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Motivation - Wikidata

According to their website [1]:

I Free knowledge base storing structured data

I 77,613,715 data items

I Anyone can edit these

I It is a general knowledge base

I Created by the wikimedia foundation



Motivation - RDFGraph [5]

Albert Einstein Scientist

Human

Occupation
is-a

is-a

is-a



Motivation - RDFGraph [5]

Albert Einstein Scientist

Human

Occupation
is-a

is-a

is-a

subject predicate object

<Albert_Einstein> <is-a> <Scientist>

<Albert_Einstein> <is-a> <Human>

<Scientist> <is-a> <Occupation>



Motivation - SPARQL [6]

SELECT ? p a r e n t ? c h i l d ? bd WHERE {
? p a r e n t <C h i l d r e n> ? c h i l d .
? c h i l d <D a t e O f B i r t h> ?bd

}
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SELECT ? p a r e n t ? c h i l d ? bd WHERE {
? p a r e n t <C h i l d r e n> ? c h i l d .
? c h i l d <D a t e O f B i r t h> ?bd

}

?scientist ?child ?bd

Albert Einstein Eduard Einstein 28 July 1910
Albert Einstein Hans Albert Einstein 14 May 1904
Albert Einstein Liserl Einstein 1 January 1902
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I SPARQL Search Engine for knowledge bases

I Can work with very large datasets

I Is on github [4]

I Supports only a subset of SPARQL
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Motivation - Property Path

SELECT ? p e r s o n ? c l a s s WHERE {
? p e r s o n <C h i l d r e n>+ ? d e s c e n d a n t

}



Property Path Operations [6]

Operator Function

^p The inverse of path p (object and subject are
swapped)

p1 / p2 The sequence of p1 and p2
p1 | p2 Either p1 or p2
p* p zero or more times
p+ p one or more times
p? p zero or one times
(p) Evaluate p first, then the rest
!p Any but the given IRIs (can be combined with

| and /)



Questions?



Motivation

Implementation

Evaluation



Parsing

I Property paths are free of whitespace

I The operators can be used as delimiters

I Recursive Descent parser

I Produces an AST which can then be processed further

I Processes parantheses and ensures precedence of operations
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Property Paths - Replacements

The sparql standard [6] defines these replacements:

Property Path Equivalent SPARQL

?a <b>|<c> ?d {?a <b> ?d} UNION {?a <c> ?d}

?a <b>/<c> ?d ?a <b> ?tmp1 . ?tmp1 <c> ?d

?a ^<b> ?c ?c <b> ?a



Negation

Operator Function

!p Everything that is not connected by p.

I Assume wikidata has about 11,000,000,000 triples

I QLever uses at least 2 times 64bit per result

I No single relation in wikidata covers a majority of these triples

I The result of a negation would then likely exceed 150 GiB
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Negation

Operator Function

!p Everything that is not connected by p.

I Assume wikidata has about 11,000,000,000 triples

I QLever uses at least 2 times 64bit per result

I No single relation in wikidata covers a majority of these triples
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Transitive Operators

Operator Function

p* p zero or more times
p+ p one or more times
p? p zero or one time



Result Representation

?a ?b

<Albert_Einstein> <Occupation>

<Albert_Einstein> <Scientist>

<Albert_Einstein> <Human>

Albert Einstein

Occupation

Scientist

Human



The Algorithm

I Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

I For every node in the list of unique nodes from the left
column of the input:

I Run a dfs from that node in the graph using the hash map.
Store the marked nodes of the dfs in a hash set.

I For every node reached by the dfs check the depth against the
min and max

I If the depth is within the constraints add a row to the result.
The row contains the start node and the node reached by the
dfs.

I If discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.
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Correctness

I The dfs will explore every reacheable node

I All results we write have a minimum distance of 1

I The algorithm works for a maximum distance of 1

I Every pair of nodes is considered at most once, so the output
won’t contain any duplicates
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Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

I Building the hash map is in O(e)

I The dfs is run O(e) times

I A single dfs takes O(e + n)

I The amortized run time is then O(en + e2)
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Empty Paths

I The ? and ∗ operator match the empty path. The algorithm
for them doesn’t support that though.

I The result of the empty path is every node connected to itself.

I Instead of materializing that, annotate operations that can
produce an empty path.

I Don’t allow the empty path as a result of an entire predicate
path.
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Empty Paths

Operation Can be empty

| If all subpath can be empty
/ If any subpath can be empty
+ If the subpath can be empty

Operation Handling

| The annotation suffices
/ Union over all combinations of missing empty

subpaths.
+ The annotation suffices



Integration in QLever

I QLever transforms every triple in a query into an operation
tree with a single scan operation, internally called a seed.

I We can now transform a triple with a property path into an
execution tree

I That execution tree is then optimized separately and then
inserted as a seed into the optimization of the parent graph
pattern
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Optimizations

I Try to reduce the number of dfs

I Utilize joins with small results

I Compute that result first, then do a dfs for every entry

I If the join is with the right side variable, invert the input paths
and the results
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Evaluation

I Comparing QLever and Blazegraph [3]

I Property paths from the wikidata example queries [1]

I Run on the relevant part of Wikidata

I The QLever cache is flushed before every query

I 240s timeout

I 38 queries composed of only a single property path each
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Example Query

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT ?item WHERE {

?item (wdt:P31)/((wdt:P279)*) wd:Q5

}

P31 instance of

P279 subclass of



Result Overview

Endpoint Mean [ms] SD Maximum [ms] Minimum [ms]
QLever 9941.88 34876.11 206620.71 14.37
Blazegraph 22189.19 65235.05 241000.00 29.91
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Result Slow

Query SPARQL Result Size

19 ?connection (wdt:P2789)+ ?city 101,808,568

29 ?u (wdt:P131)+ ?state 29,475,512

P2789 connects with

P2131 located in the administrative territorial entity



Result Medium
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Query 25

Query SPARQL

25 ?compound wdt:P279+|wdt:P31+ wd:Q421948

P31 instance of (52,739,893)

P279 subclass of (2,270,780)

Result 60,057

I Qlever has to iterate both large relations

I The right side is fixed
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Result Fast 2
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Result Fast

Query SPARQL Result Size

3 ?c (wdt:P19)|(wdt:P20) wd:Q1741 13,708

36 ?work (wdt:P37)|(wdt:P103) ?l 6,952

P19 place of birth (2,344,764)

P20 place of death (890,695)

P37 official language (11,519)

P103 native language (89,015)
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