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Abstract

QLever (clever!) is a SPARQL engine developed at the Chair of Algorithms and Data
Structures at the University of Freiburg. QLever enables users to efficiently query
large knowledge graphs, such as Wikidata [1].

This thesis is an optimization contribution related to the frequently used FILTER
expression. For example, FILTER(?var > 5) enforces that only rows with a value
greater than 5 in the column associated with the variable ?var are included in the
result.

The previous evaluation of a query involved the procedure of scanning all index
sections for a given scan specification through the INDEX SCAN operation related
to the variable ?var. The involvement of variables in FILTER expressions was not
taken into account during the scanning process. As a consequence, the evaluation of
FILTER expression required iterating over a mostly unnecessary large number of rows,
checking in this case the ?var-associated column value on the condition ?var > 5. A
significant number of rows typically contain values that do not satisfy the FILTER
expression. Thus, scanning all rows and subsequently iterating over them to evaluate
the FILTER expression introduced an unnecessary computational overhead, especially
since QLever stores its indexes in sorted order. These sorted indexes allow us to
efficiently prefilter and subsequently scan only the index sections that contain values
satisfying the expression ?var > 5. The objective of this thesis is to implement a

prefilter procedure that reduces the evaluation overhead for such FILTER expressions.
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Zusammenfassung

QLever (clever!) ist eine SPARQL-Engine, welche am Lehrstuhl fiir Algorithmen und
Datenstrukturen der Universitéit Freiburg entwickelt wird. QLever erméglicht Anwen-
dern effiziente SPARQL-Abfragen iiber sehr grofse Wissensgraphen, wie beispielsweise
Wikidata [1], auszufiihren.

Diese Thesis fokussiert sich auf die Optimierung der hdufig verwendeten FILTER
Operation. Der Ausdruck FILTER(?var > 5) bewirkt, dass das Ergebnis nur Zeilen
enthélt, welche die Bedingung ?var > 5 erfiillen.

Es ist offensichtlich, dass in den meisten Féllen ein Grofsteil der in den Indexsektionen
enthaltene Werte die Filterbedingung nicht erfiillt. Bisher wurden jedoch Indexsek-
tionen ohne Beriicksichtigung der Filterbedingung mittels der INDEX SCAN Operation
gescannt, und alle daraus resultierenden Zeilen anschliefsend auf die Erfiillung der
Filterbedingung tiberpriift. Diese Vorgehensweise ist ineffizient, insbesondere im
Kontext von QLever, wo jeder Index sortiert vorliegt. Ein sortierter Index ermdoglicht
eine Vielzahl von Optimierungen. Unter anderem kann auch die Auswertung einiger
Filterausdriicke optimiert werden. Die Optimierung wird durch einen Vorfilter re-
alisiert, der genau die Indexsektionen vorfiltert, welche Werte enthalten, die die
Filterbedinung erfiillen. Fiir das eben genannte Beispiel wird beziiglich ?var > 5
vorgefiltert. Folgend werden nur filterrelevante Indexsektionen per INDEX SCAN Oper-
ation gescannt. Dies hat zur Folge, dass auch die Filterbedingung {iber eine geringere
Anzahl an Zeilen gepriift wird, was den bisherigen Aufwand an Rechenresourcen
reduziert. Ziel meiner Arbeit ist die Implementierung dieser Vorfilterstrategie, was

zur Folge hat, dass der zuvor beschriebene Overhead reduziert wird.
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1. Introduction

1.1. SPARQL Standard

The current SPARQL standard [2] is defined and maintained by the W3C (World
Wide Web Consortium). The name SPARQL is a recursive acronym for SPARQL
Protocol and RDF Query Language. As the name suggests, it defines a standardized
language used to query data stored in the RDF (Resource Description Framework)

format?.

1.2. Resource Description Framework and Knowledge

Graphs

RDF represents data as descriptive triples in the format of subject predicate
object; or abbreviated s p o. In the following, we refer to this concept as RDF
triples. Such an RDF triple describes a directed relationship between the subject
and object entities via a predicate. A single component of such an RDF triple,
hence subject, predicate, or object, is referred to as an RDF term.

Brief example. <Ada_Lovelace> <Occupation> <Mathematician> declares that
Ada Lovelace’s occupation was that of a professional mathematician. Such an RDF
triple can also be interpreted as a directed graph. The subject and object represent

nodes, and the predicate represents the directed edge (see Figure 1).

<Occupation>
[ <Ada_Lovelace> ] =[ <Mathematician>]

Figure 1.: The RDF triple <Ada Lovelace> <Occupation> <Mathematician> rep-
resented as a directed graph.

The RDF triple presented above is slightly simplified. The <. . .> structure is used to
indicate that the RDF term is an IRI (Internal Resource Identifier). An IRI provides a

"ttps://www.w3.org/TR/rdf11-concepts/


https://www.w3.org/TR/rdf11-concepts/

globally unique identifier for the resource represented by the RDF term. In most cases,
an IRI is simply an URL (Uniform Resource Locator) that refers to publicly available
information about the entity it represents. Table 1 provides an example with concrete
IRI values for the respective components of an RDF triple. In addition to an IRI value,
RDF terms can also represent simple literals, such as "Ada Lovelace". It is also
possible to specify the intended interpretation of literals by appending a language tag
or type specifying IRI. "Ada Lovelace"@en indicates that "Ada Lovelace" is written
in english, while "33"~~<http://www.w3.0rg/2001/XMLSchema#int> specifies that

"33" should be interpreted as an integer.

Triple Component IRI (Wikidata)
<Ada_Lovelace> <http://www.wikidata.org/entity/Q7259>
<Occupation> <http://www.wikidata.org/prop/direct/P106>
<Mathematician> <http://www.wikidata.org/entity/Q170790>

Table 1.: Wikidata IRIs representing the entities <Ada_Lovelace>,
<Mathematician>, and the property <Occupation>.

Figure 1 illustrated that RDF triples which define directed relationships can be
interpreted as a directed graph. The sample of RDF triples provided in Table 2, along
with its corresponding representation as a directed graph in Figure 2, visualizes how
the RDF triples interconnect to form a larger knowledge graph. This representation

demonstrates how such triples can collectively represent rich semantic information.

RDF Triples

<Ada_Lovelace> <Occupation> <Mathematician>.

<Ada_Lovelace> <Has_name> "Ada Lovelace".
<Ada_Lovelace> <Known_for> <First_Computer_Algorithm>.
<Ada_Lovelace> <Known_for> <The_Analytical_Engine>.
<Ada_Lovelace> <Worked_with> <Charles_Babbage>.
<Ada_Lovelace> <Daughter_of> <Lord_Byron>.

<Charles_Babbage> <Occupation> <Mathematician>.

<Charles_Babbage> <Known_for> <The_Analytical_Engine>.

Table 2.: Sample RDF Triples



[<Mathematician>]

[ <Lord_Byron> }
A

<Daughter_of>

<Worked_with>

Y

[ <Ada_Lovelace> ] [<Charles_Babbage>]

<
A’Q% .
Zop,

<eueu”sey>

[<First_Computer_Algorithm>]

\
[ "Ada Lovelace" ]

Figure 2.: RDF triples represented as a graph.

Note that the RDF knowledge graph shown in Figure 2 not only directly connects
Ada Lovelace to Charles Babbage via the triple <Ada_Lovelace> <Worked_with>
<Charles_Babbage>, but also indirectly associates them. Both entities are indi-
rectly associated through their respective relationships to the same triple objects,

<The_Analytical_Engine> and <Mathematician>.

1.3. Large RDF Knowledge Graphs and QLever

QLever? is a SPARQL engine developed at the Chair of Algorithms and Data
Structures at the University of Freiburg. It is developed with an emphasis on
performance in modern C++ and already applies a wide range of optimization
strategies, some of which are mentioned in Chapter 2.

The result of those optimization efforts is that QLever enables users to efficiently

query popular RDF knowledge graph datasets, such as complete Wikidata, UniProt,

’https://github.com/ad-freiburg/qlever
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or PubChem [1, 3, 4]. Wikidata is one of the largest collaborative general-purpose
knowledge graphs, UniProt represents comprehensive information on all relevant
proteins, and PubChem is the largest database for chemical compounds. A significant
reason for their popularity is the scope of available information, which enables in-
depth knowledge discovery; Wikidata, UniProt and PubChem consist of billions of
RDF triples.

1.4. FILTER Expressions and Queries

FILTER is defined as a result-constraining operation in the SPARQL standard. The
name FILTER already provides an intuitive understanding of the semantics behind
it. For a conditional expression EXPR that evaluates true or false, the result of
the FILTER(EXPR) expression includes only those rows in the result for which its
expression evaluates true.

The following SPARQL queries using the FILTER expression outline the type of
queries whose evaluation procedure we aim to optimize. These queries are applied to
the Olympics dataset [5]. The corresponding result tables and query execution trees
were obtained through the public QLever user interface®. Note that retrieving the
entity-identifying IRI, corresponding to 7athlete_id in the queries below, is often
useful. However, these identifiers are omitted from the presented results to keep them
compact. The execution trees serve as visual support for Section 1.5, discussing the

current evaluation overhead of FILTER expressions.

Query 1
PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
SELECT 7athlete_id 7athlete_name WHERE {

7athlete_id rdfs:label 7athlete_name

FILTER REGEX(7athlete_name, "~ Sebast")

b
LIMIT 5

Run Query 1 in QLever: https://qlever.cs.uni-freiburg.de/olympics/VbrLKs
This query retrieves the name of five athletes whose name starts with "Sebast" from
the Olympics dataset.

Shttps://qlever.cs.uni-freiburg.de
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?athlete name

Sebastiaan Clemens Verschuren

Sebastiaan Jacques Henri "Bas" van de Goor
Sebastian "Sebu" Kuhlberg

Sebastian Bachmann

Sebastian Bayer

QU = W N+~

Figure 3.: Result Table of Query 1

LIMIT 5

Cols: ?athlete name, ?athlete
Size:5x2 [~-0]

Time: Oms [~ 0]

FILTER (REGEX(?athlete_name, "*Sebast"))
Cols: ?athlete_name, ?athlete

Size: 96 x2 [~0]

Time: 1ms [~ 0]

INDEX SCAN ?athlete <label> ?athlete_name
Cols: ?athlete_name, ?athlete

Size: 125,000 x 2 [~ 137,026]

Time: 4ms [~ 137,026]

Figure 4.: Execution Tree of Query 1

Query 2

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT 7athlete_id 7athlete_name 7athlete_age WHERE {
7athlete_id rdfs:label 7athlete_name
7athlete_id foaf:age 7athlete_age
FILTER(7athlete_age >= 60 && 7athlete_age <= 65)

b
LIMIT 5

Run query in QLever: https://qlever.cs.uni-freiburg.de/olympics/ZmVvxzR
This query retrieves the name and age of five athletes whose age is between 60 and
65 from the Olympics dataset.


https://qlever.cs.uni-freiburg.de/olympics/ZmVvxR

7athlete name ?athlete age
1 | Adrienne Jouclard 65
2 | Afanasijs Kuzmins 61
3 | Afanasijs Kuzmins 65
4 | Alberto Guerrero Recio 65
5 | Alfred Egerton Cooper 65
Figure 5.: Result Table of Query 2
LIMIT 5
Cols: ?athlete_id, ?athlete_name, ?athlete_age
Size: 5x3 [~ 5]
Time: Oms [~ 0]
FILTER (?athlete_age >= 60 && ?athlete_age <= 65)
Cols: ?athlete_id, ?athlete_name, ?athlete_age
Size: 194 x 3 [~ 126,424]
Time: 26ms [~ 126,424]
JOIN on ?athlete_id
Cols: ?athlete_id, ?athlete_name, ?athlete_age
Size: 180,609 x 3 [~ 126,424]
Time: 39ms [~ 444,054]
[
| |
INDEX SCAN ?athlete_id <label> ?athlete_name INDEX SCAN ?athlete_id <age> ?athlete_age
Cols: ?athlete_id, ?athlete_name Cols: ?athlete_id, ?athlete_age
Size: 137,026 x 2 [~ 137,026] Size: 180,604 x 2 [~ 180,604]
Time: 16ms [~ 137,026] Time: 19ms [~ 180,604]

Figure 6.: Execution Tree of Query 2



1.5. Problem Definition: Overhead in FILTER Expression

Evaluation

To emphasize the current FILTER evaluation overhead, we begin this section with
an analysis of the evaluation structure of Query 1 from Section 1.4. The analysis is
based on its corresponding query execution tree, as depicted in Figure 4. Note that
the query execution tree provides the result table size for each operation, formatted
as num_ rows X num__cols.

Query 1 retrieves the first five athlete names that start with "Sebast" from the
Olympics dataset, using the constraint REGEX(7athlete_name, "~Sebast"). It is
intuitively clear that the evaluation of this filter constraint expression is computa-
tionally expensive, since the evaluation of REGEX involves the direct comparison of
strings. The complete evaluation of Query 1 involves three concrete steps. Scan-
ning the index with the INDEX SCAN operation, evaluating the FILTER clause with
constraint REGEX(7athlete_name, "~Sebast")), and finally evaluating LIMIT to
retrieve only the first five matches. We can observe that the INDEX SCAN operation
returns a table of size 125,000 x 2. Without further optimizations, the expression
FILTER(REGEX(7athlete_name, "~Sebast")) must be evaluated against 125,000
potential string values to verify if they begin with "Sebast". In contrast, the result
table of the FILTER expression is only of size 96 x 2, while 125,000 string value
comparisons were executed. It is obvious that scanning all index sections with-
out consideration of the FILTER expression via the INDEX SCAN operation leads to
computational overhead, as only 96 rows are relevant to the result.

A similar overhead is observable for Query 2 through its execution tree depicted in
Figure 6. The INDEX SCAN operation, scanning the index column corresponding to
the variable 7athlete_age, produces a table of size 180,604 x 2. In contrast, only
194 values satisfy the expression (7athlete_age >= 60 && 7athlete_age <= 65),
resulting in an intermediate result table of size 194 x 3.

We observe with both queries the same problem. Their FILTER expressions are
notably restrictive. This results in a large number of rows being discarded during
a compute-intensive FILTER expression evaluation process. The root cause of this
problem is the INDEX SCAN operation, which scans index sections that are known
in advance to be irrelevant to the result. The following chapters provide a feasible
solution. They introduce an optimization that reduces the number of scanned index
sections by pushing prefilter predicates (i.e., prefilter expressions) down to the INDEX
SCAN operation.



2. Related Work

The FILTER expression optimization approach discussed in this thesis is primarily
based on existing infrastructure and optimizations already embedded in QLever. As
a result, the optimization is quite specific to QLever. Bast et al. [6] introduced the
SPARQL engine QLever, which enables efficient querying over RDF knowledge graphs
combined with a text corpus. Their work introduces fundamental techniques to build
an efficient SPARQL engine, such as a general projection of RDF terms into compact
integer identifiers (IDs), permuted and compressed indexes, and an efficient query
planner that selects the optimal evaluation order for a given query based on cost
estimates. Another notable paper is Bast et al. |7], which specifically presents in detail
techniques on how to prepare RDF knowledge graphs for efficient querying, as well
as strategies for optimizing query evaluation. The discussed approaches align with
the optimization strategies applied by QLever. It also involves sorted and permuted
indexes, and additionally discusses monotonic OID (Object Identifier) mapping of
RDF terms through the vocabulary.

The optimization technique discussed here is closely related to the strategy of
pushing predicates down to the scan or reading phase, a common optimization in
database query engines. For example, the support of pushing down predicates for
Spark SQL is discussed by Armbrust et al. [8]. They leverage the approach of predicate
pushdown, with predicates being directly evaluated while reading the table from the
file. Similarly, Lin et al. [9] also employ the predicate pushdown technique, as they
introduce a comprehensive and safe extension algorithm to support it. Their goal is
to optimize the evaluation of SQL queries in data processing pipelines by reducing
the amount of data generated at the beginning of the pipeline. Although their focus
is on table-based databases, their approach is transferable to QLever for optimizing
FILTER expressions. This thesis similarly aims to discard irrelevant data early during
the INDEX SCAN operation.



3. Further Background

This chapter explains the techniques behind optimized indexing, as the structure of
the optimized index plays a key role in the optimization of FILTER expressions. The
first section outlines the general approach on which QLever builds its RDF knowledge
graph index. The next two sections explain how all RDF terms are projected into
compact integer IDs (identifiers). These IDs are essential for reducing the index
footprint and enhancing query evaluation performance. Next, the concept of index
compression is briefly presented, along with the associated structure that keeps track
of the compression metadata. The structure that keeps track of the compressed index
plays a key role in the optimization approach discussed in Chapter 4. The final
section concludes by presenting the relationship between the INDEX SCAN operation

and the compression metadata of the index.

3.1. RDF Knowledge Graph Indexing with QLever

Knowledge graphs provided as raw RDF triples cannot be directly queried with
QLever, since its engine that evaluates queries requires a precomputed index of the
respective knowledge graph. For index construction, QLever features a dedicated
index-builder component, building not just one index but multiple permutations of it.

The concept of storing permuted and sorted RDF triples for indexing with QLever
was introduced by Bast et al. [6]. When we refer to an index as sorted, it means that
the RDF terms are first ordered by the primary term, then by the secondary term,
and finally by the tertiary term, whereby only the first terms are overall fully sorted
as a column. For the RDF triples forming the knowledge graph, there are 3! = 6

possible permutations.

The six RDF term permutations

(1) spo (4) pos
(2) sop (5) osp
(3) pso (6) op s

Bast et al. found that the permutations pos and pso are sufficient for typical



queries. Given this finding, QLever lets the user decide whether all six permutations
should be built or only the two mentioned above. Note that the permutation pos is
of particular relevance to the optimization introduced, as explained later on.

The availability of sorted and permuted indexes enable significant optimizations
of crucial operations such as INDEX SCAN and JOIN. They are also crucial for the

optimization of FILTER expressions.

3.2. Vocabulary Identifiers

For QLever, Bast et al. |6] introduced separate vocabularies for RDF data and
text corpus. We refer to the vocabulary used for storing RDF data as the RDF
vocabulary. All IRI and literal RDF terms in the knowledge graph are added to the
RDF vocabulary during construction of the index. QLever implements a vocabulary-
based monotonic ID (identifier) mapping. Since these IDs are exclusively associated
with entries in the RDF vocabulary, they are here referred to as Vocab-IDs. These
Vocab-IDs are implemented as unsigned integer values. The mapping assigns each
distinct IRI and literal a unique Vocab-ID while preserving the intended < order of
the RDF terms. This enables efficient relational comparison operations by performing
them directly on the assigned Vocab-ID integers, without processing the original string
values. Given the Vocab-ID characteristics, the index can be built without relying on
the RDF term strings by substituting them with their corresponding Vocab-IDs. The
SPARQL-compliant Vocab ID mapping and its properties are formally described by
Bast et al. |7], the concept is introduced as OID (Object Identifier) mapping.

The concept behind Vocab-ID mapping is well presentable through an example.
Five RDF triples are given in Table 3. The related RDF terms and their assigned
Vocab-IDs are listed in Table 4, where the order of the RDF terms is preserved for
their corresponding Vocab-ID.

RDF Triples

<Ada_Lovelace> <Occupation> <Mathematician>.

<Ada_Lovelace> <Has_name> "Ada Lovelace".
<Ada_Lovelace> <Known_for> <First_Computer_Algorithm>.

<Ada_Lovelace> <Known_for> <The_Analytical_Engine>.

<Charles_Babbage> <Has_name> "Charles Babbage".

Table 3.: Sample RDF Triples

10



RDF Term Vocab-1D

<Ada_Lovelace>

)

<Charles_Babbage>
<First_Computer_Algorithm>
<Has_name>

<Known_for>

<Occupation>
<The_Analytical_Engine>
"Ada Lovelace"

"Charles Babbage"

0 N O Ot ks W NN

Table 4.: RDF Vocabulary with Vocab-IDs

The RDF vocabulary is static to the RDF data for which the index is built and is
mainly stored on disk. This introduces the necessity for a second vocabulary that
handles the local values of a query, since those local values may not be contained
in the RDF vocabulary. For a query containing the expression FILTER(REGEX (?var,
"~Bob")), literal "Bob" is considered a query-local value. Query-local literal and
IRI entries from the local vocabulary can be consistently compared with RDF
vocabulary Vocab-IDs by assigning them their corresponding Vocab-ID range in the
RDF vocabulary, in accordance with the lexicographic order. This Vocab-ID range
effectively represents the corresponding position in the RDF vocabulary at which the

query-local entry would be inserted.

3.3. General 64-bit Identifiers

Each RDF term is internally assigned a corresponding ID representation, structured

as follows:

tttt XXXXXXXXXXXXXXXX XXX XXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

Type (4 bits) Payloadv(GO bits)
The four most significant bits hold the corresponding datatype information to the
value contained in the last 60 bits. Doubles, integers, blank statements, and date
values are ID encoded with their distinct datatype. For those values, the corresponding

IDs are compared bit-wise. Thus, sorting the ID-mapped RDF terms implies that

11



they fall into separate ranges, primarily ordered by their type bits. The payload bits
that contain the actual value determine the secondary order for values of the same
datatype. This defines the order logic of ID-mapped RDF terms within the sorted
index.

Entries from the RDF vocabulary and the query-local vocabulary are also encoded
as distinct data types. The ID mapping for RDF vocabulary entries is done via their
associated Vocab-IDs, preserving the underlying lexicographic order. Query-local IRI
and literal values are assigned to IDs through their entry index in the query-local
vocabulary. The relational comparison between an ID encoding an RDF vocabulary
entry and another ID encoding a query-local vocabulary entry is not performed
using their raw bit representation. Instead, when comparing an RDF vocabulary
ID to another query-local vocabulary associated ID, we effectively compare the
Vocab-ID of the RDF vocabulary entry to the corresponding Vocab-ID range of the
query-local IRI or literal. The Vocab-ID range is defined by an upper and lower
Vocab-ID, representing the potential position in the RDF vocabulary. Determining
the relation between two IDs that encode query-local vocabulary entries is done by
directly comparing their underlying string values. For all other ID pairs encoding
different datatype values, the relational comparisons are directly performed on the bit
representation. Since QLever builds the index adhering to ascending order through
the < operator directly on the IDs introduced here, the IDs encoding query-local and

RDF term entries are contained in mixed and in lexicographic order.

3.4. Index Block Metadata

To optimize memory usage, the permuted indexes are not stored as a complete
arrangement of ID-mapped RDF triples. Instead, QLever compresses each index
permutation into blocks and stores the compressed representation in the memory file.

This compression approach for QLever was introduced by Bast et al. [6].

| blocko | blocki | block2 | --- | blockN |

Index stored as a sorted sequence of compressed blocks.

The compression is performed by first partitioning the index through fixation of
the first RDF term, while grouping and compressing the second and third terms. In
the context of an INDEX SCAN, the second and third terms are typically considered
"free", which means that they represent scan columns of two associated variables.

All second and third terms are treated as pairs in the next step of the compression.

12



Using these pairs, the index is compressed by grouping all third terms for each unique
second RDF term. The grouped third terms and their associated second term are
subsequently written to the index file, while recording their position within the file via
byte offsets. Each index block corresponds to a fixed first RDF term and contains all
grouped third terms to a distinct single second term. However, to maintain practical
block sizes in memory when loading the data, each block adheres to an upper size
limit. As a consequence, the grouped values may be split over multiple blocks in the
file. The byte offsets of these blocks, along with the offset for the associated fixed
first term within the file, are recorded. These byte offsets serve as lookup keys for
locating each block in the index file.

The structure that records and tracks the offset information of the index blocks
within the file is referred to as the Index Block Metadata. In addition to the offset
information, each Index Block Metadata value contains the complete first and last
RDF triples of its associated index block. This is particularly relevant to the FILTER
expression optimization approach, as the information about the value range of the
associated index block is available through the first and last RDF triples without
decompression. If decompressing the index blocks was necessary to access their value
range information, the discussed optimization could potentially introduce an overhead

that outweighs its performance benefits.

3.5. The INDEX SCAN Operation

The INDEX SCAN operation always represents a leaf node in the query execution
structure, as illustrated by Figure 4 and Figure 6. For a given scan specification and
defined permutation, this operation retrieves the scan-relevant Index Block Metadata
values. The provided scan specification indicates whether the scan is performed
over all three columns (full scan). This corresponds to a scan with respect to three
variables, while scans over one or two columns are invoked for specifications involving
one or two associated variables, respectively. Note that only the first scanned column
is fully sorted, according to the order of the sorted index, as explained in Section 3.1.
When the INDEX SCAN operation is subsequently evaluated, it decompresses the index
sections through the scan-relevant Index Block Metadata values by retrieving the
index blocks from the file via the recorded byte offsets. The result is returned as a

table and further passed on to subsequent operations.
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4. Approach

We optimize the evaluation performance of FILTER expressions by discarding irrel-
evant index blocks. Index blocks are considered irrelevant if we can safely assume
that they contain only values that do not satisfy the FILTER expression. Scanning
those irrelevant index blocks via the INDEX SCAN operation introduced an evaluation
overhead for the FILTER expression downstream, as analyzed in Section 1.5. Sec-
tion 3.4 introduced the Index Block Metadata structure, which effectively represents
an index block. Thus, index blocks can be omitted by discarding their associated
Index Block Metadata prior to performing the INDEX SCAN operation. Irrelevant
index blocks are discarded using a prefilter expression that mimics the logic of the
FILTER expression, as we keep only the index blocks with values that satisfy the
expression. As a result, the INDEX SCAN operation subsequently decompresses and
yields only the index blocks associated with the Index Block Metadata values relevant
to the FILTER expression and its result.

We refer to the entire process, from retrieval of the prefilter expression to discarding
irrelevant index blocks using the corresponding Index Block Metadata values in
the INDEX SCAN operation during query planning, as the prefilter procedure. The
following sections outline each relevant step involved in the prefilter procedure, while
the conclusive section of this chapter elaborates on the prefilter procedure in the

broader context of query planning and its associated challenges.

4.1. Prefilter supported SPARQL Expressions

The logical SPARQL operators listed in Table 6 are supported by prefilters, as well as
the SPARQL expressions listed in Table 5. In addition, composite expressions such
as FILTER(YEAR(?date) = 2000), which retrieve dates in relation to a year specified

as an integer, are also supported.
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Operator

‘ Description

Relational Expressions

?var < val
?var <= val
?var > val
?var >= val

Check ?var is less than val
Check ?var is at most val
Check ?var is greater than val
Check ?var is at least val

?var = val Check ?var equals val
?var != val Check ?var does not equal val
isDatatype Expressions
isIRI(?var) Check ?var is an IRI
isBlank(?var) Check ?var is a blank node
isLiteral(?var) Check ?var is a literal
isNumeric(?var) Check ?var is a numeric literal

Prefix Filter Expressions

STRSTARTS(?var, "prefix")
REGEX(?var, "~“prefix")

Check ?var starts with "prefix"
Check ?var starts with "prefix"

IN and NOT IN Expression

?var NOT IN (expri,

?var IN (expril, ., exprN)

., exprN)

Check if ?var matches any of the
expression results

expression results

Table 5.: Supported SPARQL expressions

Operator ‘ Description

Logical Expressions

&&
I

AND
OR
NOT

Table 6.: Supported logical SPARQL expressions

4.2. The Algorithm Constructing Prefilter Expressions

We refer here to the original SPARQL expression (SE) with the notation EXPRgg,
while EXPRpg denotes its corresponding prefilter expression (PFE). This section in-
troduces the algorithms involved in the construction of the prefilter expressions, by
briefly explaining their behavior. Section 4.2.1 introduces the base case, involving
the expressions listed in Table 5. This algorithm is rather trivial. However, the

algorithms that implement the merge procedures of AND and OR are somewhat com-
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plex, particularly when negated through a logical NOT (discussed in Section 4.2.4).
This complexity arises from the goal to support prefiltering for FILTER expressions
involving multiple variables in the future, such as FILTER(?x > 33 && 7y < 33) or
FILTER((?x < 0 && ?y < 0) || (?x > 20 && ?y > 33).

Given that the base prefilter expressions are evaluated via binary search, the
requirement is a fully sorted variable-related column. However, given the order of
the RDF triples when sorted for the index, only a single column is effectively fully
sorted. This fully sorted scan column is the first non-fixated variable-related column
for which the INDEX SCAN operation is performed. As a consequence, our approach
requires the decomposition of expression EXPRgg into multiple variable-specific prefilter
expressions EXPR;;’;TO, ey EXPR?]%T", such that ?var; #7var; for all i # j. EXPR?EW
denotes the prefilter expression applied to the scan column associated with 7wvar;.
Each of these expressions EXPR?;ETZ' is successfully matched with a distinct INDEX
SCAN operation under the condition that each variable Tvar; corresponds to a fully
sorted column. Under this condition, the set of expressions EXPR;;’;TO, .. ,EXPR?&T",
each successfully applicable to its corresponding INDEX SCAN, can be interpreted as a

logical conjunction. The following algorithms operate on a prefilter expression list PF:
PF = [EXPRV® ..., EXPRZ™], (1)
which is semantically interpreted as the logical conjunction:
n
Tvar;
/\ EXPRE. (2)
i=0

4.2.1. The Base Case

Algorithm 1 GETPREFILTEREXPRESSIONOFEXPR()

1: var <— GETVARIABLE()

2: value <~ GETREFERENCEVALUE()

3: expr < EXPRpg(value)

4: return [(var, expr)] > List with (variable, expression) pair

Algorithm 1 outlines how we handle the base case involving the SPARQL expressions
listed in Table 5. The procedure here is simple: access the associated variable ?var
and the reference value(s), then return the pair consisting of the corresponding
EXPRpg and the associated variable ?var. The assigned variable associates EXPRpg

with the INDEX SCAN operation that scans the index column that corresponds to
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variable ?var. For SPARQL expressions that are not listed in Table 5, the algorithm

returns an empty list.

4.2.2. Logical AND

We assume that the argument isNegated is set to false here, since the case

isNegated = true is implicitly discussed in Section 4.2.4.

Algorithm 2 MERGEANDPREFILTEREXPRESSION (leftEzpr, right Expr, isNegated)

1: pf _in_ 1< leftExpr.GETPREFILTEREXPRESSION (isNegated)

2: pf_in_ 2+ right Expr.GETPREFILTEREXPRESSION (isNegated)

3: pf out <[]

4: 10,5« 0 > pf in_ 1 and pf in_ 2 are sorted by variable
5. while i < |pf in_ 1| and j < |pf_in_2| do

6: (vary, expry) < pf _in_ 1[i]

7: (vary, expry) < pf _in_ 2[j]

8: if var; = vary then

9: merged < isNegated 7 ORpg(expry, expry) : ANDpg(expry, expry)
10: APPEND(pf out, (var;, merged))
11: 1—1+1,j<j5+1
12: else if var; < vary then
13: APPEND(pf_out, (vary, expry))
14: 14+ 1+4+1
15: else
16: APPEND(pf out, (vary, expry))
17: j—j+1
18: end if
19: end while

|\l
o

: while ¢ < |pf in_1| do

21: APPEND(pf out,pf in_ 1][i])
22: t—1+1
23: end while

)
g

: while j < |pf in_2| do
APPEND(pf out, pf in_2[j])
j+—j+1

: end while

: return pf out

N NN N

This algorithm effectively implements the strategy of decomposing SPARQL expression
EXPRgg into multiple variable-specific prefilter expressions EXPR;”;TO, .. ,EXPR?’;’"”,
while adding them to the result list PFoyr. The splitting occurs during the merge

procedure of the sorted prefilter expression lists PF;y1 and PFjye, since only a pair
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of expressions associated with the same variable can be meaningfully combined by
conjunction ANDppg(expr;, expr,). All prefilter expressions that do not form a pair
through matching variables (i.e., where var; # varsy), are added individually to the
result. This is possible given the implicit logical-and semantics behind a prefilter
expression list PF (see Equation 1). Adding an expression associated with a distinct
variable technically adds a conjunct to the result PFoyr. This behavior is illustrated
in Figure 7 for the expression 7x > 33 && 7y < 33.

Note that prefilter expressions are contained in the order according to their associ-
ated variables within the lists PF;x1 and PFjy9. In combination with the algorithm’s
merging logic (linear-time), the prefilter expressions are added to PFoyr in the order

of their associated variables, thereby preserving the sorted order and uniqueness.

Figure 7.: SPARQL expression (left) and the corresponding prefilter expressions
(right). Each prefilter expression is associated with a distinct variable.
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4.2.3. Logical OR

We assume that the argument isNegated is set to false here, since the case

isNegated = true is discussed in Section 4.2.4.

Algorithm 3 MERGEORPREFILTEREXPRESSION(left Expr, right Expr, isNegated)

L pf out <+ []

2: pf _in_ 1< leftEzpr.GETPREFILTEREXPRESSION (isNegated)

3: pf in_ 2 < right Expr.GETPREFILTEREXPRESSION (isNegated)

4: 140,50 > lists are sorted by variable
5. while ¢ < |pf in_ 1| and j < |pf in_2| do

6: (vary, expry) < pf_in_ 1[i]

T: (vary, expry) < pf in_ 2[j]

8: if var; = vary then

9: merged < isNegated 7 ANDpg(expry, expry) : ORpg(expr;, exprsy)
10: APPEND(pf out, (vary, merged))

11: i i+l jeg+1

12: else if var; < vary; then

13: 1+ 1+1

14: else

15: j—i+1

16: end if

17: end while
18: return pf out

As presented with Algorithm 3, the general merging strategy of the OR merge procedure
resembles that of the AND merge implemented by Algorithm 2. If two prefilter
expressions of PF;y1 and PFjyo are associated with the same variable, they are
combined using the corresponding merge operator (i.e., ORpg(expry, expr,) here) and
subsequently added to the result. However, in contrast to the AND merge procedure,
prefilter expressions that do not form a match via their associated variables are
discarded. The reason is that the result list must semantically reflect expr; || expr,
across the two lists PFyn1 and PFjn9, as it is obviously the case when two expressions
are joined via ORpg. But when we instead add a prefilter expression expr associated
with a distinct variable individually to the result PFoyr, we subsequently prefilter
with the assumption that its condition must be satisfied. This is because a prefilter
expression list PF semantically represents a conjunction across multiple INDEX SCAN

operations (see Equation 1). However, the assumption that a prefilter expression
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expr with a distinct associated variable must be satisfied is not sound in the context

of an OR merge, as a disjunction expr || expr may still be satisfied even if expr

other
evaluates to false. Thus, the algorithm excludes prefilter expressions for variables

without a matching counterpart in the other list from the resulting list PFoyr.

4.2.4. Logical NOT

Algorithm 4 GETNOTPREFILTEREXPRESSION (isNegated, child Expr)

. pf < childBxpr.GETPREFILTEREXPRESSION (—isNegated)
: for all (var, ezpr) in pfdo
expr < NOT pg(expr)
end for
return pf

EARE o >

The implementation of function NOT is algorithmically simple, since all EXPRpg are
capable of performing the logical complement. For ANDpgr and ORpg, this involves

applying the De Morgan laws:

~(AAB) = (=4)V (=B) (3)
~(AV B) = (=4) A (=B) (4)

Let us now briefly discuss how the Boolean isNegated flag used in the AND merge
Algorithm 2 and the OR merge Algorithm 3, as it relates to the algorithm responsible
for constructing prefilter expressions for logical NOT. Assume that we have the expres-
sion ! (?x <= 33 || 7y >= 33), and want to retrieve the corresponding EXPRpg. If
isNegated is set to false during its retrieval, the OR merge is performed as explained
in Section 4.2.3 on the child expressions ?x <= 33 and 7y >= 33. During this merge
procedure, the variables ?x and 7y of the prefilter expression do not match. Conse-
quently, these prefilter expressions are discarded. As a result, the merge procedure
returns an empty list PFoyr to its NOT expression parent, the algorithm presented
here. This is obviously wrong, since ! (?x <= 33 || 7y >= 33) is equivalent to (7x
> 33 && 7y < 33) by the De Morgan law 4. Thus, the result is expected to contain
the prefilter expressions corresponding to ?x > 33 and 7y < 33. The solution is to
perform an AND merge for the OR child, while using the disjunction ORpg to join the
expressions whose variables match. This happens under the condition that isNegated

is toggled to true, and the AND merge algorithm from Section 4.2.2 is executed corre-
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spondingly with isNegated = true. This approach results in prefilter expressions for
?x <= 33 and 7y >= 33, which are subsequently complemented to ?x > 33 and 7y
< 33 with Algorithm 4 of this section. Note that in case of previously ORpg joined
prefilter expressions expr; and expr, (i.e., matching variables), the consolidation
ORpp is logically complemented according to De Morgan 4. Analogously, for De
Morgan law 3, an OR merge with isNegated = false is performed on an AND child

node.

4.2.5. Complexity Analysis

We omit cases with redundant negations. For worst-case expressions, the AND merge
(see Algorithm 2) dominates the complexity, as it merges two sorted lists without
discarding any expressions. Given the retrieved lists PF;y1 and PFry9, the complexity
of the merge procedure is O(k), where k = [PFyn1| + |PFrn2|. The size of the output
PFoyr depends on the number of matched expressions through their associated equal
variables. If all variables are distinct, all prefilter expressions are added individually.
Thus, |PFoyr| = |[PFrn1| + [PFrn2| in the worst case. Let us assume an expression
which consists only of conjunctions. The worst composition of such an expression is
represented by a highly unbalanced binary tree with n AND nodes, while introducing
n + 1 distinct variables across n + 1 base expressions. This implies that for every
merge, either PFyyq or PFrn9 is of size 1. For the first merge performed, the size of
the other list is also 1, which results in |[PFopp| = 2. Subsequently, the next merge is
performed on input lists of size 1 and 2, thus [PFoyr| = 3. The final merge operates
on lists of sizes 1 and n, with |PFoyr| = n + 1. At each step, the merge procedure
iterates over |PFour| prefilter expressions across the lists PFryq and PFyo. Thus,
the total complexity is given by:

’ill_ (n+D(nt+2)
- ; ,
=2

which simplifies to O(n?) when merging n conjunctions of base expressions, if internally
structured as a highly unbalanced tree.

For the base algorithm (see Section 4.2.1) that covers the expressions listed in
Table 5, the time complexity is O(1). Since most FILTER expressions typically involve
at most one or two variables, the procedure to retrieve the corresponding prefilter

expression is unlikely to impose a significant performance overhead.
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4.3. Prefilter Expressions

We categorize the prefilter expressions of relational expressions and logical operators
as primary, as they form the basis on which all other (composite) expressions are built.
Section 4.3.1 and Section 4.3.2 discuss these primary prefilters and the corresponding
evaluation procedure. Based on these primary prefilter expressions, the following
sections elaborate on the prefilter logic for secondary SPARQL expressions. For
example, the prefilters associated with expressions such as STRSTARTS or IN are

considered secondary.

4.3.1. Relational Expressions

Let us briefly revisit the order of the index and its corresponding Index Block Metadata
values. The index consists of permuted ID-mapped RDF triples, as discussed in
Section 3.3. As a consequence, the index is sorted with respect to these ID values.
The IDs introduced are 64-bit integers, which enable efficient relational comparison
operations. In addition, QLever compresses the index into blocks, while tracking
those index blocks through the component introduced as Index Block Metadata in
Section 3.4. The evaluation-relevant information of an Index Block Metadata value
is its first and last triple. In particular, relevant to the evaluation is the term of
those triples at the position associated with the filter-related variable. The Index
Block Metadata values are provided as a sorted span, reflecting the order of the index.
Note that it is essential to maintain the sorted order. Otherwise, the INDEX SCAN
operation subsequently decompresses and returns an unsorted index, resulting in false
operation evaluations downstream.

The evaluation procedure of a relational prefilter expression is best explained by an
example. Let us assume that the objective is to prefilter the index for the expression
FILTER(?x > 10). The corresponding retrieved prefilter checks for the condition
> IDjg, where IDjq represents the ID mapping of 10. The following four steps outline

how the filter-relevant Index Block Metadata values are located.

1. Retrieving the ID Range:
Since we are given a span of Index Block Metadata values that contain the first
and last ID-mapped RDF triple of the associated compressed index blocks, the
first step is to access the filter-relevant ID range. This ID range is represented by
all RDF terms at position ¢, the column index corresponding to the filter-related
variable 7x, across both the first and last triples of all Index Block Metadata

values. The terms are successively accessible, effectively representing a column
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over the triples of the Index Block Metadata values as a sorted ID range. Thus,
a span consisting of n Index Block Metadata values yields an ID range of size

2 X n, as they contain two triples.

. Locating the relevant Datatype Ranges:

For our concrete example, IDs satisfying > IDjg are considered relevant. How-
ever, the ID range may contain IDs of various datatypes, and it is obviously not
possible to meaningfully compare IDjy with an ID representing a vocabulary
entry, or an ID representing a date value. In addition, most ID pairs are directly
compared on their underlying raw bit representation, an exception from the
vocabulary entries, as explained in Section 3.3. This poses an issue because
the first four type bits distort the comparison when the goal is to evaluate
an integer ID against a double ID based on the actual content of the payload
bits. Thus, this step involves locating the subranges relevant to the comparison
within the ID range retrieved previously. For ID;g encoding the integer value
10, the comparison-relevant datatype ranges are those associated with integers
and doubles. Analogously, the comparison-relevant datatype subranges are
located for reference IDs that represent values of other datatypes. Locating
these subranges associated with the comparison-relevant datatypes is efficient,

since the given ID range is sorted and binary search is applicable.

In practice, each subrange associated with a specific datatype section is defined
by a pair of iterators indicating its start and end within the overall ID range

retrieved in Step 1.

. Locating the Relevant Ranges:

Having located the subranges consisting of the comparison-relevant datatypes
in the previous step, the objective is to refine these subranges for the given
condition > IDjg. The localization of the relevant subranges consisting of IDs
that satisfy ID > IDjq is also performed by binary search. The direct comparison
of IDs encoding numerical values is done bit-wise. Thus, the value ID1y must
be decoded and re-encoded as a double IDyq g, for performing binary search
over the subranges associated with double values. Otherwise, the comparison
would not make sense since the bits encoding the datatype would dominate the

relational comparison.

. Get the Relevant Index Block Metadata:
The retrieved subranges defining the sections of IDs which satisfy > IDjg are

represented by a pair of iterators referring to the total ID range obtained in
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Step 1. Since the ID range has size 2 x n for a span consisting of n Index Block
Metadata values, the iterator values of the pairs that define the relevant ID
subranges are consequently offset by a factor of 2. As a result, the sections of
relevant Index Block Metadata values can be obtained by dividing the iterator
values of each pair by two. Thus, we effectively map back the ID subranges to
their corresponding subranges in the Index Block Metadata span. Each Index
Block Metadata subrange is defined by a pair of iterators that mark the start and
end positions within the span. Consequently, we can omit a direct materialized
copy of the relevant Index Block Metadata values, since the corresponding
subranges are recorded by iterator pairs. This evaluation procedure within the
recursive context is quite efficient, as only pairs of subrange-defining iterators

are passed around, instead of the actual Index Block Metadata values.

Evaluations involving different relational operators, or IDs of a different datatype,

are performed analogously to the presented example.

4.3.2. AND and OR

Both AND (&&) and OR (| |) are considered binary in the sense that they possess two
child expressions. Both of these child expressions return the subranges corresponding
to the relevant Index Block Metadata values for their respective expressions.

The evaluation of an AND expression is performed by computing the intersection
over the iterator-based subranges returned by its child expressions. Analogously,
the evaluation of an OR expression is performed by computing the union over the
respective subranges. Since we internally keep these ranges in sorted order with
respect to the associated relevant Index Block Metadata values, the evaluation of the
expressions AND an OR can be performed through a linear iteration procedure over

the ranges while merging them according to the union or intersection logic.

4.3.3. NOT

As already introduced with Algorithm 4 in Section 4.2.4, creating a negated prefilter
expression involves performing the logical complement on the respective (single) child
expression. If the child expression represents a logical AND or OR, its complement is
determined by De Morgan’s laws (see Equations 3 and 4). Complementing a relational
expression involves changing the relational operator with its corresponding logical
counterpart:

(> & <=), 0= & ), and (= & 1=).
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Thus, given that the whole child expression is effectively already logically negated

and accordingly evaluated, there is no actual evaluation procedure involved here.

4.3.4. STRSTARTS and REGEX

Note that we can only prefilter REGEX expressions involving a prefix check on the
string value, such as REGEX(7name, "~Bob"). STRSTARTS is effectively equivalent to
a case-sensitive REGEX prefix check. In addition, case-insensitive prefix matching can
be performed using REGEX with flag value "i" (e.g., REGEX(?name, "~Bob", "i")).
This will result in matches where the difference between upper and lowercase letters
is ignored.

Section 3.2 discussed the RDF vocabulary that represents the static index vocab-
ulary. This vocabulary implements a monotonic Vocab-ID mapping that preserves
the order of all defined entries during index construction. QLever’s vocabulary en-
tries include both IRI and literal values, which are ordered lexicographically in a
case-insensitive manner. Consequently, both case-sensitive and case-insensitive prefix
checks can be prefiltered using the same approach. Our goal is to construct a precise
prefilter using both upper- and lower-bound reference values, represented by bounding
IDs that define the range for vocabulary entries that match our prefix.

The corresponding prefix range with respect to the RDF vocabulary is determined
by two binary search operations. The first search determines the lower bound, which
is the position of the first vocabulary entry that matches the provided prefix. The
second search finds the upper bound, which is the position of the first entry that
no longer matches the prefix. These search results are effectively the Vocab-1Ds
corresponding to the position of the bounding entries in the vocabulary. However,
the lower-bound Vocab-ID needs to be adjusted by decrementing it by one. This
adjustment is necessary because query-local literal values are compared according to
their hypothetical position in the static RDF vocabulary, as explained in Section 3.3.
This ensures that the prefilter also includes potential IDs encoding prefix-relevant
query-local values, as they may be placed in order before the entry associated with the
unadjusted lower-bound Vocab-ID. Next, the decremented lower-bound Vocab-ID and
the upper-bound Vocab-ID are mapped to their corresponding general IDs, lowerID
and upperID. Based on these bounding IDs, the resulting prefilter expression is as
follows:

(> lowerID) AND (< upperID).
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4.3.5. IN and NOT IN

The expression FILTER(?var IN ("Bob", 2, 33.00, <http://iri>)) restricts the
result returned by FILTER to rows where the respective value in the column associated
with ?var was either equal to "Bob", 2, 33.00 or <http://iri>. The SPARQL
standard defines the IN expression as the disjunction:

lhs = EXPRg || 1lhs = EXPRy || --- || lhs = EXPRpy. IN checks if the value
on the left-hand side is contained in the list of expressions on the right-hand side
when evaluated. However, since our prefilter cannot involve the active evaluation
of expressions EXPRg, - -- EXPRy, the prerequisite for correct prefiltering is that the
reference list contains only constant expressions. Constant expressions are literals,
typed literals such as "2000-11-28T00:00:00.000"~"xsd:dateTime, [RIs, and the
Boolean constants. Thus, as explained in Section 3.3, the values of these constant
expressions can be directly mapped to a corresponding ID value, as needed for
prefiltering. Given a list consisting only of constant expressions EXPRq, - -+ ,EXPRy,
the corresponding prefilter expression is a disjunction over the equality conditions on
the retrieved IDs: (= ID;) OR (= ID2) OR --- OR (= IDy).

In contrast, 1hs != EXPRy && 1lhs != EXPRy, && --- && lhs != EXPRy repre-
sents the logical interpretation behind expression NOT IN. To prefilter NOT IN, akin
to the complement of IN, we construct its prefilter expression as a conjunction of
non-equality conditions: (!= ID;) AND (!= IDz) AND --- AND (!= IDy).

The evaluation of IN and NOT IN prefilter expressions is based on the procedures

explained in Section 4.3.1 and Section 4.3.2.

4.3.6. IsDatatype

The prefilter of isBlank(?var) is simple, since blank terms are handled as a separate
datatype, the associated Index Block Metadata values can be simply located via
binary search. Its evaluation follows the same approach as that of relational prefilters
(see Section 4.3.1), but by skipping the third step, since the aim is to locate only the
datatype range. For isNumeric(?var), the prefilter retrieves the datatype ranges
corresponding to integer and double values.

The expressions isIri(?var) and isLiteral(?var) require a different evaluation
approach, since the vocabulary entries include both IRI and literal values, ordered
lexicographically and in a case-insensitive manner. The consequence is that both TRI
and literal values are included in the ID range associated with the RDF vocabulary

and the query-local vocabulary entries, as explained in Section 3.3. And given that
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the ID projections of vocabulary entries are order-preserving, the IDs corresponding
to literal values precede those associated with IRIs, since ’"’ (quotation marks
indicating a literal) is lexicographically smaller than ’<’ (angle brackets indicating
an IRI). Thus, we can prefilter for the expression isLiteral(?var) by using the ID
representation of ’<’ as an upper bound. The expression isIri(?var) is prefiltered

in accordance by choosing ’<>’ as a lower bound.

4.3.7. Prefilter Dates by Year

This prefilter optimizes expressions such as FILTER(YEAR(?date) = 2000) and
FILTER(YEAR(?date) < 0). The inner YEAR expression extracts the year component
of a date value as an integer, which is then compared to the reference year, provided
as an integer. The result is that the first example retrieves all dates from the year
2000, while the second example retrieves all dates preceding year 0.

A prefilter is feasible, since QLever also maps date values into the general ID space
in an order-preserving manner. For a given a SPARQL-compliant xsd:dateTime or
xsd:date value, such as the literals "2025-05-31T15:30:00Z2"~"xsd:dateTime and
"2025-05-31"""xsd:date, QLever internally dissects the value into its individual
components: year, month, and day; hour, minute, second; and the optional timezone.
The corresponding integer values of the individual components are then bit-shifted
into an unsigned 64-bit integer, representing the complete date value. The bit-
shifting procedure is designed so that the bit position of each component reflects its
significance in the overall date value. High-order bits are used for more significant
date components, such as the year and month, while the low-order bits are occupied
by the time components. This projection approach preserves the chronological order
of date and date-time values. Thus, it is ensured that the IDs corresponding to dates
are primarily ordered by the year component, exactly what is required for evaluating
a prefilter expression using binary search.

The corresponding prefilter for FILTER(YEAR(?date) = 2000) captures the range
of dates from the year 2000 through a lower and upper reference bound. The
lower bound is represented by the ID that encodes a partial date where only the
year component is set, while the month and day components remain undefined,
effectively corresponding to "2000-00-00" in the internal encoding. The upper
bound is represented by an ID that represents the partially defined internal date
"2001-00-00". The resulting prefilter expression is the conjunction: (> lowerID)
AND (< upperID).

The prefilter for FILTER(YEAR(?date) < 0) involves only an upper bound: the ID
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representing the partially defined internal date "0000-00-00". The resulting prefilter
expression is simply: < upperID. The implementation generalizes the approach illus-
trated by the two given examples to all possible filter-by-year compound expressions,
using the primary prefilter expressions presented in Section 4.3.1 and Section 4.3.2.

Note: The undefined date components are internally set to the placeholder value 0,
making partially specified dates comparable and sortable alongside fully defined date
values. These partially defined date values are in particular useful for prefiltering, as

they represent safe and exclusive bounds.

4.3.8. Complexity Analysis

Section 4.3.1 presented the evaluation approach for the relational prefilters that also
serve as base expressions for more specific prefilters, such as the prefilter for STRSTARTS
(see Section 4.3.4) and the prefilter locating dates with a certain year (see Section 4.3.7).
The evaluation of relational prefilter expressions is based on binary search. The first
search identifies the ranges of the comparison-relevant datatypes, while subsequent
searches locate the ranges within that satisfy the relational comparison on the
corresponding reference 1D.

Let us briefly analyze the complexity of a binary search procedure. Binary search

requires a sorted range of values and proceeds as follows for a given target value:

1. Consider the current value range. In the first iteration, this corresponds to the

entire range.

2. Check the value in the middle of the range. If this value equals the target, the

search is complete.
3. If the target value is smaller, repeat the search in the left half of the range.
4. If the target value is greater, repeat the search in the right half of the range.

5. If the range is not further dividable, the target value is not contained. This

corresponds to the worst-case scenario of binary search.

The best-case scenario is obviously that the value defining the first split is equivalent
to our target value. This would correspond to O(1). The worst-case occurs if our
target value is not contained. If we perform a prefilter on n Index Block Metadata
values, the ID range on which the search is performed consists of 2 x n IDs, since
each Index Block Metadata value holds the first and last triple of its corresponding

index block. As a result, the upper limit on the number of range halvings performed
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is loga(2 x n). This is equivalent to loga(2) + logz(n), which simplifies to 1 + loga(n).
Thus, for relational prefilter expressions, the complexity is O(log(n)).

As explained in Section Section 4.3.2, evaluating prefilter expressions containing
disjunctions and/or conjunctions involves computing the union or intersection of the
subranges returned by the child expressions using a linear iteration approach. This is
possible because the order of the subranges is preserved throughout all evaluation
steps. Thus, compound prefilter expressions that require multiple union or intersection
computations lead to a complexity worse than O(log(n)). The worst-case scenario
occurs when evaluating multiple unions (OR-prefilter evaluations) sequentially over
a highly unbalanced prefilter expression tree, where none of the subranges can be
merged, and the subsequent resulting union is simply a set containing all subranges
from both children. The complexity in this case is similar to the analysis presented
in Section 4.2.5, with the difference that the defining factor is not the number of
distinct variables in a conjunction, but the number of non-overlapping subranges
produced by disjunctive prefilter expressions. This case results in a quadratic time
complexity on the number of disjunctions. Note that the upper limit for the number
of subranges returned at each step is 5, since the adjacent ranges are merged, where n
is the total number of Index Block Metadata values. However, this scenario is largely
hypothetical. Most compound prefilter expressions involve only a few disjunctions
and/or conjunctions, in particular too few to cover the upper bound § subranges
separately.

Thus, given that typical FILTER expressions involve only few disjunctions and/or

conjunctions, if any, the evaluation of its prefilter expression should remain efficient.

4.4. The Prefilter Procedure in the Context of Query

Planning

The integration of the prefilter procedure not only requires its implementation in the
query evaluation process but also requires alignment with the overall query planning
and evaluation framework of QLever. Its query planner, as introduced by Bast et
al. [6], optimizes for efficiency by preferring query execution trees with the lowest
estimated cost. Each query execution tree defines the order in which the operations
of the query are evaluated. Thus, the objective of the query planner is the selection
of the query execution order with the least associated computational cost. A visual

representation of such query execution trees is provided in Section 1.4.
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4.4.1. Overview of Prefilter Procedure Integration

As briefly mentioned in the introduction of this chapter, we evaluate the prefilter
expressions in advance of the actual INDEX SCAN evaluation. As a result, this approach
not only improves the evaluation efficiency of the FILTER expression but also that
of the variable-associated INDEX SCAN operation, since definitely irrelevant index
blocks are subsequently excluded from the scan. Given that the query planner selects
execution orders based on cost estimates, the selection of the correct query execution
order depends on accurate cost estimates. Consequently, INDEX SCAN operations with
an applied prefilter expression must provide an accurate cost estimate that reflects
the benefit of prefiltering, since its cost benefit must also be reflected in the cost
estimate of the subsequent FILTER expression. If the benefit of prefilter application
is not signaled via beneficial cost estimates, the resulting advantage is ignored by the
query planner. The cost estimate for the INDEX SCAN operation is related to the size
of its result table, where the size correlates with the number of Index Block Metadata
values it must decompress. Thus, it is necessary to evaluate the prefilter expression
already during query planning, so that we accurately influence the cost estimates
of the INDEX SCAN operation and the FILTER expression, as well as the total query

execution order.

4.4.2. Prefilter Pushdown during Query Planning

The procedure during query planning is as follows for the current implementation. The
FILTER expressions retrieve their corresponding prefilter expression(s), as presented
in Section 4.1, subsequently passing them down to their variable-associated INDEX
SCAN operation. With the implementation tested in Chapter 5, prefilter expression
pushdowns are only successfully performed if the associated INDEX SCAN operation is
a direct child of FILTER. As a consequence, the current implementation only supports

prefiltering with respect to a single variable.

4.4.3. Challenges

My initial intention was to propagate the prefilter expressions in addition through the
SORT and JOIN operations. All prefilterable variables contained in a FILTER expression
are associated with a distinct INDEX SCAN operation, since each INDEX SCAN scans
only a single fully sorted column. As explained previously, a fully sorted column is
the prerequisite for applying a prefilter expression. Thus, the results of these variable-

associated INDEX SCAN operations must first be joined using the JOIN operation
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before the actual FILTER expression can be meaningfully evaluated. However, a JOIN
operation typically requires the pso permutation, where the predicate is fixed and
the subject column is fully sorted, since JOIN operations are mostly performed on the
subject columns representing entity identifiers. In contrast, for a prefilter expression
to be applicable, the INDEX SCAN must typically operate on the pos permutation.
The object column (e.g., containing the name or other characteristics) is often the
target of the variables contained in the FILTER expression, and must subsequently
correspond to the first fully sorted column for a fixed predicate. Thus, for the result
of a scanned and prefiltered pos permutation to be joinable by operation JOIN, a
fully sorted subject column is required. Consequently, when the pos permutation is
used for the INDEX SCAN, the query planner must consider inserting a SORT operation
between the INDEX SCAN and the JOIN, since the subject column is only partially
sorted. However, the query planner with its current implementation does not consider
the possibility of a deep prefilter expression push-down and its potential benefits. If I
analyzed the query planning procedure correctly, it does not contemplate combining
the pos permutation mostly required for applying a prefilter expression on the INDEX
SCAN operation, with a subsequent SORT on the subject column to make the result
joinable with JOIN. However, as explained above, incorporating this combination into
the query planning phase is essential for the effective application of multiple prefilter
expressions, each associated with a distinct variable and INDEX SCAN operation.
Due to time constraints, it was not feasible for me to adapt the query planner’s
strategy accordingly. Note that this adaptation would introduce critical changes,
as the suggested approach would potentially lead to an increase in the number of
available query execution trees. As a consequence, the performance of the query
planner could be noticeably degraded. Thus, the prefilter expression pushdown and
necessary query planning adaptations should initially be extended further only to
the most essential operations required for prefiltering across multiple variables: the
operations JOIN and SORT. If the pushdown strategy proves to be beneficial for the
overall query evaluation performance, it should be extended to other operations. This
requires for the tested implementation that the average performance gain achieved
by the evaluation procedure must outweigh the overhead introduced by the prefilter

procedure during query planning (see Chapter 5).
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5. Empirical Analysis

The objective of this chapter is to assess the performance gain achieved through
the prefilter procedure, while we expect that its overhead during query planning
is outweighed by the gain achieved. Thus, our goal is also to determine whether
a net performance gain is achieved on average in the context of query evaluation
and planning. We perform a benchmark using ten representative queries. Some
queries used for the benchmark contain highly restrictive FILTER expressions (e.g.,
checking for equality (=)), while others contain less restrictive FILTER expressions
(e.g., checking for inequality (!=)). We also assess the performance for datasets of
different sizes. The Olympics knowledge graph [5] serves as an evaluation reference
for smaller datasets, whereas Wikidata [1] is used as a reference for larger datasets.
The Olympics dataset consists of approximately 1.8 million RDF triples, and the
Wikidata dataset consists of approximately 20 billion triples. This is done to assess
the performance gain relative to the size of the knowledge graph, as this variable may
influence the effectiveness of the introduced prefilter procedure.

Note that this analysis represents the least extensive prefilter procedure, as prefilter
expressions are only applied if the corresponding INDEX SCAN operation is a direct
child of the FILTER expression. This is because no further adjustments were made to

the query planning strategy given the reasons discussed in Chapter 4.4.3.

5.1. Benchmark

The runtime for each query has been obtained through the QLever User Interface!,
which provides a detailed analysis. Each query and its corresponding execution tree
is provided in Section A of the Appendix. The queries were executed three times
under both conditions: with the prefilter procedure code enabled and with it disabled
(our baseline). The server was restarted before computing each query. Table 7 lists
the total times required for query computation, together with the times for the

individual steps of query planning and evaluation. In addition, the times of the

"https://github.com/ad-freiburg/qlever-ui
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evaluation steps FILTER and INDEX SCAN are provided, representing the evaluation
steps directly affected by the introduced prefilter procedure. Since each query was
executed three times, the provided times are the average of the three runs. The last
column provides the number of rows scanned by the INDEX SCAN operation associated
with the filter-related variable.

The QLever server was hosted on machine @prut, equipped with an AMD Ryzen 9
7950X 16-Core Processor and a total of 124 GiB of RAM. The Olympics index used
for benchmarking was built based on default settings. The corresponding Wikidata

index was used as already provided on machine @prut.

Prefiltering Query Quel:y Query | Filter | Index Scan Num.
Query enabled Comput. Planning | Eval. Eval. Eval. Rows
(ms) (ms) (ms) (ms) (ms) Scanned
Olympics Dataset
Q1 No 77.67 2 75.67 | 73.33 1.67 125,000
(A1) Yes 20.67 2 18.67 17 1 31,250
Q2 No 17.67 2 15.67 | 3.67 2 180,604
(A.2) Yes 6.33 2 4.33 0 0.67 24,354
Q3 No 8.67 2 6.67 1 1.33 139,277
(A3) Yes 7.67 2 5.67 0 1.67 93,750
Q4 No 17 2 15 4 3 139,277
(A.4) Yes 17 2 15 4.33 2.67 139,277
Q5 No 6.67 1.33 5.33 0 5 1,781,625
(A.5) Yes 4.67 1.67 3 0 2 136,153
Wikidata Dataset
Q6 No 151.67 16.33 135.33 | 71.33 57 91,582,414
(A.6) Yes 24 16.67 7.33 0 0.67 31,250
Q7 No 270.67 22 248.67 1 20.66 11,558,486
(A7) Yes 217 20.67 193.33 0 2 89,736
Q8 No 222.33 20.33 202 9.33 10 48,931,776
(A.8) Yes 145.33 27.33 118 7.33 2 306,776
Q9 No timeout (60s) - - - - -
(A.9) Yes 931.66 277.66 654 | 643.67 10 1,076,194
Q10 No 4,510.67 72.33 | 4,438.33 | 1,072 | 3,365.67 | 7,009,302,883
(A.10) Yes 164.33 149.33 15 0 15 31,250

Table 7.: Benchmark results on the Olympics and Wikidata datasets, with and
without prefiltering. The times are presented in milliseconds (ms). The
benchmark queries and their corresponding execution trees are provided
in Section A of the Appendix.
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5.2. Observations

We now analyze the benchmark results presented in Table 7. The prefilter procedure
significantly reduces the evaluation overhead of the FILTER expression (see column
Filter Eval.). This is because the result of the INDEX SCAN operation consists of
fewer rows (see column Num. Rows Scanned), which also reduces the evaluation
time required for the INDEX SCAN operation (see column Index Scan Eval.).

We also observe that query Q4 represents an exception, as the planner discards
the execution tree that includes the applied prefilter. This is illustrated by the query
execution tree with the prefilter procedure enabled, as shown in Figure 15. This tree is
identical to the one generated when the prefilter procedure is disabled (see Figure 14).
For more complex queries involving JOIN operations, the successful prefilter procedure
results in a pushdown of the FILTER clause down to the INDEX SCAN operation. This
structure is required for a successful prefilter procedure, as the implementation only
applies a prefilter expression when INDEX SCAN is a direct child of a FILTER clause.
This structure can be observed for optimized execution trees, such as in the case of
query Q2 with Figure 11 and query Q8 with Figure 23. In both cases, the FILTER
clause appears as a child of the SORT operation, which precedes the JOIN operation.
The reason for this planning strategy is already explained in Section 4.4.3, where
we examined a similar strategy for deep prefilter pushdowns instead of the already
applied FILTER clause pushdown. Successfully applying a prefilter expression for our
benchmark queries requires a sorted object column, whereas the JOIN operation
requires the subject column to be sorted (for a fixed predicate). For query Q4, the
planner presumably discards the execution tree with a pushed-down FILTER clause
because cost estimates show that the FILTER expression is not selective enough, since
the prefilter removes too few index blocks (and thus rows).

For all queries except Q4, fewer rows are scanned. As a result, both the INDEX
SCAN and subsequent FILTER evaluations are faster (see columns Index Scan Eval.
and Filter Eval.), leading to improved overall evaluation times (see Query Eval.).
For more complex queries, such as query Q7 and query Q8, the directly related
JOIN operations also experience a performance gain. This can be observed when
comparing their optimized and non-optimized execution trees (compare Figure 20 vs.
Figure 21, and Figure 22 vs. Figure 23). The evaluation times of these two queries are
reduced from 248.67 to 193.33 ms and 202 to 118 ms overall, respectively. Note that
this improvement is not fully attributable to the gains in FILTER and INDEX SCAN

performance alone, as their combined time savings do not add up to the observed
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speedup. Thus, in case of complex queries, the prefilter procedure potentially also
speeds up the evaluation procedure of downstream operations.

The time reduction is particularly significant when the query contains a FILTER
expression that requires direct checking of string values, such as the queries Q1,
Q6, and Q9, which involve the evaluation of the expressions STRSTARTS and REGEX.
For queries Q1 and Q6, the query evaluation time is reduced from 75.67 to 18.67
ms and from 135.33 to 7.33 ms, respectively. The benchmark results also highlight
significant performance gains for queries on a large index containing highly restrictive
FILTER expressions, while previously requiring scanning large portions of the overall
index. This can be observed for queries Q9 and Q10, where the query evaluation
time is reduced from more than 60 seconds to 654 ms and from 4438.33 ms to 15 ms,
respectively.

For all queries for which the prefilter was successfully performed, the time required
for the (total) query computation (see column Query Comput.) is reduced. This
appears to hold even when the prefilter procedure results in only a small reduction in
the number of scanned rows, as indicated by query Q3. The time required for query
computation is the sum of the time needed for query planning and query evaluation.
Thus, our assumption is correct that the prefilter overhead during query planning is
outweighed by the performance gain during query evaluation.

As discussed above, query Q4 represents an exception, since the query planner
discards the execution tree where the prefilter expression has been applied. As a
consequence, there is no performance gain achieved during query evaluation, but the
compute overhead during query planning remains. However, this overhead appears
to be too small to measure in most cases (at least through the QLever UI), since the
values in the columns Query Planning and Query Comput. remain identical for
query Q4. These observations are promising, indicating that the prefilter procedure is
rather efficient and introduces only minimal compute overhead during query planning

for typical queries.
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6. Conclusion

The conducted work demonstrates that the prefilter procedures introduced for FILTER
expressions are an effective optimization approach. The previous evaluation overhead,
as discussed in Section 1.5 has been successfully reduced. This is demonstrated
by the benchmark results presented in Table 7. Moreover, its results indicate that
the prefilter procedure itself remains mostly efficient, with the performance gain
achieved during query evaluation outweighing its introduced overhead during query
planning. Because the prefilter expression is applied before the actual evaluation,
the performance of the INDEX SCAN is also improved. As the benchmark shows,
the prefilter procedure not only enhances the evaluation performance of the FILTER
expression by smaller intermediate results. In addition, some downstream operations,
particularly JOIN operations, can also benefit. These observations suggest that the
deep pushdown of prefilter expressions, as discussed in Section 4.4.3, may also be
beneficial.

The FILTER expressions now mostly evaluate across index blocks that overall
contain values that satisfy the expression. To be more precise, only the bounding
index blocks of the prefiltered Index Block Metadata range may contain values that
do not satisfy the FILTER expression. Thus, if the FILTER expression is not highly
restrictive, it will evaluate non-bounding index blocks in which all rows satisfy the
expression. It is safe to assume that all their rows are contained in the FILTER
expression result. Evaluating the values of non-bounding index blocks represents
an evaluation overhead itself. A potential solution is to evaluate the bounding
index blocks already during the evaluation of the INDEX SCAN operation, eliminating
non-satisfying values. Consequently, evaluating the expression of the corresponding
FILTER clause in the execution structure can be omitted. Its input can be routed
directly to the next operation downstream, as an intermediate result. This approach
would further enhance the evaluation performance of queries for which the prefilter

expression yields non-bounding blocks.
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A. Benchmark Queries and Their

Execution Trees

This chapter lists all ten benchmark queries used for the evaluation in Section 5.1.
All queries are presented with their two corresponding execution trees. The first tree
shows the execution order for the baseline reference, while the second tree shows the

execution order with the prefilter procedure enabled.

A.1. Query 1

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
SELECT 7athlete_id 7athlete_name WHERE {
7?athlete_id rdfs:label 7athlete_name
FILTER STRSTARTS(7athlete_name, "Sebast")
}
LIMIT 5

LIMIT 5
Cols: ?athlete_id, ?athlete_name
Size:5x2 [~ 5]

Time: Oms [~ 0]

FILTER STRSTARTS(?athlete_name, "Sebast")
Cols: ?athlete_id, ?athlete_name

Size: 96 x2 [~ 137,026]

Time: 75ms [~ 137,026]

INDEX SCAN ?athlete_id <label> ?athlete_name
Cols: ?athlete_id, ?athlete_name

Size: 125,000 x 2 [~ 137,026]

Time: 2ms [~ 137,026]

Figure 8.: Execution Tree Benchmark Query 1 (baseline)
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LIMIT 5

Cols: ?athlete_name, ?athlete_id
Size:5x2 [~5]

Time: Oms [~ 0]

FILTER STRSTARTS(?athlete_name, "Sebast")

Cols: ?athlete_name, ?athlete id
Size: 96 x 2 [~ 31,250]
Time: 177ms [~ 31,250]

INDEX SCAN ?athlete_id <label> ?athlete_name
Cols: ?athlete_name, ?athlete_id

Size: 31,250 x 2 [~ 31,250]

Time: 1ms

[~ 31,250]

Figure 9.: Execution Tree Benchmark Query 1 (with prefilter)

A.2. Query 2

PREFIX rdfs: <http
PREFIX foaf: <http
SELECT 7athlete_id

7athlete_id rdfs:
7athlete_id foaf:

://www.w3.0rg/2000/01/rdf -schema#>
://xmlns.com/foaf/0.1/>

7athlete_name 7athlete_age WHERE {
label 7athlete_name

age 7athlete_age

FILTER(7athlete_age >= 60 && 7athlete_age <= 65)

}
LIMIT 5
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LIMIT 5

Cols: ?athlete_id, ?athlete_name, ?athlete_age
Size:5x3 [~ 5]

Time: Oms [~ 0]

FILTER (?athlete_age >= 60 && ?athlete_age <= 65)
Cols: ?athlete_id, ?athlete_name, ?athlete_age

Size: 194 x3 [~ 126,424]

Time: 4ms [~ 126,424]

JOIN on ?athlete_id

Cols: ?athlete_id, ?athlete_name, ?athlete_age
Size: 180,609 x 3 [~ 126,424]

Time: 7ms [~ 444,054]

INDEX SCAN ?athlete_id <label> ?athlete_name INDEX SCAN ?athlete_id <age> ?athlete_age
Cols: ?athlete_id, ?athlete_name Cols: ?athlete_id, ?athlete_age

Size: 137,026 x2 [~ 137,026] Size: 180,604 x 2 [~ 180,604]

Time: 3ms [~ 137,026] Time: 2ms [~ 180,604]

Figure 10.: Execution Tree Benchmark Query 2 (baseline)

LIMIT 5

Cols: ?athlete_age, ?athlete_id, ?athlete_name
Size:5x3 [~ 5]

Time: Oms [~ 0]

JOIN on ?athlete_id

Cols: ?athlete_age, ?athlete_id, ?athlete_name
Size: 194 x3 [~ 17,047]

Time: 1ms [~ 178,427]

SORT (internal order) on ?athlete_id INDEX SCAN ?athlete_id <label> ?athlete_name
Cols: ?athlete_age, ?athlete_id Cols: ?athlete_id, ?athlete_name

Size: 194 x2 [~ 24,354] Size: 137,026 x 2 [~ 137,0286]

Time: Oms [~ 340,956] Time: 3ms [~ 137,026]

FILTER (?athlete_age >= 60 && ?athlete_age <= 65)
Cols: ?athlete_age, ?athlete_id

Size: 194 x2 [~ 24,354]

Time: Oms [~ 24,354]

INDEX SCAN ?athlete_id <age> ?athlete_age
Cols: ?athlete_age, ?athlete_id

Size: 24,354 x 2 [~ 24,354]

Time: 1ms [~ 24,354]

Figure 11.: Execution Tree Benchmark Query 2 (with prefilter)
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A.3. Query 3

PREFIX dbo:

PREFIX rdfs: <http
PREFIX team: <http
SELECT 7athlete_id

7athlete_id rdfs:

<http://dbpedia.org/ontology/>
://www.w3.0rg/2000/01/rdf -schema#>
://wallscope.co.uk/resource/olympics/team/>
7athlete_name 7athlete_team WHERE {

label 7athlete_name

7athlete_id dbo:team 7athlete_team

FILTER (7athlete_team IN (team:Germany,

Netherlands,

team:Spain, team:

team:Switzerland))

JOIN on ?athlete_id

Cols: ?athlete_team, ?athlete_id, ?athlete_name

Size: 12,735x3 [~ 389]
Time: 1ms [~ 137,972]

SORT (internal order) on ?athlete_id
Cols: 7athlete_team, ?athlete_id

Size: 12,735x2 [~ 557]

Time: Oms [~ 5,013]

INDEX SCAN ?athlete_id <label> ?athlete_name
Cols: ?athlete_id, ?athlete_name

Size: 137,026 x 2 [~ 137,026]

Time: 2ms [~ 137,026]

Cols: 7athlete_team, ?athlete_id
Size: 12,735x2 [~ 557]
Time: 1ms [~ 557]

FILTER (?athlete_team IN (team:Germany, team:Spain, team:...

INDEX SCAN ?athlete_id <team> ?athlete_team
Cols: 7athlete_team, ?athlete_id

Size: 139,277 x2 [~ 139,277]

Time: 2ms [~ 139,277]

Figure 12.: Execution Tree Benchmark Query 3 (baseline)
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JOIN on ?athlete_id

Cols: ?athlete_team, ?athlete_id, ?athlete_name

Size: 12,735x3 [~ 261]
Time: 1ms [~ 137,662]

SORT (internal order) on ?athlete_id
Cols: ?athlete_team, ?athlete_id

Size: 12,735x 2 [~ 375]

Time: 1ms [~ 3,000]

INDEX SCAN ?athlete_id <label> ?athlete_name
Cols: ?athlete_id, ?athlete_name

Size: 137,026 x 2 [~ 137,026]

Time: 2ms [~ 137,026]

FILTER (?athlete_team IN (team:Germany, team:Spain, team:...
Cols: ?athlete_team, ?athlete_id

Size: 12,735x 2 [~ 375]

Time: Oms [~ 375]

INDEX SCAN ?athlete_id <team> ?athlete_team
Cols: ?athlete_team, ?athlete_id

Size: 93,750x 2 [~ 93,750]

Time: 2ms [~ 93,750]

Figure 13.: Execution Tree Benchmark Query 3 (with prefilter)

A.4. Query 4

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX team: <http://wallscope.co.uk/resource/olympics/team/>
SELECT 7athlete_id 7athlete_name 7athlete_team WHERE {
7athlete_id rdfs:label 7athlete_name
7athlete_id dbo:team 7athlete_team
FILTER (7athlete_team NOT IN (team:France, team:Poland))
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Time: 4ms [~ 97,495]

FILTER (?athlete_team NOT IN (team:France, team:Poland))
Cols: ?athlete_id, ?athlete_team, ?athlete_name
Size: 130,571 x 3 [~ 97,495]

JOIN on ?athlete_id

Cols: ?athlete_id, ?athlete_team, ?athlete_name
Size: 139,280 x 3 [~ 97,495]
Time: 6ms [~ 373,798]

INDEX SCAN ?athlete_id <team> ?athlete_team
Cols: ?athlete_id, ?athlete_team

Size: 139,277 x2 [~ 139,277]

Time: 3ms [~ 139,277]

INDEX SCAN ?athlete_id <label> ?athlete_name
Cols: ?athlete_id, ?athlete_name

Size: 137,026 x 2 [~ 137,026]

Time: 2ms [~ 137,026]

Figure 14.: Execution Tree Benchmark Query 4 (baseline)

Time: 5ms [~ 97,495]

FILTER (?athlete_team NOT IN (team:France, team:Poland))
Cols: ?athlete_id, ?athlete_team, ?athlete_name
Size: 130,571 x 3 [~ 97,495]

JOIN on ?athlete_id

Time: 5ms [~ 373,798]

Cols: ?athlete_id, ?athlete_team, ?athlete_name
Size: 139,280 x 3 [~ 97,495]

INDEX SCAN ?athlete_id <team> ?athlete_team
Cols: ?athlete_id, ?athlete_team

Size: 139,277 x2 [~ 139,277]

Time: 3ms [~ 139,277]

INDEX SCAN ?athlete_id <label> ?athlete_name
Cols: ?athlete_id, ?athlete_name

Size: 137,026 x 2 [~ 137,026]

Time: 2ms [~ 137,026]

Figure 15.: Execution Tree Benchmark Query 4 (with prefilter)

A.5. Query 5

PREFIX medal: <http://wallscope.co.uk/resource/olympics/medal/>

SELECT * WHERE {
7x0 7x1 7x2
# object is gold medal
FILTER (7x2 = medal:Gold)
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FILTER (?x2 = medal:Gold)
Cols: ?x2, ?x1, ?x0

Size: 13,369 x3 [~ 1,781]
Time: Oms [~ 1,781]

INDEX SCAN ?x0 ?x1 ?x2
Cols: ?x2, ?x1, ?x0

Size: 1,781,625x 3 [~ 1,781,625]
Time: 5ms [~ 1,781,625]

Figure 16.: Execution Tree Benchmark Query 5 (baseline)

FILTER (?x2 = medal:Gold)
Cols: ?x2, ?x1, ?x0

Size: 13,369 x 3 [~ 136]
Time: Oms [~ 136]

INDEX SCAN ?x0 ?x1 ?x2
Cols: ?x2, ?x1, ?x0

Size: 136,153 x 3 [~ 136,153]
Time: 2ms [~ 136,153]

Figure 17.: Execution Tree Benchmark Query 5 (with prefilter)

A.6. Query 6

PREFIX skos: <http://www.w3.o0org/2004/02/skos/coret#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
SELECT 7person_id 7person_name WHERE {

?person_id wdt:P31 wd:Q5

?person_id skos:preflabel 7person_name

# occupation tennis player

?person_id wdt:P106 wd:Q10833314

FILTER (LANG(7person_name) = "en"

FILTER REGEX(?person_name," Roger")
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JOIN on ?person_id

Cols: ?person_name, ?person_id
Size: 15x2 [~ 448]

Time: 4ms [~ 11,607,338]

JOIN on ?person_id

Cols: ?person_name, ?person_id

Size: 15x2 [~ 640]
Time: 1ms [~ 7,805]

INDEX SCAN ?person_id <P31> <Q5>
Cols: ?person_id

Size: 375,000 x 1 [~ 11,606,250]
Time: Oms [~ 11,606,250]

SORT (internal order) on ?person_id
Cols: ?person_name, ?person_id

Size: 14,365 x 2 [~ 915]

Time: 1ms [~ 8,235]

INDEX SCAN ?person_id <P106> <Q10833314>
Cols: ?person_id

Size: 13,697 x 1 [~ 6,250]

Time: Oms [~ 6,250]

FILTER REGEX(?person_name,"*Roger")
Cols: ?person_name, ?person_id

Size: 14,365 x2 [~ 915]

Time: 76ms [~ 915]

INDEX SCAN ?person_id @en@<pref-Label> ?person_name
Cols: ?person_name, ?person_id

Size: 91,582,414 x2 [~ 91,582,414]

Time: 75ms [~ 91,582,414]

Figure 18.: Execution Tree Benchmark Query 6 (baseline)
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JOIN on ?person_id

Cols: ?person_name, ?person_id
Size:15x2 [~0]

Time: 4ms [~ 11,606,250]

JOIN on ?person_id

Cols: ?person_name, ?person_id

Size:15x2 [~0]
Time: 1ms [~ 6,250]

INDEX SCAN ?person_id <P31> <Q5>
Cols: ?person_id

Size: 375,000 x 1 [~ 11,606,250]
Time: 1ms [~ 11,606,250]

SORT (internal order) on ?person_id
Cols: ?person_name, ?person_id

Size: 14,365 x2 [~ 0]

Time: 1ms [~ 0]

INDEX SCAN ?person_id <P106> <Q10833314>
Cols: ?person_id

Size: 13,697 x 1 [~ 6,250]

Time: Oms [~ 6,250]

FILTER REGEX(?person_name,"*Roger")
Cols: ?person_name, ?person_id

Size: 14,365 x2 [~ 0]

Time: Oms [~ 0]

INDEX SCAN ?person_id @en@<pref-Label> ?person_name
Cols: ?person_name, ?person_id

Size: 31,250 x 2 [~ 31,250]

Time: 1ms [~ 31,250]

Figure 19.: Execution Tree Benchmark Query 6 (with prefilter)
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A.7. Query 7

PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
SELECT 7person_id 7person_name 7occupation WHERE {
?person_id wdt:P31 wd:Q5
?person_id skos:preflLabel 7person_name
?person_id wdt:P106 7occupation
FILTER (LANG(?7person_name) = "en")
# filter occupation is tennis player, fl1 driver or
professional golfer
FILTER (7occupation IN (wd:Q10833314, wd:Q10841764, wd:
Q490253))
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JOIN on ?person_id

Cols: ?occupation, ?person_id, ?person_name
Size: 14,923 x 3 [~ 17,007]

Time: 28ms [~ 11,647,553]

JOIN on ?person_id

INDEX SCAN ?person_id <P31> <Q5>

Cols: ?occupation, ?person_id, ?person_name Cols: ?person_id

Size: 14,927 x 3 [~ 24,296]

Time: 161ms [~ 91,641,420]

Size: 11,411,268 x 1 [~ 11,606,250]
Time: 3ms [~ 11,606,250]

SORT (internal order) on ?person_id
Cols: ?occupation, ?person_id

Size: 15,002 x2 [~34,710]

Time: 1ms [~ 520,650]

INDEX SCAN ?person_id @en@<pref-Label> ?person_name
Cols: ?person_id, ?person_name

Size: 77,343,750 x 2 [~ 91,582,414]

Time: 87ms [~ 91,582,414]

FILTER (?occupation IN (wd:Q10833314, wd:Q10841764, wd:...
Cols: ?occupation, ?person_id

Size: 15,002 x2 [~34,710]

Time: 1ms [~ 34,710]

INDEX SCAN 7?person_id <P106> ?occupation
Cols: ?occupation, ?person_id

Size: 11,558,486 x 2 [~ 11,558,486]

Time: 38ms [~ 11,558,486]

Figure 20.: Execution Tree Benchmark Query 7 (baseline)
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JOIN on ?person_id

Cols: ?occupation, ?person_id, ?person_name
Size: 14,923 x 3 [~ 130]

Time: 26ms [~ 11,606,567]

JOIN on ?person_id

INDEX SCAN ?person_id <P31> <Q5>

Cols: ?occupation, ?person_id, ?person_name Cols: ?person_id

Size: 14,927 x 3 [~ 187]

Time: 147ms [~ 91,582,870]

Size: 11,411,268 x 1 [~ 11,606,250]
Time: Oms [~ 11,606,250]

SORT (internal order) on ?person_id
Cols: ?occupation, ?person_id

Size: 15,002 x2 [~ 269]

Time: 1ms [~ 2,152]

INDEX SCAN ?person_id @en@<pref-Label> ?person_name
Cols: ?person_id, ?person_name

Size: 77,343,750 x 2 [~ 91,582,414]

Time: 41ms [~ 91,582,414]

FILTER (?occupation IN (wd:Q10833314, wd:Q10841764, wd:...
Cols: ?occupation, ?person_id

Size: 15,002 x 2 [~ 269]

Time: Oms [~ 269]

INDEX SCAN ?person_id <P106> ?occupation
Cols: ?occupation, ?person_id

Size: 89,736 x 2 [~ 89,736]

Time: 2ms [~ 89,736]

Figure 21.: Execution Tree Benchmark Query 7 (with prefilter)
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A.8. Query 8

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
SELECT DISTINCT ?film_id 7film_name 7pubdate WHERE {
?7film_id wdt:P31 wd:Q11424
?7film_id wdt:P577 7pubdate
# filter for films that where published after 2023
FILTER (YEAR(?pubdate) > 2023)
?7film_id rdfs:label 7film_name
FILTER (LANG(?film_name) = "en")
3
ORDER BY ASC(7pubdate)
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ORDER BY on ASC(?pubdate)
Cols: ?film_id, ?pubdate, ?film_name
Size:2900x3 [~2,913]

Time: 1ms [~ 32,043]

DISTINCT

Cols: ?film_id, ?pubdate, ?film_name
Size: 2,900 x 3 [~2,913]

Time: Oms [~ 2,913]

SORT (internal order) on ?film_id ?film_name ?pubdate
Cols: ?film_id, ?pubdate, ?film_name

Size: 2,900x3 [~2,913]

Time: Oms [~ 32,043]

JOIN on ?film_id

Cols: ?film_id, ?pubdate, ?film_name
Size: 2,900x3 [~2,913]

Time: 31ms [~ 92,079,479]

FILTER (YEAR(?pubdate) > 2023)
Cols: ?film_id, ?pubdate

Size: 3,304 x 2 [~ 4,162]

Time: 10ms [~ 212,291]

Cols: ?film_id, ?film_name

Time: 46ms [~ 92,072,404]

INDEX SCAN ?film_id @en@<label> ?film_name

Size: 14,250,000 x 2 [~ 92,072,404]

JOIN on ?film_id

Cols: ?film_id, ?pubdate

Size: 327,017 x 2 [~ 208,129]
Time: 131ms [~ 49,433,655]

INDEX SCAN ?film_id <P31> <Q11424>

Cols: ?film_id
Size: 311,820 x 1 [~ 293,750]
Time: 4ms [~ 293,750]

INDEX SCAN ?film_id <P577> ?pubdate
Cols: ?film_id, ?pubdate

Size: 48,931,776 x 2 [~ 48,931,776]
Time: 19ms [~ 48,931,776]

Figure 22.: Execution Tree Benchmark Query 8 (baseline)
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ORDER BY on ASC(?pubdate)
Cols: ?pubdate, ?film_id, ?film_name
Size: 2,900 x 3 [~ 3,005]

Time: Oms [~ 33,055]

DISTINCT
Cols: ?pubdate, ?film_id, ?film_name

Size:2,900x 3 [~ 3,005]

Time: Oms [~ 3,005]

SORT (internal order) on ?film_id ?film_name ?pubdate
Cols: ?pubdate, ?film_id, ?film_name

Size: 2,900 x 3 [~ 3,005]

Time: Oms [~ 33,055]

JOIN on ?film_id
Cols: ?pubdate, ?film_id, ?film_name
Size: 2,900 x 3 [~ 3,005]

Time: 3ms [~ 301,049]

JOIN on ?film_id

Cols: ?pubdate, ?film_id, ?film_name
Size: 247,493 x 3 [~ 4,294]

Time: 60ms [~ 92,082,833]

INDEX SCAN ?film_id <P31> <Q11424>

Cols: ?film_id
Size: 311,820 x 1 [~ 293,750]
Time: 2ms [~ 293,750]

SORT (internal order) on ?film_id
Cols: ?pubdate, ?film_id

Size: 250,463 x 2 [~ 6,135]

Time: 15ms [~ 73,620]

INDEX SCAN ?film_id @en@<label> ?film_name
Cols: ?film_id, ?film_name

ize: 23,000,000 x 2 [~ 92,072,404]

Time: 69ms [~ 92,072,404]

FILTER (YEAR(?pubdate) > 2023)
Cols: ?pubdate, ?film_id

Size: 250,463 x2 [~ 6,135]

Time: 7Tms [~ 312,911]

INDEX SCAN ?film_id <P577> ?pubdate

Cols: ?pubdate, ?film_id
Size: 306,776 x 2 [~ 306,776]
Time: 2ms [~ 306,7786]

Execution Tree Benchmark Query 8 (with prefilter)

Figure 23.
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A.9. Query 9

SELECT * WHERE {
7x0 ?7x1 7x2

FILTER STRSTARTS(7x2, "Bob")

FILTER STRSTARTS(?x2, "Bob™)
Cols: ?7x2, ?x1, ?x0

Size: 791,164 x 3 [~ 1,076,194]
Time: 574ms [~ 1,076,194]

INDEX SCAN ?x0 ?x1 ?x2

Cols: 7x2, ?x1, ?x0

Size: 1,076,194 x 3 [~ 1,076,194]
Time: 5ms [~ 1,076,194]

Figure 24.: Execution Tree Benchmark Query 9 (with prefilter)

A.10. Query 10

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>
PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
SELECT * WHERE {

7x0 7x1 7x2

FILTER (7?x1 IN (rdf:type, skos:preflLabel))
}
LIMIT 10
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LIMIT 10

Cols: 7x1, ?x0, ?x2
Size:10x 3 [~ 10]
Time: Oms [~ 0]

FILTER (?x1 IN (rdf:type, skos:pref-Label))
Cols: ?x1, ?x0, ?x2

Size: 31,250 x 3 [~ 40,269,693]

Time: 1,066ms [~ 40,269,693]

INDEX SCAN ?x0 ?x1 ?x2

Cols: ?x1, ?x0, ?x2

Size: 7,009,302,883 x 3 [~ 20,134,846,819]
Time: 3,345ms [~ 20,134,846,819]

Figure 25.: Execution Tree Benchmark Query 10 (baseline)

LIMIT 10

Cols: ?x1, ?x0, ?x2
Size: 10x3 [~ 10]
Time: Oms [~ 0]

FILTER (?x1 IN (rdf:type, skos:pref-Label))
Cols: ?x1, ?x0, ?x2

Size: 31,250 x 3 [~9,127,720]

Time: Oms [~9,127,720]

INDEX SCAN ?x0 ?x1 ?x2

Cols: ?x1, ?x0, ?x2

Size: 31,250 x 3 [~ 4,563,860,479]
Time: 15ms [~ 4,563,860,479]

Figure 26.: Execution Tree Benchmark Query 10 (with prefilter)
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