
Undergraduate Thesis

PublicTransitSnapper: Map Matching
Mobile Phones to Public Transit Vehicles

in Real Time

Gerrit Freiwald

Examiner: Prof. Dr. Hannah Bast
Adviser: Dr. Patrick Brosi

University of Freiburg
Faculty of Engineering

Department of Computer Science
Chair of Algorithms and Data Structures

October 25th, 2022

Writing Period
25. 07. 2022 – 25. 10. 2022

Examiner
Prof. Dr. Hannah Bast

Adviser
Dr. Patrick Brosi

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare that my Thesis has not been prepared for another examination
or assignment, either in its entirety or excerpts thereof.

Place, Date Signature

i

Abstract

We match location data from a mobile phone to the most likely public transport
vehicle, while using all information available in Google’s public transit schedule
format GTFS. We explain how we succeeded in creating a backend that is capable of
performing a ‘Public Transport Vehicle Matching’ algorithm and how we built a user-
friendly web- and mobile app. We analyze our conducted user study to test the app
in Freiburg, Hamburg, Munich and Zurich. The results suggest that our app works
especially well with busses, but has room for improvement with underground services.
As there is a lack of publicly available real time data on public transport vehicles
in Germany, we discuss its current state and improvement prospects conducted by
German authorities.

iii

Zusammenfassung

Wir ordnen Ortsangaben von Handys ihrem wahrscheinlichsten öffentlichen Trans-
portmittel zu. Dafür benutzen wir sämtliche verfügbare Informationen in Googles
GTFS-Format für Fahrplandaten. Wir erläutern, wie wir es geschafft haben ein
Back-End zu erstellen, auf dem ein Algorithmus zur ‘Zuordnung zu öffentlichen
Transportmitteln’ läuft. Außerdem erklären wir, wie wir unsere benutzerfreundliche
App als Web-App und Handyapp gebaut haben. Wir analysieren unsere Nutzerstudie,
bei welcher wir unsere App Testern in Freiburg, Hamburg, München und Zürich
gegeben haben. Die Ergebnisse zeigen, dass unsere App besonders gut bei Bussen
funktioniert, bei S- und U-Bahnen aber schwächelt. In Deutschland gibt es kaum
öffentlich verfügbare Echtzeitdaten für öffentliche Transportmittel. Deshalb unter-
suchen wir den aktuellen Stand der Dinge und beschreiben geplante Verbesserungen
durch Bund und Länder.

v

Contents

1 Introduction 1

2 Background 5
2.1 Introduction to GTFS . 5

2.1.1 Term Definitions . 5
2.1.2 Introducing the GTFS Tables Used by PublicTransitSnapper 5
2.1.3 Representing Shapes . 8
2.1.4 GTFS Real Time Extension 8
2.1.5 Further Information on GTFS 8

2.2 Introduction to Public Transit Vehicle Matching 10
2.2.1 Great Circle Distance . 10
2.2.2 Definition Map Matching . 10
2.2.3 Map Matching to a Dynamic Map 10
2.2.4 Using a Graph to Represent the Shapes Network 10
2.2.5 Definition Markov Chains . 11
2.2.6 Hidden Markov Models . 11

3 Related Work 13
3.1 Other PTV Matching Applications 13

3.1.1 Google’s Pigeon Transit Project 13
3.1.2 Citymapper . 13

3.2 Map Matching to a Static Map . 14
3.2.1 Hidden Markov Models in Map Matching 14
3.2.2 Real Time Map Matching . 14

3.3 Public Transit Data in Germany . 14
3.4 Working Together on PublicTransitSnapper 15

4 Building PublicTransitSnapper 17
4.1 Problem Definition . 17
4.2 Project Structure . 17

4.2.1 Used Programming Languages 17
4.3 The Frontend . 20

4.3.1 App Layout . 20
4.4 Communication Between Frontend and Backend 24

4.4.1 Handling HTTP Requests and Transferring Information on the
PTV Matching . 24

vii

4.4.2 Communication Needed for the Connections Page 25
4.4.3 Communication Needed for Displaying the Shape 25
4.4.4 The Chat . 25

4.5 The Backend . 26
4.5.1 Docker . 27
4.5.2 Connecting Shapes, Stops and Times 27
4.5.3 Preparing and Using the GTFS Files 29
4.5.4 TripsWithStopsAndTimes Methods 31
4.5.5 GTFS Container Methods . 32

4.6 PTV Matching . 34
4.6.1 Using a Hidden Markov Model to Find the Most Likely Edges 34
4.6.2 Assigning Weights to the HMM 36
4.6.3 Finding the Most Likely Trip 38
4.6.4 Avoiding Over-Matching . 39

4.7 Fetching New GTFS Data . 43
4.8 Using Fake GPS Data to Test the Project 43

4.8.1 Generating Noisified Points Along a Shape 44
4.8.2 Annotating the GPS Points With Timestamps 44
4.8.3 Using Selenium to Manipulate a Device’s GPS Position . . . 45

5 User Study 47
5.1 General Inquiry . 47
5.2 Trips . 48
5.3 Differences and Similarities . 54
5.4 Conclusion of the User Study . 54

6 GTFS in Germany 57
6.1 Availability of GTFS in Germany . 57

6.1.1 DELFI . 57
6.1.2 DEEZ - Real Time Data Throughout Germany 62

6.2 Prominent German Industrial Standards 64
6.2.1 HAFAS . 64
6.2.2 DIVA . 64

6.3 Concluding GTFS in Germany . 65

7 Further Investigation 67
7.1 Improving the Frontend . 67

7.1.1 Showing Real Time Updates 67
7.1.2 Showing Connection Issues 67
7.1.3 Offline Maps . 67
7.1.4 Stop Features . 68

7.2 GTFS Frequencies . 68
7.3 City-Specific Information . 68
7.4 Generating Real Time Data . 69

viii

7.5 The Debatable Use of Python . 69
7.6 Testing PublicTransitSnapper on Long Distance Trips 70

8 Conclusion 71

9 Acknowledgments 73

10 Appendix 75
10.1 Data Structures . 75

10.1.1 STRtrees . 75
10.2 Algorithms . 75

10.2.1 Dijkstra’s Algorithm . 75
10.3 GTFS Example . 77

Bibliography 82

ix

List of Figures

1 PublicTransitSnapper Preview . 1
2 Map Matching Illustration . 2
3 Freiburg Shape Network . 3

4 Relations Between GTFS Files . 9
5 Markov Chain Example . 11
6 Transition Probability Example . 12

7 Front Page and Connections Page . 21
8 Map Page . 22
9 Chat Page and Settings Page . 23
10 Example of Trip Segments . 28
11 Example for get_next_stop . 33
12 Looped Shapes . 34
13 Example Gnetwork and Gmarkov Graphs 35
14 Opposite Directed Shapes Example 37
15 Shared Shapes Example . 38
16 Find the Most Likely Trip . 39
17 Anti-Matching Illustration . 41
18 Anti-Matching Counterexample . 42
19 Time Interpolation Example . 45
20 ControlDevTools Flowchart . 46

21 Agencies Germany . 58
22 ‘Bayern Fahrplan’ Partner Agencies 59
23 DELFI Organigram . 61
24 DEEZ Two Regio-Clusters . 63

25 R-Tree . 76

xi

List of Tables

1 User Study Freiburg 1 . 48
2 User Study Freiburg 2 . 49
3 User Study Hamburg 1 . 49
4 User Study Hamburg 2 . 50
5 User Study Munich 1 . 51
6 User Study Munich 2 . 52
7 User Study Zurich 1 . 52
8 User Study Zurich 2 . 53

xiii

List of Listings

4.1 Content of a Chat Message . 26

10.1 Pseudo-Code Dijkstra’s Algorithm 77
10.2 GTFS Example routes.txt . 78
10.3 GTFS Example trips.txt and calendar_dates.txt 78
10.4 GTFS Example stops.txt . 78
10.5 GTFS Example stop_times.txt . 79
10.6 GTFS Example calendar.txt . 79
10.7 GTFS Example shapes.txt . 80

xv

1 Introduction

Public Transit Vehicle Matching (PTV Matching) is a contemporary issue of finding
the most likely public transit vehicle (PTV) given a list of timestamped GPS points. As
it currently stands, there are apps like Citymapper1 and Moovit2 that are presumably
matching GPS points of their users to PTVs in real time. However, their algorithmic
approaches are company-internal and, to the best of our knowledge, there are no
open source projects on that matter. We aim to fill this gap.

Our app PublicTransitSnapper (see Figure 1) collects said timestamped GPS points
and sends them to a backend, where a PTV Matching and other information requested
by the app is calculated. We use GTFS (General Transit Feed Specification) to get
information on the PTVs’ schedules and moving trajectories called shapes.

Figure 1: This figure shows a preview of the PublicTransitSnapper app. The user
has currently been matched to the U2 in Munich.

1https://citymapper.com
2https://moovitapp.com

1

https://citymapper.com/
https://moovitapp.com/
https://citymapper.com
https://moovitapp.com

Figure 2: This figure illustrates map matching. The left image shows GPS points
with a natural inaccuracy. The image in the middle illustrates that a
simple metric like always choosing the closest street is not a valid option
when it comes to map matching. The image on the right shows a desirable
map matching for the given coordinates.

After explaining the functionalities of the visual app, we discuss our approach on a
PTV Matching implementation. In order to calculate the PTV Matching, we need
to connect two bits of information: The geographic position of a PTV and the time
at which the PTV is at that position, relative to the sent mobile phone coordinates.
The geographic part can be solved with a map matching approach. Map matching
is a well researched topic. Figure 2 illustrates the map matching of the GPS points
received by a car. Whenever position measurements are too imprecise, we can use
map matching to displace a measured position to a position within a network. This
could be a road network like in Figure 2 or, like in our application, the network of
shapes PTVs move on (see Figure 3 for an example). Imagine a collection of all
shapes of currently active PTVs within a region close to the coordinates collected by
a mobile phone user. Now, we only have check where the PTVs currently are along
the shape. The closest vehicle moving along a shape that fits to the shape we found
with our map matching is the most likely candidate.

For testing our real time GPS data based app, we wrote a testing tool that simulates
a user device moving along a shape. The simulated GPS points are noisified and then
given to PublicTransitSnapper.

We evaluate the usability of PublicTransitSnapper with our conducted user study.
While the usability and bus matchings were praised, PublicTransitSnapper had certain
issues with subways.

Many mismatchings are induced by a lack of real time PTV data. Therefore, we
discuss the current state of publicly available data on PTVs in Germany and give
insight into projects that aim to improve the situation. One of these projects is called
DEEZ, which translates to ‘real time data throughout Germany’.

2

Figure 3: This Figure shows the shape network of PTVs in Freiburg as red lines.
PTVs only move along the shapes. Thus, the street network is not relevant
for map matching to the shape network.

In what follows, the ‘Background’ Chapter 2 introduces the GTFS format and
other knowledge required for the reader to understand this thesis. The ‘Related
Work’ Chapter 3 puts the content of this thesis into context with existing research
and projects on related subjects. The ‘Building PublicTransitSnapper’ Chapter 4
gives detailed explanation of the functionality of the visual app (the frontend), as
well as a thorough specification on the functionality of the PTV Matching and
other required features (the backend). Here, we also introduce testing tools like
the previously mentioned GPS simulator. The ‘User Study’ Chapter 5 discusses
evaluation results collected by PublicTransitSnapper testers in Freiburg, Hamburg,
Munich and Zurich, to have a comparison with a Swiss city. The ‘GTFS in Germany’
Chapter 6 elucidates the state of publicly available static and real time data on
PTVs in Germany and discusses current projects aiming to improve the situation.
The ‘Further Investigation’ Chapter 7 gives prospects on future work on mentioned
problems. Chapter 8 concludes.

PublicTransitSnapper is an open source project which can be found on GitHub3.

3https://github.com/TheRealTirreg/PublicTransitSnapper

3

https://github.com/TheRealTirreg/PublicTransitSnapper
https://github.com/TheRealTirreg/PublicTransitSnapper

2 Background

In this chapter, we introduce Google’s ‘General Transit Feed Specification’ (GTFS),
as well as the concept of map matching.

2.1 Introduction to GTFS

The ‘General Transit Feed Specification’ (GTFS)1 was created by Google in 2005 [1].
A GTFS feed consists of at least six and up to 17 CSV files (with extension .txt)
contained in a ZIP file. Each CSV file describes a table. All tables together describe
a relational database2. In a nutshell, this means that the tables are linked together,
which we will explain in the following.

2.1.1 Term Definitions

To understand GTFS, we first need to learn about terms used in this context.

• Field - A column of a table. For example, ‘route_id ’ is a field of the routes
table

• Field value - An entry in a column of a table. For example, ‘route001 ’ would
be an entry for the route_id field

• Color - Colors are encoded as a six-digit hexadecimal number. For example:
‘FFFFFF ’ represents white, ‘000000 ’ represents black

• Date - Dates are writen in a ‘YYYYMMDD’ format. For example, ‘20220805’
describes August 5, 2022

• Time - Times are written in a ‘HH:MM:SS’ format. For example, ‘14:30:00’
describes 14:30h. ‘25:35:00’ means 1:35h on the next day. I will further explain
this feature in the next section.

2.1.2 Introducing the GTFS Tables Used by PublicTransitSnapper

In the following, we will name every required fields (column names) and the optional
fields we used for the PublicTransitSnapper. You can see the relations between the
tables in Figure 4.

1https://developers.google.com/transit/gtfs
2https://cloud.google.com/learn/what-is-a-relational-database

5

https://developers.google.com/transit/gtfs?hl=en
https://docs.fileformat.com/spreadsheet/csv/
https://docs.fileformat.com/compression/zip/
https://cloud.google.com/learn/what-is-a-relational-database

routes.txt

This table contains every route. Every route has:

• A unique route_id
• A route_short_name which we mostly use
• A route_long_name which is irrelevant for the PublicTransitSnapper
• A route_type as a number, for example 0 describes a Tram, 1 a Metro, 2 Rails

and 3 a Bus
• Optionally a route_color which we use in the frontend
• Optionally a route_text_color which we also use in the frontend

trips.txt

Every route has one or more trips. Every trip has:

• A unique trip_id
• A ‘parent’ route_id. Every route can have multiple trips, but every trip can

only have one route
• A service_id which gets its meaning from the calendar table
• A shape_id which is representing a list of GPS points, defined in the shapes

table

stops.txt

This table describes the geographical locations of each stop. Stops can have a ‘parent
station’ comprising multiple stops that belong together. Every stop has:

• A unique stop_id
• A stop_name
• A stop_lat which describes the GPS latitude of the stop
• A stop_lon which describes the GPS longitude of the stop

stop_times.txt

This table links the trips to their stops. It tracks when a PTV should arrive at each
stop according to schedule.

In the term definitions (see 2.1.1), we mentioned that times can overlap to the next
day, for example ‘25:35:00’ would mean 1:35h on the next day. Let us consider the
example date February 1st of 2022. Trips can start on that day at let us say 23:30h,
and finish at 1:35h (‘25:35:00’) the next day. Trips can even start on ‘25:35:00’ for
the February 1st of 2022 and end on ‘26:25:00’ for example. We will address this
feature as ‘overtime’ from now on.

6

The table provides:

• A trip_id
• A stop_id
• A arrival_time which describes the arrival time of the PTV on the trip
• A departure_time which describes the departure time of the PTV on the trip
• A stop_sequence which describes the order in which the PTV on the trip visits

the stops

calendar.txt

This table gives a meaning to the above mentioned service_id. Every trip has
a service, but a service can provide information to multiple trips. Each service
comprises:

• A service_id
• A Boolean telling if the corresponding trips are served on Mondays
• The same for Tuesdays
• Wednesdays
• Thursdays
• Fridays
• Saturdays
• and Sundays
• A start_date and an
• end_date which describe the validity period of the service

calendar_dates.txt

Calendar dates can provide exceptions to services. This can be used for reduced or
extra service during a holiday for example. The table provides:

• A service_id
• A date
• An exception_type which is either 1 or 2. 1 means: Service has been added

for the specified date. 2 means: Service has been removed for the specified date.

shapes.txt

This file is very important for the PublicTransitSnapper. Unfortunately, it is optional
and many public transport associations choose not to provide the shapes file. Luckily,
there is a tool for creating a shapes file called pfaedle. We will cover pfaedle in section
4.7. A shape describes the path that a PTV travels on. Every shape has multiple
rows:

7

• A shape_id
• A shape_pt_lat describing the GPS latitude of a shape point
• A shape_pt_lon describing the GPS longitude of a shape point
• A shape_pt_sequence describing the order in which a PTV visits the points

2.1.3 Representing Shapes

Shapes are polylines, which is another word for a list of points. We can also think of
polylines as linked edges. This representation is very useful for computation needed
for the PTV Matching, which will be elucidated in the further course of this thesis.

If we take every edge from each shape, we can observe that there are many duplicate
edges. We can eliminate these duplications by creating edge objects for each edge.
An edge contains:

• A unique edge_id
• An edge_start GPS coordinate
• An edge_end GPS coordinate
• An edge_length containing a float of the length of the edge in meters
• A list that holds tuples of every shape_id this edge is part of, together with the

sequence number of the edge in the shape: (shape_id, edge_sequence_number)

2.1.4 GTFS Real Time Extension

There is also a real time GTFS extension called GTFS-RT3. GTFS-RT is a stream
providing real time information like delays, trip cancellations and more. GTFS-RT
operates on top of a fitting static GTFS data set. Thus, other real time feeds are not
compatible. As we will show later in the ‘GTFS in Germany’ Chapter 6, GTFS-RT is
not common in Germany. This goes as far as GTFS-RT not even being mentioned on
the German Wikipedia article on GTFS. However, Switzerland’s ‘open data platform
mobility’4 does provide a GTFS-RT stream we could use for testing and implementing
GTFS-RT support. Please see R. Wu’s thesis [2] for a more in-depth look on this
subject.

2.1.5 Further Information on GTFS

We have visualized the relations between the tables in Figure 4. For an example
GTFS feed, see this chapter in the appendix.

3https://developers.google.com/transit/gtfs-realtime
4https://opentransportdata.swiss/en/cookbook/gtfs-rt/

8

https://developers.google.com/transit/gtfs-realtime
https://opentransportdata.swiss/en/cookbook/gtfs-rt/
https://opentransportdata.swiss/en/cookbook/gtfs-rt/
https://developers.google.com/transit/gtfs-realtime
https://opentransportdata.swiss/en/cookbook/gtfs-rt/

st
op

s.
tx

t

st
op

_i
d

st
op

_n
am

e

st
op

_l
at

st
op

_l
on

tr
ip

s.
tx

t

tr
ip

_i
d

ro
ut

e_
id

se
rv

ic
e_

id

sh
ap

e_
id

ro
ut

es
.tx

t

ro
ut

e_
id

ro
ut

e_
sh

or
t_

na
m

e

ro
tu

e_
lo

ng
_n

am
e

ro
ut

e_
ty

pe

ro
ut

e_
co

lo
r

ro
ut

e_
te

xt
_c

ol
or

st
op

_t
im

es
.tx

t

tr
ip

_i
d

st
op

_i
d

ar
riv

al
_t

im
e

de
pa

rt
ur

e_
tim

e

st
op

_s
eq

ue
nc

e

ca
le

nd
ar

.tx
t

se
rv

ic
e_

id

m
on

da
y

tu
es

da
y

w
ed

ne
sd

ay

th
ur

sd
ay

fr
id

ay

sa
tu

rd
ay

su
nd

ay

st
ar

t_
da

te

en
d_

da
te

ca
le

nd
ar

_d
at

es
.tx

t

se
rv

ic
e_

id

da
te

ex
ce

pt
io

n_
ty

pe

sh
ap

es
.tx

t

sh
ap

e_
id

sh
ap

e_
pt

_l
at

sh
ap

e_
pt

_l
on

sh
ap

e_
pt

_s
eq

ue
nc

e

F
ig

u
re

4:
T

hi
s

in
fo

gr
ap

hi
c

sh
ow

s
th

e
re

la
ti

on
s

be
tw

ee
n

th
e

G
T

F
S

fil
es

.
A

n
ar

ro
w

ca
n

be
re

ad
as

‘d
es

cr
ib

es
’.

Fo
r

ex
am

pl
e:

“A
tr

ip
_i

d
de

sc
ri

be
s

a
tr

ip
_i

d,
a
ro

ut
e_

id
,a

se
rv

ic
e_

id
an

d
a
sh

ap
e_

id
”

9

2.2 Introduction to Public Transit Vehicle Matching

2.2.1 Great Circle Distance

During this thesis, we are constantly dealing with geographical coordinates. As the
earth is spherical, connecting two points while ignoring the earth’s curvature can
lead to inaccuracies. Therefore, we use the great circle distance (gcd) whenever we
deal with distance between geographical coordinates or lengths of edges between two
geographical coordinates. The distance between two geographical coordinates p1 =
(lat1, lon1) and p2 = (lat2, lon2) can be calculated with the following formula:

gcd(p1, p2) = arccos (cos (lat1) · cos (lat2) · cos (lon2 − lon1) + sin (lat1) · sin (lat2))

2.2.2 Definition Map Matching

With the help of map matching, we can assign geographical objects to locations on
a map. Often, these geographical objects are positions received by sensors using
positioning systems like GPS. In typical cases, the sensor is located in a car, a PTV
or a mobile phone. Vehicles are often moving within a network made out of polylines
that approximate roads or PTV paths. Map matching aims to project the generally
inaccurate GPS positions onto the network’s polylines.

2.2.3 Map Matching to a Dynamic Map

In our case, the digital map is not a static road network, but consists of independently
moving public transit vehicles (PTVs).

The shapes.txt file from the GTFS data supplies us with polylines equivalent of those
describing the center lines of the roads from a road network. Each trip from the
GTFS data represents a PTV. The stop_times.txt file in connection with the stops.txt
file give information on the location of the PTV at certain points in time (the stop
times). We can interpolate the stop times to get an approximation on where the
PTV could be along the shape at a given point in time. As PTVs can be early or
delayed, we have to be tolerant when considering the PTV’s position in time.

2.2.4 Using a Graph to Represent the Shapes Network

We represent the GTFS shapes as a directed graph Gnetwork. Here, every GPS point
of a shape is represented as a node and successive points of the same shape are
connected with a directed edge. For a list C of GPS points with corresponding
timestamp (pt_lat, pt_lon, pt_time), we want to find the most likely path in
Gnetwork that ‘fits’ to the points and timestamps.

10

1

2

3 4

0.6

0.8

0.40.5
0.2

1

0.5

Figure 5: Each node in the graph represents a ‘state’. The numbers on the state-
connecting arrows indicate the transition probability from one state to
the next state. If a state does not have a transition probability arrow
to another state, their transition probability is 0. The sum of outgoing
transition probabilities must add up to 1 for every state.
As an example: The probability to get from state 1 to state 2 in one step
POneStep(1 → 2) = 0.4.

2.2.5 Definition Markov Chains

A Markov chain is a sequence of possible states. Markov chains have the special
characteristic that the probability of transitioning from one state to another is solely
dependant on the current state. This probability is called ‘transition probability’.

Markov chains can be modelled by a directed graph, as can be seen in the example in
Figure 5.

2.2.6 Hidden Markov Models

A Hidden Markov Model (HMM) is used when a process can likely be modeled by a
Markov chain, but its states are unknown. These unknown states cause observable
events. We can measure the observable events. As it is unclear, which of the unknown
states has provoked the observable event, we introduce ‘hidden states’ for every
observable event. The hidden states are linked by transition probabilities Ptransition.
The likelihood that a state generates the observed event is called ’emission probability’
Pemission.

For example, we can imagine the states of the HMM as edges. The events would
be represented by noisy GPS points. The transition probabilities can depend on
many things. For example, edges that are not connected would have the transition

11

e3

e2

e1

Figure 6: Example for a possible transition probability: Ptransition(e
1 → e2) should

be higher than Ptransition(e
1 → e3), as it is unlikely, that a PTV makes

such a harsh turn.

probability 0. Edges that are connected but point in opposite directions could have a
lower transition probability than two directly connected edges pointing in a similar
direction (see Figure 6). As an example for the emission probability, we could value
the distance from a GPS point to an edge. The longer the distance between GPS
point and edge, the lower the emission probability.

12

3 Related Work

3.1 Other PTV Matching Applications

We assume that matching mobile phones to PTVs in real time has been performed
by multiple apps for a few years now. Sadly, none of the projects are open source, so
we cannot be certain on this assumption.

3.1.1 Google’s Pigeon Transit Project

In 2019, Google’s Area 1201 introduced Pigeon Transit [3]. The general idea of the
project was to share real time information about changes in local public transit
connections. They considered weather, delays, crowdedness, conditions of the vehicles
and other information based on crowd-sourced data.

In order to calculate the delay of a PTV, it is likely that the mobile phones of the
users have been matched to the individual PTVs. Delay and crowdedness could be
derived based on the positions and the number of matched mobile phones.

Google decided to take down the project at the beginning of the coronavirus pandemic,
as there were fewer commuters and many cities had to change their public transit
system. At this point in time, Google has no plans to re-launch Pigeon Transit.

3.1.2 Citymapper

Citymapper2 is a public transit app that displays transport options with real time
data like PTV delay in over 150 supported cities. They use GTFS data3 and other
sources for their PTV information. According to their website, they have a ‘unique
approach to generating the most accurate mobility information globally’ [4].

Citymapper also provides a routing service which not only includes ‘classic’ public
transit options like busses, trams and trains, but also taxis, e-bikes and scooters.

1https://area120.google.com
2https://citymapper.com
3https://opendata.rnv-online.de/node/61/revisions/211/view

13

https://area120.google.com
https://www.blog.google/technology/area-120/pigeon-transit-app-new-cities/
https://citymapper.com/
https://area120.google.com
https://citymapper.com
https://opendata.rnv-online.de/node/61/revisions/211/view

Citymapper even expanded beyond the app, as the company introduced the ‘Citymap-
per Pass’, a subscription to all public and private mobility in London, as an alternative
to other weekly passes.

There are similar apps like TransitApp4 and Moovit5 providing comparable services.

3.2 Map Matching to a Static Map

3.2.1 Hidden Markov Models in Map Matching

The PTV Matching used by PublicTransitSnapper makes use of a Hidden Markov
Model, similar to the approach described by Newson and Krumm in 2009 [5]. Newson
and Krumm matched GPS positions of a car to a static street network. For our PTV
Matching, we have to find the most likely GTFS shape in combination with a PTVs
position in time. Newson and Krumm’s HMM approach to match the GPS positions
to a street network is very similar to our shape matching algorithm.

3.2.2 Real Time Map Matching

As PublicTransitSnapper uses real time data, it requires a fast response time. Newson
and Krumm used the Viterbi algorithm [6] to find the most likely path through the
HMM, taking into account the transition and emission probabilities. The Viterbi
algorithm provides a very high quality map matching, but can be too slow for real
time data. Koller, Widhalm, Dragaschnig and Graser introduced the alternative use
of a bidirectional Dijkstra algorithm in 2015. Their “test results show that [their]
suggested solution can avoid up to 45% of the costly routing operations and has no
negative effect on the quality of the map-matching result” [7]. PublicTransitSnapper
uses the bidirectional Dijkstra algorithm as well.

3.3 Public Transit Data in Germany

In this thesis, we will elucidate the current state of publicly available public transit
data in Germany, in particular GTFS. In 2014, S. Kaufmann wrote a thesis on this
subject [8]. Kaufmann specifies the HAFAS and DIVA data models used by many
German public transit agencies. Kaufmann then focuses on translating HAFAS and
DIVA to GTFS, before giving an outlook on publicly available data. In eight years,
many things have changed. For instance, Kaufmann did not mention DELFI yet, the
German ‘association for continuous electronic schedule information support’, which is

4https://transitapp.com
5https://moovitapp.com

14

https://transitapp.com/
https://moovitapp.com/
https://transitapp.com
https://moovitapp.com

currently playing a very important role in the publication of public transit data in
Germany.

3.4 Working Together on PublicTransitSnapper

PublicTransitSnapper was developed together with my colleague R. Wu. Read his
thesis [2] for a more in-depth explanation on the PTV Matching, our GTFS-RT
implementation and an evaluation of the PublicTransitSnapper. Throughout this
thesis, I will refer to R. Wu’s thesis whenever he covered subjects in a more detailed
way.

15

4 Building PublicTransitSnapper

4.1 Problem Definition

Given a stream of timestamped GPS coordinates, static schedule data (GTFS) and
optional real time schedule data (GTFS-RT), it was our task to build an app with
the following features:

(I) Show the user if they are matched to a public transit vehicle (PTV). If so, show
the type and the name of the vehicle, as well as the next stop.

(II) Visualize the trip of the user on a map. When matched to a PTV, show the
shape of the current trip.

(III) If matched to a PTV, show possible transfer options at the next stop. In the
following, we will call these ‘connections’.

(IV) If matched to a PTV, the user can chat to all users matched to the same PTV.

In order to solve these problems, we needed a backend to manage data derived from
the GTFS data set, process requests from the app and provide the chat.

See R. Wu’s thesis [2] for information on how we implemented GTFS-RT real time
updates.

4.2 Project Structure

Our PublicTransitSnapper consists of both a backend and a frontend. In the following
Sections, we are going to introduce the frontend, how it connects to the backend
using an API, and then describe the backend.

4.2.1 Used Programming Languages

We use three programming languages in total.

17

Choosing Flutter as Framework for the Frontend

Flutter1 is an open source framework by Google for building multi-platform applica-
tions from a single code base. The programming language used for Flutter projects is
called Dart2. It has also been developed by Google. While coding, Flutter allows for
the very handy feature called ‘hot reload’3, with which the programmer can modify
code while running the application and see the changes without having to recompile
the whole project.

A perk of Flutter is that Flutter apps can be built as Android and iOS mobile phone
apps, but also as a web-app. We used both the mobile app and the web-app during
development and testing.

Flutter natively contains two sets of widgets4: The Material Design5 from Google
and Cupertino6 widgets known from iOS apps. We mostly used Material Design,
which we preferred because of its familiarity.

Choosing Python for the Backend

Using Python entails the big advantage that there is a package for everything. As
I will explain later, we chose to use Flask7 and flask-CORS8 to communicate with
the frontend. Python’s datetime library9 comes in very handy, as PTV Matching
comes with a lot of time-based calculations. There is also PyYAML10 to read YAML
configuration files. As the backend will be running on linux, we can use the subprocess
library11 to execute unix commands. This can be very useful to fetch up-to-date
GTFS files from the internet for example. More on that in Section 4.7.

For geographical data handling, we use the shapely library12. Shapely uses the
very efficient GEOS library13, which is written is C and C++ . Shapely also uses
multithreading by releasing Python’s Global Interpreter Lock (GIL)14: ‘Normally
in Python, the GIL prevents multiple threads from computing at the same time.
Shapely functions internally release this constraint so that the heavy lifting done by

1https://flutter.dev
2https://dart.dev
3https://docs.flutter.dev/development/tools/hot-reload
4https://docs.flutter.dev/development/ui/widgets-intro
5https://material.io/design/introduction
6https://docs.flutter.dev/development/ui/widgets/cupertino
7https://flask.palletsprojects.com/en/2.2.x/
8https://flask-cors.readthedocs.io/en/latest/
9https://docs.python.org/3/library/datetime.html

10https://github.com/yaml/pyyaml
11https://docs.python.org/3/library/subprocess.html
12https://shapely.readthedocs.io/en/stable/manual.html
13https://libgeos.org/
14https://realpython.com/python-gil/

18

https://flutter.dev
https://dart.dev
https://docs.flutter.dev/development/tools/hot-reload
https://docs.flutter.dev/development/ui/widgets-intro
https://material.io/design/introduction
https://docs.flutter.dev/development/ui/widgets/cupertino
https://flask.palletsprojects.com/en/2.2.x/
https://flask-cors.readthedocs.io/en/latest/
https://docs.python.org/3/library/datetime.html
https://github.com/yaml/pyyaml
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://www.linux.com/what-is-linux/
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://shapely.readthedocs.io/en/stable/manual.html
https://libgeos.org/
https://realpython.com/python-gil/
https://flutter.dev
https://dart.dev
https://docs.flutter.dev/development/tools/hot-reload
https://docs.flutter.dev/development/ui/widgets-intro
https://material.io/design/introduction
https://docs.flutter.dev/development/ui/widgets/cupertino
https://flask.palletsprojects.com/en/2.2.x/
https://flask-cors.readthedocs.io/en/latest/
https://docs.python.org/3/library/datetime.html
https://github.com/yaml/pyyaml
https://docs.python.org/3/library/subprocess.html
https://shapely.readthedocs.io/en/stable/manual.html
https://libgeos.org/
https://realpython.com/python-gil/

GEOS can be done in parallel, from a single Python process’ [9]. A main benefit of
shapely is the provision of its ‘STRtree’, which is a data structure for storing and
accessing GPS data in an efficient manner (see Section 10.1.1 in the appendix for a
more detailed explanation). We also use the NetworkX library15, which allows us to
build graphs for the PTV Matching.

The combination of shapely and NetworkX alone convinced us to use Python, but
during the development of our PublicTransitSnapper, it turned out to be even more
useful. Firstly, it turned out that GTFS-RT data can be received very easily with
Python. Google even provides a Python library16 for that purpose. Secondly, we had
to test the matching of our PublicTransitSnapper somehow without having to travel
in a PTV for coding and debugging. For that, we wrote a handy tool using Python’s
Selenium17 that creates fake GPS locations along a GTFS shape and passes them to
a Python-controlled Google Chrome instance that runs our frontend.

Choosing C++ to Process GTFS Files

During the first few months of development, we gradually needed more and more
data like dictionaries and graphs from the GTFS files for our PublicTransitSnapper
to efficiently fetch information on GTFS during runtime. Some of this data was
only built sloppily for debugging purposes, containing duplicates and thus filling the
backend server memory with unnecessary information. The generation process of the
data was often slow and inefficient, built with our at that time poor understanding
of the powerful Python pandas library18. While that worked for smaller cities like
Freiburg and Augsburg, we had memory and runtime issues when experimenting with
larger GTFS data sets like Hamburg and even the entire Switzerland, for which there
is one whole data set. So we decided to re-write the entire GTFS processing, this
time efficiently and without duplicates, reading every GTFS file only once. We chose
to use C++ for even faster runtimes.

C++ has a very fast library to handle JSON files titled ‘JSON for modern C++ ’19.
We use JSON to save C++ maps (the C++ equivalent of a Python dictionary) to load
them in Python memory when starting the backend. There is also a C++ library for
CSV parsing20 which we use to parse the GTFS files.

15https://networkx.org/
16https://developers.google.com/transit/gtfs-realtime/examples/python-sample
17https://selenium-python.readthedocs.io/
18https://pandas.pydata.org/
19https://github.com/nlohmann/json
20https://github.com/ben-strasser/fast-cpp-csv-parser

19

https://networkx.org/
https://developers.google.com/transit/gtfs-realtime/examples/python-sample
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://pandas.pydata.org/
https://www.w3schools.com/whatis/whatis_json.asp
https://github.com/nlohmann/json
https://github.com/ben-strasser/fast-cpp-csv-parser
https://networkx.org/
https://developers.google.com/transit/gtfs-realtime/examples/python-sample
https://selenium-python.readthedocs.io/
https://pandas.pydata.org/
https://github.com/nlohmann/json
https://github.com/ben-strasser/fast-cpp-csv-parser

4.3 The Frontend

In this Section, we are going to delve into the implementation and functionality of
features (I) to (III).

4.3.1 App Layout

We designed the app to be as very user-friendly as possible. There are only nine
buttons in total. Using the three buttons on the bottom navigation bar, the user can
switch between three main pages that fulfill features (I), (II) and (III).

The ‘front page’ (see Figure 7) can be reached by clicking on the lower left button
with the -icon and the ‘Vehicle’ subtitle. It is also the first page that appears when
the user opens the app. The page shows the user if they are matched to a PTV. If so,
it shows the type and the name of the vehicle, as well as the final destination and the
next stop, thus fulfilling feature (I). If not matched to a PTV, the front page will tell
the user just that.

The ‘map page’ (see Figure 8) can be reached by clicking on the lower middle button
with the -icon and the ‘Map’ subtitle. The page shows a map from OpenStreetMaps21.
We used SfMaps22, which is a package capable of creating interactive maps. On the
map, there is an icon. If not matched to a PTV, the icon is and its location is
corresponding to the last GPS position. If matched to a PTV, the icon corresponds
to the route type of the matched PTV and its location will be clipped to the shape
of the route, which is calculated in the backend. Also, when traveling in a PTV, the
shape on which the user has traveled along will be displayed in the route color given
in the GTFS files.

We embellished the map with four more buttons. The -button displays the latest
GPS coordinates as a red line. Pressing it again hides the red line. The -button
resets the received GPS coordinates. If the user does not get matched for some
reason, they can press this button. The -button makes the camera follow the user’s
position. When the camera is locked, the button displays a -icon. The -button
zooms to the users current position. The user can press it multiple times, the zoom
toggles between zoom levels.

The ‘connections page’ (see Figure 7) can be reached by clicking on the lower right
button with the -icon and the ‘Connections’ subtitle. When matched to a PTV, it
shows a list of the possible transfer options at the next stop. Each list entry contains
the destination of the route, the route type as an icon next to the route name, as
well as the departure time at the next stop.

21https://www.openstreetmap.org/
22https://help.syncfusion.com/flutter/maps/getting-started

20

https://www.openstreetmap.org/
https://help.syncfusion.com/flutter/maps/getting-started
https://www.openstreetmap.org/
https://help.syncfusion.com/flutter/maps/getting-started

Figure 7: The ‘front page’ on the left displays information on the current route
type, route name, the route destination, as well as the next station. The
‘connections page’ on the right shows all possible transfer options at the
next stop if matched to a PTV. Else, this is empty.

21

Figure 8: The ‘map page’ shows a map from OpenStreetMaps. The left image
shops that the user is matched to route 3. The text in the header is
scrolling, as the screen of the mobile device is not wide enough to display
the whole destination name. On the right image, we can see that the
user has pressed the button with the ‘?’ icon. This shows the red line,
which displays the GPS points tracked by the device. We can see that the
vehicle icon position has been matched to the orange line, which indicates
the shape the vehicle is moving along on. The vehicle icon also indicates
that the user has been matched to a tram. The line is orange, as specified
in the GTFS field for route_color. We can also see the stops of the
vehicle.

22

Figure 9: ‘Chat page’ on the left: When matched to a vehicle, every user matched
to the same trip can chat with all the users in the same PTV. Messages
from another user are displayed in white on the left hand side, while own
messages are displayed in blue on the right. The name of each user is
displayed on the bottom left side of each bubble. The time the message
has been sent is displayed on the bottom right side of each bubble.
‘Settings page’ on the right: Here, the user can change their chat user
name and the server the frontend is communicating with. The ‘SERVER’
and ‘PROXY’ buttons fill the server address and port text fields to preset
values which can be specified in a ‘config.yml’ file (explained in subsequent
section 4.7). Below the port text field, the user can choose from up to
three recent server-address-port-combinations.

23

The ‘chat page’ (see Figure 9) can be reached by clicking on the -icon in the top
right corner. When matched to a PTV, the user is able to chat with other users in
the same PTV. This fulfills feature (IV).

The ‘settings page’ (see Figure 9) can be reached by clicking on the -icon in the top
right corner. It is also displayed once when the app starts. The user can change the
server address and port to communicate with the backend. They can also change their
user name which is displayed when chatting. The last three saved server addresses
and ports are saved below in a scrollable list, in case the user wants to switch server
or their displayed name.

4.4 Communication Between Frontend and Backend

As the calculations to match a mobile phone to a PTV are computationally rather
expensive, it would make no sense to calculate everything on the users device. Also,
the GTFS files are too large for a mobile phone’s memory. Therefore, we need a server
(the backend), which receives GPS coordinates and other information, calculates, and
then sends the results back to the app (the frontend).

4.4.1 Handling HTTP Requests and Transferring Information on the
PTV Matching

Whenever the frontend device detects that it has moved 15 or more meters in one
direction (‘distance filter’), it sends a HTTP request containing a JSON string to
our API (Application Programming Interface) on the backend server. The JSON
contains the last ten GPS points with a corresponding timestamp. For the PTV
matching request, we use the endpoint ‘/map-match’. It is called this way for historic
reasons.

On the server side, we handle the HTTP requests and responses with Flask23. There,
the GTFS derived data is already loaded in the memory, so it can quickly calculate
the PTV Matching when the API registers a request. After calculating whether
the sent GPS points and timestamps match to a PTV trip, we return information
for displaying the matched path to the mobile device. The JSON we return to the
frontend contains the following information:

• The route name, corresponding to the route_short_name from the trip’s route
• The route_type, namely an integer to describe what type of PTV the user is

travelling with
• the route_color
• the next stop of the trip

23https://flask.palletsprojects.com/en/2.2.x/

24

https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/

• the destination, namely the last stop of the trip
• the GPS location to display the icon on the map
• the trip_id and the shape_id, which are not used in the frontend directly, but

are needed for other requests

4.4.2 Communication Needed for the Connections Page

To display the connections page (recall Figure 7) in the frontend, we choose to send
different requests to a different endpoint (‘/connections’), as there is no need to
fetch the connections every time the user device moves 15 meters. Instead, we just ask
the backend for the connections at the next stop periodically when the connections
page is loaded. The frontend knows the next stop name from the requests to endpoint
‘/map-match’. We can send the next stop name together with the time on the user
device to the backend. The backend will calculate the connections at that stop and
time and send back a JSON object containing a list of the result. If the next stop
name is empty, the frontend displays an empty page.

4.4.3 Communication Needed for Displaying the Shape

Whenever the user gets matched to a new PTV, we send the shape_id together with
the trip_id to the backend at endpoint ‘/shapes’. The backend calculates the shape
and the stops along the shape and send them back.

4.4.4 The Chat

As we need the backend to differentiate between users, each user receives a unique
user_id the first time they communicate with the backend using the API endpoint
‘/chat’. The frontend stores the user_id together with the current server address on
the users device, so the next time the user starts the app and connects to the same
server, they have the same user_id as before.

If the server should restart for some reason, the user_ids will be reset. To make
sure that the user devices recognize they have to get a new user_id, we send a
timestamp of the server start time (server_start_timestamp) back and forth with
every request. If the server_start_timestamp the backend receives from a request
is smaller (older) than the actual server_start_timestamp from the server, we need
to distribute a new user_id to the user.

Every chat message contains a user name (user_name), a time when the message
was sent (time_sent), a message content (message_content), as well as the user_id.
Whenever the user_id of a message fits to the user_id stored on the users device,
we can display the message in blue on the right side of the screen, as these messages

25

have been sent from the same device. All the other messages are displayed on the
left side of the screen in a grey tone.

Because we want the chat page to display recent messages, we send a request to the
backend containing a Boolean ‘just_fetch = True’ every 10 seconds. When we just
want to fetch new messages, we send the user_id, the server_start_timestamp
and the current trip_id to the backend.

When the backend server starts, a Python dictionary ‘trip_id_to_chat_messages’
is created. Whenever the backend receives a ‘just_fetch’ request, we can check if
the dictionary has stored any messages for the given trip and return a JSON with a
list of the chat messages to the frontend. The list is empty if no chat messages have
reached the server yet.

When a user sends a message, their frontend device will send a request to ‘/chat’ with
just_fetch = False, the user_id, the server_start_timestamp and the trip_id,
as well as the message containing their user_name, user_time and message_content.
Over on the server side, because just_fetch is False, we can add a new chat message
to the dictionary. If the message sent was the first message of the trip, we add a new
entry {trip_id = [message]}. Else, we can append the newly sent message to the
already existing list behind the trip_id. See Listing 4.1 for a visualization.

chat_dictionary = {
"trip_id": [

(
user_id ,
"user_name",
"message_content",
"time_sent"

),
...

],
...

}

Listing 4.1: Content of a Chat Message

As trips will end at some time and new trips with the same trip_id can potentially
start every day, we want to delete chat conversations once the trip finishes. This
presumes that trips do not last longer than 23h. So, trips that are not active will be
removed from the dictionary hourly.

4.5 The Backend

The backend is running on a server. This is the place where the actual PTV Matching
and many more features are being calculated and processed. In this Section, we
introduce and explain the building blocks of the backend.

26

4.5.1 Docker

Our PublicTransitSnapper uses multiple programming languages, needs to manage
GTFS files and executes linux commands. In order to facilitate this, we chose to use
Docker24. We can run a Docker Container25 that runs the backend in the background
of the server. The Docker Container automatically fetches and installs dependencies
needed for the backend and then runs the Flask server. This works on many operating
systems like Windows, Linux, macOS, and other Unix-like systems. Using Docker
has proven to be great for debugging and is a handy and prevalent way to provide
open-source projects on GitHub26.

In short, the main benefit of using Docker is to run a command like ‘docker run’
and the whole backend sets itself up and is ready to be used.

4.5.2 Connecting Shapes, Stops and Times

The code described in the following Sections is all Python. In case you forgot about
‘overtime’, reconsider Section 2.1.2. The same applies to the term ‘edge’ (Section
2.1.3).

In order to make the PTV matching as efficient as possible, we decided to represent
each trip as an object that has information on the shape it is on, the stops it uses and
when it is where. This would make it easy to calculate frontend-requested information
during runtime, as we could preprocess a lot of information, such as linking the trip
to the shape it is on, knowing the next stop for each section of the trip and more.

TripsWithStopsAndTimes Attributes

In the end, we settled on an object called TripsWithStopsAndTimes that represents
a trip with the following attributes:

• Its own trip_id
• Its service_id to have access to the trip’s service information
• Its time_interval, which is a tuple (start_time, start_overtime, end_time,
end_overtime). The start_time and end_time are datetime27 objects holding
the departure_time when the trip leaves the first stop and the arrival_time
when the trip arrives at the final stop. The two Booleans start_overtime
and the end_overtime describe whether the start_time or end_time are in
overtime or not.

24https://www.docker.com/
25https://docs.docker.com/get-started/overview/
26https://github.com/TheRealTirreg/PublicTransitSnapper
27https://docs.python.org/3/library/datetime.html

27

https://www.docker.com/
https://docs.docker.com/get-started/overview/
https://github.com/TheRealTirreg/PublicTransitSnapper
https://docs.python.org/3/library/datetime.html
https://www.docker.com/
https://docs.docker.com/get-started/overview/
https://github.com/TheRealTirreg/PublicTransitSnapper
https://docs.python.org/3/library/datetime.html

• Its active_hours, which is a set of tuples. Each tuple consists of two values.
The first describes the weekday as an integer from 0 to 6, where 0 maps to
Monday, 1 to Tuesday and so on. The second describes an hour of the day as
an integer from 0 to 23. For every hour where the trip is active, we add a tuple
to the set. For example: For a trip with a service that is active on Sundays
from 23:05h to 01:15h, the active_hours would be {(6, 23), (0, 0), (0, 1)}

• A trip_segment_hash. This hash value is an integer which can be used to access
a dictionary ‘hash_to_edge_to_trip_segments_dict’, which we describe in
the following Paragraphs. It is used to have access to every ‘trip_segment’.
As there are many trips sharing the same shape and the same stops, we only
need to store this information once.

Trip Segments

In order to find the next stop once we match a GPS device to a trip, we divide every
trip into their trip_segments. A trip_segment_id is an integer describing what
part of a trip’s shape the user is on. See Figure 10 for an illustration.

stop_1

stop_2

stop_3shape_1

trip_segm
ent_id

0

trip
_segm

ent_
id 1

Figure 10: This Figure shows an illustration of trip segments. A trip segment
describes the part of a shape between two stops. Here, trip_01 uses
shape_1 and halts at stop_1, stop_2 and stop_3, where stop_1 is the
starting station and stop_3 is the destination of the trip. Stops do not
have to be on the shape polyline, but can be a few meters off. However,
we can still project the stop’s position onto the shape. In our example,
the segment between the closest point to stop_1 on shape_1 and the
closest point to stop_2 on shape_1 would get trip_segment_id 0, and
the segment between the closest point to stop_2 on shape_1 and the
closest point to stop_3 on shape_1 would get trip_segment_id 1.

If we match a user device to a trip and are on the i-th trip segment, we can derive
the next stop if we have a list of the trip’s stops in halting order. The next stop

28

would be on the (i+ 1)-th position of the list. In the following Paragraph, we will
introduce lists and other data structures we used in our project.

4.5.3 Preparing and Using the GTFS Files

In order for the PTV Matching algorithm to be fast enough for real time calculations,
we need a representation of the GTFS files in the memory of the server. We tried using
Python’s shelve library28, which works like a dictionary stored on a hard drive. This
would drastically reduce the memory usage. Sadly, shelve is too slow for our purposes,
as we have many look-up operations on GTFS related information. Therefore, when
starting the program, we create an object called GTFS Container, which is always in
the memory and contains the following objects:

trip_id_to_route_and_stop_times
A dictionary mapping the trip_id as key to a tuple containing its route_id, as well
as a list of stops on the trip. The list contains the stop_id, a tuple (arrival_time,
is_arrival_overtime) and a tuple (departure_time, is_departure_overtime) for
every stop on the trip.

route_id_to_route_info
A dictionary mapping the route_id as key to a tuple containing information on the
given route, namely the route_short_name, the route_type, the route_color and
the route_text_color.

stop_id_to_stop_info
A dictionary mapping the stop_id as key to a tuple containing information on the
given stop, namely its stop_name and its GPS coordinates stop_lat and stop_lat.

stop_id_to_trips_and_departure_times
A dictionary mapping the stop_id as key to a list of all the trips that halt at the
stop, together with the departure_time: (trip_id, departure_time)

stop_name_to_stop_ids
A dictionary mapping each stop_name as key to a list of all the stop_ids that are
bound together by a parent station (see Section 2.1.2).

28https://docs.python.org/3/library/shelve.html

29

https://docs.python.org/3/library/shelve.html
https://docs.python.org/3/library/shelve.html

shape_id_to_first_edge_and_trip_info
A dictionary mapping each shape_id as key to the shape’s first edge as four-tuple
and to a list of all the trip_ids using the shape with their respective service_id
and route_id: (trip_id, service_id, route_id)

service_id_to_service_info
A dictionary mapping each service_id as key to a tuple containing a list of ‘active
weekdays’, the start_date and end_date of the service, as well as a list of the ‘extra
dates’ and a list of the ‘removed dates’. ‘Active weekdays’ describe the weekdays
where there is service as integers, where 0 maps to Monday and 6 maps to Sunday.
The ‘extra dates’ list contains all the dates from calendar_dates.txt where the service
has additional service, whereas the ‘removed dates’ contain all the dates where the
service has been removed.

edges_STRtree
A shapely STRtree29 containing every edge. We use STRtrees for fast spacial queries.
See Section 10.1.1 in the appendix for an explanation on STRtrees.

edges_DiGraph
A directed graph from NetworkX30 containing every edge.

trip_id_to_TripsWithStopsAndTimes
A dictionary mapping each trip_id as key to its corresponding TripsWithStops-
AndTimes object.

hash_to_edge_to_trip_segments_dict
A dictionary used by TripsWithStops- AndTimes objects, which maps one trip_-
segment_hash for each TripsWithStopsAndTimes object as key to a dictionary. This
dictionary maps every edge_id of the trips shape to its trip_segment.

We generate the objects above by reading the GTFS files using our C++ program
ParseGTFS. ParseGTFS generates C++ maps. These maps are either translated to
Python dictionaries or are converted into Python-specific objects like STRtrees or
NetworkX graphs. We save these C++ maps as JSON files. When generating the
GTFS Container, we read the JSON files in Python.

If there are no JSON files yet, or they are outdated because new GTFS files have
been fetched (see Section 4.7), we can run ParseGTFS using Python’s subprocess

29https://shapely.readthedocs.io/en/stable/manual.html
30https://networkx.org/

30

https://shapely.readthedocs.io/en/stable/manual.html
https://networkx.org/
https://www.w3schools.com/whatis/whatis_json.asp
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://shapely.readthedocs.io/en/stable/manual.html
https://docs.python.org/3/library/subprocess.html
https://networkx.org/
https://docs.python.org/3/library/subprocess.html

library31 as if we ran the program from a command line interface. This is guaranteed
to work, as the backend is running in a linux environment provided by Docker.

4.5.4 TripsWithStopsAndTimes Methods

A TripsWithStopsAndTimes object has two methods.

is_trip_active
is_trip_active calculates whether there is currently traffic on the trip, given a date-
time object and a reference to the GTFS Container. Because each TripsWithStops-
AndTimes object has a set of its own active_hours, we can check in O(1) whether
the trip is active in the given hour. By using the service_id_to_service_info
dictionary with the TripsWithStopsAndTimes object’s service_id as key, we can
check whether the given date is a removed date or an extra date. This look-up is
also in O(1) on average. Therefore, is_trip_active has a constant runtime in most
cases.

get_active_trip_segment_ids
get_active_trip_segment_ids returns a list of trip_segment_ids. Given a times-
tamp, an edge_id, an allowed delay, an allowed earliness, as well as a refer-
ence to the GTFS Container, is calculates every trip_segment_id where there
could be a PTV within the allowed delay and the allowed earliness. This
method makes use of the TripsWithStopsAndTimes’ trip_segment_hash attribute,
as we can use the hash as a key to find a dictionary that maps edge_ids to
trip_segment_ids within hash_to_edge_to_trip_segments_dict. We call this dic-
tionary edge_id_to_trip_segment_id_dict.

get_active_trip_segment_ids uses service_id_to_service_info in combination
with the TripsWithStopsAndTimes’ service_id attribute to find out whether the
trip is within the validity period of the service. In order to check if the trip we want the
active trip_segment_ids from is currently active, we can use the is_trip_active
method. Furthermore, we need trip_id_to_route_and_stop_times from the GTFS
Container. In order to find all the active trip_segment_ids, we can loop over all
the trip_segment_ids yielded by the edge_id_to_trip_segment_id_dict with the
input edge_id as key. Using trip_id_to_route_and_stop_times, we can get the
departure_time and the arrival_time for each trip_segment_id. If the input
user_datetime falls within the time span, the trip segment is active. The method
runs in O(n), where n is the number of trip_segment_ids on the given edge. In
theory, there can be n− 1 stops on one edge. Usually, n = 1 or n = 2 (see Figure 10,
where the right edge is ‘separated’ by a stop). Only in rare cases is n > 2. Therefore,

31https://docs.python.org/3/library/subprocess.html

31

https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html

get_active_trip_segment_ids is not dependant on the size of the GTFS data set
and has a constant run time in most real world instances.

4.5.5 GTFS Container Methods

The GTFS Container is capable of finding simple GTFS information like a trip_ids
destination (its last stop), or a route_ids route_short_name, route_color or
route_type in averagely O(1) using the dictionaries.

get_active_trips_information
Given a shape_id, an edge_id and a datetime object, this method returns all
active trip_ids with a list of their active trip_segment_ids, their service_id
and route_id. Using shape_id_to_first_edge_and_trip_info, we can get all
trip_ids with their respective route_id and service_id in O(1) on average. For
every trip_id, we can find its respective TripsWithStopsAndTimes object using
trip_id_to_TripsWithStopsAndTimes. Then, we can get the wanted return at-
tributes in O(n) using the get_active_trip_segment_ids method. Remember that
n < 2 in most real world instances. Thus, get_active_trips_information’s runtime
is O(nm), where m describes the number of trips sharing the given shape.

get_next_stop
get_next_stop calculates the most likely next stop given a position, a trip_id, the
last matched edge_id and a list of its trip_segment_ids. Usually, there is only
one trip_segment_id. In that case, we can get a list of the stops of the trip_id
using trip_id_to_route_and_stop_times. Then, we can get the stop_id of the
(trip_segment_id + 1)th stop in the list of stops, as explained in the lower part
of Paragraph 4.5.2. Finally, we can use stop_id_to_stop_info to get the desired
stop_lat, stop_lon and stop_name. All of this has a constant runtime, as dictionary
look-ups and index-based list access are constant on average. In case there is more
than one trip_segment_id, we need to decide which stop to pick. See Figure 11
for an example. Here, the runtime scales with the number of trip_segment_ids on
the given edge_id and is therefore in O(n), where n describes the number of trip
segments on the given edge_id. Again, n < 2.

find_transfer_possibilities
find_transfer_possibilities calculates the trips shown on the connections page
(recall Figure 7). Given a stop_name, a trip_id and a datetime object, this method
returns the next up to 20 trips departing at the given stop. The input trip_id serves
the purpose of preventing the user’s trip from showing up in the connections list. Here,
we can use the benefits of the active hour system used by TripsWithStopsAndTimes
objects (see Paragraph 4.5.2).

32

trip_segment_id i

trip_segment_id (i+ 1)

end of last_edge

stop

GPS point 1

GPS point 2

start of last_edge

Figure 11: Example for get_next_stop: For GPS point 1, get_next_stop would
return the stop at the end of trip segment i, as GPS point 1 is closer to
the start of last_edge than the projected stop. For GPS point 2, the pro-
jected stop is closer to the start of last_edge, therefore get_next_stop
would return the stop at the end of trip segment (i+ 1).

We can get a list of the TripsWithStopsAndTimes objects passing the given stop
using the stop_id_to_trips_and_departure_times dictionary in combination with
the trip_id_to_TripsWithStopsAndTimes dictionary.

For each TripsWithStopsAndTimes object, we can calculate in O(1) whether the trip
is active using the object’s is_active method. For active trips, we need to check if
their departure time at the given stop is later than the given datetime. In that case, we
have found a possible connection. We can now add route_short_name, route_color,
route_text_color, route_type and the destination of the trip to the list of connec-
tions using trip_id_to_route_and_stop_times and stop_id_to_stop_info.

As some trips might not yet be active during the hour of the given datetime object, we
can repeat the algorithm k times and each time add an hour to the datetime object.
The runtime of find_transfer_possibilities is in O(nk), where n describes the
number of trips passing the given stop.

get_shape_polyline_and_stops
get_shape_polyline_and_stops serves the purpose of calculating the shape and the
stop positions of the given trip_id. Having to calculate the shape is a compromise
to the memory usage of the project. As the memory load can be quite heavy for
larger GTFS data sets, we decided not to load the shapes into memory, especially
since we already have a duplicate representation of the shapes in the form of edges.
Edges are both needed for the STRtree edges_STRtree and the directed graph
edges_DiGraph.

In order to find out the shape, we traverse the directed graph edges_DiGraph starting
from the first edge of the shape. We can get the first edge of the shape with
shape_id_to_first_edge_and_trip_info. As each edge in the graph knows its
own sequence_id, we do not have to deal with loops and double edge traversals

33

1

2

3

4

5

6

Figure 12: This figure illustrates the shape within the directed graph (I). When
searching the neighbors of edge 1, there are two candidate edges 2 and 6.
Because we save edges with their shape_sequence_number (remember
section 2.1.3), we can always recreate the shape from the edges by
choosing the next edge in the graph. In this case, we would choose
edge 2.

(see Figure 12). Traversing the graph has a runtime of O(n), where n describes the
number of edges on the shape.

We find the stops of the given trip_id by using trip_id_to_route_and_stop_times.
Then, we can get each stop’s position using stop_id_to_stop_info. The runtime for
finding the stops is in O(m), where m describes the number of stops along the trip’s
shape. The total runtime for get_shape_polyline_and_stops is in O(n+m).

4.6 PTV Matching

The GTFS Container has more methods that are only used for the direct PTV
Matching. For the implementation details on the PTV Matching, as well as our
GTFS-RT functionalities, see R. Wu’s thesis [2]. In this Section, we explain our
PTV Matching approach. In case you forgot about Gnetwork or HMMs, in particular
transition and emission probabilities, reconsider Sections 2.2.4 and 2.2.6.

4.6.1 Using a Hidden Markov Model to Find the Most Likely Edges

The map matching part of PTV Matching can be solved using a HMM. We can model
its states by creating another directed graph Gmarkov = (N,T) that consists of nodes
and transitions.

The nodes N describe edges from Gnetwork N = {eick}, with ck describing the k-th
GPS point and eick being the i-th edge from Gnetwork within a certain radius of ck.

The transitions T = {(eick → ejck+1)} describe the transition likelihood from one node
to another.

See Figure 13 for an example of Gnetwork and Gmarkov.

34

Start End

e0c0

e0c0

e1c0

e1c0

e2c0

e2c0

e0c1

e0c1

e1c1

e2c1

e1c1

e2c1

close edges close edgesc0 c1

c0

c1

shape_01
shape_02

Gnetwork and c0, c1 ∈ C

Gmarkov for c0, c1 ∈ C

Figure 13: This Figure illustrates Gnetwork and Gmarkov. c0 and c1 are two GPS
coordinates. We call edges within the circle around them ‘close edges’.
For c0, the close edges are e0c0 , e

1
c0 and e2c0 . Analogously for c1. We can

build Gmarkov by adding a layer with all eick for each GPS coordinate k,
assuming there is a currently active trip on both shapes.

35

To build Gmarkov, we create a single starting node and then add all the edges ei from
Gnetwork, that fulfill two requirements. Firstly, the edge must belong to an active
trip. For this, we use the get_active_trips_information method from the GTFS
Container. Secondly, the edge must be within a certain radius to the first GPS point
c0 ∈ C. We can add all these edges eic0 as nodes to the Gmarkov. We then connect
the starting node with each node eic0 . After that, we add all active edges that are
close to the second GPS point as nodes ejc1 and connect these with the nodes of the
previous GPS point eic0 . We repeat this for each ck ∈ C. In the end, we add an end
node and connect it to the nodes of the last GPS point.

If we assign meaningful probabilities to the edges and nodes in Gmarkov, we can find
the shortest path from the start node to the end node. This will give us edges that
are on a path that fits best to the GPS points. However, it is not apparent how to
assign meaningful probabilities to the nodes and transitions in Gmarkov. Instead, we
calculate weights Wemission and Wtransition to replace Pemission and Ptransition.

We use a bidirectional Dijkstra’s algorithm32 (see 10.2.1 in the appendix) to find the
shortest path in Gmarkov. Dijkstra’s algorithm sums up all the weights on a path and
prefers choosing edges with low weights. As a consequence, if a path has a higher
probability, its weight needs to be smaller. As Dijkstra’s algorithm is not guaranteed
to work on negative numbers, weights need to be non-negative.

4.6.2 Assigning Weights to the HMM

In the following two Sections, we are going to assign weights to Gmarkov. Each node
eick has an emission weight Wemission , each transition between nodes (eick → ejck+1)
has a transition weight Wtransition .

Generating Emission Weights

The emission weight of edge eick is dependant of the distance to the GPS point ck:

Wemission(e
i
ck
) = gcd(eick , ck)

gcd describes the great circle distance introduced in 2.2.1. The further away eick is
from ck, the less likely it is that eick is part of the most optimal path.

Generating Transition Weights

Transition weights describe the relation between two nodes.
32https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/

36

https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.algorithms.shortest_paths.weighted.bidirectional_dijkstra.html
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/

c1
c2

e2c1

e1c1

e2c2

e1c2

s_id 1

s_id 2

s_id 2
s_id 1

Figure 14: The two illustrated shapes are directed in opposite directions: The blue
shape starts on the left and goes to the right, the purple shape starts
on the right and goes to the left. This is represented by each shape’s
sequence_number (s_nr). Assuming GPS point c1 was received before
c2, we want to match to the blue shape, as we want to match to the
shape fitting to the travel direction.

If two edges eick and ejck+1 are not on the same shape, we penalize the transition with
a high weight:

Wshape
transition(e

i
ck
, ejck+1

) =

{
0 if eick and ejck+1are on the same shape
∞ else

If eick and ejck+1 are not connected to each other in Gnetwork, we penalize the transition
with a high weight. If they are connected, we prefer edges with as little path between
them as possible. To calculate the length path between eick and ejck+1 , we use a
bidirectional Dijkstra’s algorithm on Gnetwork:

Wpath
transition(e

i
ck
, ejck+1

) =

{
∞ if eick and ejck+1are not connected in Gnetwork

bi_dijkstra(Gnetwork, start(eick), end(ejck+1)) else

There are often two GTFS shapes directed in opposite directions. We had the common
problem that the user got matched to the shape going in the wrong direction (See
Figure 14). Therefore, we introduced a ‘direction penalty’. Each edge holds an
edge_sequence_number (s_nr) for that purpose (recall Section 2.1.3):

Wdirection_penalty
transition (eick , ejck+1

) =

{
0 if s_nr(eick) < s_nr(ejck+1)

extra_weight else

37

e1ck

e1ck+1

e2ck

e1ck+2

e2ck+2

shape_1

shape_2

most likely path

Figure 15: Even though e2ck and e1ck+1
as well as e1ck+1

and e1ck+2
share the same

edges, the most likely path does not cover a shape.

4.6.3 Finding the Most Likely Trip

So far, we have used the HMM to find a most likely path. This path only consists of
edges. We chose our weight functions in a way that each pair of edges share at least
one shape. However, this does not guarantee that the most likely path fits to one
shape. For example, edges eack and ebck+1

could share shape_1, but edges ebck+1
and

ecck+2
could share shape_2 (see Figure 15). For our PTV Matching, we just choose

the shape that fits to most of the chosen edges.

We now need to determine the most likely trip that fits best with the chosen shape. Us-
ing the GTFS Container dictionaries shape_id_to_first_edge_and_trip_info and
trip_id_to_TripsWithStopsAndTimes, we can find all TripsWithStopsAndTimes
objects that are on our shape. We can now select the currently active trips using the
is_trip_active method.

Next, we project the latest GPS point cl onto the shape. The projected point is called
pl. With hash_to_edge_to_trip_segments_dict, we can find the trip_segment i
that encloses pl. Once we have the trip_segment, we can look up the stops si and
si+1 at the trip_segment’s ends using trip_id_to_route_and_stop_times. This
also gives us the stops’ arrival_times and departure_times.

Using the departure_time of stop si and the arrival_time of stop si+1, we can
interpolate an approximated position ptrip_id of each currently active trip. The
ptrip_id that is closest to pl gives us the most likely trip. See Figure 16 for an
illustration.

38

pl

ptrip_1 ptrip_2

si

si+1

Figure 16: The projection of the latest GPS point pl is closer to the approximated
position ptrip_1 than to the approximated position ptrip_2. Therefore,
trip_1 is our most likely trip.

4.6.4 Avoiding Over-Matching

During the development of PublicTransitSnapper, we had the issue that users would
get matched to a PTV even if they were just next to a shape. They could be walking,
standing or sitting in a café 50 meters next to a tram stop. In order to avoid this
issue, which we will call ‘over-matching’ from now on, we introduced two functions.

are_last_n_coordinates_timewise_too_far_apart
This function takes a list of timestamped GPS points and two integers n and m.
are_last_n_coordinates_timewise_too_far_apart looks at the last n timestamps.
If any of them are m minutes or more apart, we can assume that the user is not in
a PTV, maybe they are waiting at a stop or just standing next to the shape. The
frontend only sends new GPS coordinates to the backend, if a movement of more
than 15 meters has been detected. Often, GPS is inaccurate enough that GPS points
are sent even if the user has not moved at all. If the GPS is accurate for m minutes or
more and thus not sending any coordinates, we do not match when the next request
reaches the backend. As we need to loop over the last n timestamps, the runtime of
this function is in O(n).

are_last_gps_points_close_to_each_other
This function also takes a list of timestamped GPS points L and two integers n and
m. Let R be a set containing the last n points of L.
are_last_gps_points_close_to_each_other calculates an average GPS point p:

p =

(
1

n

∑
q∈R

qlat,
1

n

∑
q∈R

qlon

)

Now, we remove the the point from R that is the furthest away from p. We do this
to soften the impact of outlier GPS points.

39

Finally, we check if every point left in R is within m meters of p. If this is true
for every point left in R, we assume that the user has not moved far enough to be
matched and we return True. As we need to loop over the last n timestamps, the
runtime of this function is in O(n). See Figure 17 to see an illustration of the problem.
Sadly, this method is not a perfect way to avoid over-matching. See Figure 18 for an
explanation.

Both functions are called directly after receiving the timestamped GPS points from
the frontend. If any of them is True, we can inform the frontend that no PTV has
been matched.

A problem arising with the use of both functions is the impact of traffic jams or
traffic lights. GPS inaccuracies lead to more GPS points collected than anticipated
by the 15 meter distance filter implemented in the frontend. A user sitting in a PTV
affected by a traffic jam or waiting in front of a traffic light for a longer time would
produce GPS points like in the left image of Figure 17. However, this problem is
hard to circumvent, as it is difficult to decide whether the user is in a PTV stuck in
a traffic jam or if they are in a café next to the road.

40

Figure 17: Examples for are_last_gps_points_close_to_each_other: Let us say
the radius of the turquoise circle is m = 35 meters. In the left image,
the function would return True, as all GPS points are within the radius.
Here, we would not try to match to a PTV. In the right image, the
function would return False, as two GPS points are not within the
radius. Thus, we would try to match to a PTV.

41

Figure 18: are_last_gps_points_close_to_each_other is not perfect: Let us
assume that there is a shape with a bus drives along the painted GPS
point sequence. In this case, the function would remove the GPS point
in the upper right corner from L to soften the impact of outliers. Then,
none of the remaining points in L would be further away than the radius
allows and the function would return True. Cases where a shape follows
an acute angle are therefore susceptible to failures.

42

4.7 Fetching New GTFS Data

GTFS data has to be updated regularly. For example, there can be construction sites
leading to detours or rail replacement transport. Updating the GTFS data manually
can be very annoying, which is why we wrote a tool that undertakes this task for the
server host.

Before starting the server, the server host can edit a ‘cities_config.yml’ YAML
file and add their desired GTFS data set, as can be seen in the listing below.
Freiburg:

generate -new -shapes: True
path -to-GTFS: GTFS/Freiburg/VAG
path -to-OSM: GTFS/Freiburg/OSM
GTFS -link: link_to_freiburg_GTFS_data.zip
OSM -link: link_to_openstreetmaps_data.osm.bz2

There is also a ‘cities_config.yml’, where the server host can choose the op-
tions ‘UPDATE_GTFS’, set an ‘UPDATE_TIME’ or an ‘UPDATE_FREQUENCY’. The tool will
then stop server and API to pull the latest GTFS and OSM files from the links
in the cities_config.yml. As most public transit agencies do not provide the
shapes we need, we use pfaedle33 to generate the shapes for us if specified by
generate-new-shapes.

pfaedle takes a GTFS data set and an OpenStreetMaps file34 and calculates the
shapes using the OpenStreetMaps data. Without pfaedle, the regions covered by
PublicTransitSnapper would be strongly diminished, considering how highly dependant
it is on the GTFS shapes. After fetching the GTFS data and potentially generating
the shapes, the server starts again.

Sadly, some agencies like the public transport agency for Hamburg (HVV35) do not
provide static links for their GTFS data, but release their new data sets under a new
link. In these cases, our GTFS fetching tool is powerless, as it would always fetch the
same, eventually outdated data.

4.8 Using Fake GPS Data to Test the Project

In order to test the PTV Matching and the functionality of the frontend, we had to
come up with a tool to facilitate handling the GPS data. Without a test tool, we
would have to sit in PTVs with a laptop for most of the developing.

Our tool mimics a device traveling along a random shape from the loaded GTFS
data set. To give a brief overview, we first generate points along the shape, then
33https://github.com/ad-freiburg/pfaedle
34https://download.geofabrik.de
35https://suche.transparenz.hamburg.de

43

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://github.com/ad-freiburg/pfaedle
https://suche.transparenz.hamburg.de/?groups=transport-und-verkehr&type=dataset&res_format=zip&q=&sort=publishing_date+desc%2Ctitle_sort+asc&esq_not_all_versions=true
https://github.com/ad-freiburg/pfaedle
https://download.geofabrik.de
https://suche.transparenz.hamburg.de/?groups=transport-und-verkehr&type=dataset&res_format=zip&q=&sort=publishing_date+desc%2Ctitle_sort+asc&esq_not_all_versions=true

‘noisify’ the GPS points. Now we add timestamps to the points so they fit to a trip
traveling along the shape. Lastly, we use our web-app in combination with Python’s
Selenium36 and the Google Chrome devtools to visualize the PTV Matching with the
faked journey.

4.8.1 Generating Noisified Points Along a Shape

For every trip in the GPS data, we know the exact shape it moves on. However, the
GPS can be quite inaccurate. So, in order to simulate a device moving along a shape,
we need to ‘noisify’ the polyline from the shape.

Firstly, we need to define an average moving speed v in m
s , a GPS signal frequency p

in 1
s and an average GPS accuracy acc in meters. We can also calculate the length

len of the shape polyline in meters.

Now, we can calculate the total time needed to travel along the polyline t:

t =
len
v

The total number of GPS signals that we need to simulate the whole trip can be
derived as follows:

numSignals = t · p

As the simulated vehicle is moving with speed v and gets a signal every 1
p seconds,

the average travelling distance between two signals can be calculated as:

s =
v

p

The next step is to generate points along the polyline. We generate these points for
every signal by going along the polyline, one average travelling distance step s at a
time.

In order to simulate the GPS inaccuracy, we use a normally distributed deviation
with µ = 0 and σ = acc for each point.

4.8.2 Annotating the GPS Points With Timestamps

In this step, we annotate the generated points along the polyline with timestamps
that fit to the trip we want to simulate. We know the departure times tk for each
stop k of the trip from the stop_times.txt. In order to estimate the time at each
signal, we can again use the trip_segments introduced in Paragraph 4.5.2 (recall
36https://selenium-python.readthedocs.io/

44

https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/

stop_1
stop_2

t1 t2

signal
tsig

trip_segment

d

len1

tsig = t1 + (t2 − t1)
d

len1

Figure 19: Example of a time stamp interpolation for a signal. We can approximate
the time at which a simulated PTV is at the signal tsig by using the
shown formula.

Figure 10). In the following, we mean the projections of stops and signals onto the
polyline when talking about stops and locations. The time frame (tk, tk+1) describes
the time period the simulated device moves along the current trip_segment. We
further denote lenk as the length of the trip_segment from stop k to stop (k + 1).
Let d be the distance from stop k to the signal sig along the polyline. The estimated
time at the signal tsig can be solved with an interpolation:

tsig = tk + (tk+1 − tk) ·
d

lenk

See Figure 19 for an illustrated example.

4.8.3 Using Selenium to Manipulate a Device’s GPS Position

In Google Chrome’s devtools, one can use the location sensor to manipulate one’s
position. These sensors are also accessible via Selenium37.

Our tool ControlChromeDevTools generates a list of faked GPS points with their
approximated timestamps and starts a Google Chrome browser controlled by Selenium.
Every n seconds, we can alter the location sensor to the next fake GPS point. In the
background, the frontend is running on localhost, so the Selenium browser can access
the web-app. Sadly, Selenium cannot control the browser’s time settings. Therefore,
we need to send the timestamped GPS points to a proxy server that starts when
running ControlChromeDevTools. The proxy forwards requests to ‘/connections’,
‘/shapes’ and ‘/chat’ to the backend without changes, but alters the timestamp for
each GPS point sent to the ‘/map-match’ endpoint. This way, the backend receives

37https://www.selenium.dev/documentation/webdriver/bidirectional/chrome_devtools/

45

https://www.selenium.dev/documentation/webdriver/bidirectional/chrome_devtools/
https://www.selenium.dev/documentation/webdriver/bidirectional/chrome_devtools/

the precalculated timestamps and not the real timestamps captured by the Selenium
browser. As the backend calculations do not depend on the server time, the answers
can be displayed on the Selenium browser’s web-app just as if the device just moved
along a GTFS shape. See Figure 20 for an illustration of the process.

Figure 20: Flow chart explaining the functionality of ControlChromeDevTools.py

46

5 User Study

Over the course of one week, we gave PublicTransitSnapper to four testers in Freiburg,
Hamburg, Munich and Zurich. We will first look at general feedback given by the
testers. Then, we list and recapitulate the individual trips taken in each city. Finally,
we will conclude the results.

5.1 General Inquiry

We asked the testers the following general questions:

• Were there any bugs?

⇒ No bugs were found

• Please rate the usability of the app on a scale from 1 to 5, where 1 is bad and 5
is good

⇒ The average usability of the app is 4.5. However, we know the testers
personally and the answer might be biased

• Were there unclear elements within the app?

⇒ No unclear elements within the app were mentioned.

• Were there matches when you were not in a PTV?

⇒ In Zurich, the tester noticed that they got matched to their bus once while
walking next to the street. Also, while standing at a stop and waiting for
the bus.

• Any other remarks?

⇒ The matching gets lost too often while halting at a stop
⇒ In Zurich, the tester noticed that the stops shown on the map were a bit

misplaced.
⇒ When the app is closed, no GPS points are gathered.
⇒ No real time information is provided.
⇒ Why is it not possible to click on a stop to see possible connections?
⇒ Show the next stops while waiting at a stop.
⇒ A smooth movement of the vehicle icon would be nice.
⇒ The app needs to much internet (100MB in two days)
⇒ In Munich, no data for S-Bahnen was available

47

⇒ In Hamburg, some stops did not show bus connections on the connections
page.

⇒ GPS can be very inaccurate

5.2 Trips

Furthermore, we asked the testers to document the following information for each
trip:

• Route name?
• Vehicle type (bus, tram, ...)?
• Date and time?
• Name of the boarding station?
• Name of the exit station?
• Was the next stop shown correctly?
• Was the matching correct, and if not, what was the problem?
• Were there wrong matches?
• Were there periods where nothing was matched?

See Tables 1, 2, 3, 4, 5. 6, 7 and 8 for the results of the individual trips.

Freiburg
Route
Name

Vehicle
Type

Time &
Date

Boarding
Station

Exit
Station

Trip 1 4 Tram 21:31h
10.10.2022 Messe Stadttheather

Trip 2 5 Tram 21:53h
10.10.2022 Stadttheather Europaplatz

Trip 3 4 Tram 21:57h
10.10.2022 Europaplatz Messe

Table 1: Information on the trips in Freiburg

48

Freiburg

Was the
next stop

shown
correctly?

Was the
matching
correct?

Were there
wrong matches?

Were there
periods where
nothing was
matched?

Trip 1 Yes

2
3 of the route
was matched

correctly

Routes 2 and 1
were matched in
the city center

At some stations

Trip 2 Yes Matching was
correct No No

Trip 3 Yes
Only after

Killianstraße,
∼ 1

2 correct

Routes 2 and 3
in the city

center
At some stations

Table 2: Remarks on the trips in Freiburg. In the inner city, up to four trams
frequent a two-way track in an every minute cycle. Apparently, they are
not coinciding with the static schedule enough for PublicTransitSnapper to
give an accurate matching. Less frequented tracks were very well matched.
The next stop was always displayed correctly. The tester observed that
PublicTransitSnapper did not match while waiting at some stations.

Hamburg
Route
Name

Vehicle
Type

Time &
Date

Boarding
Station

Exit
Station

Trip 1 62 Ferry 14:45h
15.10.2022 Finkenwerder Neumühlen

Trip 2 S3 Subway 15:18h
15.10.2022 Altona Landungsbrücken

Trip 3 S1 Subway 15:16h
17.10.2022 Othmarschen Blankenese

Trip 4 S1 Subway 15:30h
17.10.2022 Blankenese Wedel

Trip 5 S1 Subway 20:58h
17.10.2022 Wedel Blankenese

Table 3: Information on the trips in Hamburg

49

Hamburg

Was the
next stop

shown
correctly?

Was the
matching
correct?

Were there
wrong matches?

Were there
periods where
nothing was
matched?

Trip 1 Only once Only once at
a pier

Matched to
bus 250 while
going over the

Elbtunnel

Most of the
time. Very
inconsistent
GPS signal.

Trip 2 No Never

No, as there
was no GPS
signal in the

tunnel

Always

Trip 3 Mostly

Matched to
wrong S1.

Displayed end
station Wedel,
but correct des-

tination was
Blankenese

Wrong S1
matched.

One time, a
bus was

matched when
tracks close
to Osdorfer
Landstraße

At stops

Trip 4 Yes Correct No

Parts of the
tracks were
covered by a

big wall,
which lead
to a bad

GPS signal.
There, nothing
was matched

Trip 5 Yes Yes No

Some times.
GPS was very
far from the

tracks at
times.

Table 4: Remarks on the trips in Hamburg. The tester found the matching on a
ferry to be very inaccurate. Also, travelling in tunnels seemed to disable
PublicTransitSnapper, as there is no GPS signal. Trips above ground
seemed to work, although the wrong destination station was matched twice,
which effectively means that the wrong trip was matched. Even though
the area around Blankenese is highly frequented with different busses close
to the tracks, only one bus was matched incorrectly for a short time.

50

Munich
Route
Name

Vehicle
Type

Time &
Date

Boarding
Station

Exit
Station

Trip 1 192 Bus 08:39h
18.10.2022 Am Hochacker Quiddestrasse

Trip 2 U5 Subway 08:50h
18.10.2022 Quiddestrasse Stachus

Trip 3 U6 Subway 08:01h
20.10.2022 Odeonsplatz Universität

Trip 4 68 Bus 11:56h
20.10.2022 Universität Königsplatz

Trip 5 58 Bus 13:32h
20.10.2022 Königsplatz Siegestor

Trip 6 153 Bus 09:57h
21.10.2022 Universität Odeonsplatz

Table 5: Information on the trips in Munich

51

Munich

Was the
next stop

shown
correctly?

Was the
matching
correct?

Were there
wrong matches?

Were there
periods where
nothing was
matched?

Trip 1 Yes
Correct,

except first
few seconds

Matched bus 195
for the first
few seconds

No

Trip 2 No Incorrect No
No GPS signal
because of the

tunnel

Trip 3 Yes

Interestingly
correct matching,
even though there

was a tunnel

No No

Trip 4 Yes Most of the
time

Briefly matched
U6 and a bus
incorrectly

No

Trip 5 Yes Correct No No
Trip 6 Yes Correct No No

Table 6: Remarks on the trips in Munich. The tester found that trips below ground
worked half of the time. There were incorrect matchings on two trips for a
short time. PublicTransitSnapper performed very well over all.

Zurich
Route
Name

Vehicle
Type

Time &
Date

Boarding
Station

Exit
Station

Trip 1 80 Bus 14:33h
14.10.2022 ETH Hönggerberg Bhf. Oerlikon Nord

Trip 2 31 Bus 16:14h
14.10.2022 Neumarkt Letzipark

Trip 3 80 Bus 19:12h
14.10.2022 Max-Bill-Platz ETH Hönggerberg

Trip 4 89 Bus 20:52h
14.10.2022 Kappeli Bahnhof

Altstetten

Table 7: Information on the trips in Zurich

52

Zurich

Was the
next stop

shown
correctly?

Was the
matching
correct?

Were there
wrong matches?

Were there
periods where
nothing was
matched?

Trip 1 Yes Correct No

Some stops or
slowly driven

curves lead to a
non-matching

Trip 2 Yes Correct No

Some stops or
slowly driven

curves lead to a
non-matching

Trip 3 Yes Correct No
Some stops
lead to a

non-matching

Trip 4 Yes Correct No

One inter-
mediate stop

lead to a
non-matching

Table 8: Remarks on the trips in Zurich. Whenever PublicTransitSnapper matched
a PTV, it was the correct choice. The tester remarked that some stops,
intermediate stops and even curves lead to a non-matching.

53

5.3 Differences and Similarities

In this section, we are going to analyze the differences and similarities of the trip
records. The testers recorded 18 trips in total. Out of those, there were eight bus,
three tram and six subway rides, as well as one ferry ride.

PublicTransitSnapper failed to match to most subways, as there was no GPS signal in
the tunnels. Apparently, the location data provided by mobile data does not provide
enough information. Interestingly, the U6 in Munich was matched correctly even
though the tester was in a tunnel. We cannot explain why.

Another interesting trip was the ferry ride in Hamburg. Sadly, we cannot recreate the
GPS path of the testers. They mentioned that the GPS signal on the river Elbe was
inconsistently spiking a lot. Thus, it is likely that the anti-over-matching algorithm
denied a matching attempt (recall Figure 17).

Overall, in Freiburg, Hamburg and Zurich, the testers mentioned that some stops and
in some cases even intermediate stops and curves lead to a non-matching of a trip.
Surprisingly, this did not seem to be an issue in Munich, even after interrogating the
tester on this subject again. Again, we cannot give a definitive explanation on this
open question, as not enough testing with more than one tester per city has been
done.

With the certainty of a sample size of eight, we can say that bus matches were
very accurate. Only on two out of eight bus rides did the testers record a wrong
matching.

Trams and the subways that were not limited by poor GPS reception scored less well.
There were wrong matches whenever there was high traffic on or next to the tracks.
In Hamburg, even though the right name of the PTV was shown, the destination
station was incorrect, which lead to confusion. Testing with real time data would be
needed for further clarification on the issue, which is a project for the future when
such data exists publicly.

5.4 Conclusion of the User Study

A sample size of 18 is not enough to give significant results. Further testing is required
for all kinds of vehicle types, especially ferries. Still, we can see some trends.

We were surprised that busses scored a lot better than railed vehicles, even though
some of the bus shapes especially in Munich were very highly frequented by other
routes.

54

About the general feedback; Testers complained that the matching gets lost too often
while halting at a stop. This has to do with with the anti-over-matching too. We
would need more time to balance the anti-over-matching functions.

Apparently, the stops shown on the map were displaced in Zurich. This is an issue
with the Zurich GTFS data set, which is a subset of the GTFS data set for the whole
Switzerland. It is possible to write software that recognizes and corrects errors in
GTFS data sets. This is beyond the scope for this thesis however.

The same applies to the fact that ‘S-Bahnen’ were not matchable in Munich. The
agency MVV does not publicly provide the data, an issue which we cannot circum-
vent.

The fact that no GPS points are gathered while the app is closed or even when the
phone’s screen is off is on purpose. We did not want to drain battery unnecessarily.

We cannot do much about the inaccuracy of GPS data, which can be very annoying
when dealing with PTVs in tunnels or on water bodies for example.

We assume that the fact that some subway stops in Hamburg did not show bus
connections on the connections page has to do with the GTFS data set too.

We will write about requested features by the testers and the internet usage issue in
the later chapter ‘Further Investigation’.

55

6 GTFS in Germany

In this chapter, we will look at the availability of publicly available data on public
transit in Germany. In particular, we analyze the availability of GTFS, both static and
real time versions. Furthermore, we will give insight into other prominent standards
in Germany.

Before the next sections, we need to introduce required German vocabulary: The
German federal government is called ‘Bund’. The Bund is subdivided into 16 federal
states called ‘Bundesländer’ (singular Bundesland). Each Bundesland is subdivided
into several communes.

6.1 Availability of GTFS in Germany

As of 2021, there are over 100 public transit agencies in Germany (see Figure 21). They
all use different systems to provide static and real time data on their PTVs. Every
Bundesland in Germany has its own umbrella organisation. For Bundesländer like
Hamburg, Bremen or Berlin and Brandenburg, there is one centralised agency (HVV1,
VBN2 and VBB3 respectively). For other Bundesländer like Baden-Württemberg
and Bayern, the umbrella organisations (bwegt4 and Bahnland Bayern5 respectively)
have to comprise many small agencies. See Figure 22 for an illustration.

6.1.1 DELFI

Fortunately, Germany is on the right track to having centralised publicly available
PTV data. The ‘Verein zur Förderung einer Durchgängigen Elektronischen Fahrgastin-
formation e.V.’ (DELFI)6, meaning ‘association for continuous electronic schedule
information support’, became a registered association in 2016. The original version of
DELFI was initiated in 1994 by the German Federal Ministry of Transport, Building
and Urban Development. As local public transit is federal in Germany, it is DELFI’s

1https://www.hvv.de/
2https://www.vbn.de/
3https://www.vbb.de/
4https://www.bwegt.de/
5https://bahnland-bayern.de/
6https://www.delfi.de/

57

https://www.hvv.de/de
https://www.vbn.de/
https://www.vbb.de/
https://www.bwegt.de/
https://bahnland-bayern.de/
https://www.delfi.de/
https://www.delfi.de/
https://www.hvv.de/
https://www.vbn.de/
https://www.vbb.de/
https://www.bwegt.de/
https://bahnland-bayern.de/
https://www.delfi.de/

Figure 21: This map shows public transit agencies in Germany 2021 [10].

58

Figure 22: This map shows the partner agencies of Bayern Fahrplan, the umbrella
organisation for Bayern. We can see a list of the partner agencies on the
left. We can see that some regions of Bavaria are not covered by Bayern
Fahrplan [11].

59

main task to connect the individual local public transport data sets and to enable
the planning of trips across agency and Bundesland borders.

In Germany, local public transit can be subdivided into the ‘Schienenpersonen-
nahverkehr’ (SPNV) and the ‘öffentlichen Straßenpersonenverkehr’ (ÖSPV). SPNV
stands for ‘regional rail transport’ and ÖSPV translates to ‘public road transport’.
SPNV with up to 50 kilometers range or SPNV with trip duration under an hour is
up to the Bundesländer. ÖSPV comprises busses, subways and trams and is up to
communes within the Bundesländer [12].

DELFI’s members are declared by the Bund and the Bundesländer7. There can be
up to 16 members8, one for each Bundesland. Currently, there are 15 members, as
the VBB covers two Bundesländer Berlin and Brandenburg. For this reason, the
VBB representative can vote twice, once for each Bundesland they are representing.
The DELFI association consists of the general meeting comprising all members and
the steering committee consisting of one management director and two deputies. See
Figure 23 for DELFI’s organisation chart.

DELFI is a non-profit association. They are funded by membership fees and money
for research projects from the Bund.

As there are so many agencies in Germany, there needs to be a way to assign unique
route_ids, trip_ids, shape_ids, service_ids and stop_ids overarching all agencies.
For the stop_ids, DELFI has helped building the central stop register ‘Zentrales
Haltestellenverzeichnis’ ZHS9 [14]. Within the ZHS, every stop in Germany has a
unique ID. As of now, there are over 274,000 registered stops. Each stop serves as a
parent station, covering its sub-stations with their individual IDs, exact locations,
names and organisations. Shapes and services are also easy to distinguish, so we can
generate unique shape_ids and service_ids. For route_ids, DELFI managed to
provide over 26,300 unique routes in their data set. The trip_id can be derived from
the route_id by adding characters to a trips corresponding route_id.

Unfortunately, not all routes in Germany are publicly available yet. For example, the
‘S-Bahn’ (parts of the subway) in Munich does not appear in any GTFS data set we
could find. On their website, they proclaim that they do not have permission to make
their GTFS data set publicly available for subway, tram and metro busses [15].

The static GTFS data set10 provided by DELFI is being updated on a daily basis.
It is able to do routing across Bundesländer borders. However, the shapes.txt only
consist of direct connections from stop to stop for each trip and is thus not eligible
for PublicTransitSnapper or PTV Matching in general.

7https://www.delfi.de/media/satzung_delfi_verein_160906_1.pdf
8https://www.delfi.de/de/strategie-technik/mitglieder/
9https://zhv.wvigmbh.de/

10https://www.opendata-oepnv.de/ht/en/organisation/delfi/start

60

https://zhv.wvigmbh.de/
https://www.opendata-oepnv.de/ht/en/organisation/delfi/start?tx_vrrkit_view%5Bdataset_name%5D=deutschlandweite-sollfahrplandaten-gtfs&tx_vrrkit_view%5Bdataset_formats%5D%5B0%5D=ZIP&tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View
https://www.delfi.de/media/satzung_delfi_verein_160906_1.pdf
https://www.delfi.de/de/strategie-technik/mitglieder/
https://zhv.wvigmbh.de/
https://www.opendata-oepnv.de/ht/en/organisation/delfi/start?tx_vrrkit_view%5Bdataset_name%5D=deutschlandweite-sollfahrplandaten-gtfs&tx_vrrkit_view%5Bdataset_formats%5D%5B0%5D=ZIP&tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View

Figure 23: This organigram shows the structure of the DELFI e.V. [13].

61

In 2020, DELFI’s general meeting agreed on their new ten year plan ‘Strategie
DELFI-2030’11. They decided to maintain and improve the current static schedule
data sets like GTFS. Furthermore, DELFI planned to launch a project to make
real time data publicly available. The project is called DEEZ (‘Deutschlandweite
Echtzeitdaten’), meaning ‘real time data throughout Germany’. More resolutions
discuss a generalised ticketing service, connectivity with international partners and a
more thorough quality assurance.

6.1.2 DEEZ - Real Time Data Throughout Germany

Real time data throughout Germany is a very desirable progress. A goal could be to
provide real time data for the whole country like the ‘open data platform mobility
Switzerland’12 does for Switzerland.

Even though some local public transport agencies provide real time data in a different
format, there are no official GTFS-RT feeds from German public transit agencies
available. There are some unofficial GitHub projects(13,14) providing GTFS-RT for
certain cities by translating other formats. The first step to an official generalised
GTFS-RT feed is a generalised real time data stream. This is the main task of DEEZ.
It is their plan to create two ‘Regio-Cluster’ (see Figure 24), one for northern Germany,
one for southern Germany. Each Bundesland can then send their accumulated real
time feed to their corresponding ‘Regio-Cluster’. It is each Bundesland’s task to
provide accurate and quality tested real time data.

DEEZ will not only include information on PTVs like delay and crowdedness, but
also on the stations. For example, a broken escalator would be listed in a real time
request about a certain station.

The DEEZ project is scheduled to be finished towards the end of 2022. If everything
went according to plan, DEEZ are in a trial operation and maybe already in normal
operation at this point in time (October 2022).

The northern cluster will use the data format DIVA from the Mentz company15,
whereas the southern cluster will use a HaCon16 format called HAFAS. This means
that an official GTFS-RT stream is likely not a priority for DELFI.

While the Bundesländer provide real time data on local public transit (SPNV and
ÖSPV), there is also an API for long-distance public transport maintained by the
Deutsche Bahn17.
11https://www.delfi.de/de/strategie-technik/aufgaben/
12https://opentransportdata.swiss/en/cookbook/gtfs-rt/
13https://github.com/derhuerst/berlin-gtfs-rt-server
14https://github.com/derhuerst/hamburg-gtfs-rt-server
15https://www.mentz.net/en/solutions/
16https://www.hacon.de/en/portfolio/information-ticketing/
17https://data.deutschebahn.com/dataset/api-fahrplan.html

62

https://www.delfi.de/de/strategie-technik/aufgaben/
https://www.delfi.de/de/strategie-technik/aufgaben/
https://opentransportdata.swiss/en/cookbook/gtfs-rt/
https://opentransportdata.swiss/en/cookbook/gtfs-rt/
https://www.mentz.net/en/solutions/
https://www.hacon.de/en/portfolio/information-ticketing/
https://www.delfi.de/de/strategie-technik/aufgaben/
https://opentransportdata.swiss/en/cookbook/gtfs-rt/
https://github.com/derhuerst/berlin-gtfs-rt-server
https://github.com/derhuerst/hamburg-gtfs-rt-server
https://www.mentz.net/en/solutions/
https://www.hacon.de/en/portfolio/information-ticketing/
https://data.deutschebahn.com/dataset/api-fahrplan.html

Figure 24: This map shows the two ‘Regio-Cluster’s bundling their Länder’s real
time feeds. The arrows indicate the state of the connections. Red arrows
are planned connections, black arrows indicate connections that are
either being tested or that are already active. This graphic was created
on the 15.05.2021. As of now (October 2022), the DEEZ project is likely
more advanced. Source: [16]

63

6.2 Prominent German Industrial Standards

In Germany, many public transport agencies use software by certain companies to
manage their PTVs, fares and more. Often consulted companies are HaCon, Mentz,
HBT and IVU Berlin. In the following, we are briefly giving an overview on the
most common software products HAFAS, developed by HaCon, and DIVA, created
by Mentz.

6.2.1 HAFAS

HAFAS (‘HaCon Fahrplan-Auskunfts-System’) is an abbreviation for ‘schedule in-
formation system by HaCon’. HaCon is a subsidiary of the Siemens AG. HAFAS is
a widely used industrial standard. Companies like the Deutsche Bahn (DB)18, the
Österreichische Bundesbahnen (ÖBB)19, the Schweizerische Bundesbahnen (SBB)20

and more important public transit agencies from more than 150 regions in 25 countries
[17] use HAFAS. For the DB, HAFAS has been industry standard since the beginning
of the 1990s on the occasion of DB’s ‘Kurs 90’ project [18].

Today, HAFAS is capable of providing scheduling information with geography data like
shapes, real time data, ticketing and fare information. For exchanging data between
HAFAS installations, HaCon developed the HAFAS RohDatenFormat (HRDF)21. It
is very hard to read in contrast to the GTFS CSV files.

6.2.2 DIVA

DIVA (‘Dialoggesteuertes Verkehrsmanagement- und Auskunftssystem’) is short for
‘traffic management and information system steered by dialogue’. It is developed by
the Mentz company.

DIVA was first released in 1979. Since then, the Mentz company has constantly
developed new features and improvements. Today, DIVA is a complete management
system for public transport agencies. With DIVA, agencies can create and optimize
timetables and schedule PTVs, manage their employees using a duty scheduler and
monitor their PTVs live. They even provide a service to schedule charging for electric
busses. DIVA also comes with a vehicle monitoring app called ‘AVM Light’ that can
be used by displays in PTVs or at stations. AVM Light can parse real time data
feeds like GTFS-RT and update the information displayed accordingly.

18https://bahn.hafas.de/
19https://oebb-live.hafas.de/
20https://opentransportdata.swiss/en/cookbook/hafas-rohdaten-format-hrdf/
21https://opentransportdata.swiss/wp-content/uploads/2016/10/hrdf.pdf

64

bahn.hafas.de
https://opentransportdata.swiss/en/cookbook/hafas-rohdaten-format-hrdf/
https://opentransportdata.swiss/wp-content/uploads/2016/10/hrdf.pdf
https://bahn.hafas.de/
https://oebb-live.hafas.de/
https://opentransportdata.swiss/en/cookbook/hafas-rohdaten-format-hrdf/
https://opentransportdata.swiss/wp-content/uploads/2016/10/hrdf.pdf

6.3 Concluding GTFS in Germany

As of now, public transport in Germany is still quite obscure, but the situation is
improving. The Bund is cooperating with the Bundesländer to bundle static data sets
and live feeds from local public transport agencies to make them publicly available.
The two companies HaCon and Mentz share this task in a ‘2-cluster-system’. DELFI
already provides an unfinished static GTFS data set which they want to improve.
Providing a generalised GTFS-RT feed is likely not a priority.

65

7 Further Investigation

In this chapter, we discuss possible extensions of PublicTransitSnapper.

7.1 Improving the Frontend

7.1.1 Showing Real Time Updates

Even though PublicTransitSnapper can support a GTFS-RT stream if provided by
the agency and use the data to calculate a more accurate PTV Matching, we do not
show the user delays or other streamed events in the app. For example, we could show
the delay of the vehicle on the front page and on the map in a small box next to the
vehicle icon. On the connections page, we could annotate the individual connections
with a red ‘+ n minutes’ label. We assume that an implementation would take less
than a week.

7.1.2 Showing Connection Issues

Currently, the only indicator to see whether the frontend is properly linked to the
backend is by trying to send a chat message. If it appears, the frontend and the
backend are linked. Implementing good looking messages for successful connections
and connection errors while covering all edge cases would probably take up to one
week.

7.1.3 Offline Maps

While the communication with the backend does not use a lot of mobile data,
downloading the map can cost a lot of cellular data. As SfMaps, the Flutter package
we used for the map, does not provide built-in offline maps, we would have to create
an offline maps feature. This should take less than two weeks.

67

https://help.syncfusion.com/flutter/maps/overview

7.1.4 Stop Features

The user study testers requested features where the user could press on a stop
on the map, which would show the connections at the stop. This would be very
easy to implement, as most necessary functions are already in use. We assume an
implementation would take two to three days.

Another requested feature is that if a user is not matched to a vehicle, the connections
page could show the connections of the geographically closest stop. The implementa-
tion would probably also be relatively easy, although there are some corner cases to
address. Firstly, we would set a limit for a maximum distance allowed to the closest
stop. Also, there can be multiple stops close to each other. Here, we could also use
the average position of the last n stops, as we did for the anti-over-matching methods.
We assume that an implementation would not take more than five days.

7.2 GTFS Frequencies

Some public transit agencies provide the optional frequencies.txt file1 in their GTFS
data set. Using this file, agencies can reduce the length of their stop_times.txt file by
specifying a time between departures from the same stop in the frequencies.txt file.

PublicTransitSnapper does not support GTFS data sets relying on frequencies.txt.
We assume that an implementation would take about one to two weeks.

7.3 City-Specific Information

PublicTransitSnapper could be optimized so that it works very well for one particular
city or GTFS data set. For example, we could tweak the anti-over-matching functions
(see section 4.6.4) in a way that we would not over-match in Freiburg. This might
decrease the accuracy of the functions for other GTFS data sets though. Furthermore,
GTFS data sets can have optional files like transfers.txt, fare_rules.txt and more files
that provide additional information that could be displayed in the app.

We assume that applications like Citymapper2 (recall section 3.1.2) tweak their
algorithms so they fit very well to their supported individual cities.

Focusing on optimizing one data set could take months, maybe years to implement,
considering the amount of testing that has to be performed and depending on the
size of the GTFS data set. For this issue, we would again have to code and test from
aboard the PTVs, which is expensive and time consuming.

1https://developers.google.com/transit/gtfs/reference#frequenciestxt
2https://citymapper.com/

68

https://citymapper.com/
https://developers.google.com/transit/gtfs/reference##frequenciestxt
https://citymapper.com/

7.4 Generating Real Time Data

We could use the PTV Matching to generate an estimated delay or earliness based
on devices matched to the same PTV.

The basic idea is rather simple. Take all devices matched to the same trip. Based on
an average location of the devices, we can interpolate the position of the PTV along
its shape and thus calculate the position in time relative to the scheduled time.

Collecting every device matched to the same trip is the same process we used for the
chat (see section 4.4.4). We assume that calculating the average location and the
interpolated position in time is simple. However, testing and balancing this feature
sounds like a very hard task to accomplish for two people.

As future investigation, we propose an extension of our fake GPS data tool (recall
section 4.8). The extended version would have to simulate n devices and have the
option to be given a delay/earliness. We assume this would take about a week.

However, as R. Wu’s evaluation [2] and the user study showed, the PTV Matching can
often be wrong in more frequented areas. This issue could also have a workaround that
is even harder to test as a team of only two developers. We can be quite confident in
our matching for trips that start in a less frequented area area. PublicTransitSnapper
users that start their journey in these spots could be given a high ‘certainty’ value
c. Users that travel together for a longer time could be linked in a data structure
D, so the users can pass their certainty to other users. The data structure D could
combine currently active trips with their scheduled position and their linked user
devices positions with their interpolated position in time.

Implementing and polishing this idea could take months of development and testing.
Also, we would probably need more advanced tools and/or more people for testing.

7.5 The Debatable Use of Python

As elucidated in section 4.2.1, we used Python for most of our backend. R. Wu’s
evaluation shows, that the PTV Matching requests take less than 0.5 seconds on
the tested servers [2]. This is fast enough, as PTVs usually need longer than 0.5
seconds to travel 15 meters (30m

s ≈ 108km
h). The 15 meters relate to the ‘distance

filter’ explained in section 4.4.1. Still, we assume that this time could be improved by
implementing the whole backend in C++ . Furthermore, we strongly assume that the
needed memory could also be diminished, as we would have to manage the memory
manually instead of having to use Python’s garbage collector.

69

7.6 Testing PublicTransitSnapper on Long Distance Trips

As the estimate in the section above shows, it is very well possible that long distance
trips like a train ride with an ICE (‘inter city express’) could overcharge the backend
server by sending too many requests. We have not tested this issue. Testing and
potentially fixing this issue would probably not take more than a week.

70

8 Conclusion

We built an application called PublicTransitSnapper that is able to match a users
timestamped location coordinates to a PTV based on GTFS data in many situations.
For that, we created a frontend for the user and connected it to a backend.

The frontend is a Flutter app and can thus be run as a web-app or as a mobile phone
app. The app shows the user if they are matched to a vehicle. If so, it provides
information on the current trip like the destination station and the next stop. Possible
transfer possibilities can be displayed too. Furthermore, it is possible to chat with
users that have been matched to the same vehicle.

The backend is capable of calculating a PTV Matching. We used a HMM based
approach in combination with bidirectional Dijkstra’s algorithm to compute the most
likely path through the HMM. The HMM contains only edges from active PTVs.
After calculating the most likely path through the HMM, we just need to find PTVs
that are close to sent GPS points. In order to solve this problem, we estimated the
positions of PTVs using the stop times from the GTFS files. As for data structures,
we used STRtrees and directed graphs in combination with dictionaries to achieve
fast run times. To avoid over-matching, we introduced functions to prevent matching
whenever the GPS points are too close to each other or if the time in between sent
GPS points is too long.

Furthermore, we built a helpful tool to simplify the management of GTFS data. A
server running the backend can automatically fetch up-to-date GTFS files from the
provider. Another tool spares testers and developers to travel in PTVs. We used a
combination of Python’s Selenium, Flutters ability to build web-apps and noisified
GPS points to simulate a trip along a GTFS shape.

The user study has revealed gaps in the functionality of the PublicTransitSnapper.
While bus matchings seem to have a high chance of success, subway trips still have
issues. A common cause of failure are tunnels or spots with poor GPS connection in
general. Many problems require more testing, like balancing anti-over-matching or
adjusting the HMM’s weight functions.

Our PTV Matching could be more accurate with real time data. While Public-
TransitSnapper supports GTFS-RT streams, there are no official usable GTFS-RT
streams available in Germany. This could change in the future however, as DELFI,
the German ‘association for continuous electronic schedule information support’ is
planning to improve the amount of publicly available data on PTVs. They plan

71

to bundle the real time data streams of regional public transport associations in a
project called DEEZ, meaning ‘real time data throughout Germany’. We hope that
this will lead to a publicly available GTFS-RT stream in the future.

72

9 Acknowledgments

First and foremost, I would like to thank Dr. Patrick Brosi. As my adviser, you
helped me with suggestions, server troubles, knowledge on the behavior of public
transit vehicles and stories. I would also like to thank Prof. Dr. Hannah Bast for
letting Robin and me work together on this project. Many thanks to my parents
Tat and Tom, as well as my grandma Traudl for sponsoring my studies. Thanks to
everyone who participated in the user study, in particular Tat, Tom, Dome and Robin.
Thank you Julian and Felix for letting me use your server for user study purposes
and helping me in the middle of the night. To Tat, Mario, Dome, and Robin, many
thanks for proofreading, you have improved this thesis by a lot. Lastly, thank you
Robin for working with me on this odyssey of a project.

73

10 Appendix

10.1 Data Structures

Every domain specific data structure mentioned in this thesis will be specified here.

10.1.1 STRtrees

For the PTV Matching implementation, we used shapely’s STRtree1 for quick access
to spatial data like edges and GPS coordinates. An R-tree is a tree data structure
used for storing spatial data indexes in an efficient manner. R-trees are very useful
for spatial data queries2. They store objects in leaf bounding boxes. The leaves are
again packed into bounding boxes. R-trees are especially fast on intersection queries
and nearest neighbor queries, which we commonly use for the PTV Matching. ‘STR’
stands for ‘Sort-Tile-Recursive’, which is a simple and efficient algorithm for the
packing of the bounding boxes [19].

See Figure 25 for an example R-tree.

10.2 Algorithms

10.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm [20] is a greedy dynamic algorithm that computes the lengths of
the shortest paths from start node s to every other node in a weighted graph G. G’s
weights cannot be negative.

The algorithm maintains a priority queue Q of nodes that have not been processed
yet, and a set S of nodes that we already know the minimal distance to. For every
node n ∈ G, the algorithm keeps track of the approximated shortest path length d(n).
Initially, d(n) = ∞ for all n ̸= s (d(s) = 0). Every iteration, Dijkstra’s algorithm
picks the first element u off priority queue Q, which is initialized with starting node
s. We can now add u to S. For every neighbor v ∈ adj(u) \ S of u, we can update

1https://shapely.readthedocs.io/en/stable/manual.html
2https://www.geeksforgeeks.org/introduction-to-r-tree/

75

https://shapely.readthedocs.io/en/stable/manual.html
https://shapely.readthedocs.io/en/stable/manual.html
https://www.geeksforgeeks.org/introduction-to-r-tree/

Figure 25: Example of an R-tree. The solid boxes represent actual spatial data.
The tree below shows how the boxes are interlinked within the data
structure.

76

the weights d(v) = min(d(u) + w(u → v), d(v)). If the new weight of v has become
smaller, we can add v to Q.

We can visualize the algorithm as pseudo-code in Listing 10.1.
while Q is not empty:

u = Q.pop()
S.add(u)
for v in adj(u):

if v not in S:
old_weight = d[v]
d[v] = min(d[u] + w(u, v), old_weight)
if d[v] < old_weight:

Q.add(v, priority=d[v])

Listing 10.1: Pseudo-Code Dijkstra’s Algorithm

Dijkstra’s algorithm computes the lengths of the shortest paths from start node s to
every other node in a weighted graph G. However, if we are just interested in the
length of the shortest path between start node s to end node e (s, t ∈ G), we can
speed up the calculation by using a bidirectional Dijkstra.

The bidirectional Dijkstra approach can save many iterations over the basic Dijkstra’s
algorithm3. If every t ∈ G has an average outdegree m, and the shortest path from
s to e has length n, we can expect mn iterations when using the basic Dijkstra’s
algorithm. If we run two alternating searches, one starting at s, the other starting at
e, we can stop when one node k ∈ G has been reached by both searches. If k is in
the middle of s and e, we can expect 2m

n
2 visited nodes4.

10.3 GTFS Example

See Listings 10.3.1, 10.3.2 and 10.3.3 for a GTFS example.

3www.youtube.com/watch?v=1oVuQsxkhY0
4www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-dijkstra.html

77

www.youtube.com/watch?v=1oVuQsxkhY0
www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-dijkstra.html

G
T

F
S

E
xa

m
pl

e:
P
ag

e
1

ro
ut

es
.t

xt
ro

u
te

_
id

,
ro

ut
e_

sh
or

t_
na

m
e

,
ro

ut
e_

lo
ng

_
na

m
e

,
ro

u
te

_
ty

p
e

,
ro

u
te

_
co

lo
r

,
ro

u
te

_
te

x
t_

co
lo

r
ro

u
te

01
,

1
,

B
er

li
n

−
H

am
bu

rg
,

2
,

A
9A

9A
9

,
FF

FF
FF

ro
u
te

02
,

N
66

,
C

en
tr

al
S

ta
ti

on
−

A
ir

p
or

t
,

3
,

5D
B

B
63

,
FF

FF
FF

tr
ip

s.
tx

t
ca

le
nd

ar
_

da
te

s.
tx

t
tr

ip
_

id
,

ro
u
te

_
id

,
se

rv
ic

e_
id

,
sh

ap
e_

id
se

rv
ic

e_
id

,
d
at

e
,

ex
ce

p
ti

on
_

ty
p
e

ro
u
te

01
_

tr
ip

01
,

ro
u
te

01
,

se
rv

ic
e0

1
,

sh
p_

01
se

rv
ic

e0
3

,
20

22
06

05
,

1
ro

u
te

01
_

tr
ip

02
,

ro
u
te

01
,

se
rv

ic
e0

1
,

sh
p_

02
se

rv
ic

e0
3

,
20

22
06

12
,

1
ro

u
te

01
_

tr
ip

03
,

ro
u
te

01
,

se
rv

ic
e0

2
,

sh
p_

03
se

rv
ic

e0
3

,
20

22
06

19
,

1
ro

u
te

02
_

tr
ip

01
,

ro
u
te

02
,

se
rv

ic
e0

3
,

sh
p_

04
se

rv
ic

e0
3

,
20

22
06

26
,

2
ro

u
te

02
_

tr
ip

02
,

ro
u
te

02
,

se
rv

ic
e0

3
,

sh
p_

05

st
op

s.
tx

t
st

op
_

id
,

st
op

_
na

m
e

,
st

op
_

la
t

,
st

op
_

lo
n

st
op

01
,

A
ir

p
or

t
,

48
.0

13
39

18
11

8
,

7.
83

39
65

16
53

75
8

st
op

02
,

U
n

iv
er

si
ty

,
48

.0
13

39
18

11
71

81
3

,
7.

83
39

65
16

53
75

64
4

st
op

03
,

S
ch

oo
l
,

48
.0

13
39

18
11

70
81

5
,

7.
83

39
65

16
53

48
67

st
op

04
,

B
ak

er
y

,
48

.0
13

39
18

11
78

43
8

,
7.

83
39

65
16

53
45

8

78

G
T

F
S

E
xa

m
pl

e:
P
ag

e
2

st
op

_
ti

m
es

.t
xt

tr
ip

_
id

,
st

op
_

id
,

ar
ri

v
al

_
ti

m
e

,
d
ep

ar
tu

re
_

ti
m

e
,

st
op

_
se

qu
en

ce
ro

u
te

01
_

tr
ip

01
,

st
op

01
,

0
7
:3

8
:0

0
,

0
7
:3

8
:0

0
,

0
ro

u
te

01
_

tr
ip

01
,

st
op

02
,

0
7
:4

5
:0

0
,

0
7
:5

0
:0

0
,

1
ro

u
te

01
_

tr
ip

01
,

st
op

01
,

0
8
:0

1
:0

0
,

0
8
:0

5
:0

0
,

2
ro

u
te

01
_

tr
ip

02
,

st
op

01
,

1
9
:3

8
:0

0
,

1
9
:3

8
:0

0
,

0
ro

u
te

01
_

tr
ip

02
,

st
op

02
,

1
9
:4

5
:0

0
,

1
9
:5

0
:0

0
,

1
ro

u
te

01
_

tr
ip

02
,

st
op

01
,

2
0
:0

1
:0

0
,

2
0
:0

5
:0

0
,

2
ro

u
te

01
_

tr
ip

03
,

st
op

01
,

0
7
:3

8
:0

0
,

0
7
:3

8
:0

0
,

0
ro

u
te

01
_

tr
ip

03
,

st
op

02
,

0
7
:4

5
:0

0
,

0
7
:5

0
:0

0
,

1
ro

u
te

02
_

tr
ip

01
,

st
op

03
,

0
8
:1

2
:0

0
,

0
8
:1

2
:0

0
,

0
ro

u
te

02
_

tr
ip

01
,

st
op

04
,

0
8
:3

8
:0

0
,

0
8
:3

8
:0

0
,

1
ro

u
te

02
_

tr
ip

02
,

st
op

03
,

1
6
:1

2
:0

0
,

1
6
:1

2
:0

0
,

0
ro

u
te

02
_

tr
ip

02
,

st
op

04
,

1
6
:3

8
:0

0
,

1
6
:3

8
:0

0
,

1

ca
le

nd
ar

.t
xt

se
rv

ic
e_

id
,

m
on

da
y

,
tu

es
d
ay

,
w

ed
ne

sd
ay

,
th

u
rs

d
ay

,
fr

id
a
y

,
sa

tu
rd

ay
,

su
nd

ay
,

st
ar

t_
d
at

e
,

en
d_

da
te

se
rv

ic
e0

1
,

1
,

1
,

1
,

1
,

1
,

1
,

0
,

20
22

01
01

,
20

22
12

31
se

rv
ic

e0
2

,
1

,
1

,
1

,
1

,
1

,
1

,
0

,
20

22
01

01
,

20
22

12
31

se
rv

ic
e0

3
,

0
,

0
,

0
,

0
,

0
,

0
,

1
,

20
22

01
01

,
20

22
12

31

79

G
T

F
S

E
xa

m
pl

e:
P
ag

e
3

sh
ap

es
.t

xt
sh

ap
e_

id
,

sh
ap

e_
p
t_

la
t

,
sh

ap
e_

pt
_

lo
n

,
sh

ap
e_

p
t_

se
qu

en
ce

sh
p_

01
,

48
.0

13
39

18
11

7
,

7.
83

39
65

16
53

75
8

,
0

sh
p_

01
,

48
.0

13
39

18
11

71
81

4
,

7.
83

39
65

16
53

75
64

5
,

1
sh

p_
01

,
48

.0
13

39
18

11
71

,
7.

83
39

65
16

53
76

,
2

sh
p_

01
,

48
.0

13
39

18
11

75
,

7.
83

39
65

16
53

76
78

,
3

sh
p_

02
,

48
.0

13
39

18
11

71
81

4
,

7.
83

39
65

16
53

75
64

5
,

0
sh

p_
02

,
48

.0
13

39
18

11
71

,
7.

83
39

65
16

53
76

,
1

sh
p_

02
,

48
.0

13
39

18
11

75
,

7.
83

39
65

16
53

76
78

,
2

sh
p_

02
,

48
.0

13
39

18
11

7
,

7.
83

39
65

16
53

75
8

,
3

sh
p_

03
,

48
.0

13
39

18
11

7
,

7.
83

39
65

16
53

75
8

,
0

sh
p_

03
,

48
.0

13
39

18
11

71
81

4
,

7.
83

39
65

16
53

75
64

5
,

1
sh

p_
04

,
48

.0
13

39
18

11
70

81
5

,
7.

83
39

65
16

53
48

68
,

0
sh

p_
04

,
48

.0
13

39
18

11
76

22
8

,
7.

83
39

65
16

52
34

58
,

1
sh

p_
04

,
48

.0
13

39
18

11
78

43
8

,
7.

83
39

65
16

53
45

8
,

2
sh

p_
05

,
48

.0
13

39
18

11
78

43
8

,
7.

83
39

65
16

53
45

8
,

0
sh

p_
05

,
48

.0
13

39
18

11
76

22
8

,
7.

83
39

65
16

52
34

58
,

1
sh

p_
05

,
48

.0
13

39
18

11
70

81
5

,
7.

83
39

65
16

53
48

68
,

2

80

Bibliography

[1] T. T. Avichal Garg, Product Manager, “Public Transit via Google,” Google
Official Blog, p. 1, 2005.

[2] R. Wu, “PublicTransitSnapper: Dynamic Map-Matching to Public Transit Vehi-
cles,” Bachelor’s Thesis, Albert-Ludwigs-Universität Freiburg, 2022.

[3] Google, “Commute better with Pigeon, the crowdsourced transit app.” url:
blog.google/technology/area-120/pigeon-transit-app-new-cities/, Nov 5, 2019.

[4] Citymapper, “The Ultimate Technology for Mobility in Cities.” url: citymap-
per.com/company.

[5] P. Newson and J. Krumm, “Hidden Markov Map Matching through Noise
and Sparseness,” in Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS ’09, (New York,
NY, USA), p. 336–343, Association for Computing Machinery, 2009.

[6] G. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE, vol. 61, no. 3,
pp. 268–278, 1973.

[7] H. Koller, P. Widhalm, M. Dragaschnig, and A. Graser, “Fast Hidden Markov
Model Map-Matching for Sparse and Noisy Trajectories,” in 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, pp. 2557–2561,
2015.

[8] S. Kaufmann, “Opening Public Transit Data in Germany.” 2014.

[9] shapely, “Shapely GitHub: README.rst.” url:
github.com/shapely/shapely/blob/main/README.rst, visited on: 30.09.2022.

[10] M. Dörrbecker (Chumwa), “Verkehrs- und Tarifverbünde in Deutsch-
land.” url: https://de.wikipedia.org/wiki/Liste_deutscher_Tarif-_
und_Verkehrsverb%C3%BCnde#/media/Datei:Karte_der_Verkehrsverb%C3%
BCnde_und_Tarifverb%C3%BCnde_in_Deutschland.png, January 2021.

[11] bahnland-bayern, “VERBÜNDE.” url: https://bahnland-bayern.de/de/
tickets, visited on 14.10.2022.

81

https://googleblog.blogspot.com/2005/12/public-transit-via-google.html
https://googleblog.blogspot.com/2005/12/public-transit-via-google.html
https://www.blog.google/technology/area-120/pigeon-transit-app-new-cities/
https://citymapper.com/company
https://citymapper.com/company
https://github.com/shapely/shapely/blob/main/README.rst
https://de.wikipedia.org/wiki/Liste_deutscher_Tarif-_und_Verkehrsverb%C3%BCnde#/media/Datei:Karte_der_Verkehrsverb%C3%BCnde_und_Tarifverb%C3%BCnde_in_Deutschland.png
https://de.wikipedia.org/wiki/Liste_deutscher_Tarif-_und_Verkehrsverb%C3%BCnde#/media/Datei:Karte_der_Verkehrsverb%C3%BCnde_und_Tarifverb%C3%BCnde_in_Deutschland.png
https://de.wikipedia.org/wiki/Liste_deutscher_Tarif-_und_Verkehrsverb%C3%BCnde#/media/Datei:Karte_der_Verkehrsverb%C3%BCnde_und_Tarifverb%C3%BCnde_in_Deutschland.png
https://bahnland-bayern.de/de/tickets
https://bahnland-bayern.de/de/tickets

[12] Forschungsinformationssystem Mobilität und Verkehr, “Zuständigkeiten
für die Verkehrsinfrastrukturfinanzierung im föderalen System.” url:
https://www.forschungsinformationssystem.de/servlet/is/516068/
?clsId0=276646&clsId1=276651&clsId2=276890&clsId3=0, created:
07.01.2021.

[13] DELFI e.V., translated by G. Freiwald, “DELFI Convention.” url: https:
//www.delfi.de/media/delfi-organigramm_10.2021_2.pdf, translated on
18.10.2022.

[14] J. R. René Maier, Marco Felix Gennaro, “MF014: Moderne Informations-
dienste im ÖPNV – mit DELFI e.V..” url: https://mobilitaetsfunk.de/
mf014-moderne-informationsdienste-im-oepnv-mit-delfi-e-v/, created
on: 28. April 2021.

[15] MVV München, “Soll-Fahrplandaten (GTFS).” url: https://www.
mvv-muenchen.de/fahrplanauskunft/fuer-entwickler/opendata/index.
html, visited on: 16.10.2022.

[16] rms, “Zwei Drehscheiben bündeln Daten hunderter Un-
ternehmen.” url: https://www.rms-consult.de/news/
projekt-deez-deutschlandweit-minutengenau-in-bus-und-bahn-informiert/,
created: 31.05.2021.

[17] HACON, “Referenzen.” url: https://www.hacon.de/unternehmen/, visited on:
17.10.2022.

[18] Computerwoche, “Bahn will offenen Rechner-Verbund schaffen.” url: https://
www.computerwoche.de/a/bahn-will-offenen-rechner-verbund-schaffen,
1157261, written on: 11.11.1988.

[19] S. Leutenegger, M. Lopez, and J. Edgington, “STR: a simple and efficient
algorithm for R-tree packing,” in Proceedings 13th International Conference on
Data Engineering, pp. 497–506, 1997.

[20] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

82

https://www.forschungsinformationssystem.de/servlet/is/516068/?clsId0=276646&clsId1=276651&clsId2=276890&clsId3=0
https://www.forschungsinformationssystem.de/servlet/is/516068/?clsId0=276646&clsId1=276651&clsId2=276890&clsId3=0
https://www.delfi.de/media/delfi-organigramm_10.2021_2.pdf
https://www.delfi.de/media/delfi-organigramm_10.2021_2.pdf
https://mobilitaetsfunk.de/mf014-moderne-informationsdienste-im-oepnv-mit-delfi-e-v/
https://mobilitaetsfunk.de/mf014-moderne-informationsdienste-im-oepnv-mit-delfi-e-v/
https://www.mvv-muenchen.de/fahrplanauskunft/fuer-entwickler/opendata/index.html
https://www.mvv-muenchen.de/fahrplanauskunft/fuer-entwickler/opendata/index.html
https://www.mvv-muenchen.de/fahrplanauskunft/fuer-entwickler/opendata/index.html
https://www.rms-consult.de/news/projekt-deez-deutschlandweit-minutengenau-in-bus-und-bahn-informiert/
https://www.rms-consult.de/news/projekt-deez-deutschlandweit-minutengenau-in-bus-und-bahn-informiert/
https://www.hacon.de/unternehmen/
https://www.computerwoche.de/a/bahn-will-offenen-rechner-verbund-schaffen,1157261
https://www.computerwoche.de/a/bahn-will-offenen-rechner-verbund-schaffen,1157261
https://www.computerwoche.de/a/bahn-will-offenen-rechner-verbund-schaffen,1157261

	1 Introduction
	2 Background
	2.1 Introduction to GTFS
	2.1.1 Term Definitions
	2.1.2 Introducing the GTFS Tables Used by PublicTransitSnapper
	2.1.3 Representing Shapes
	2.1.4 GTFS Real Time Extension
	2.1.5 Further Information on GTFS

	2.2 Introduction to Public Transit Vehicle Matching
	2.2.1 Great Circle Distance
	2.2.2 Definition Map Matching
	2.2.3 Map Matching to a Dynamic Map
	2.2.4 Using a Graph to Represent the Shapes Network
	2.2.5 Definition Markov Chains
	2.2.6 Hidden Markov Models

	3 Related Work
	3.1 Other PTV Matching Applications
	3.1.1 Google's Pigeon Transit Project
	3.1.2 Citymapper

	3.2 Map Matching to a Static Map
	3.2.1 Hidden Markov Models in Map Matching
	3.2.2 Real Time Map Matching

	3.3 Public Transit Data in Germany
	3.4 Working Together on PublicTransitSnapper

	4 Building PublicTransitSnapper
	4.1 Problem Definition
	4.2 Project Structure
	4.2.1 Used Programming Languages

	4.3 The Frontend
	4.3.1 App Layout

	4.4 Communication Between Frontend and Backend
	4.4.1 Handling HTTP Requests and Transferring Information on the PTV Matching
	4.4.2 Communication Needed for the Connections Page
	4.4.3 Communication Needed for Displaying the Shape
	4.4.4 The Chat

	4.5 The Backend
	4.5.1 Docker
	4.5.2 Connecting Shapes, Stops and Times
	4.5.3 Preparing and Using the GTFS Files
	4.5.4 TripsWithStopsAndTimes Methods
	4.5.5 GTFS Container Methods

	4.6 PTV Matching
	4.6.1 Using a Hidden Markov Model to Find the Most Likely Edges
	4.6.2 Assigning Weights to the HMM
	4.6.3 Finding the Most Likely Trip
	4.6.4 Avoiding Over-Matching

	4.7 Fetching New GTFS Data
	4.8 Using Fake GPS Data to Test the Project
	4.8.1 Generating Noisified Points Along a Shape
	4.8.2 Annotating the GPS Points With Timestamps
	4.8.3 Using Selenium to Manipulate a Device's GPS Position

	5 User Study
	5.1 General Inquiry
	5.2 Trips
	5.3 Differences and Similarities
	5.4 Conclusion of the User Study

	6 GTFS in Germany
	6.1 Availability of GTFS in Germany
	6.1.1 DELFI
	6.1.2 DEEZ - Real Time Data Throughout Germany

	6.2 Prominent German Industrial Standards
	6.2.1 HAFAS
	6.2.2 DIVA

	6.3 Concluding GTFS in Germany

	7 Further Investigation
	7.1 Improving the Frontend
	7.1.1 Showing Real Time Updates
	7.1.2 Showing Connection Issues
	7.1.3 Offline Maps
	7.1.4 Stop Features

	7.2 GTFS Frequencies
	7.3 City-Specific Information
	7.4 Generating Real Time Data
	7.5 The Debatable Use of Python
	7.6 Testing PublicTransitSnapper on Long Distance Trips

	8 Conclusion
	9 Acknowledgments
	10 Appendix
	10.1 Data Structures
	10.1.1 STRtrees

	10.2 Algorithms
	10.2.1 Dijkstra's Algorithm

	10.3 GTFS Example

	Bibliography

