Bachelor Thesis

Bringing Neural Spelling Correction to Mobile Keyboards Using a Client-Server Architecture

Hagen Tilmann Mogalle

University of Freiburg
Chair of Algorithms and Data Structures
27.08.2025

Problem – Background

Why spelling correction matters on mobile devices?

- Germany: 2.8 billion chat messages per day [1]
- Error sources: Small keys, fingers cover letters
- Distractions: typing while walking, single-hand typing

Users expect high correction quality

[1]: Statista, 2025

Problem – Spelling Correction

Example: Word-level vs. Sentence-level Correction

Input	Correction Type	Output
Whats your naem?	Word-level	[What's, name]
	Sentence-level	What's your name?

Problem – Status Quo

Neural models are accurate, but heavy...

- Too large for smartphones (memory, compute, battery)
- Commercial keyboards use smaller local models → limited quality

Solution: Client-Server Architecture?

- Minimal computation on-device
- But: Additional network latency

Problem

Research question:

- Can correction be outsourced to a server?
- Is latency acceptable to users?
 - Word-level Correction
 - Sentence-level Correction

Questions?

Hagen Tilmann Mogalle

Solution – Correction Pipeline

Correction Pipeline

Hagen Tilmann Mogalle

Solution – Keyboard Implementation

Keyboard Implementation

- Suggestion bar above keys
- Word-level correction:
 - trigged on each keystroke
 - up to 3 corrections
- Sentence-level correction:
 - triggered on sentence ending character &
 Magic Key
 - Toggle between 3 alternatives

Example of word correction

Solution – Server

Neural model

- Encoder-Decoder Transformer model (interchangeable)
- Beam size $k=3 \rightarrow$ outputs three sequences

Word Extraction

Difflib.SequenceMatcher: detects insertions, deletions, and replacements

Model input:

I can't find teh file.

Model output:

- 1. I can't find the file.
- 2. I can't find that file.
- I can't find these file

→ Position 3: [the, that, these]

Question?

Hagen Tilmann Mogalle

Evaluation

Evaluation

Goal: Assess user acceptance of the server-client architecture

- 1. Technical Evaluation
 - Latency
 - Correction accuracy vs. Gboard
- 2. User Study:
 - Acceptance of Word-level & Sentence-level Correction

Evaluation – Technical Evaluation

Setup

- Server: Uni-Host, Nvidia RTX 4090, Remote (VPN), Wi-Fi
- Client: Google Pixel 9 Pro XL, Android 16
- Data: 500 Sentences from Reddit Dataset, artificial errors
 - End-to-End-Latency: Subset of 50 sentences

Evaluation – Technical Evaluation

Model inference time (isolated)

Beam Size	Mean (ms)	Std (ms)
1	13.92	3.40
3	41.75	10.73

→ Beam size 3 tripples the inference time

Evaluation – Technical Evaluation

End-to-End latency (Beam size k = 3)

Component	Mean (ms)		
RTT (network latency)	83.28		
Server processing (SPT)	44.97		
- Model inference	44.70		
- Post-processing	0.26		
End-to-end total	128.25		

- → RTT dominates, Post Processing negligible
- → For reference: Lu's local n-gram based keyboard: 69 ms

Evaluation – Accuracy

Correction Accuracy vs. Gboard

Dataset: 50 sentences (Reddit), 111 spelling errors

Methodology: Insert whole sentence, move cursor on misspelled words, count

correct suggestions

	Top-1	Top-3
Gboard	57.7%	66.6%
Our keyboard	83.8%	89.2%

→ Significantly higher error correction accuracy, in both Top-1 & Top-3 corrections

Evaluation – User Study

Design

- Participants: n = 7
- Two Phases:
 - Phase A: Word-level correction
 - Phase B: Sentence-level correction

Task

- Copy 10 sentences per phase
- Fix self-made errors using correction mode
- Measures: 5-point Likert-scale questionnaire after each phase

Evaluation – User Study

Questionnaire Answers

Question focus	Word-level correction (Ø)	Sentence-level correction (Ø)
Comfort	3.43	4.14
Typing speed	2.86	3.71
Correction quality	3.57	4.29
Cognitive load	2.43	3.00
Latency	3.71	4.14
Higher latency for higher accuracy	2.57	3.57
Overall Satisfaction	3.29	4.00
Daily use	3.43	3.71

Evaluation – User Study

User Study Results

Both modes work and are accepted (Overall satisfaction ~3.3/5 & 4.0/5)

Word-level correction:

Feels slower & moderate correction quality

Sentence-level correction:

- Feels faster
- Corrections perceived as very helpful
- Latency well accepted; willingness to accept more for higher correction quality

Evaluation – Conclusion

Conclusion

1. End-to-end latency: ~128 ms / sentence

2. Outperform Gboard in correction accuracy: (67% vs. 89%)

- 3. Sentence-level correction especially accepted
 - Latency not perceived as disruptive

→ Client-Server Architecture for spelling correction feasible and accepted by users

Evaluation – Future Work

Future Work

- Latency thresholds: Larger study to define limits of acceptable latency
- Word correction extraction: Alignment (esp. concatenated words)
- Better UI design to evaluate correction modes in isolation

Question?

Hagen Tilmann Mogalle

Extras – Model Parameters

Parameter	Value			
Architecture	Transformer Encoder-Decoder			
Encoder Layers	2			
Decoder Layers	2			
Attention Heads	5			
Hidden Dimension	256			
Embedding Dimension	256			
Total Parameters	12,533,312			
Tokenizer	BPE (Byte-Pair Encoding)			
Vocabulary Size	8,000			
Max Sequence Length	35 tokens			
Dataset	English Reddit (subset)			
Training Sentences	64 million			
Batch Size	256			
Learning Rate	0.001			
Optimizer	Adam			
Epochs	2			
Deployment	ONNX format			
Beam Search Width	k = 3			

Extras – User Study Questionnaire

Mode B		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
8	Typing in this mode was comfortable.	1	2	3	4	5
9	I was able to type the sentences quickly.	1	2	3	4	5
10	The corrections were helpful.	1	2	3	4	5
11	I often had to think whether I should accept a correction.	1	2	3	4	5
12	The corrections appeared fast enough to be useful.	1	2	3	4	5
13	I would prefer more accurate corrections, even if they take slightly longer.	1	2	3	4	5
14	Overall, I am satisfied with this mode.	1	2	3	4	5

Final Questions		Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
13	I would use mode A for daily use.	1	2	3	4	5
14	I would use mode B for daily use.	1	2	3	4	5
15	I would use this keyboard regularly even if it requires continuous internet connection.	1	2	3	4	5
16	I am comfortable with my typed text being processed on a remote server.	1	2	3	4	5

17. What would stop you from using this keyboard in everyday life?

Extras – Latency

Nielssen:

- 100 ms: feeling of instantaneous, direct interaction
- 1 s: uninterrupted flow of thought, a perceived delay

Lu:

200 ms perceived as instant

Extras – Concatenated words

Input: Concatenatedvwords suck!

Model Output: Concatenated words suck!

Word-Level Correction

Extraction on word level: 2 Operations: Replace + Insert

- 1. Replace: 🔽
- → Concatenated suck!
- 2. Insert: 💢
- → Concatenated suck!