
Efficient Property Path Evaluation within the
QLever Query Engine

Florian Kramer

February 28, 2020

Motivation

Implementation

Evaluation

Motivation - Wikidata

According to their website [1]:

I Free knowledge base storing structured data

I 77,613,715 data items

I Anyone can edit these

I It is a general knowledge base

I Created by the wikimedia foundation

Motivation - RDFGraph [5]

Albert Einstein Scientist

Human

Occupation
is-a

is-a

is-a

Motivation - RDFGraph [5]

Albert Einstein Scientist

Human

Occupation
is-a

is-a

is-a

subject predicate object

<Albert_Einstein> <is-a> <Scientist>

<Albert_Einstein> <is-a> <Human>

<Scientist> <is-a> <Occupation>

Motivation - SPARQL [6]

SELECT ? p a r e n t ? c h i l d ? bd WHERE {
? p a r e n t <C h i l d r e n> ? c h i l d .
? c h i l d <D a t e O f B i r t h> ?bd

}

Motivation - SPARQL [6]

SELECT ? p a r e n t ? c h i l d ? bd WHERE {
? p a r e n t <C h i l d r e n> ? c h i l d .
? c h i l d <D a t e O f B i r t h> ?bd

}

?scientist ?child ?bd

Albert Einstein Eduard Einstein 28 July 1910
Albert Einstein Hans Albert Einstein 14 May 1904
Albert Einstein Liserl Einstein 1 January 1902

Motivation - QLever

I SPARQL Search Engine for knowledge bases

I Can work with very large datasets

I Is on github [4]

I Supports only a subset of SPARQL

Motivation - QLever

I SPARQL Search Engine for knowledge bases

I Can work with very large datasets

I Is on github [4]

I Supports only a subset of SPARQL

Motivation - QLever

I SPARQL Search Engine for knowledge bases

I Can work with very large datasets

I Is on github [4]

I Supports only a subset of SPARQL

Motivation - QLever

I SPARQL Search Engine for knowledge bases

I Can work with very large datasets

I Is on github [4]

I Supports only a subset of SPARQL

Motivation - Property Path

SELECT ? p e r s o n ? c l a s s WHERE {
? p e r s o n <C h i l d r e n>+ ? d e s c e n d a n t

}

Property Path Operations [6]

Operator Function

^p The inverse of path p (object and subject are
swapped)

p1 / p2 The sequence of p1 and p2
p1 | p2 Either p1 or p2
p* p zero or more times
p+ p one or more times
p? p zero or one times
(p) Evaluate p first, then the rest
!p Any but the given IRIs (can be combined with

| and /)

Questions?

Motivation

Implementation

Evaluation

Parsing

I Property paths are free of whitespace

I The operators can be used as delimiters

I Recursive Descent parser

I Produces an AST which can then be processed further

I Processes parantheses and ensures precedence of operations

Parsing

I Property paths are free of whitespace

I The operators can be used as delimiters

I Recursive Descent parser

I Produces an AST which can then be processed further

I Processes parantheses and ensures precedence of operations

Parsing

I Property paths are free of whitespace

I The operators can be used as delimiters

I Recursive Descent parser

I Produces an AST which can then be processed further

I Processes parantheses and ensures precedence of operations

Parsing

I Property paths are free of whitespace

I The operators can be used as delimiters

I Recursive Descent parser

I Produces an AST which can then be processed further

I Processes parantheses and ensures precedence of operations

Parsing

I Property paths are free of whitespace

I The operators can be used as delimiters

I Recursive Descent parser

I Produces an AST which can then be processed further

I Processes parantheses and ensures precedence of operations

Property Paths - Replacements

The sparql standard [6] defines these replacements:

Property Path Equivalent SPARQL

?a |<c> ?d {?a ?d} UNION {?a <c> ?d}

?a /<c> ?d ?a ?tmp1 . ?tmp1 <c> ?d

?a ^ ?c ?c ?a

Negation

Operator Function

!p Everything that is not connected by p.

I Assume wikidata has about 11,000,000,000 triples

I QLever uses at least 2 times 64bit per result

I No single relation in wikidata covers a majority of these triples

I The result of a negation would then likely exceed 150 GiB

Negation

Operator Function

!p Everything that is not connected by p.

I Assume wikidata has about 11,000,000,000 triples

I QLever uses at least 2 times 64bit per result

I No single relation in wikidata covers a majority of these triples

I The result of a negation would then likely exceed 150 GiB

Negation

Operator Function

!p Everything that is not connected by p.

I Assume wikidata has about 11,000,000,000 triples

I QLever uses at least 2 times 64bit per result

I No single relation in wikidata covers a majority of these triples

I The result of a negation would then likely exceed 150 GiB

Negation

Operator Function

!p Everything that is not connected by p.

I Assume wikidata has about 11,000,000,000 triples

I QLever uses at least 2 times 64bit per result

I No single relation in wikidata covers a majority of these triples

I The result of a negation would then likely exceed 150 GiB

Negation

Operator Function

!p Everything that is not connected by p.

I Assume wikidata has about 11,000,000,000 triples

I QLever uses at least 2 times 64bit per result

I No single relation in wikidata covers a majority of these triples

I The result of a negation would then likely exceed 150 GiB

Transitive Operators

Operator Function

p* p zero or more times
p+ p one or more times
p? p zero or one time

Result Representation

?a ?b

<Albert_Einstein> <Occupation>

<Albert_Einstein> <Scientist>

<Albert_Einstein> <Human>

Albert Einstein

Occupation

Scientist

Human

The Algorithm

I Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

I For every node in the list of unique nodes from the left
column of the input:

I Run a dfs from that node in the graph using the hash map.
Store the marked nodes of the dfs in a hash set.

I For every node reached by the dfs check the depth against the
min and max

I If the depth is within the constraints add a row to the result.
The row contains the start node and the node reached by the
dfs.

I If discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.

The Algorithm

I Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

I For every node in the list of unique nodes from the left
column of the input:

I Run a dfs from that node in the graph using the hash map.
Store the marked nodes of the dfs in a hash set.

I For every node reached by the dfs check the depth against the
min and max

I If the depth is within the constraints add a row to the result.
The row contains the start node and the node reached by the
dfs.

I If discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.

The Algorithm

I Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

I For every node in the list of unique nodes from the left
column of the input:
I Run a dfs from that node in the graph using the hash map.

Store the marked nodes of the dfs in a hash set.

I For every node reached by the dfs check the depth against the
min and max

I If the depth is within the constraints add a row to the result.
The row contains the start node and the node reached by the
dfs.

I If discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.

The Algorithm

I Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

I For every node in the list of unique nodes from the left
column of the input:
I Run a dfs from that node in the graph using the hash map.

Store the marked nodes of the dfs in a hash set.
I For every node reached by the dfs check the depth against the

min and max

I If the depth is within the constraints add a row to the result.
The row contains the start node and the node reached by the
dfs.

I If discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.

The Algorithm

I Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

I For every node in the list of unique nodes from the left
column of the input:
I Run a dfs from that node in the graph using the hash map.

Store the marked nodes of the dfs in a hash set.
I For every node reached by the dfs check the depth against the

min and max
I If the depth is within the constraints add a row to the result.

The row contains the start node and the node reached by the
dfs.

I If discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.

The Algorithm

I Build a hash map from every node to its neighbors. Use a
hash set (a hash map without values) to store the neighbors.
While building the hash map create a list of unique nodes
from the left column of the input. The uniqueness can be
determined by checking if the node is already a key in the
hash map.

I For every node in the list of unique nodes from the left
column of the input:
I Run a dfs from that node in the graph using the hash map.

Store the marked nodes of the dfs in a hash set.
I For every node reached by the dfs check the depth against the

min and max
I If the depth is within the constraints add a row to the result.

The row contains the start node and the node reached by the
dfs.

I If discovering a new node with the dfs would exceed the
maximum depth, ignore that node and do not explore it.

Correctness

I The dfs will explore every reacheable node

I All results we write have a minimum distance of 1

I The algorithm works for a maximum distance of 1

I Every pair of nodes is considered at most once, so the output
won’t contain any duplicates

Correctness

I The dfs will explore every reacheable node

I All results we write have a minimum distance of 1

I The algorithm works for a maximum distance of 1

I Every pair of nodes is considered at most once, so the output
won’t contain any duplicates

Correctness

I The dfs will explore every reacheable node

I All results we write have a minimum distance of 1

I The algorithm works for a maximum distance of 1

I Every pair of nodes is considered at most once, so the output
won’t contain any duplicates

Correctness

I The dfs will explore every reacheable node

I All results we write have a minimum distance of 1

I The algorithm works for a maximum distance of 1

I Every pair of nodes is considered at most once, so the output
won’t contain any duplicates

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

I Building the hash map is in O(e)

I The dfs is run O(e) times

I A single dfs takes O(e + n)

I The amortized run time is then O(en + e2)

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

I Building the hash map is in O(e)

I The dfs is run O(e) times

I A single dfs takes O(e + n)

I The amortized run time is then O(en + e2)

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

I Building the hash map is in O(e)

I The dfs is run O(e) times

I A single dfs takes O(e + n)

I The amortized run time is then O(en + e2)

Amortized Complexity

Let e be the number of edges in the input. Let n be the number of
distinct nodes in the input.

I Building the hash map is in O(e)

I The dfs is run O(e) times

I A single dfs takes O(e + n)

I The amortized run time is then O(en + e2)

Empty Paths

I The ? and ∗ operator match the empty path. The algorithm
for them doesn’t support that though.

I The result of the empty path is every node connected to itself.

I Instead of materializing that, annotate operations that can
produce an empty path.

I Don’t allow the empty path as a result of an entire predicate
path.

Empty Paths

I The ? and ∗ operator match the empty path. The algorithm
for them doesn’t support that though.

I The result of the empty path is every node connected to itself.

I Instead of materializing that, annotate operations that can
produce an empty path.

I Don’t allow the empty path as a result of an entire predicate
path.

Empty Paths

I The ? and ∗ operator match the empty path. The algorithm
for them doesn’t support that though.

I The result of the empty path is every node connected to itself.

I Instead of materializing that, annotate operations that can
produce an empty path.

I Don’t allow the empty path as a result of an entire predicate
path.

Empty Paths

I The ? and ∗ operator match the empty path. The algorithm
for them doesn’t support that though.

I The result of the empty path is every node connected to itself.

I Instead of materializing that, annotate operations that can
produce an empty path.

I Don’t allow the empty path as a result of an entire predicate
path.

Empty Paths

Operation Can be empty

| If all subpath can be empty
/ If any subpath can be empty
+ If the subpath can be empty

Operation Handling

| The annotation suffices
/ Union over all combinations of missing empty

subpaths.
+ The annotation suffices

Integration in QLever

I QLever transforms every triple in a query into an operation
tree with a single scan operation, internally called a seed.

I We can now transform a triple with a property path into an
execution tree

I That execution tree is then optimized separately and then
inserted as a seed into the optimization of the parent graph
pattern

Integration in QLever

I QLever transforms every triple in a query into an operation
tree with a single scan operation, internally called a seed.

I We can now transform a triple with a property path into an
execution tree

I That execution tree is then optimized separately and then
inserted as a seed into the optimization of the parent graph
pattern

Integration in QLever

I QLever transforms every triple in a query into an operation
tree with a single scan operation, internally called a seed.

I We can now transform a triple with a property path into an
execution tree

I That execution tree is then optimized separately and then
inserted as a seed into the optimization of the parent graph
pattern

Optimizations

I Try to reduce the number of dfs

I Utilize joins with small results

I Compute that result first, then do a dfs for every entry

I If the join is with the right side variable, invert the input paths
and the results

Optimizations

I Try to reduce the number of dfs

I Utilize joins with small results

I Compute that result first, then do a dfs for every entry

I If the join is with the right side variable, invert the input paths
and the results

Optimizations

I Try to reduce the number of dfs

I Utilize joins with small results

I Compute that result first, then do a dfs for every entry

I If the join is with the right side variable, invert the input paths
and the results

Optimizations

I Try to reduce the number of dfs

I Utilize joins with small results

I Compute that result first, then do a dfs for every entry

I If the join is with the right side variable, invert the input paths
and the results

Questions?

Motivation

Implementation

Evaluation

Evaluation

I Comparing QLever and Blazegraph [3]

I Property paths from the wikidata example queries [1]

I Run on the relevant part of Wikidata

I The QLever cache is flushed before every query

I 240s timeout

I 38 queries composed of only a single property path each

Evaluation

I Comparing QLever and Blazegraph [3]

I Property paths from the wikidata example queries [1]

I Run on the relevant part of Wikidata

I The QLever cache is flushed before every query

I 240s timeout

I 38 queries composed of only a single property path each

Evaluation

I Comparing QLever and Blazegraph [3]

I Property paths from the wikidata example queries [1]

I Run on the relevant part of Wikidata

I The QLever cache is flushed before every query

I 240s timeout

I 38 queries composed of only a single property path each

Evaluation

I Comparing QLever and Blazegraph [3]

I Property paths from the wikidata example queries [1]

I Run on the relevant part of Wikidata

I The QLever cache is flushed before every query

I 240s timeout

I 38 queries composed of only a single property path each

Evaluation

I Comparing QLever and Blazegraph [3]

I Property paths from the wikidata example queries [1]

I Run on the relevant part of Wikidata

I The QLever cache is flushed before every query

I 240s timeout

I 38 queries composed of only a single property path each

Evaluation

I Comparing QLever and Blazegraph [3]

I Property paths from the wikidata example queries [1]

I Run on the relevant part of Wikidata

I The QLever cache is flushed before every query

I 240s timeout

I 38 queries composed of only a single property path each

Example Query

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT ?item WHERE {

?item (wdt:P31)/((wdt:P279)*) wd:Q5

}

P31 instance of

P279 subclass of

Result Overview

Endpoint Mean [ms] SD Maximum [ms] Minimum [ms]
QLever 9941.88 34876.11 206620.71 14.37
Blazegraph 22189.19 65235.05 241000.00 29.91

Result Slow

60

80

100

120

140

160

180

200

220

240

260

19 29

Q
u

er
y

T
im

e[
s]

Query

QLever
Blazegraph

Result Slow

Query SPARQL Result Size

19 ?connection (wdt:P2789)+ ?city 101,808,568

29 ?u (wdt:P131)+ ?state 29,475,512

P2789 connects with

P2131 located in the administrative territorial entity

Result Medium

0

5

10

15

20

25

30

0 6 20 21 25 33

Q
u

er
y

T
im

e[
s]

Query

QLever
Blazegraph

Query 0 6 20 21 25 33

Size [k] 4,966 2,428 400 848 60 1,636

Query 25

Query SPARQL

25 ?compound wdt:P279+|wdt:P31+ wd:Q421948

P31 instance of (52,739,893)

P279 subclass of (2,270,780)

Result 60,057

I Qlever has to iterate both large relations

I The right side is fixed

Result Fast 1

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 7 8 9 10 11 12

Q
u

er
y

T
im

e[
s]

Query

QLever
Blazegraph

Result Fast 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

13 16 18 23 24 27 28 32 35 36 37

Q
u

er
y

T
im

e[
s]

Query

QLever
Blazegraph

Result Fast

Query SPARQL Result Size

3 ?c (wdt:P19)|(wdt:P20) wd:Q1741 13,708

36 ?work (wdt:P37)|(wdt:P103) ?l 6,952

P19 place of birth (2,344,764)

P20 place of death (890,695)

P37 official language (11,519)

P103 native language (89,015)

Bibliography I

[1] Wikidata. url:
https://www.wikidata.org/wiki/Wikidata:Main_Page.

[2] Wikidata Query Service. url:
https://query.wikidata.org/.

[3] Blazegraph. url: https://www.blazegraph.com/.

[4] QLever on Github. url:
https://github.com/ad-freiburg/QLever.

[5] W3C RDF Primer. url:
https://www.w3.org/TR/rdf11-concepts/.

[6] W3C SPARQL 1.1. url:
https://www.w3.org/TR/sparql11-query/.

[7] RFC 3987. url:
https://www.ietf.org/rfc/rfc3987.txt.

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://query.wikidata.org/
https://www.blazegraph.com/
https://github.com/ad-freiburg/QLever
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-query/
https://www.ietf.org/rfc/rfc3987.txt

Bibliography II

[8] Henry S Warren Jr. “A modification of Warshall’s algorithm
for the transitive closure of binary relations”. In:
Communications of the ACM 18.4 (1975), pp. 218–220.

[9] Hannah Bast and Björn Buchhold. “Qlever: A query engine
for efficient sparql+ text search”. In: Proceedings of the
2017 ACM on Conference on Information and Knowledge
Management. ACM. 2017, pp. 647–656.

[10] Esko Nuutila. “Efficient transitive closure computation in
large digraphs.”. In: (1998).

[11] Wikidata SPARQL examples. url:
https://www.wikidata.org/wiki/Wikidata:

SPARQL_query_service/queries/examples.

[12] Yannis E Ioannidis, Raghu Ramakrishnan, et al. “Efficient
Transitive Closure Algorithms.”. In: VLDB. Vol. 88. 1988,
pp. 382–394.

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

Questions?

	Motivation
	Implementation
	Evaluation
	References

