Efficient Property Path Evaluation within the
QLever Query Engine

Florian Kramer

February 28, 2020

Motivation

Motivation - Wikidata

According to their website [i:
» Free knowledge base storing structured data
> 77,613,715 data items
» Anyone can edit these
> It is a general knowledge base
>

Created by the wikimedia foundation

Motivation - RDFGraph g

) . is-a L is- .
Albert_Einstein ———— Scientist ————— Occupation
is-a
Human

Motivation - RDFGraph g

) X is-a L is-a .
Albert_Einstein ————— Scientist ———— Occupation
is-a
Human
subject ‘ predicate ‘ object

<Albert_Einstein> | <is-a> <Scientist>
<Albert_Einstein> | <is-a> <Human>
<Scientist> <is-a> <0Occupation>

Motivation - SPARQL g

SELECT ?parent ?child ?bd WHERE {
?parent <Children> 7child
?7child <Date_Of_Birth> 7bd

}

Motivation - SPARQL g

SELECT ?parent ?child ?bd WHERE {
?parent <Children> 7child
?7child <Date_Of_Birth> 7bd

?scientist ?child 7bd

Albert Einstein | Eduard Einstein 28 July 1910
Albert Einstein | Hans Albert Einstein | 14 May 1904
Albert Einstein | Liserl Einstein 1 January 1902

Motivation - QLever

» SPARQL Search Engine for knowledge bases

Motivation - QLever

» SPARQL Search Engine for knowledge bases

» Can work with very large datasets

Motivation - QLever

» SPARQL Search Engine for knowledge bases
» Can work with very large datasets

» Is on github [

Motivation - QLever

» SPARQL Search Engine for knowledge bases
» Can work with very large datasets

» Is on github [

» Supports only a subset of SPARQL

Motivation - Property Path

SELECT 7?person 7class WHERE {
?7person <Children>+ ?7descendant

}

Property Path Operations

Operator Function

“p The inverse of path p (object and subject are
swapped)

pl / p2 The sequence of pl and p2

pl | p2 Either pl or p2

p* p zero or more times

pt p one or more times

p? p zero or one times

(p) Evaluate p first, then the rest

Ip Any but the given IRIs (can be combined with

| and /)

Questions?

Implementation

Parsing

» Property paths are free of whitespace

Parsing

» Property paths are free of whitespace

» The operators can be used as delimiters

Parsing

» Property paths are free of whitespace
» The operators can be used as delimiters

P Recursive Descent parser

Parsing

» Property paths are free of whitespace
» The operators can be used as delimiters
P Recursive Descent parser

» Produces an AST which can then be processed further

Parsing

Property paths are free of whitespace
The operators can be used as delimiters
Recursive Descent parser

Produces an AST which can then be processed further

vVvYvyyvyy

Processes parantheses and ensures precedence of operations

Property Paths - Replacements

The sparql standard [defines these replacements:

Property Path ‘ Equivalent SPARQL

?7a |<c> ?d | {?a ?d} UNION {?7a <c> ?d}
7a /<c> ?d | 7a 7tmpl . 7tmpl <c> 7d
7a “ 7c ?7c 7a

Negation

Operator ‘ Function

Ip ‘ Everything that is not connected by p.

Negation

Operator ‘ Function

Ip ‘ Everything that is not connected by p.

» Assume wikidata has about 11,000,000,000 triples

Negation

Operator ‘ Function

Ip ‘ Everything that is not connected by p.

» Assume wikidata has about 11,000,000,000 triples
> QLever uses at least 2 times 64bit per result

Negation

Operator ‘ Function

Ip ‘ Everything that is not connected by p.

» Assume wikidata has about 11,000,000,000 triples
> QLever uses at least 2 times 64bit per result

» No single relation in wikidata covers a majority of these triples

Negation

Operator ‘ Function
Ip ‘ Everything that is not connected by p.

» Assume wikidata has about 11,000,000,000 triples
> QLever uses at least 2 times 64bit per result
» No single relation in wikidata covers a majority of these triples

» The result of a negation would then likely exceed 150 GiB

Transitive Operators

Operator Function
p* p zero or more times
p+ p one or more times

p? p zero or one time

Result Representation

7a ‘?b
<Albert_Einstein> | <Occupation>
<Albert_Einstein> | <Scientist>
<Albert_Einstein> | <Human>

Occupation

Albert_Einstein Scientist

\

Human

The Algorithm

» Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

The Algorithm

» Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

» For every node in the list of unique nodes from the left
column of the input:

The Algorithm

» Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

» For every node in the list of unique nodes from the left
column of the input:

» Run a dfs from that node in the graph using the hash map.
Store the marked nodes of the dfs in a hash set.

The Algorithm

» Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

» For every node in the list of unique nodes from the left
column of the input:

» Run a dfs from that node in the graph using the hash map.
Store the marked nodes of the dfs in a hash set.

» For every node reached by the dfs check the depth against the
min and max

The Algorithm

» Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

» For every node in the list of unique nodes from the left
column of the input:

» Run a dfs from that node in the graph using the hash map.
Store the marked nodes of the dfs in a hash set.

» For every node reached by the dfs check the depth against the
min and max

» |If the depth is within the constraints add a row to the result.
The row contains the start node and the node reached by the
dfs.

The Algorithm

» Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

» For every node in the list of unique nodes from the left
column of the input:

» Run a dfs from that node in the graph using the hash map.
Store the marked nodes of the dfs in a hash set.

» For every node reached by the dfs check the depth against the
min and max

» |If the depth is within the constraints add a row to the result.
The row contains the start node and the node reached by the
dfs.

» |f discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.

Correctness

» The dfs will explore every reacheable node

Correctness

» The dfs will explore every reacheable node

» All results we write have a minimum distance of 1

Correctness

» The dfs will explore every reacheable node
» All results we write have a minimum distance of 1

» The algorithm works for a maximum distance of 1

Correctness

» The dfs will explore every reacheable node
» All results we write have a minimum distance of 1
» The algorithm works for a maximum distance of 1

» Every pair of nodes is considered at most once, so the output
won't contain any duplicates

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

» Building the hash map is in O(e)

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

» Building the hash map is in O(e)
» The dfs is run O(e) times

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

» Building the hash map is in O(e)
» The dfs is run O(e) times
» A single dfs takes O(e + n)

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

» Building the hash map is in O(e)

» The dfs is run O(e) times

» A single dfs takes O(e + n)

» The amortized run time is then O(en + €?)

Empty Paths

» The ? and * operator match the empty path. The algorithm
for them doesn’t support that though.

Empty Paths

» The ? and * operator match the empty path. The algorithm
for them doesn’t support that though.

» The result of the empty path is every node connected to itself.

Empty Paths

» The ? and * operator match the empty path. The algorithm
for them doesn’t support that though.

» The result of the empty path is every node connected to itself.

> Instead of materializing that, annotate operations that can
produce an empty path.

Empty Paths

» The ? and * operator match the empty path. The algorithm
for them doesn’t support that though.

» The result of the empty path is every node connected to itself.

> Instead of materializing that, annotate operations that can
produce an empty path.

» Don't allow the empty path as a result of an entire predicate
path.

Empty Paths

Operation ‘ Can be empty

| If all subpath can be empty
/ If any subpath can be empty
+ If the subpath can be empty

Operation ‘ Handling

\ The annotation suffices

/ Union over all combinations of missing empty
subpaths.

+ The annotation suffices

Integration in QLever

» QLever transforms every triple in a query into an operation
tree with a single scan operation, internally called a seed.

Integration in QLever

» QLever transforms every triple in a query into an operation
tree with a single scan operation, internally called a seed.

> We can now transform a triple with a property path into an
execution tree

Integration in QLever

» QLever transforms every triple in a query into an operation
tree with a single scan operation, internally called a seed.

> We can now transform a triple with a property path into an
execution tree

P> That execution tree is then optimized separately and then
inserted as a seed into the optimization of the parent graph
pattern

Optimizations

» Try to reduce the number of dfs

Optimizations

» Try to reduce the number of dfs

> Utilize joins with small results

Optimizations

» Try to reduce the number of dfs
> Utilize joins with small results

» Compute that result first, then do a dfs for every entry

Optimizations

» Try to reduce the number of dfs
> Utilize joins with small results
» Compute that result first, then do a dfs for every entry

» If the join is with the right side variable, invert the input paths
and the results

Questions?

Evaluation

Evaluation

» Comparing QLever and Blazegraph g

Evaluation

» Comparing QLever and Blazegraph g

» Property paths from the wikidata example queries [

Evaluation

» Comparing QLever and Blazegraph g
» Property paths from the wikidata example queries [
» Run on the relevant part of Wikidata

Evaluation

» Comparing QLever and Blazegraph g

» Property paths from the wikidata example queries [
» Run on the relevant part of Wikidata

» The QLever cache is flushed before every query

Evaluation

Comparing QLever and Blazegraph 13

Property paths from the wikidata example queries 1

>

>

» Run on the relevant part of Wikidata

» The QLever cache is flushed before every query
>

240s timeout

Evaluation

Comparing QLever and Blazegraph 13

Property paths from the wikidata example queries 1
Run on the relevant part of Wikidata

The QLever cache is flushed before every query

240s timeout

38 queries composed of only a single property path each

Example Query

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
SELECT ?7item WHERE {

7item (wdt:P31)/((wdt:P279)*) wd:Q5
}

P31 instance of
P279 subclass of

Result Overview

Endpoint Mean [ms] | SD Maximum [ms] | Minimum [ms]
QLever 0941.88 34876.11 | 206620.71 14.37
Blazegraph | 22189.19 65235.05 | 241000.00 29.91

Result Slow

260
240
220
200
180
160
140
120
100

80

60

Query Time][s]

Qlever mumm 19 29
Blazegraph s Query

Result Slow

Query | SPARQL Result Size
19 ?connection (wdt:P2789)+ 7city | 101,808,568
29 7u (wdt:P131)+ 7state 29,475,512

P2789 connects with

P2131 located in the administrative territorial entity

Result Medium

30 - : :
- 25 Qlever
g‘ 20 :_ Blazegraph _
= 15 - ; ‘
>‘ -
9] 10 -
=) -
o 5 -
0 6 20 21 25 33
Query
Query |0 |6 |20 |21 [25]33

Size [k] | 4,966 | 2,428 | 400 | 848 | 60 | 1,636

Query 25

Query | SPARQL

25 7compound wdt:P279+|wdt:P31+ wd:Q421948

P31 instance of (52,739,893)
P279 subclass of (2,270,780)
Result 60,057

» Qlever has to iterate both large relations
» The right side is fixed

Result Fast 1

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

QLever
Blazegraph mmmmm

Query Time][s]

1 2 3 4 5 7 8 9 10 11 12

Result Fast 2

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

QLever mummm
‘Blazegraph mmmm

Query Time][s]

13 16 18 23 24 27 28 32 35 36 37
Query

Result Fast

Query | SPARQL Result Size
3 ?c (wdt:P19) | (wdt:P20) wd:Q1741 | 13,708
36 ?work (wdt:P37)|(wdt:P103) 71 6,952

P19 place of birth (2,344,764)
P20 place of death (890,695)
P37 official language (11,519)
P103 native language (89,015)

Bibliography |

[1]
]

[3]
[4]

[5]
[6]
[7]

Wikidata. URL:
https://www.wikidata.org/wiki/Wikidata:Main_Page.

Wikidata Query Service. URL:
https://query.wikidata.org/.
Blazegraph. URL: https://wuw.blazegraph.com/.

QLever on Github. URL:
https://github.com/ad-freiburg/QLever.

W3C RDF Primer. URL:
https://wuw.w3.org/TR/rdf11-concepts/.

W3C SPARQL 1.1. URL:
https://www.w3.org/TR/sparqlil-query/.

RFC 3987. URL:
https://www.ietf.org/rfc/rfc3987.txt.

[} = =

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://query.wikidata.org/
https://www.blazegraph.com/
https://github.com/ad-freiburg/QLever
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-query/
https://www.ietf.org/rfc/rfc3987.txt

Bibliography Il

[8]

[9]

[10]

[11]

[12]

Henry S Warren Jr. “A modification of Warshall's algorithm
for the transitive closure of binary relations”. In:
Communications of the ACM 18.4 (1975), pp. 218-220.

Hannah Bast and Bjorn Buchhold. “Qlever: A query engine
for efficient spargl+ text search™. In: Proceedings of the
2017 ACM on Conference on Information and Knowledge
Management. ACM. 2017, pp. 647-656.

Esko Nuutila. “Efficient transitive closure computation in
large digraphs.”. In: (1998).

Wikidata SPARQL examples. URL:
https://www.wikidata.org/wiki/Wikidata:
SPARQL_query_service/queries/examples.

Yannis E loannidis, Raghu Ramakrishnan, et al. “Efficient
Transitive Closure Algorithms.”. In: VLDB. Vol. 88. 1988,
pp. 382-394.

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

Questions?

	Motivation
	Implementation
	Evaluation
	References

