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Abstract

Mobile keyboards rely heavily on intelligent spelling correction to support users

during text input. Modern neural networks deliver high accuracy but often exceed

the computational limits of mobile devices. This thesis investigates the practical

feasibility of employing a neural spelling correction model for mobile keyboards using

a client-server architecture. We developed an Android keyboard application that

retrieves corrections from a remote server and evaluated it in technical experiments

and a user study. The technical evaluation shows that the system achieves an average

end-to-end latency of 128 ms and a correction accuracy that clearly outperforms

Google’s Gboard. In the user study, we evaluated the acceptance of the system for

both word-level and sentence-level correction. Both modes were found to be feasible

in practice, with sentence-level correction being rated particularly positive.



Zusammenfassung

Mobile Tastaturen setzen in hohem Maße auf intelligente Rechtschreibkorrektur,

um Nutzer bei der Texteingabe zu unterstützen. Moderne neuronale Modelle bi-

eten eine hohe Korrekturquote, überschreiten jedoch häufig die Rechenleistung mo-

biler Geräte. Diese Arbeit untersucht die praktische Umsetzbarkeit von neuronaler

Rechtschreibkorrektur für mobile Tastaturen durch eine Client-Server-Architektur.

Hierzu wurde eine Android-Tastatur entwickelt, die Korrekturen von einem Server

abruft. In technischen Experimenten und einer Nutzerstudie evaluieren wir das

System. Die technische Evaluation zeigt, dass das System eine durchschnittliche

End-to-End-Latenz von 128 ms erreicht und die Korrekturqualität deutlich über der

von Googles Gboard liegt. In der Nutzerstudie haben wir die Akzeptanz des Systems

für Wortkorrekturen und Satzkorrekturen bewertet. Beide Modi erwiesen sich in der

Praxis als praktikabel, wobei Satzkorrekturen besonders positiv bewertet wurden.
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Chapter 1

Introduction

Whether for chatting with friends or writing emails, smartphones have become a

central tool of communication in our everyday life. Yet, this mobility brings new

challenges. Virtual keyboards are far smaller than physical keyboards which makes

them prone for spelling errors. Users often hide the characters with their fingers

making it difficult to see, where exactly they are tapping. The „fat-finger problem“,

where unprecise touches cause errors, illustrates the issue of small character keys.

External factors such as walking while typing or a reduced thumb reach when holding

the phone with only one hand can further increase error rates.

Spelling correction systems are therefore essential in mobile keyboards and users

have high expectations for their accuracy. Traditional methods were often based

on dictionaries or statistical n-gram models but reach their limits with complex

errors. Neural models in contrast, have delivered impressive results and current

state-of-the-art systems rely on them.

Yet neural models come with trade-offs. Running large models directly on mobile

devices is often infeasible due to memory, battery and compute limitations[1]. As a

result, most keyboards with local correction stick to lightweight models and ignore

the potential of more powerful neural networks. Client-server architectures have
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emerged as a practical solution. They outsource heavy computation to powerful

servers. The keyboard sends text to a server, where the text is corrected and sent

back. This allows for larger correction models, while keeping the computation on

the keyboard minimal. Outsourcing computationally expensive tasks is not a new

concept. We have seen generative AI systems, such as Dall-E and Claude, or voice

assistants, such as Siri or Alexa already employ this architecture successfully. At

the same time, network communication inherently introduces latency.

This thesis investigates whether a client-server architecture is feasible for mobile

spelling correction while maintaining acceptable usability. We developed an An-

droid keyboard, measured the end-to-end latency of the system and compared the

correction quality to Google’s Gboard keyboard. We conducted an empirical user

study, to assess user acceptance in two correction modes. Acceptance of at least one

mode would provide evidence that a client-server architecture is feasible for mobile

spelling correction.



Chapter 2

Related Work

This section presents prior work in spelling correction and its application in mobile

keyboards. We first summarize general approaches and follow with research on

on-device and server-based mobile keyboards.

2.1 Spelling Correction in NLP

Spelling Correction in Natural Language Processing Spelling correction is a classical

task in Natural Language Processing (NLP) and has been addressed using various

methods. Early approaches were dictionary-based and used edit-distance algorithms

to find similar valid words [2], [3]. These methods work well for non-word errors

(e.g. eror → error), but fail to detect real-word errors (e.g. live → life) due to a lack

of context information.

Statistical models, especially n-grams, addressed this gap by introducing limited

word context [4]. They estimate the likelihood of a word given its preceding words.

In practice however, the context window is limited to a fixed number. Increasing the

number allows more context but quickly becomes impractical for longer sequences.

Neural models brought major advances to spelling correction. Instead of relying on
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a limited context window, they can use the full sequence context. Hertel [5] framed

spelling correction as a translation task, “translating” an erroneous sequence into a

correct one using an LSTM-based sequence-to-sequence model. Walter [6] improved

this approach with a Transformer model, achieving higher accuracy and adding the

ability to correct whitespace errors. Today, large language models (LLMs) such as

GPT represent the state of the art, showing strong performance in both spelling

and grammar correction [7].

2.2 On-Device Spelling Correction

These developments have reached mobile keyboards. Commercial systems such as

Google’s Gboard and Microsoft’s SwiftKey initially relied on n-gram models but now

use neural networks. However, architectural details are rarely disclosed. Academic

research offers more transparency. Ghosh et al. [8] presented an attention-based

model for local deployment, focusing on character-level correction. Niranjan et al.

[9] introduced a transformer-based model for autocorrection, also running on-device.

2.3 Server-Based Spelling Correction

Other approaches have explored server-side computation. Zhang et al. [10] presented

a keyboard where users could retype a misspelled word at any cursor position, with-

out deleting the original word. By pressing a button, an RNN running on a server

determined which previously typed word should be replaced. Grammarly also fol-

lows a client-server architecture. Few details are disclosed beyond using an “AI

model”, but the need of an active internet connection indicates that corrections are

processed on a server. However, Grammarly is technically not a mobile keyboard.

It shows corrections in overlay bubbles and can be used as an extension for other
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keyboards.

A recent development is Google’s Proofread[11], a sentence- and paragraph-level

correction feature integrated into Gboard. Proofread uses an LLM that runs in

the Google Cloud. Several optimization techniques such as quantization, bucket

inference and speculative decoding reduce the latency by 39.4%. Although the

paper does not provide absolute latency values, a demo video shows a correction

time of about three seconds for a three-sentence paragraph. Proofread has not yet

been rolled out globally and is limited to a few selected devices in the United States,

which prevents a direct comparison.

Most prior work has focused primarily on correction quality. Latency and user

acceptance are rarely documented. A notable exception is the work of Lu [12], who

implemented an n-gram based system and reported an average correction time of

69 ms. Although neither neural nor server-based, it provides a reference point for

our evaluation.



Chapter 3

Background

This chapter introduces the technical background relevant to this thesis. We define

spelling correction and explain the principles of client-server architectures, latency,

and neural models.

3.1 Spelling Correction

Spelling correction is the process of identifying and correcting misspellings in text.

Mobile keyboards typically integrate a suggestion bar above the character keys,

which shows possible corrections to the user. We can distinguish between two main

types of corrections: Word-level correction provides alternatives for individual words

within a sentence. For example, in the sentence “Whats your naem?” word-level

correction would suggest “What’s” and “name” as corrections. Sentence-level cor-

rection would suggest an entire sentence such as “What’s your name?”.
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3.2 Client-Server Architecture

In a client-server architecture, computational tasks are divided between client and

server. The client sends requests to the server. The server processes them and

returns the results. This approach differs from local processing, where all com-

putations are performed on the client device itself. By using the server’s hardware,

computations can be performed faster and more efficiently. This reduces the client’s

processing load, memory usage and battery consumption.

However, the client-server architecture also introduces two main challenges. First,

dependency on a stable network connection. Without network connection the client

cannot retrieve corrections from the server. The second limitation is added latency,

which is discussed in the following section. Sending text over network adds latency.

If users need to wait too long for corrections to arrive, it may disturb the writing

flow and acceptance of the system.

3.3 Latency

Latency refers to the end-to-end time between a user action and the system’s re-

sponse. In the context of mobile spelling correction, it is the delay between the

user’s text input and the display of correction suggestions. Latency is usually mea-

sured in milliseconds.

In a client-server architecture, the total latency can be divided into three compo-

nents:

Client Processing Time (CPT): The time the client takes to process the

input and send the request to the server. This includes capturing the text input,

constructing the HTTP request and displaying the returned results.

Round-Trip Time (RTT): This represents the time the request takes to
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travel across the network. It depends on factors such as connection type (e.g.,

Wi-Fi vs. mobile network) and the server location.

Server Processing Time (SPT): This includes the time of the server-side

processing, including model inference, and any pre- or post-processing.

The total latency is given by:

Latency = CPT + RTT + SPT (3.1)

3.4 Latency Requirements for Mobile Text Input

Guidelines from human-computer interaction (HCI) research provide general thresh-

olds for acceptable response times. Nielsen [13] suggests that response times below

100 milliseconds are perceived as instant, while delays up to 1 second do not disturb

the user’s flow of thought. These values are widely used in user interaction research

but are only general guidelines, not specific requirements.

For example, a 100 millisecond delay may be acceptable when opening a menu,

but would be unacceptable for keystroke feedback, where users expect immediate

character display. Therefore, the acceptable latency does not only depend on the

duration, but also on the type of feedback and how it is integrated into the writing

flow.

This dependency is particularly interesting for spelling correction systems as it sug-

gests that there can be differences depending on the correction method. Word-level

corrections that are triggered while typing may be more sensitive to latency. Even

short delays may disrupt the writing flow. Sentence-level corrections which are trig-

gered after the completion of a sentence may tolerate a higher latency, since pauses
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often occur naturally after completing a sentence.

To our knowledge, there is no published research that investigates how latency affects

user acceptance of different spelling correction modes.

3.5 Transformer Model

The Transformer [14] is a sequence-to-sequence neural model architecture that re-

places recurrent layers with attention mechanisms. Unlike recurrent models, it pro-

cesses all tokens of a sequence in parallel and captures relations between any posi-

tions through self-attention. This work employs a Transformer model consisting of

an encoder and a decoder. The encoder processes the input sequence into a con-

textual vector representation. The decoder generates the corrected sequence token

by token, using the encoder output and the previously generated tokens. The final

output is a sequence of tokens, that is converted back to text sequence.

3.6 Beam Search

Beam search is a decoding algorithm that generates multiple candidate outputs from

a neural model. At each step, it keeps the top k partial sequences with the highest

cumulative probability. These are expanded by one token, scored again, and reduced

back to the top k. This allows the model to produce several candidate sequences

instead of returning only a single sequence as in greedy search.



Chapter 4

System Architecture

This chapter describes the architecture and implementation of the client and server

components. The spelling correction system consists of two main components that

are connected via HTTP:

• The client Android keyboard, which captures the user input, determines

when a correction request should be sent and displays the suggestions from

the server.

• The correction server which hosts the neural Transformer model and pro-

cesses the correction requests.

4.1 Server Implementation

4.1.1 Server Architecture

The server is responsible for receiving incoming requests, running the neural model,

post-processing its output, and returning the results to the client. It is implemented

in Python and uses the Flask framework, which offers a simple API for HTTP

requests.

Each request follows this pipeline:
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1. Input handling: The server receives the HTTP POST request.

2. Tokenization: The received text is tokenized and encoded.

3. Inference: The encoded tokens are passed to the model, which produces the

correct token sequence.

4. Decoding: The token sequence is converted back into readable text.

5. Post-processing: The corrected sequence is aligned with the original input

to extract differences.

• In word correction mode, the differences are used to show correction

candidates for specific words.

• In sentence correction mode, the differences are used to highlight

which words were changed.

4.1.2 Neural Correction Model

As correction model serves a self-trained transformer-based sequence-to-sequence

model, which follows the standard encoder-decoder architecture. The encoder maps

the input to contextual representations, which the decoder uses to generate the

corrected output sequence. This model is used for both word correction and sentence

correction.

To prepare the input for the model, we use a subword tokenizer based on Byte-Pair-

Encoding (BPE) with a vocabulary size of 8000. Subword tokenization splits words

into smaller units, allowing the model to handle rare or unknown words more effec-

tively than word tokenization. It also avoids long sequences produced by character

tokenization.

The model was trained on a subset of the English Reddit dataset, which contains

over 64 million sentences. The dataset was chosen for its conversational tone, typical

for mobile text input. The model supports both uppercase and lowercase as well as

common special characters. For training, we artificially introduced spelling errors
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by inserting, deleting and swapping characters.

In mobile keyboards, corrections are often triggered mid-sentence while the user is

typing. In these cases, the model may receive an incomplete sentence. A neural

model that is only trained on complete sentences develops a bias toward generating

complete sentences.

Input: “I can’t find teh”

Expected correction: “I can’t find the”

Model output: “I can’t find tea.”

In this example, although “teh” is an obvious typo for “the”, the model incorrectly

replaces it with “tea” to complete the sentence. To avoid this, the model was not

only trained on complete sentences, but also on sentence fragments.

An overview of the training configuration is provided in Table 4.1.

Before deployment, the trained model was exported to ONNX format to improve

the inference speed. The model generates up to 35 tokens per sequence, which is

sufficient for most sentences.

4.1.3 Postprocessing

The model generates corrected text sequences as output. On their own, the raw out-

put cannot be used directly by the client. For sentence-level correction, the keyboard

must know which words were changed to highlight them. For word-level correction

it must receive explicit corrections for the current word. This post-processing step

takes place after model inference.

For each correction request, the model performs beam search with a width of k = 3.

This produces three corrected sentences. Each word from the original input sentence

may therefore receive up to three alternative suggestions. To extract them, the

server aligns each corrected sentence with the original input using the Python library

difflib.SequenceMatcher, which detects insertions, deletions, and replacements
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Parameter Value
Architecture Transformer Encoder-Decoder
Encoder Layers 2
Decoder Layers 2
Attention Heads 5
Hidden Dimension 256
Embedding Dimension 256
Total Parameters 12,533,312
Tokenizer BPE (Byte-Pair Encoding)
Vocabulary Size 8,000
Max Sequence Length 35 tokens
Dataset English Reddit (subset)
Training Sentences 64 million
Batch Size 256
Learning Rate 0.001
Optimizer Adam
Epochs 2
Deployment ONNX format
Beam Search Width k = 3

Table 4.1: Model training configuration

at the word level.

For example, given the input “I can’t find teh file”, beam search may return the

following sentences:

1. I can’t find the file

2. I can’t find that file

3. I can’t find these file

The alignment finds that at one position all three candidates differ from the original

input. “teh” is replaced by “the”, “that” or “these”.

In word-level correction mode, these differences are aggregated into a list of sugges-

tions for each word position. In sentence correction mode, the results are stored as

list of differences that mark which words were changed in each sentence.
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The results for both word- and sentence correction are returned to the client in the

JSON format as shown in the example below:

1

2 {

3 "wordCorrections": {

4 "3": { "original": "teh", "suggestions": ["the", "that", "these"] }

5 },

6 "sentenceAlternatives": [

7 { "text": "I can't find the file",

8 "differences": [{ "orig": "teh", "corr": "the", "pos": 3 }] },

9 { "text": "I can't find that file",

10 "differences": [{ "orig": "teh", "corr": "that", "pos": 3 }] },

11 { "text": "I can't find these file",

12 "differences": [{ "orig": "teh", "corr": "these", "pos": 3 }] }

13 ]

14 }

At first sight, returning both word and sentence corrections may appear redundant.

However, the alignment is already computed on the server and can be reused for

both correction modes. This avoids any computation on the client to keep it as

minimal as possible.

The complexity of the alignment is O(k ·n2), where n is the sentence length and k the

beam width. Given the length of typical sentences, the cost is negligible compared

to model inference.

4.2 Client Implementation

This section describes the implementation of the Android keyboard and its interac-

tion with the correction system. The keyboard captures the user input, sends it to

the server and displays correction suggestions.
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4.2.1 Keyboard Architecture

The keyboard app is written in Kotlin and builds on the open-source project BasicK-

eyboard1. BasicKeyboard provides a minimal keyboard implementation without any

additional features, which makes it a clean starting point for further development.

The total size of the app is 13 MB.

The app is implemented as Input Method Editor (IME), which allows it to be used

system-wide in all Android applications. To activate the keyboard, users must enable

it in the Android settings and set it as default input method.

The keyboard is visually divided into two areas: The lower area contains the stan-

dard character keys, arranged in a QWERTZ layout. Directly above the key area,

a suggestion bar was added as part of this thesis. The suggestion bar is the main

interface for users to interact with correction suggestions.

4.2.2 Correction Modes

The keyboard supports two modes of corrections: word corrections and sentence

corrections. Both use the suggestion bar to display the results. Depending on

the correction mode the bar either shows word suggestions or sentence suggestions.

Suggestions can be accepted by tapping on them, which replaces the corresponding

word or sentence.

Word corrections are triggered on every character input or when the user moves

the cursor to a previously written word. In both cases, the keyboard extracts the

current sentence from the text field and sends it to the server. The server returns

up to three suggestions for the current word, sorted by likelihood. The suggestions

are displayed so that the most likely correction appears in the center of the bar, the

second most likely on the left and the third on the right.

1https://github.com/modularizer/BasicKeyboard

https://github.com/modularizer/BasicKeyboard
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Figure 4.1: Word correction suggestions after placing the cursor on a word.

Figure 4.1 shows an example where the cursor is placed on “wierd”, and the server

returns the suggestions “weird”, “wired”, and “wild”.

Sentence corrections are triggered when the user types a sentence-ending character

(., ?, !) or manually presses the Magic Key located to the left of the space bar.

In both cases, the keyboard again extracts the current sentence from the text field

and sends it to the server. The server returns three sentence suggestions. The first

suggestion is displayed in the suggestion bar. By tapping the Magic Key, users can

cycle through the other sentences and choose the ones they prefer. In each displayed

sentence suggestion, modified words are highlighted to make it easier for users to
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see what changed.

Figure 4.2: Sentence suggestion with highlighted changes.

In Figure 4.2 the original sentence ”Thatt was a wierd story.” is corrected to ”That

was a weird story.”, with ”the” and ”weird” highlighted to show the change.

4.2.3 Correction Behavior

All corrections require an explicit confirmation from the user. The keyboard never

replaces text automatically. This design ensures that users keep full control over

their text.
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Automatic correction was intentionally discarded. Prior studies have shown that

automatic word correction can slow users down, especially when incorrect sugges-

tions must be undone[15]. For sentence corrections, automatic replacements may

cause changes that happen far from the current cursor position. Unnoticed changes

outside the user’s focus can damage user trust. To prevent these effects, corrections

are only applied when the user actively taps on a suggestion.

4.2.4 Interaction and Error Handling

The keyboard continuously monitors the connection to the correction server. Every

10 seconds, a ping is sent to server to check its availability. If the server does not

respond within two seconds, the user is informed by the connectivity issue by a

message ”Offline” displayed on the space bar, as seen in 4.3.

In situations where the network is unstable or slow, corrections may arrive late. To

prevent disruptions while writing, user can manually disable the correction feature.

A long press on the space bar toggles between correction enabled and disabled. When

disabled, no data is sent to the server and the suggestion bar remains hidden.

This option can also be useful in situations where users prefer not to send text to

the server. Although all communication is encrypted using HTTPS, the correction

on the server is done on unencrypted text. Temporarily disabling corrections gives

the users control over which data is transmitted.
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Figure 4.3: The space bar shows ”Offline” to indicate that no suggestions are cur-
rently available due to missing server connection.



Chapter 5

Evaluation

This chapter presents the evaluation of the system. It consists of a technical evalu-

ation and a user study. The technical evaluation analyzes the latency of the client-

server architecture and compares the correction quality with Gboard, a keyboard

that uses a neural network. The user study complements this by assessing how

people accept the system in practice.

5.1 Technical Evaluation

5.1.1 Setup

For the technical evaluation the system was tested under realistic usage conditions.

The correction server runs on a university-hosted machine equipped with an NVIDIA

RTX 4090 GPU. Unlike laboratory setups, the server is not located in the same

local network as the client. Instead, the client communicates with the university

network through a VPN tunnel. As client device, we used a Google Pixel 9 Pro XL

smartphone running Android 16.

For the evaluation, we sampled 500 random sentences from the Reddit dataset. It

is the same dataset from which we sampled the training data of the model, but
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from a split that was not used in training. Artificial spelling errors were introduced

using the same character level edits as in the training phase, including character

swaps, deletions, and insertions. Different from training, we now also included a list

of frequent misspellings including errors such as homophones (e. g. there → their)

for more realistic and diverse error types. For some measurements all 500 sentences

were used, for others only a smaller subset.

5.1.2 Latency

Before evaluating the latency of the entire system, we measured the inference time

of the correction model in isolation on 500 sentences. As a reference point, we

included results for k=1, which corresponds to greedy decoding. Since the keyboard

requires three corrections in the suggestion bar, the regular system runs with k=3.

Table 5.1 shows the average inference times for different beam sizes measured on

our test dataset.

Beam Size Mean (ms) Std (ms)

1 13.92 3.40

3 41.75 10.73

Table 5.1: Model inference time per sentence

Beam search approximately triples the runtime compared to greedy decoding. With

k = 3 the model completes correction in about 42 ms.

We then investigated how the inference time of the model scales with sentence length.

This is relevant as the inference time should not grow disproportionally with longer

inputs. We use the dataset with 500 sentences. Each sentence was processed incre-

mentally, starting with the first word and extending one word at a time until the full

sentence was reached. Results for both k = 1 and k = 3 are shown in Table 5.2. The
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runtime increases almost linearly with the sentence length. With k = 1 inference

time increases by about 1 ms per word and about 3 ms per word with k = 3.

Length Mean k=1 (ms) Mean k=3 (ms)
1 2.34 7.27
2 3.62 9.24
3 4.72 12.89
4 5.78 16.15
5 6.84 19.55
6 7.96 23.02
7 9.15 26.84
8 10.26 30.40
9 11.34 33.90
10 12.40 37.26
11 13.49 40.74
12 14.68 44.63
13 15.87 48.46
14 16.98 52.81
15 17.96 55.11

Table 5.2: Runtime by sentence length

After measuring the model in isolation, we evaluated the latency of the entire system

on a subset of 50 sentences. The total latency includes all steps, from sending the

request to displaying the suggestions on the device. The keyboard logged the total

latency, while the server logged the server processing time (SPT). By subtracting

SPT from the total latency, we get the network latency (RTT). Table 5.3 shows the

average times with beam search k=3.

Component Mean (ms)

RTT (network latency) 83.28

Server processing (SPT) 44.97

- Model inference 44.70

- Post-processing 0.26

End-to-end total 128.25

Table 5.3: End-to-end latency breakdown (50 sentences)
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Network latency dominates in the total latency with 83.23 ms, while postprocessing

is almost negligible. Corrections for full sentences appear on average after 128.25 ms.

For reference, Lu [12] reported an average time of 69ms for a local n-gram-based

model without network communication. In our system, model inference takes an

average of 45.70 ms.

5.1.3 Accuracy

In addition to latency, we compared the correction accuracy of our keyboard with

Gboard, a keyboard that uses a local neural network. The evaluation was performed

manually on the reduced dataset with 50 sentences. Each sentence was copied at

once into a text field and we checked which errors were corrected by each keyboard.

We measured correction accuracy at the word level, based on the percentage of

misspelled words that were corrected. We evaluated the Top-1 and Top-3 suggestions

shown in the suggestion bar. The middle suggestion was considered the most likely

one. To avoid adding context to the sequence, we did not apply any suggestions and

kept the sentence unchanged.

For our keyboard, both word-level and sentence-level correction had to be considered.

By default, we used word suggestions. However, our keyboard struggles with words

that are concatenated. In these cases, the neural model often produces a correct

sentence, but the extraction of the word suggestions can be inaccurate. When word

suggestions could not correct the error, we additionally considered the sentence

suggestions.

We counted all successfully corrected words from the total of 111 misspellings present

in the dataset. Table 5.4 summarizes the results. Gboard achieved a Top-1 accuracy

of 57.7% and a Top-3 accuracy of 66.6%, while our keyboard reached 83.8% in Top-1

and 89.2% in Top-3 correction accuracy.

While Gboard uses neural models, specific correction mechanisms are not disclosed.
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Top-1 Top-3

Gboard 57.7% 66.6%

Our keyboard 83.8% 89.2%

Table 5.4: Spelling correction accuracy comparison

Our significantly higher accuracy suggests that our model benefits from processing

the full sentence context.

5.2 User Study

In this section, we present the user study which complements the technical evalu-

ation. The measurements from the previous section describe the performance, but

they do not show how they affect the user experience. Since no research offers a

baseline for an acceptable latency on mobile spelling correction, it is unclear how

the technical performance translates into usability. The user study therefore investi-

gates how users perceive the system. In two modes we assess whether a client-server

architecture can be considered feasible in a real-world scenario. The following sec-

tions describe the design, setup, procedure of the study, followed by an analysis of

the results.

5.2.1 Methodology

Design

The study focused on user feedback of two separate correction modes: word cor-

rection and sentence correction. These two modes were not designed as competing

approaches but as alternative use cases of the same client-server architecture. The

intention was to compare different correction granularities and to examine if at least

one of them makes the architecture feasible in practice.
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Participants

Seven participants took part in the study. Their ages ranged from 20 to 27 years,

with four male and three female participants. On their personal phones, all partici-

pants use the preinstalled system keyboard: four used Apple’s keyboard, three used

Google’s Gboard.

Procedure

The study used the same Android device and server setup that was used in the

technical evaluation. Each participant completed the study individually. At the

beginning, each participant received an introduction to the tasks. The participants

were then given one minute to get comfortable with the keyboard layout and the

correction methods.

The study consisted of two phases. In each phase, the participants were asked

to transcribe ten predefined sentences. The sentences contained no artificial errors,

since a pilot test showed that participants naturally introduced enough typing errors

to correct.

In the first phase, only word corrections were available. Participants could accept

suggestions directly or afterwards, by placing the cursor on the respective word. If

no suitable correction was available, they were asked to correct the error manually.

In the second phase, only sentence corrections were available. Participants were free

to apply sentence corrections while typing or after finishing the sentence. If none

of the three sentence suggestions fully corrected the sentence, they were asked to

choose the most suitable and correct the remaining errors manually.

To avoid order effects, four participants started with word-level correction, followed

by sentence-level correction. Three participants started in the opposite order.

After each phase, the participants answered a questionnaire consisting of seven ques-

tions. The questions addressed comfort, typing speed, correction quality, cognitive
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effort, correction speed, trade-off between accuracy and latency, and overall satis-

faction. The answers were recorded on a five-point Likert scale. The Likert scale

enables to conversion of responses into numerical values, for a quantitative analy-

sis. At the end the participants answered four additional questions, regarding their

intention of using the systems daily and possible privacy concerns. A final open

question asked about potential reasons against an everyday use.

5.2.2 Results

Word Correction Mode

Question Mean SD

Q1: Typing in this mode was comfortable. 3.43 1.13

Q2: I was able to type the sentences quickly. 2.86 1.07

Q3: The corrections were helpful. 3.57 0.98

Q4: I often had to think about whether I should accept
a correction. (inverse)

2.43 0.53

Q5: The corrections appeared fast enough to be useful. 3.71 0.95

Q6: I would prefer more accurate corrections, even if
they take slightly longer.

2.57 0.79

Q7: Overall, I am satisfied with this mode. 3.29 0.95

Table 5.5: User study results for Word Correction

Word correction achieved moderately positive feedback. Participants found the cor-

rections helpful (Q3: 3.57) and generally appeared fast enough (Q5: 3.71). Comfort

of use was rated slightly positive (Q1, 3.43), while typing speed was rated below

neutral (Q2: 2.86). Question 6 (2.57) suggests that users are sensitive to delays,

even when accuracy is acceptable. Overall satisfaction was moderate (Q7: 3.29),

indicating that the system worked with word correction, but did not fully convince
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participants. Table 5.5 presents the results of word correction mode.

Sentence Correction Mode

Table 5.6 summarizes the results for the sentence-level mode.

Question Mean SD

Q8: Typing in this mode was comfortable. 4.14 0.90

Q9: I was able to type the sentences quickly. 3.71 1.38

Q10: The corrections were helpful. 4.29 0.95

Q11: I often had to think whether I should accept a
correction. (inverse)

3.00 1.00

Q12: The corrections appeared fast enough to be useful. 4.14 1.21

Q13: I would prefer more accurate corrections, even if
they take slightly longer.

3.57 1.27

Q14: Overall, I am satisfied with this mode. 4.00 1.00

Table 5.6: User study results for Sentence Correction

Sentence correction achieved consistently better feedback than word correction, par-

ticularly, in comfort (Q8: 4.14) and the quality of corrections (Q10: 4.29). Overall

satisfaction was clearly positive (Q14: 4.00). Typing speed (Q9: 3.71) and correc-

tion latency (Q12: 4.14) were rated above neutral. Participants showed that they

were willing to accept even more latency in return for higher accuracy (Q:13 3.57).

Table 5.6 presents the result of sentence correction.

General Acceptance and Privacy

The next four questions, which addressed general acceptance and privacy concerns

are summarized in Table 5.7. The results give a mixed picture about long term use.

Both modes were seen as possible for daily use, with sentence rated slightly higher
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(Q16: 3.71). The need for an internet connection (Q17: 2.57) and the processing of

the text on a remote server (Q18: 2.14) were seen critically.

Question Mean SD

Q15: I would use mode A for daily use. 3.43 0.79

Q16: I would use mode B for daily use. 3.71 0.95

Q17: I would use this keyboard regularly even if it re-
quires continuous internet connection.

2.57 0.79

Q18: I am comfortable with my typed text being pro-
cessed on a remote server.

2.14 0.90

Table 5.7: General acceptance and privacy questions

The final question about potential reasons against an everyday use of the systems

revealed that for several participants privacy was an exclusion criterion. Others

pointed to usability and missing features like punctuation after double-space, auto-

matic removal of spaces before punctuation, sliding on the spacebar to move the

cursor, absence of familiar bubbles next to misspelled words and visual key feed-

back while typing. A third category of feedback expressed the desire of using a

hybrid solution combining sentence corrections, word corrections and autocorrec-

tion. When asked whether latency would affect their decision to use the keyboard,

all participants stated that the latency was largely unnoticed and acceptable.

5.2.3 Discussion

The results of the user study show that both correction modes worked in practice.

Participants were able to type, correct and complete the tasks in both modes without

major difficulties. Sentence correction was rated particularly positive. Even though

the correction quality was already considered good, the participants stated that they

would accept additional delays for better corrections. This suggests that additional

latency does not necessarily conflict with usability.
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The study shows that the architecture is successful from a user perspective. At

the same time, it shows that acceptance does not depend on correction quality and

speed alone. Features and privacy reasons were major reasons why some participants

remained hesitant.
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Conclusion and Future Work

Server-based correction is technically feasible for mobile keyboards: In

our evaluation we showed that a client-server architecture can deliver interactive

response times, on average 128 ms per sentence.

Latency was not perceived as a major issue: Although the network latency

dominates the total latency, participants did not perceive it as disruptive.

Model accuracy outperforms commercial keyboard: On our test set with

111 spelling errors our model achieved an 83.8% Top-1 and 89.2% Top-3 correction

accuracy, clearly outperforming Gboard.

We think there are many interesting aspects that could be explored in future work:

• User acceptance and latency thresholds: Our user study indicates that

sentence-level corrections are well accepted in our architecture. However, exact

boundaries of acceptable latency remain unclear. Sentence-level correction

may be more tolerant of higher latency. A study with a larger number of

participants could provide more insights into what latency levels users find
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acceptable.

• Improving word extractions: In some cases, the model generates a correct

sentence, but on word-level the current extraction and keyboard integration

are not able to correct the error. More robust alignment methods, especially

for handling concatenated and split words, could resolve the issue.

• Model optimization: Inference speed could be further improved through

model optimization techniques such as quantization. At the same time scal-

ing to larger transformer models or even LLMs might significantly increase

correction quality.

• Extending features and usability: In addition to spelling correction the

system could be extended to integrate features such as word prediction. To-

gether with improvements in the UI this could bring the system closer to

acceptance levels of commercial keyboards.
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