x1 y1, . . . , xn yn) and n ∈ N. Note that a comma separates the points listed

in the linestring while the x and y coordinates are separated by a space. The shapes

C and D can be represented as polygon. The difference is that D has a hole in it.

The WKT representation of C can be denoted as POLYGON ((1 3, 3 4, 2 5, 1 4.5, 1

3)). The general scheme of a polygon without a hole is POLYGON ((x0 y0, x1 y1,

. . . , xn yn, x0 y0)), which is similar to the representation of a linestring. However, a

POLYGON specifies the enclosed area by connecting the points. Notice that x0 y0 is

the first and the last point listed. Shape D can be written as POLYGON ((3 6, 6

3, 9 6, 6 9, 3 6), (5 5, 7 5, 7 7, 5 7, 5 5)). The scheme of a polygon with a hole is

POLYGON ((xa0 ya0 , xa1 ya1 , . . . , xan yan, xa0 ya0), (xb0 yb0, xb1 yb1, . . . , xbn ybn, xb0 yb0)). The

first part, namely (xa0 ya0 , xa1 ya1 , . . . , xan yan, xa0 ya0), specifies the outer contour of the

polygon, while the second part represents the hole that is not part of the described

area, (xb0 yb0, xb1 yb1, . . . , xbn ybn, xb0 yb0). Finally, a multipolygon is a combination of

multiple polygons. We can represent the polygons C and D together with a single

WKT literal: MULTIPOLYGON (((1 3, 3 4, 2 5, 1 4.5, 1 3)), ((3 6, 6 3, 9 6, 6 9, 3 6),

(5 5, 7 5, 7 7, 5 7, 5 5))). The representation of the two polygons follows the scheme

of POLYGON and they are separated by a comma.

The WKT representations of the shapes in Figure 7 were denoted with numbers of

their corresponding coordinate system. Our work is concerned with real-world objects,

such as buildings and streets. The data is provided in the WKT representation. The

coordinates of those objects refer to points on the earth’s surface and are typically

denoted by latitude and longitude. Figure 8 shows a building in Freiburg, Germany,

highlighted in blue. It can be represented with the WKT literal POLYGON (7.8124817

48.0138416, 7.8127070 48.0140107, 7.8129456 48.0138685, 7.8127203 48.0136994,

7.8124817 48.0138416).

17

3.4 Map Projection

Our earth is a three-dimensional object, approximately an ellipsoid. A point on

the earth’s surface is usually denoted by two coordinates, latitude and longitude,

illustrated in Figure 9. Latitude represents the distance of a point to the equatorial

line. It ranges from -90 degrees to 90 degrees, depending on how far south or north a

point lies, respectively. The longitude represents the distance of a point to the prime

meridian, which passes through Greenwich, England. It ranges from -180 degrees to

180 degrees depending on how far west or east a point lies, respectively. To portray

the earth or parts of it on a two-dimensional plane, for example, an image, a map

projection is used to project world coordinates to coordinates on the plane. In the

case of an image, the plane coordinates correspond to pixels. Many commonly used

map projections are distinguished by the properties they preserve. Some projections

preserve the shape of objects, others preserve direction or distance. The appropriate

map projection can be selected based on the desired properties.

We use the default map projection of Leaflet’s interactive map. It is known as

Web Mercator Projection5 and it preserves angles locally, meaning that relatively

small shapes compared to the earth, for example, buildings, match their shape in

reality. One downside of the projection is that it is not defined for points that lie

further north than roughly 85.05 degrees or further south than roughly -85.05 degrees.

Nevertheless, that is a minor drawback since it just excludes points very close to the

poles. Equation (1) and Equation (2) define the Web Mercator Projection. These

functions yield the corresponding x and y coordinates on an image of the world

for a point with latitude lat and longitude long in radians. Note that the x and y

coordinates correspond to a coordinate system with an inverted y-axis. The width

and height parameters determine the scale of the image the points are projected to.

A common value for width and height is 265 · 2zoomLvl. The zoom level of the map

4https://www.techtarget.com/whatis/definition/latitude-and-longitude
5https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames

18

is represented with zoomLvl. A higher zoom level presents more details, requiring

more pixels to display the same area. In Leaflet, zoom levels range from 0 to 18.

x = ⌊width · long + π

2π
⌋ (1)

y = ⌊height ·
π − loge(

π
4 + lat

2)

2π
⌋ (2)

The equations above project a point to the corresponding point on an image that

covers the whole surface of the earth. However, especially for interactive maps,

generating an image of a smaller area is essential. Figure 1 describes the algorithm

that returns the image coordinates of a point on an image that shows a specific

rectangular area of the earth’s surface. The coordinates of the northwest corner and

the southeast corner define this area. At first, image coordinates of the corner points

and the point of interest are calculated according to an image that would show the

whole surface of the earth. Then, the image coordinates of the northwest corner are

used to calculate the image’s offset, that is, to what extent the projected coordinates

of the point of interest are shifted. Since the width and height of Equation (1) and

Equation (2) correspond to the width and height of an image of the whole world,

the projected coordinates need to be scaled to fit the desired image size specified by

imgWidth and imgHeight. The scaling factor is calculated as the ratio of the desired

image size to the image size of the specified area on an image of the whole world.

Finally, these values, offset and scale, transform the point’s image coordinates of an

image of the whole world to coordinates of an image of the specified area.

19

Algorithm 1 Map projection to specific area
Input

northWestCorner North west corner of the requested area
southEastCorner South east corner of the requested area
point The point that will be projected
imgWidth Desired width of output image
imgHeight Desired height of output image

Output
mappedPoint Image coordinates of point

Assumption point lies in requested area

function map_point(northWestCorner, southEastCorner, point, imgWidth,
imgHeight)

Map the corners and point to an image of the whole world
mappedNorthWestCorner ←web_mercator_projection(northWestCorner)
mappedSouthEastCorner ←web_mercator_projection(southEastCorner)
mappedPoint← web_mercator_projection(point)

Compute offset according to requested area
xOffset← mappedNorthWestCorner.x
yOffset← mappedNorthWestCorner.y

Compute scale according to requested area size and desired image size
areaWidth← mappedSouthEastCorner.x−mappedNorthWestCorner.x
areaHeight← mappedSouthEastCorner.y −mappedNorthWestCorner.y
xScale← imgWidth/areaWidth
yScale← imgHeight/areaHeight

Transform the point’s image coordinates
mappedPoint.x← xScale · (mappedPoint.x− xOffset)
mappedPoint.y ← yScale · (mappedPoint.y − yOffset)

return mappedPoint
end function

20

x

y

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

A
B

C

D

Figure 7: Shapes that can be represented as WKT literals.
A: POINT (1 1)
B: LINESTRING (1 2, 2 2, 4 1, 5 1)
C: POLYGON ((1 3, 3 4, 2 5, 1 4.5, 1 3))
D: POLYGON ((3 6, 6 3, 9 6, 6 9, 3 6), (5 5, 7 5, 7 7, 5 7, 5 5))
C and D as one shape:

MULTIPOLYGON (
((1 3, 3 4, 2 5, 1 4.5, 1 3)),
((3 6, 6 3, 9 6, 6 9, 3 6), (5 5, 7 5, 7 7, 5 7, 5 5)))

21

Figure 8: Building in Freiburg, Germany. The building is highlighted in blue.
The background shows a map provided by Leaflet and OpenStreetMap.

Figure 9: Latitude and Longitude. Source: TechTarget4

22

4 Approach

We develop a Web application implementing geospatial data visualization. The data is

retrieved from the query engine QLever, executing queries about the OpenStreetMap

data.

In this chapter, we present our approach in detail. In Section 4.1, we examine the

concept of our approach. The proposed Web application consists of two components,

the Web page and the server. Section 4.2 introduces the Web page of our application,

representing the frontend. In Section 4.3, we present the implementation of the Server.

We want our application to be as fast as possible to provide a pleasant user experience.

Therefore, we are concerned with optimizations illustrated in Section 4.4.

4.1 Concept

Visualizing many million data points in the Web browser is a challenging task.

JavaScript is the standard programming language of Web content. It is a dynamically

typed, high-level language, which leads to slow code execution speed compared

to other programming languages [8]. Additionally, the client’s computer executes

JavaScript code on a browser Web page. So the execution speed depends on the

resources of the client’s computer.

The core concept of this thesis is to outsource the hard work of processing potentially

large amounts of data to the server that is providing the Web application. This

23

procedure has multiple advantages. Instead of using JavaScript for computationally

demanding tasks, one can choose a lower-level programming language that outperforms

JavaScript. Furthermore, the client’s computer is no longer a limiting factor. The

server carries out critical, time-consuming computations. In our case, this server is

a powerful computer provided by the chair of Algorithms and Data Structures at

the University of Freiburg. Instead of visualizing the data, the client sends a request

to the server, specifying the area of the map that is visible to the user. The server

generates an image of the data that the specified area contains and sends it back to

the client. The client places this image on top of an interactive world map. This

form of work distribution is summarized as thin client architecture (Section 2.1).

4.2 Web Page

The application’s Web page is written in JavaScript, HTML and CSS. It shows an

interactive world map provided by the mapping package Leaflet (Section 2.2.2). The

Web page takes one parameter: the query, which will be executed by the QLever

engine to be able to visualize the returned result. This parameter is handed over to

the Web page as a URL parameter. An URL parameter is specified by a key-value

pair. The key for this parameter is query and the value is the desired query. The

query can be generated using the QLever UI (Section 3.2).

The world map provided by Leaflet is interactive. It supports the default user actions

zoom and pan, common for interactive maps. Zooming increases or decreases the

proportion of the world’s surface visible to the user. The zoom-in action results in a

greater level of detail and inversely, the zoom-out action gives a better overview of

the data, showing fewer details. On the other hand, panning shifts the visible area

vertically, horizontally or a mix of the two. The user can inspect a specific area on

the desired level of detail using those two actions, zoom and pan, together.

A Leaflet map is composed using layers. The tile layer provides the basis for our

24

application. It mainly displays buildings and streets together with names, such as

street names and city names, on different zoom levels. This information can be

retrieved from different providers. We use a tile layer provided by OpenStreetMap.

The second layer we use, in addition to the tile layer, is the image layer. We use the

image layer to display an image of highlighted data on top of the map. The desired

target location of the image can be specified in terms of geographic coordinates. The

user interactions zoom and pan are also applied to the image. It always covers the

same specified area of the world and is therefore shifted at pan actions and increased

or decreased in size on zoom actions.

4.3 Server

The server providing the Web application is responsible for data management and

data processing. It is written in the programming language C++. We use the Gnu

Compiler Collection GCC 1 to compile the source code of our application. Furthermore,

we use the tool CMake2 to facilitate software development, specifically the build

process.

Section 4.3.1 gives an overview of the server’s workflow, consisting of QLever response

parsing, described in Section 4.3.2, and the image visualization process, presented in

Section 4.3.3. In Section 4.3.4, we assess the time complexity of the image generation

process.

4.3.1 Server Workflow

The server workflow is illustrated in Figure 10. The server is listening for incoming

requests issued by its frontend Web page. A request triggers the generation of an

image of the requested geospatial data. However, the client does not explicitly send
1https://gcc.gnu.org
2https://cmake.org

25

Incoming request
specifying

query and visible area

Send query request
to QLever engine

Identify
visible objects

Parse response

Apply
map projection

Render image

Send response

Figure 10: Server Workflow

that geospatial data to the server. The request specifies the query instead, which is

executed by the QLever query engine backend. QLever responds with the query result

containing geospatial information in the form of WKT literals (Section 3.3). But,

this representation is a string literal that does not allow mathematical processing

directly. Therefore, the objects received in WKT format are converted to an internal

representation that defines the information as numerical data. Furthermore, the

request of the client specifies the area that is visible to the user. Given that information,

the server identifies the objects in this area. These objects’ real-world coordinates,

denoted by latitude and longitude, are then projected to the corresponding pixel

coordinates on the resulting image using the Google Mercator Projection from

Section 3.4.

26

4.3.2 Parsing a QLever Response

The default content type of a QLever response is text. This text contains the re-

quested information about objects that match the patterns specified by the query.

The purpose of our application is to visualize these objects using their geospatial

information. Therefore, the query’s SELECT clause must include a variable contain-

ing the geospatial information. This information is represented by a WKT literal

(Section 3.3). The parser identifies a WKT literal based on the geometry type: point,

linestring or multipolygon. A polygon is also declared as multipolygon. Based on the

identified object type, it is reading one or multiple succeeding geographic coordinates

and, in the case of a multipolygon, also the arrangement of coordinates, which is

essential to be able to draw the object correctly. The coordinates are converted to

numerical data and stored with information about the object type and the coordinate

arrangement.

4.3.3 Image Generation

In this section, we describe the algorithm generating the requested image. It is

illustrated in Figure 3. The algorithm takes two parameters: the geometries that

are part of the query result and the area that is visible to the user. The algorithm

consists of three steps. First, the visible objects are identified. Then, the geographic

coordinates of these objects, denoted with latitude and longitude, are converted

to pixel coordinates of the resulting image using the map projection presented in

Section 3.4. Finally, the objects are drawn on an image with transparent background

to be displayed on top of a world map.

The identification of the visible objects is illustrated in Figure 2. The algorithm takes

two arguments: the geometries of all objects in the query result and the area visible

to the user. It loops through the geometries and checks if the visible area entirely

27

Algorithm 2 Searching for visible objects
Input

geometries List of object geometries in query result
visibleArea Area visible to the user

Output
result List of geometries that are completely visible

function find_visible_objects(geometries, visibleArea)
result← [] ▷ Empty list
foreach geometry ∈ geometries do

if geometry covered by visibleArea then ▷ Is the geometry visible?
result.push_back(geometry) ▷ Store geometry in output list

end if
end for
return result

end function

Algorithm 3 Generating the data highlighting image
Input

geometries List of object geometries in query result
visibleArea Area visible to the user

Output
img Image of visible objects

function generate_image(geometries, visibleArea)

visibleObjects← find_visible_objects(geometries, visibleArea)

projectedObjects← [] ▷ Empty list
foreach object ∈ visibleObjects do

projectedObject← map_projection(object, visibleArea)
projectedObjects.push_back(projectedObject)

end for

Initialize empty image img
foreach projectedObject ∈ projectedObjects do

img.draw(projectedObject)
end for

return img
end function

28

covers the geometry. If it does, the geometry is added to the returned list of visible

objects. Otherwise, it is ignored.

Once all the visible objects are identified, an object’s geographic coordinates cor-

responding to a location on the earth’s surface are projected to a location on the

resulting image. We use the Web Mercator Projection from Section 3.4 to perform

this projection. The function MAP_PROJECTION in Figure 3 uses the algorithm

presented in Figure 1 to map every geographic coordinate of an object to its corre-

sponding image coordinate. Based on an object’s geometry type, one or multiple

coordinates must be projected.

Finally, the visible objects are rendered using their calculated image coordinates.

We utilize the powerful computer vision tool OpenCV 3 for the drawing process. It

provides functions to render different geometric shapes, like circles, lines and polygons.

The background of the drawn image can be transparent, as well as the drawn shapes.

That is necessary because we want to display the image of the highlighted data on

top of a world map. Using a non-transparent background would hide the underlying

map. Figure 11 shows two images of the same area of a map provided by Leaflet.

The image on the right is additionally highlighting data.

On low zoom levels showing large proportions of the earth’s surface, drawing objects

according to their detailed shapes is pointless because they appear too small or do

not even span multiple pixels of the generated image. Therefore, we introduce a

second data highlighting mode activated on low zoom levels. On high zoom levels,

objects’ shapes are still rendered as before. However, on low zoom levels, a heat map

is created instead. Figure 12 shows what such a heat map looks like. The highlighted

data contains all buildings in Freiburg, Germany, present in the OpenStreetMap data.

The images differ in zoom level. The ones in the first two rows are rendered as heat

maps. That gives an excellent overview of the distribution of objects in the visible

area. Regions highlighted in red indicate a higher density of objects, while the density

3https://opencv.org

29

Figure 11: Leaflet map with and without highlighted data. Both images
show the same area of an interactive map provided by Leaflet and
OpenStreetMap. The image on the right is additionally highlighting
data. Points are highlighted as green circles. Lines are drawn in red and
polygons in blue.

in blue regions is relatively low. The images in the third row show that the buildings

are still drawn in detail on high zoom levels.

Figure 13 shows a flowchart of an adapted server workflow. Black elements show

the original workflow of Figure 10 and elements regarding the heat map creation are

colored in red. If an image with a zoom level lower than the specified threshold is

requested, the number of objects per image pixel is counted after the map projection is

applied. Then we use the library libheatmap4 to generate a heat map image visualizing

the data.

4.3.4 Time Complexity

In this subsection, we analyze the theoretical time complexity, also known as run

time, of the image-generating algorithm in Figure 3, precisely the asymptotic run

time in the worst case. First, we assess the run time of the search for visible objects
4https://github.com/lucasb-eyer/libheatmap

30

illustrated in Figure 2. The algorithm contains one for-loop. It iterates over all

geometries in the query result. So the run time depends on the number of geometries

in the query result. We call this number n. Every iteration, the algorithm checks

whether the geometry is visible and if it is, it is added to the resulting list of all visible

objects. To check if a geometry is completely visible, the algorithm must check for

every geographic coordinate in the definition of the geometry whether it is visible. So

the run time depends on the number of coordinates in a geometry’s definition. This

number can be arbitrarily large, but it is finite. That is also true for n, the number of

geometries in the query result. We define m as the maximum number of geographic

coordinates of all geometries in the query result. Therefore, m is the upper bound

of the number of coordinates in a geometry. The visible area is a rectangle defined

by the northwest and southeast corners. The relative position of the coordinate to

these corners determines the visibility of a geographic coordinate. Calculating a

coordinate’s relative position is not dependent on any variable. Therefore, it is a

constant time operation. Adding a visible geometry to the result list takes amortized

constant time, assuming the list is implemented as a dynamic array. In conclusion,

the run time of one iteration of the for-loop only depends on the number of geographic

coordinates of the geometry, which is limited by m. The loop body is executed

n times, resulting in a run time of O(n ·m) of the algorithm searching for visible

objects.

The mapping of the visible objects to their corresponding image coordinates con-

tains a for-loop iterating over all visible objects. In the worst case, all objects are

visible. Therefore, the upper bound of the number of loop iterations is n. The

MAP_PROJECTION function applies the MAP_POINT function in Figure 1 to

every geographic coordinate defining the object’s geometry. The upper bound of

the number of coordinates defining a geometry is m. The time complexity of the

MAP_POINT function is constant since it is composed of constant time operations

only. Assuming that the list of projected objects, projectedObjects, is implemented

as a dynamic array, adding an object takes amortized constant time. So the whole

31

process of applying the map projection to all the visible objects has a time complexity

of O(n ·m).

Assessing the time complexity of OpenCV ’s drawing functions goes beyond the scope

of this thesis. We can conclude that identifying and projecting visible objects of a

query result has an asymptotic time complexity of O(n ·m+ n ·m) ∼ O(n ·m).

4.4 Optimizations

In order to improve the user experience of our application, we introduce optimizations

that speed up various sub-processes. We reuse computation results. That process,

described in Section 4.4.1, is known as caching. In Section 4.4.2, we introduce the

concept of code parallelization. We extend the requested area to prevent the server

from getting overwhelmed with requests triggered by frequent but small panning

actions. This adjustment is presented in Section 4.4.3.

4.4.1 Caching

Caching is the process of storing computation results once a computation is per-

formed. A cached result can be reused whenever the same computation would

otherwise be necessary again. That decreases run time, especially for time-consuming

computations.

Query Result Caching Query results are cached so that a sequence of requests

about the same query does not always trigger a query request to the QLever engine,

but only once, the first time the user requests a new query. That is especially useful

for the interactive map setting because every user action, that is, zoom or pan triggers

a request. Therefore, caching the query result allows for shorter response times.

Figure 13 shows the optimized server workflow. The elements in blue correspond to

32

the query result caching. Compared to the unoptimized version, colored in black,

the two steps, query answering by the QLever engine and response parsing, are only

executed once the user issues a new query. However, the query result is additionally

stored for follow-up requests about the same query.

QLever Data Caching QLever provides the option to answer a query request with

QLever IDs corresponding to the internal QLever data. These QLever IDs are of

uniform size and can be transmitted in binary form, speeding up the data transmission

process. To construct a query result out of the QLever IDs, it is necessary to build

and store the mapping of QLever IDs to internal QLever data. This process can take

multiple hours, depending on the size of the QLever data. Nevertheless, once the

mapping is constructed for the first time, it is serialized on the server. That has the

advantage that upon a restart of the application, the data can be read from a file,

which is generally faster than the data transmission between applications.

4.4.2 Code Parallelization

We parallelize data manipulation tasks using the library OpenMP5, utilizing the

full power of the multi-core CPU architecture of the server running the application.

Specifically, we are parallelizing for-loops working on the C++ data structure vector.

The downside of task parallelization is that thread safety becomes a concern. Two

code instances must not manipulate shared resources at the same time because that

causes nondeterminism of the outcome, depending on the unpredictable order in

which the manipulations happen. To prevent this nondeterminism, we either ensure

that different code instances always work on distinct parts of a data structure or

never work on the same data structure at the same time.

5https://www.openmp.org

33

4.4.3 Extension of Requested Area

The client requests an image of the visible area. By extending the size of this area,

we avoid frequent consecutive requests for insignificantly small panning actions. That

increases the expected time until a new image is requested because it reduces the

server’s workload.

34

Figure 12: Images of highlighted data depending on zoom level. The images
show the highlighted data as heat map on lower zoom levels and detailed
shapes on higher zoom levels. The data is about buildings in Freiburg,
Germany. The map in the background is provided by Leaflet and
OpenStreetMap.

35

Incoming request
specifying

query and visible area

Yes

NoQuery
result

cached?
Send query request
to QLever engine

Identify
visible objects

Parse response

Cache geometries

Apply
map projection

Render image of
objects

Send response

No

Yeszoom level
< threshold

Count objects per
pixel

Render image of heat
map

Figure 13: Adapted Server Workflow. Elements colored in black correspond
to the original server workflow in Figure 10. Elements colored in red
represent adjustments to visualize a heat map on low zoom levels. Blue
elements introduce the optimization of QLever result caching.

36

5 Evaluation

In this chapter, we evaluate our approach empirically. The hardware, software and

data used to conduct measurements are listed in Section 5.1. In Section 5.2, we

describe the measured values. Section 5.3 presents the two queries that we use for

the empirical evaluation. Section 5.4 provides the evaluation baseline. Finally, the

results are reported and analyzed in Section 5.5.

5.1 Setup

For our measurements, we host the Web application on a computer of the Chair

of Algorithms and Data Structures at the University of Freiburg. This computer

has an AMD FX8150 8x3.6 GHZ CPU, 32 GB of DDR3 RAM, a 128 GB SSD and

a 3 TB HDD. The operating system is Ubuntu 22.04. It is the server of our Web

application. The Web application is accessed through the World Wide Web using

another computer, acting as the client. That computer has a 2,7 GHz Quad-Core

Intel Core i7 CPU, 16 GB of DDR3 RAM, an Intel Iris Plus Graphics 655 1536

MB GPU and 500 GB of hard disk space. The installed operating system is Mac

OS 13.3.1. We use the Web browser Google Chrome, version 113.0.5672.126. We are

using Docker1 for the development and execution of the code, ensuring portability

and reliability.

1https://www.docker.com

37

We are hosting an instance of the query engine QLever on the server. Furthermore, we

download and process an OpenStreetMap data set using the tool osm2rdf (Section 3.2),

converting the OSM data to RDF triples (Section 3.2). The data specifically covers

geospatial information about Germany, allowing QLever to execute queries about the

country.

5.2 Measured Values

Our proposed Web application issues a request every time the user adjusts the zoom

level, zooming in or out and when the user is shifting the visual area to an area not

covered by the previous image. We simulate the data inspection process of a regular

user by zooming and panning the map.

We are concerned with a user-friendly experience using our application. Long display

times are a major concern regarding interactive maps. Display time refers to the

time it takes to display the requested information on the Web page after the user

performs an action. The display time also includes the data transmission time. The

data transmission time is the time needed to send the image request to the server and

the time it takes to transfer the generated image to the client. The data transmission

time depends on the internet connection speed and the distance between the client

and the server. Therefore, we also measure the generation time. That is the time it

takes for the server to generate the image, which is independent of the client-server

connection.

We differentiate between initial and regular time. The initial time corresponds to the

initial visualization request of a query. The regular time corresponds to follow-up

requests regarding the same query. The initial time regarding our application includes

query execution and result caching; regular time refers to the time of zoom and pan

actions using the cached query result.

38

We conduct each measurement several times, returning a series of values x0, x1, . . . , xN

with N ∈ N. We calculate the average x̂ (Equation (3)) and the corrected sample

standard deviation σ (Equation (4)) of the measured values [9] and report the results

in the form x̂± σ. The corrected sample standard deviation is an estimator of the

standard deviation of the measured values. The standard deviation is a measure of

the dispersion of the measured values around the average value x̂. Therefore, it is an

indicator of the uncertainty of measurements.

x̂ =
1

N

N∑
i=0

xi (3)

σ =

√√√√ 1

N − 1

N∑
i=0

(xi − x̂)2 (4)

It is important to mention that the initial generation and display time depends on the

QLever engine executing the query. QLever is also caching query results internally,

affecting the initial response time of our application. Furthermore, the reported times

depend on the number of objects and object-defining coordinates visible to the user.

The image generation time grows with the number of objects that must be rendered.

Zooming on an area that contains very few objects reduces the image generation time.

Therefore, we pay attention to always cover a large proportion of the data.

5.3 Queries

First, we use the query from Listing 3.2 to evaluate our application. The query

returns all the trees in the queried data. Trees have the desirable property that their

geometry is a point defined by a pair of latitude and longitude. We can limit the

number of objects returned from a QLever query but not the number of object-defining

39

coordinates. Requesting objects represented as points enables us to measure loading

times for specific query result sizes because a point is always represented by one

coordinate consisting of latitude and longitude.

Points are just one of the three shapes our application has to deal with. To assess the

performance of our application in case objects of all possible shapes are requested,

we also measure the times for the query in Listing 5.1. It returns all objects in

Berlin, Germany, which provide geospatial information. Since the representation

of a linestring or a multipolygon can be arbitrarily large, the number of objects

in the query result is inappropriate to determine the size of the visualized data.

Therefore, we also report the number of geographic coordinates included in the

objects’ representation.

PREFIX ogc: <http ://www. openg i s . net / rd f#>
PREFIX osmrel: <https : //www. openstreetmap . org / r e l a t i o n/>
PREFIX geo: <http ://www. openg i s . net /ont/ geo sparq l#>
SELECT ?osm_id ?geometry WHERE {

osmrel:62422 ogc:conta in s ?osm_id .
?osm_id geo:hasGeometry ?geometry

}

Listing 5.1: SPARQL query. Returns ID and geometry of all objects located in
Berlin that provide geospatial information.

5.4 Baseline

In this section, we report the display times of Leaflet for displaying trees. This is a

client-side approach implementing the thick client architecture (Section 2.1). The

data is requested, stored and processed by the client. We report times of two different

methods: displaying markers and a marker cluster (Section 2.2.2). The corresponding

query returning the trees is illustrated in Listing 3.2. The recorded times represent a

40

baseline for the Web application proposed by this thesis.

Number of objects Regular display time (in ms)

1,000 420 ± 173

2,000 678 ± 149

4,000 1,134 ± 66

6,000 1,770 ± 64

8,000 2,418 ± 84

Table 1: Display time for points using Leaflet markers. Display time refers to
the time it takes to process and display the geospatial information which
is requested by the user. The average x̂ and corrected sample standard
deviation σ of measured values are reported in the form x̂ ± σ. The
visualized objects are trees, which are represented as points. Listing 3.2
shows the corresponding query.

Table 2 shows regular display times in case every single tree is displayed as a marker.

The regular display time exceeds one second for a result size of 4,000 trees. It is

almost two and a half seconds for 8,000 trees. That means the application needs

more than two seconds to display the map with updated information when the user

issues a zoom action, for example.

Number of Initial display Regular display

objects time (in ms) time (in ms)

10,000 319 ± 38 268 ± 96

50,000 2,518 ± 95 271 ± 112

100,000 8,185 ± 469 294 ± 109

200,000 38,342 ± 1,355 457 ± 148

Table 2: Display time for points using Leaflet marker cluster. Display time
refers to the time it takes to process and display the geospatial information
which is requested by the user. The initial display time, as opposed to the
regular display time, also includes the request of the data in the first place.
The average x̂ and corrected sample standard deviation σ of measured
values are reported in the form x̂ ± σ. The visualized objects are trees,
which are represented as points. Listing 3.2 shows the corresponding query.

41

Table 1 shows initial and regular display times in case trees are displayed using a

marker cluster. The regular display time for 200,000 trees is less than half a second.

That is less than the regular display time of displaying 2,000 trees using markers

without a cluster. The reported regular display times indicate that the marker cluster

approach outperforms the approach of displaying every single tree with a marker.

The downside of the marker cluster approach is that it has relatively high initial

display times. That is the time it takes to display the information for the first time

from when it is requested by the user. It takes more than eight seconds to initially

display 100,000 trees and about 40 seconds to display 200,000 trees.

5.5 Results

In this section, we report measured generation and display times of our proposed Web

application. The reported times correspond to the query results of the two queries

presented in Section 5.3.

Initial Regular

Number of generation display generation display

objects time (in ms) time (in ms) time (in ms) time (in ms)

100,000 238 ± 2 418 ± 65 87 ± 5 239 ± 26

500,000 637 ± 5 834 ± 85 131 ± 16 277 ± 97

1,000,000 1,124 ± 2 1,311 ± 89 189 ± 146 457 ± 103

2,000,000 2,137 ± 46 2,415 ± 41 277 ± 38 527 ± 90

Table 3: Generation and display time for points. Generation time is the time
that is needed to generate the image on the server. Display time is the
period starting at the client’s request and ending when the response is
displayed. The initial time includes query execution and result caching,
while regular time only includes reloading the previously cached result.
The average x̂ and corrected sample standard deviation σ of measured
values are reported in the form x̂ ± σ. The visualized objects are trees,
which are represented as points. Listing 3.2 shows the corresponding query.

42

Table 3 reports times resulting from the query that only returns trees. It shows

that the initial display time is larger than the regular display time due to the query

execution and result caching. However, even for 2,000,000 trees, the average initial

display time is about 2.4 seconds. That is less than the initial display time of the

Leaflet marker cluster approach displaying only 100,000 trees instead of 2,000,000.

On average, the regular display time is about a quarter of a second for the query

result sizes of 100,000 and 500,000 trees and about half a second for 1,000,000 and

2,000,000 trees. The regular display time of the Leaflet marker cluster approach for

200,000 trees is about the same as the regular display time of our application for

1,000,000 trees. The reported times suggest that our approach is about five to ten

times faster than the Leaflet marker cluster approach regarding regular display times.

The initial display time of our application is at least an order of magnitude faster

than the one of the Leaflet marker cluster.

Table 4 shows the recorded times for the query from Listing 5.1, returning all kinds

of objects in Berlin, Germany. The number of coordinates indicates the size of the

query result. The reported query results are in the range of 1,000,000 up to almost

17.5 million object-defining coordinates. The initial display time for the reported

results is less than five seconds on average for results containing less than 10,000,000

data points. It is less than seven seconds for a result of 17.5 million data points.

Regular requests take one second on average for results of about 2.5 million data

points and about two seconds for results containing about 10,000,000 data points.

The reported times suggest that the initial and the regular generation and display

times do not grow more than linear in the size of the query request.

Even though the question of whether these display times can be considered user-

friendly overall can not be answered objectively, we can state that our application

can at least handle data volumes of the size of several million data points.

43

Initial Regular

Number of Number of generation display generation display

objects coordinates time (in ms) time (in ms) time (in ms) time (in ms)

1,000,000 1,000,000 1,437 ± 2 1,647 ± 79 328 ± 58 979 ± 399

1,300,000 2.539.009 2,032 ± 34 2,242 ± 76 541 ± 150 1,099 ± 199

1,500,000 4,457,410 2,573 ± 25 2,810 ± 48 769 ± 208 1,357 ± 419

1,700,000 6,315,668 3,127 ± 27 3,353 ± 64 1,038 ± 309 1,629 ± 236

2,000,000 8,766,993 3,902 ± 39 4,118 ± 65 1,303 ± 202 1,838 ± 336

2,200,000 10,345,885 4,506 ± 25 4,719 ± 70 1,460 ± 127 2,273 ± 198

3,000,000 17,435,660 6,618 ± 23 6,895 ± 79 2,247 ± 157 3,118 ± 496

Table 4: Generation and display time for all kinds of objects. Generation
time is the time that is needed to generate the image on the server. Display
time is the period starting at the client’s request and ending when the
response is displayed. The initial time includes query execution and result
caching, while regular time only includes reloading the previously cached
result. The average x̂ and corrected sample standard deviation σ of
measured values are reported in the form x̂ ± σ. The visualized objects
are located in Berlin, Germany. They have all kinds of geometries: points,
lines and multipolygons. The number of coordinates indicates the number
of object-defining coordinates in the query result. Listing 5.1 shows the
corresponding query.

44

6 Conclusion

We face the problem of rendering potentially large amounts of geospatial data in

the Web browser. In the paper “Web GIS: Technologies and Its Applications” [2],

Alesheikh et al. list different software architectures of Geographic Information Systems

(Section 2.1), including the thin client approach. Our proposed application is an

implementation of the thin client architecture. It differs from other architectures

in the component that is processing data. While applications of the thick client

architecture process data on the client, applications implementing the thin client

architecture perform data processing tasks on the server. The client is just responsible

for displaying the computation results. That has the advantage: the computationally

demanding data management and processing tasks can be implemented in languages

that excel in fast code execution compared to JavaScript, the language executed on

a Web page. Furthermore, the client’s computer resources are no longer a limiting

factor.

We implement a Web application highlighting query result data from the query engine

QLever. The queried data is provided by OpenStreetMap, an open-source project on

geographic data.

We optimize our application to accelerate the image generation process. Finally,

we measure the time it takes to display the requested geospatial information from

when it is requested by the user. The results show that our application is capable of

visualizing hundreds of thousands of objects in under a second and even millions of

objects in seconds.

45

7 Future Work

There is room for further improvement of our proposed application. Two improvements

are listed in the following.

1. Image caching on the frontend could be added as optimization. The images

received from the server can be stored with information about the image location

and zoom level to be reused when it fits to the visible area. The map can be

organized in predefined tiles to facilitate the management of cached images,

just as it is the case with the tile layer. The downside is that multiple images

may be necessary to visualize the data of one area. However, this optimization

ensures that the data of a specific area is only visualized once on every zoom

level. That is eliminating redundant requests. Additionally, loading cached

images might be faster than requesting the generation of an image.

2. The user interactions zoom and scroll, implemented in our Web application,

are very basic. While that is sufficient to give an overview of the location and

the shape of the objects present in the query result, other information about

the objects, such as name and additional tags, is not considered. Displaying

additional object information would be a significant enhancement, at least on

zoom levels showing objects in detail. This feature could also be implemented

on the server side, adding visual information to the generated image upon

request. However, it could also be implemented on the client side. That would

require additional object information to be sent to the client.

47

Bibliography

[1] K.-T. Chang, Introduction to geographic information systems. New York: McGraw-

Hill Education, ninth edition ed., 2019.

[2] A. Alesheikh, H. Helali, and H. Behroz, “Web GIS: Technologies and Its Applica-

tions,” 2002.

[3] D. Veil, “Efficient presentation of GeoSPARQL-results,” 2021. Bachelor’s Thesis.

[4] M. Kulawiak, A. Dawidowicz, and M. E. Pacholczyk, “Analysis of server-side and

client-side Web-GIS data processing methods on the example of JTS and JSTS

using open data from OSM and geoportal,” Computers & Geosciences, vol. 129,

pp. 26–37, Aug. 2019.

[5] H. Bast and B. Buchhold, “QLever: A query engine for efficient SPARQL+text

search,” in Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, pp. 647–656, ACM, 2017.

[6] H. Bast, P. Brosi, J. Kalmbach, and A. Lehmann, “An efficient RDF converter and

SPARQL endpoint for the complete OpenStreetMap data,” in Proceedings of the

29th International Conference on Advances in Geographic Information Systems,

pp. 536–539, ACM, 2021.

[7] J. Bürklin, “QLever UI: A context-sensitive user interface for QLever,” 2021.

Bachelor’s Thesis.

49

[8] D. Lion, A. Chiu, M. Stumm, and D. Yuan, “Investigating managed language

runtime performance: Why JavaScript and python are 8x and 29x slower than c++,

yet java and go can be faster?,” in 2022 USENIX Annual Technical Conference

(USENIX ATC 22), (Carlsbad, CA), pp. 835–852, USENIX Association, July

2022.

[9] E. E. Cureton, “The teacher’s corner: Priority correction to “unbiased estimation

of the standard deviation”,” vol. 22, no. 3, pp. 27–27, 1968. Publisher: Taylor &

Francis, eprint: https://doi.org/10.1080/00031305.1968.10480477.

50

	1 Introduction
	1.1 Web Application Terminology
	1.2 Motivation
	1.3 Objective
	1.4 Approach
	1.5 Chapter Overview

	2 Related Work
	2.1 Web GIS: Technologies and Its Applications
	2.2 Web Visualization Tools for Geospatial Data
	2.2.1 Overpass API and Overpass turbo
	2.2.2 Leaflet and OpenLayers
	2.2.3 Efficient Presentation of GeoSPARQL-Results

	3 Background
	3.1 OpenStreetMap
	3.2 QLever
	3.3 Well-Known Text Representation
	3.4 Map Projection

	4 Approach
	4.1 Concept
	4.2 Web Page
	4.3 Server
	4.3.1 Server Workflow
	4.3.2 Parsing a QLever Response
	4.3.3 Image Generation
	4.3.4 Time Complexity

	4.4 Optimizations
	4.4.1 Caching
	4.4.2 Code Parallelization
	4.4.3 Extension of Requested Area

	5 Evaluation
	5.1 Setup
	5.2 Measured Values
	5.3 Queries
	5.4 Baseline
	5.5 Results

	6 Conclusion
	7 Future Work
	Bibliography

