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Abstract

QLever is a SPARQL+Text engine that can be used to build and query an index of a
knowledge base and a text corpus. QLever extends SPARQL by two QLever-specific
predicates for text search. Those predicates are ql:contains-word and ql:contains-entity
[5]. While the predicate ql:contains-word can be used to retrieve texts containing certain
words using a WordScan, the predicate ql:contains-entity returns entities co-occurring in
texts together with words using an EntityScan. This allows for a “combined search on a
knowledge base and a text corpus, in which named entities from the knowledge base have
been identified” [5].

This work implements three main changes, improving the full-text index of QLever.
The first change modifies the way the text entities of the knowledge base, so-called literals,
are added to the full-text index. QLever already provided an option to add all literals
to the full-text index, but when querying a full-text index built from all literals, the
corresponding literals were not shown in the result. Furthermore, adding all literals leads
to many uninformative literals being part of the full-text index. With the change presented
in this work, the user can apply a filter to the triples containing literals during index
building. Choosing the right filter can lead to a smaller full-text index without loosing
query result quality, potentially even improving it. Additionally, the literals are now shown
in the results.

The second change allows the user to use a simpler format for the text corpus. A
simple text corpus only consists of one file containing all documents together with an
identifier for each document. For QLever, the docsfile is exactly this, but QLever
expected a docsfile and a so-called wordsfile. This wordsfile essentially
contains all words and entities appearing in the documents of the docsfile. Since the
wordsfile contains words from multiple so-called text records that are overlapping
subsets of documents, the creation of your own wordsfile can be difficult. The reason
documents were split up into these text records is the automated identification of entities
in documents [6]. This logic is complicated and not easily understood. Therefore, the
option to only use the simple docsfile for full-text index building was added. To still
keep the functionality of ql:contains-entity, another option was added that only adds the
entities of the wordsfile to the full-text index. This leads to similar functionality with
a much simpler input.

The third and last change simplifies the underlying full-text index structure and provides
an option to choose the block size of the full-text index. More importantly, the change
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also removes the fixed prefix length of the WordScan. This means that whereas before the
user could only use WordScans with prefixes having a minimum length of four, they can
now use prefixes of arbitrary length like "com*" or even "*".
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1. Introduction

Over the years of human existence, one of the most important tools was, is, and will
be information. The amount of information accessible is growing steadily. Growing
with it is the challenge to find certain information in this mass. Database engines try to
solve this problem. For them to work, the data they operate on needs to have a specific
form. One form is a graph database. These databases consist of entities linked together
by directional relations. One common way to model such a database is the so-called
Resource Description Framework, or short RDF [12]. In the RDF model there are only
triples. Those triples have a subject, predicate, and object. We can think of the subject
and object as nodes in a graph, while the predicates, define the relation. The direction
is going from subject to object. There are three different types of RDF entities [12].
The most common type is an International Resource Identifier, short IRI. As said in the
name, IRIs are used to assign entities a unique identifier. IRIs are also used for predicates
defining relations. The second most common type is a literal. Literals can either consist
of strings or of an IRI and a corresponding value. An example of the latter would be
”3375222”∧∧⟨http://www.w3.org/2001/XMLSchema#int⟩. The first part is the number
”3375222”, whereas the second part is the IRI defining the number as an integer. The
third type of RDF entities are blank nodes. Blank nodes can be used internally by RDF
engines to extend the functionality of the database. They are local identifiers and are
disjoint from IRIs and literals. An example of a database consisting only of simple IRIs
can be seen in Figure 1.1. RDF databases can be queried using the SPARQL Protocol
And RDF Query Language, or SPARQL for short. A simple SPARQL query can be seen
in Figure 1.2, and the matching result in Figure 1.3.

Besides so-called structured data like RDF databases, there exists unstructured data
like text. A collection of texts assigned with an ID can also be considered a database. For
an engine working on a text database, a common goal is to find all documents containing
a certain word or prefix. One thing RDF and text datasets have in common is querying
the dataset without preprocessing is slow. Therefore, an index has to be built. An
everyday example of an index would be a library. It contains all the data and maintains
the information on where to find that data. This reduces the time needed to find certain
information. Because of the different nature of datasets, most database engines only allow
for one form of data. However, QLever is a SPARQL+Text engine that can be used to build
and query indexes built from RDF as well as text datasets, even linking them together.

As explained above, QLever first needs to build an index for the RDF database as well
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Example triples from Freebase easy:

<Barack_Obama> <is-a> <Person>
<Barack_Obama> <Profession> <Politician>
<Barack_Obama> <Place_of_birth> <Honolulu>
<London> <is-a> <Olympic_host_city>
<London> <Contained_by> <Great_Britain>
<Leonardo_da_Vinci> <is-a> <Artist>
<Leonardo_da_Vinci> <Profession> <Inventor>
<Mona_Lisa> <Artist> <Leonardo_da_Vinci>
<Mona_Lisa> <Art_Form> <Painting>
<Google> <is-a> <Brand>
<Google> <Peer> <Larry_Page>

Figure 1.1: Excerpt of the Freebase easy knowledge base showing the RDF scheme

Simple SPARQL query:

SELECT * WHERE {
<Barack_Obama> ?p ?o .

}

Figure 1.2: A simple SPARQL query that can be used to find information about the entity
<Barack_Obama>.

as for the text database. Afterward, the user can start a QLever server and run queries on
it. An N-Triples, N-Quads, or Turtle file is used to build the RDF index. The full-text
index can be built from three main sources. The simplest source is all literals of the
RDF database. The more complicated source is a so-called wordsfile and a respective
docsfile. The docsfile provides all documents that should be added to the full-text
index as well as a unique ID for them. The wordsfile not only contains the important
words of the documents but also all entity mentions in said documents. These entity
mentions directly correspond to entities in the RDF database. This means QLever can be
used to combine text search with classic SPARQL queries to scan whether an entity is
mentioned in a text together with a word or prefix.

As mentioned in the abstract, this work discusses multiple changes made to the full-
text part of QLever. The first change modifies and extends the full-text index building
from literals. Literals belonging to the full-text index are now pre-saved. This leads to
them now being shown in a query result instead of returning empty results. Also, a regex
filter was implemented. This filter can be used to specify what predicates hint at literal
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Simple SPARQL query result:

?p ?o
<is-a> <Person>

<Profession> <Politician>
<Place_of_birth> <Honolulu>

Figure 1.3: Results of the simple SPARQL query from Figure 1.2 executed on the small
excerpt of the Freebase easy dataset seen in Figure 1.1.

objects that should be added to the full-text index. For example, the user can whitelist
the predicate <has-description> and all literal objects following said predicate are
added to the full-text index.

The second change implemented in this work enables using only the docsfile to
build the full-text index. Together with this, the possibility to use the wordsfile only for
the entity mentions was added. This leads to the building of the full-text index requiring
less understanding about how QLever internally works and improving the result quality.

The third change implemented modifies the full-text index structure. To build the full-
text index QLever saves information for each word and entity occurring in a text record
to disk. This information consists of a TextRecordIndex specifying which text the
word or entity belongs to, a WordVocabIndex or VocabIndex, which are internal
identifiers for words and entities, and a Score. Each combination of information is called
a posting and has its own entry. These postings are sorted into blocks. Before this work
each block contained all postings for all words starting with the same four letter prefix.
For example, the block "test*" contained postings for "testing" as well as "testosterone"
and so on. This leads to a remarkable difference in block size depending on how often a
prefix occurs in the text dataset. In theory, the different block sizes lead to uneven query
times depending on what block is retrieved. Now users can choose the block size freely.
Together with this change came an even more important change that improves the retrieval.
Before this, only one single block could be returned by a WordScan. This meant there was
a minimal prefix length of four. Now multiple blocks can be read and merged, making it
possible to execute WordScans using prefixes like "com*" or even "*".

We will first briefly look at similar engines providing a combination of SPARQL and
text search. Then, to understand and evaluate all three changes, the full-text index building
of the old QLever version is explained. Together with this, the WordScan and EntityScan
are explained. Afterward, the theoretical analysis of the full-text index building, and of the
retrieval is shown. Following this, each feature is explained individually. To see how the
changes affect index building times and query results an empirical analysis is shown and
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the results of it are discusses. At the end, an outlook is given on how to further improve
the individual features and the full-text index of QLever.

Three publicly available datasets are used in this work. The scientists dataset avail-
able at https://github.com/ad-freiburg/qlever/raw/master/e2e/

scientist-collection.zip (last accessed 2025-09-10). The freebase easy
dataset available at https://freebase-easy.cs.uni-freiburg.de/dump/
(last accessed 2025-09-10). And the yago-3 dataset available at https://

yago-knowledge.org/downloads/yago-3 (last accessed 2025-09-10).
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2. Related Work
With SPARQL being a popular query language, there are many publicly available SPARQL
engines. A few popular engines are Virtuoso [9], Apache Jena [3], and GraphDB [13].
While Virtuoso started as a relational database management system mainly used with
SQL queries, they developed SPARQL support [9] with the growth of the semantic
web. Virtuoso also supports text scans inside the SPARQL queries with the predicate
bif:contains. Similar to QLever, the object then specifies what words to scan for. This
scan happens on an inverted full-text index that was built on parts of the ontology. In
a similar manner to Virtuoso, Apache Jena provides a full-text index using Lucene [8],
which also works as an inverted index. “The basic Jena text extension associates a triple
with a document” [2]. Only triples having a literal object are associated with a document.
Furthermore, each document also tracks the predicate of the triple. When queried, the
full-text index does not return the text containing the word but instead the subject of the
literal containing said word. The index can also be queried using a word and a predicate. A
query will then return the subject of triples that contain the queried predicate and have an
object literal containing the queried word. While the Text Index Literal Filtering presented
in this work works similarly, filtering triples by their predicate, this is done during index
building and not during retrieval. Also like Broccoli [4], QLever differs in another way
from these engines. That is, while Virtuoso and Apache Jena provide a full-text index,
this index is only built upon the ontology. Broccoli and QLever provide the option to add
a separate text corpus that has references to entities of the ontology. While “Broccoli has
no query planner and a simplistic KB index” [5], QLever is close to SPARQL 1.1 support.
This positions QLever as a state-of-the-art SPARQL engine for large knowledge graphs,
uniquely combining efficient SPARQL query processing with deeply integrated full-text
search.
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3. Background

3.1 Full-text Index Structure

To understand how QLever used to build, save, and scan its full-text index, we will first
look at what an index is used for. The goal of an index is to quickly find and return
the correct information for a given query. The term "correct" can mean different things
depending on the scenario. In the case of QLever's full-text index, the query can either
be a WordScan which works on a word or prefix, or an EntityScan, which works on RDF
entities, or a variable. The EntityScan only works together with a WordScan since the
goal is to find text records where certain words or prefixes co-occur with certain entities.
Focusing on the WordScan, the information that should be returned is the text in which a
word or prefix occurs. QLever provides more information, also returning the score for a
given word or prefix. If the query was a prefix, QLever Additionally returns the matching
word found in the text. The scores should provide a measure of how important a result
is for a given query. One index structure that is often used to index text datasets is a
so-called inverted index. An inverted index provides a map that, for a given word, returns
all documents in which the word occurs in. In most cases the inverted index provides
additional indexed information together with such a result. In this index structure, prefix
search cannot easily be executed. A solution for this is a so-called half-inverted index
proposed in [7]. Instead of mapping a single word to all its information, the half-inverted
index consists of multiple postings for each word. As explained in the introduction, these
postings are put into blocks. Inside the blocks, the postings are sorted by text record,
while the blocks themselves are ordered by WordVocabIndex. The ordering means
block 𝑖 contains smaller WordVocabIndexes than block 𝑖 + 1. Since the text dataset
that is used to build this index is sorted by text records, the term half-inverted is used.
An example of the block structure can be seen in 3.1. The first step for this to work is
to assign each word a WordVocabIndex in lexicographical order. This means for two
WordVocabIndexes 𝑖, 𝑗 ∈ N:

𝑖
𝑛𝑢𝑚
< 𝑗 ⇒ 𝑉𝑜𝑐𝑎𝑏[𝑖]

𝑙𝑒𝑥
< 𝑉𝑜𝑐𝑎𝑏[ 𝑗]

Where 𝑉𝑜𝑐𝑎𝑏[𝑖], 𝑉𝑜𝑐𝑎𝑏[ 𝑗] are the words that got assigned the WordVocabIndexes 𝑖
and 𝑗 . Each block knows its first and last WordVocabIndex. With this information,
the correct block containing the entries the user is looking for can be found in logarithmic
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time using binary search.

Text Index Block Structure Example:

Block 1:

Text Record
Index

Word or
Entity Index Score Word or Entity

1 0 1 astronomer
1 1 1 astronomy
2 0 0 astronomer
2 1 0 astronomy

1 0 0 <Astronomer>
2 0 0 <Astronomer>
1 1 0 <Space>
2 1 0 <Space>

Block 2:

Text Record
Index

Word or
Entity Index Score Word or Entity

1 2 1 space
1 2 1 space

1 0 0 <Astronomer>
2 0 0 <Astronomer>
1 1 0 <Space>
2 1 0 <Space>

Figure 3.1: An example of how blocks look like in the text index. Each block has a list
of words and a separate list of entities. Each entity co-occurs in a text record with at least
one of the words of the word list. The entity lists are deduplicated. This can be seen
in Block 1. The word "astronomer" appears together with the word "astronomy" and the
entity "<Astronomer>" in text record 1. Instead of saving "<Astronomer>" twice with the
same TextRecordIndex, it is only saved once. The same thing happens again for text
record 2. Note the written words and entities right of the bar are only to make the blocks
readable. The first block contains Word Indices in the range of [0, 1] while the second
block contains Word Indices in the range of [2, 2]. Therefore the first block comes before
the second in the actual index.

3.2 Text Corpus

Now we will look at the dataset the full-text index is built upon. We will first look
at the wordsfile and docsfile as they provide an understanding of what type of
information the full-text index building takes as input. An excerpt of the actual scientists
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docsfile can be seen in Figure 3.2.

Docsfile excerpt:

DocumentIndex Document

4
An astronomer is a scientist in the field of astronomy
who concentrates their studies on a specific question
or field outside of the scope of Earth.

7

They look at stars, planets, moons, comets and galax-
ies, as well as many other celestial objects — either
in observational astronomy, in analyzing the data or in
theoretical astronomy.

22
Examples of topics or fields astronomers work on in-
clude: planetary science, solar astronomy, the origin
or evolution of stars, or the formation of galaxies.

25 There are also related but distinct subjects like cos-
mology which studies the Universe as a whole.

Figure 3.2: Excerpt of the scientists docsfile.

Thedocsfile has a column for aDocumentIndex and a column for the document.
This file gets compressed to the 'docsDB' which is later used to retrieve the texts for certain
TextRecordIndexes. To annotate entities to documents, each document was split up
into smaller text records. The wordsfile then contains all words of the text records
except the stop words. How the first document from Figure 3.2 was split up can be seen in
Figure 3.3. In the example seen in Figure 3.3 one document was split into four text records.
The relation between DocumentIndex and TextRecordIndex is the following:

For DocumentIndexes: 𝑖, 𝑗 ∈ N with:

𝑖 < 𝑗 , ∄𝑘 ∈ N with 𝑖 < 𝑘 < 𝑗

All TextRecordIndexes: 𝑙 ∈ N with:

𝑖 < 𝑙 ≤ 𝑗 belong to DocumentIndex 𝑗

Besides words, the wordsfile also contains entity mentions like <Astronomer>
which were assigned to a word of the text record. An excerpt of the wordsfile from the
scientists dataset can be seen in Figure 3.4. The first column of the wordsfile is used
for words as well as entities. The second column specifies whether the entry in the first
column is a word or an entity. The third column links the word or entity to its source text
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Document to text records:

Document:

An astronomer is a scientist in the
field of astronomy who concentrates
their studies on a specific question or
field outside of the scope of Earth.

Text Records:

An astronomer is a scientist in the
field of astronomy

An astronomer is a scientist in the
field of astronomy

astronomy who concentrates their
studies on a specific question or field
outside the scope of Earth.

astronomy who concentrates their
studies on a specific question or field
outside the scope of Earth.

Figure 3.3: An example how a single document is converted into multiple overlapping text
records. This example is from the scientists wordsfile and docsfile.

record with a TextRecordIndex. The fourth column contains pre-calculated scores.
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Wordsfile excerpt:

Word or Entity isEntity TextRecordIndex Score
astronomer 0 1 1
<Astronomer> 1 1 0
scientist 0 1 1
field 0 1 1
astronomy 0 1 1
astronomer 0 2 0
<Astronomer> 1 2 0
:s:firstsentence 0 2 0
scientist 0 2 0
field 0 2 0
astronomy 0 2 0
astronomy 0 3 1
concentrates 0 3 1
studies 0 3 1
specific 0 3 1
question 0 3 1
outside 0 3 1
scope 0 3 1
earth 0 3 1
astronomy 0 4 1
concentrates 0 4 1
studies 0 4 1
field 0 4 1
outside 0 4 1
scope 0 4 1
earth 0 4 1

Figure 3.4: Excerpt of the scientists wordsfile.

3.3 Full-text Index Building

The wordsfile and docsfile are not necessary to build the full-text index since
the literals of the respective RDF database can be used. Both options can also be used
together. In the following, we will look at the full-text index building with both options
used together.

Load the RDF Vocabulary

First the RDF vocabulary is loaded from disk.
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Create the Text Vocabulary

To create the text vocabulary, the wordsfile and the RDF vocabulary are parsed. All
words from the wordsfile are collected in a set. For the RDF vocabulary each literal is
split into words using a tokenizer. The tokenizer splits strings at all non-alphanumerical
characters. Those words are then collected in the same set. This set is first sorted
and then parsed, assigning each word a unique WordVocabIndex. This leads to the
WordVocabIndexes being assigned in lexicographical order.

Get the Scoring Data

If the scoring metric was specified to be BM25 or TF-IDF, then information for these two
metrics is gathered. To gather these two metrics, the docsfile is parsed once. During
the parsing, an inverted index is built, collecting information on how often and in which
documents words occur, as well as how long the documents are. During the building of
the half-inverted text index table, these values are used to calculate the respective score.

Calculate the Block Boundaries

In this step, the block boundaries for the half-inverted text index are calculated. For
this, the lexicographically ordered text vocabulary is parsed. Block boundaries are set
whenever a word is encountered that either: Has a next word with a new four-letter prefix,
has a next word shorter than four letters, is shorter than four letters, or is the last word
of the vocabulary. This leads to each word shorter than four letters having an own block,
and all other words being in their respective four-letter prefix blocks. Note that the blocks
have not been written yet.

Build the half-inverted Text Index Table

In the next step, the words and entities are processed for the half-inverted text index. To
collect all information, a table is used. This table has five columns, as seen in Figure 3.5.
The first column is for the BlockIndexes that govern which block the entry is written
to later. The second column is a flag for whether the entry is a word or an entity. The third
column contains the TextRecordIndexes. The fourth column contains the Word-
VocabIndexes for words and the VocabIndexes for entities. The last column contains
the Scores. Once again the wordsfile and RDF vocabulary are parsed. The words in
the wordsfile are pre-sorted by TextRecordIndex. Due to this ordering, we can
collect all information of a text record in two maps. One map for words and their scores
and one map for entities and their scores. If scoring is not set to BM25 and TF-IDF, the
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scores present in the wordsfile are used. If the scores of the wordsfile are used
and words or entities occur multiple times in one text record, the scores are summed up.
When the next text record is reached, the two maps are used to add the whole previous
text record to the table. For each word in the word map, the BlockIndex is looked up,
and all necessary information is written as a row to the table. During this, all distinct
BlockIndexes touched by the words are tracked. All entities of the text record are
added once for each distinct BlockIndex together with their score. This duplication is
necessary since later only one block is returned, and the block needs to contain all entities
co-occurring with any word of the block. This collecting of text records and then writing
them to the table is first done for the wordsfile and afterward for the RDF literals.
The literals are treated as text records containing one entity: the literal itself. An example
table that is filled using the first four text records of the scientists text corpus can be seen
in Figure 3.5.

Sort the half-inverted Text Index Table

After collecting all the information, the table is sorted by the order of the columns.
BlockIndex first, then by the flag whether the entry is a word or entity, then by the
TextRecordIndex, then by the WordVocabIndex or the VocabIndex, and lastly
by Score.

Write the half-inverted Text Index to disk

After sorting, the half-inverted text index table is parsed. This time, block by block instead
of text record by text record. For each block, all word postings and all entity postings are
collected. Due to the sorting of the table, this leads to two lists. One list for the words and
one for the entities. Both lists are sorted by TextRecordIndex, then by WordVocab-
Index or VocabIndex, and lastly by Score. This can be seen in Figure 3.1. The word
list is compressed and saved to file column by column, first TextRecordIndexes, then
WordVocabIndexes, and then Scores. After the word postings are written to disk,
the entity postings are written in the same manner. At the end of each block, its metadata
is written, which contains information like the first and last WordVocabIndex. After
writing all blocks, metadata for the whole full-text index is written.

Build the 'docsDB'

As a last step, the docsfile is parsed and written to a file. The file keeps track of where
a certain document starts. This file can later be used to populate a map that, for a given
TextRecordIndex, returns the matching document.

12
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Old half-inverted text index table example:

Block
Index

Text
Record
Index

isEntity
Word or
Entity
Index

Score Word or Entity

0 2 0 0 0 :s:firstsentence
1 1 0 1 1 astronomer
1 1 0 2 1 astronomy
1 2 0 1 0 astronomer
1 2 0 2 0 astronomy
1 3 0 2 1 astronomy
1 4 0 2 1 astronomy
1 1 1 0 0 <Astronomer>
1 2 1 0 0 <Astronomer>
2 3 0 3 1 concentrates
2 4 0 3 1 concentrates
3 3 0 4 1 earth
3 4 0 4 1 earth
4 1 0 5 1 field
4 2 0 5 0 field
4 4 0 5 1 field
4 1 1 0 0 <Astronomer>
4 2 1 0 0 <Astronomer>
5 3 0 6 1 outside
5 4 0 6 1 outside
6 3 0 7 1 question
7 1 0 8 1 scientist
7 2 0 8 0 scientist
7 1 1 0 0 <Astronomer>
7 2 1 0 0 <Astronomer>
8 3 0 9 1 scope
8 4 0 9 1 scope
9 3 0 10 1 specific
10 3 0 11 1 studies
10 4 0 11 1 studies

Figure 3.5: Old half-inverted text index table example from the scientists text corpus.
Note this example shows a sorted table.
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3.4 Full-text Index Retrieval

During the retrieval, the user has two main options to scan the full-text index. They can
either use a WordScan or an EntityScan. The WordScan is executed with the keyword
ql:contains-word. This keyword can be used as a predicate in a SPARQL query. The
respective object is a string of one or multiple words or prefixes, and the subject is the
variable used to match text records. A simple WordScan and the result of it can be seen in
Figure 3.6 and Figure 3.7.

Example WordScan query:

SELECT * WHERE {
?doc ql:contains-word "test" .

}

Figure 3.6: Example query for a simple WordScan.

Results excerpt:

?ql_score_word_doc_test ?doc

1 The theory of mind hypothesis is sup-
ported by the atypical responses . . .

1 Commercial availability of tests may pre-
cede adequate understanding . . .

1 In Aristotelian science, especially in biol-
ogy, things he saw himself have . . .

1 The new 1901 Constitution of Alabama
included provisions for voter . . .

Figure 3.7: Excerpt of the results of the query seen in Figure 3.6 executed on the Freebase
easy database. Query was executed on 2025-08-13 at 11:31:15 on the QLever website.
Link to query: https://qlever.cs.uni-freiburg.de/fbeasy/H7UGBm

To understand later changes, we will look at the WordScan internally. First, the query
is parsed. For the query seen in Figure 3.6, the query tree only consists of one single
operation. That operation is the WordScan. The WordScan looks up the WordVocab-
Index range for the queried word or prefix. For a word, this range only consists of one
WordVocabIndex, but for a prefix, the range spans multiple WordVocabIndexes.
With the larger value of this range, a binary search is performed to find the block containing
the word or prefix. Since the search only allows prefixes of a minimum length of four,

14

https://qlever.cs.uni-freiburg.de/fbeasy/H7UGBm


Background

it is checked whether the smaller WordVocabIndex is in the selected block. If this is
not the case, the query fails, since only one block can be returned. The word list of the
selected block is then decompressed into a table with the columns TextRecordIndex,
WordVocabIndex, and Score. If the block contains words outside the queried range,
the table is parsed and the unnecessary words are filtered. If the WordScan was done using
a prefix, the column for the WordVocabIndexes is kept; else, it is deleted. To show
the user a human- readable result, the TextRecordIndexes are replaced by the related
documents from the 'docsDB'. Note multiple different TextRecordIndexes can point
to a single document due to the relation described in Figure 3.3. If the column containing
the WordVocabIndexes was not removed, the WordVocabIndexes are replaced by
the respective words. A query with multiple words or prefixes results in multiple Word-
Scans that are then joined on the TextRecordIndex column. Such a query and the
resulting query execution tree can be seen in Figure 3.8 and Figure 3.9.

Example multiple WordScan query:

SELECT * WHERE {
?doc ql:contains-word "test comp*" .

}

Figure 3.8: Example query where object of ql:contains-word has multiple words.

Multiple WordScan query execution tree:

Figure 3.9: Query execution tree of Figure 3.8. Query was executed on the Freebase
easy dataset on 2025-08-13 at 17:17:07 using the QLever website. Link to query:
https://qlever.cs.uni-freiburg.de/fbeasy/2DmLm7

The EntityScan works similarly to the WordScan. As explained above, the query
cannot execute an EntityScan without a WordScan on the same text record variable. This
is because the EntityScan is used to find entities co-occurring with words in certain text
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records. In the query planning step for each ql:contains-entity, it is looked up what Word-
Scans are planned on the same text record variable. For each WordScan, all words and
prefixes found are collected. Then it is looked up which word or prefix has the smallest
entity list in its block. The word or prefix with the smallest entity list in its block is then
assigned to the EntityScan. Afterward, the process to find the correct block is the same as
for the WordScan. If the block containing the assigned word or prefix is found, the entity
list of the block is decompressed into a table. The table is the same as for the WordScan,
but instead of the second column containing WordVocabIndexes, the column contains
VocabIndexes that correspond to entities of the RDF vocabulary. EntityScans can be
done using a variable entity or a fixed entity. This means we can either scan for all entities
co-occurring with a word or look for a specific entity. If only scanning for a fixed entity,
the table is filtered for said entity. The intermediate result table now contains all variable
or fixed entity postings for all TextRecordIndexes present in the block. Since not all
TextRecordIndexes present in this block belong to text records containing the query
word or prefix, the EntityScan is joined with a WordScan on the TextRecordIndex
variable. This leaves only the text records where the queried words or prefixes co-occur
with the entities. One simple example query and the respective query execution tree can
be seen in Figure 3.10 and Figure 3.11.

Example EntityScan query:

SELECT * WHERE {
?doc ql:contains-word "test" .
?doc ql:contains-entity ?entity .

}

Figure 3.10: Example query for a simple EntityScan.
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EntityScan query execution tree:

Figure 3.11: Query execution tree of 3.10. Query was executed on the Freebase easy
dataset on 2025-08-13 at 17:57:20 using the QLever website. Link to query: https:
//qlever.cs.uni-freiburg.de/fbeasy/eSFLEp

3.5 Theoretical Analysis

In this section we will look at the theoretical runtime of the full-text index building as well
as the runtime of the WordScan and the EntityScan.

3.5.1 Full-text Index Building

As seen above, the steps for full-text index building are the following:

1. Load the RDF Vocabulary

2. Create the Text Vocabulary

3. Get the Scoring Data

4. Calculate the Block Boundaries

5. Build the half-inverted Text Index Table

6. Sort the half-inverted Text Index Table

7. Write the half-inverted Text Index to disk

8. Build the 'docsDB'

Since the steps are executed in order we will calculate the runtime of each step and at
the end see which term asymptotically outgrows the others.
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Loading the RDF Vocabulary

Let 𝑡1 be the runtime of loading the RDF vocabulary from disk. The operation depends
on the size of the RDF vocabulary. This leads to:

𝑡1 ∈ 𝑂 (𝑅)
𝑅 = size of the RDF vocabulary

Create the Text Vocabulary

Let 𝑡2 be the runtime of building the text vocabulary. To build the text vocabulary the
whole wordsfile and optionally the RDF vocabulary is parsed. For each line in the
wordsfile that is marked as word line and not entity line, the word is added to a hash
set. Afterward, the RDF vocabulary is parsed. Each literal is split up into single words
and each word is added to the hash set. At a last step the hash set is sorted and parsed, to
assign each word a WordVocabIndex in lexicographical order. To calculate 𝑡2 we will
split it up into sections:

𝑡12 = Time to parse the wordsfile and add the words to the hash set

𝑡22 = Time to parse the RDF vocabulary and add the words of the literals to the hash set

𝑡32 = Time to build the text vocabulary from the hash set

For the parsing the wordsfile the size of the wordsfile is relevant. For each
word a hash set operation is performed and for each entity the line is skipped. This leads
to:

𝑡12 ∈ 𝑂 (𝑊)
𝑊 = # lines in the wordsfile

For the parsing of the RDF vocabulary each non literal entity is skipped. Each literal
is split into single words and for each word a hash set operation is performed. This leads
to:

𝑡22 ∈ 𝑂 (𝑅𝑁𝐿 + 𝐿)
𝑅𝑁𝐿 = # non-literals in the RDF vocabulary

𝐿 = total # words in all literals

𝑅 = size of the RDF vocabulary

The relation between 𝑅𝑁𝐿 , 𝑅, and 𝐿 is complicated. With the assumption that 𝑅𝑁𝐿 ∝
𝑅 ∝ 𝐿 which is often the case in the real application this can be simplified to:

𝑡22 ∈ 𝑂 (𝑅)
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To build the vocabulary the hash set with all words is sorted and then each word gets
assigned a WordVocabIndex. The runtime of the sorting asymptotically outgrows the
runtime of assigning the WordVocabIndexes. This leads to:

𝑡32 ∈ 𝑂 (𝑉 · 𝑙𝑜𝑔(𝑉))
𝑉 = # distinct words of the wordsfile and of all literals

= Size of the text vocabulary

Heap's Law [10] says that the size of a vocabulary 𝑉 is proportional to 𝑀𝜆 where 𝑀 is
the number of words the vocabulary is built upon and 0 < 𝜆 < 1. Together with the
assumption that 𝐿 ∝ 𝑅 this leads to:

𝑉 ∝ (𝑊 + 𝐿)𝜆 ∝ (𝑊 + 𝑅)𝜆

⇒ 𝑡32 ∈ 𝑂 ((𝑊 + 𝑅)𝜆 · 𝑙𝑜𝑔((𝑊 + 𝑅)𝜆))
⇒ 𝑡32 ∈ 𝑂 ((𝑊 + 𝑅)𝜆 · 𝜆 · 𝑙𝑜𝑔((𝑊 + 𝑅)))
⇒ 𝑡32 ∈ 𝑂 ((𝑊 + 𝑅)𝜆 · 𝑙𝑜𝑔(𝑊 + 𝑅))

Out of the three times, 𝑡32 asymptotically outgrows 𝑡12 and 𝑡22. This leads to:

𝑡2 ∈ 𝑂 ((𝑊 + 𝑅)𝜆 · 𝑙𝑜𝑔(𝑊 + 𝑅))

Get the Scoring Data

Let 𝑡3 be the runtime of getting the scoring data. To get the scoring data an inverted index
is built. This inverted index maps WordVocabIndexes to an inner map, that then maps
DocumentIndexes to TermFrequencies. Together with this main map another
map is used to keep track of the length of documents. To build the inverted index and
the document length map, all documents are parsed. For each word in a document it is
looked up whether the word exists in the text vocabulary. If it exists, the inner map for the
WordVocabIndex is retrieved, and the TermFrequency for the respective document
is increased. Afterward, the entry in the document length map for the DocumentIndex
is increased by one. In terms of runtime this means: For each word, that is encountered
in a document, and that is present in the text vocabulary, there are three hash operations.
Each word that is not in the text vocabulary is skipped. Since the number of total words
in all documents is proportional to the number of lines of the wordsfile this leads to:

𝑡3 ∈ 𝑂 (𝑊)
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Calculate the Block Boundaries

Let 𝑡4 be the runtime of calculating the block boundaries. To calculate the block boundaries
the whole text vocabulary is parsed and at each new word that is shorter than four letters
or that starts with a new four letter prefix a block boundary is set. The action of setting a
block boundary works by saving the last WordVocabIndex of a block. This leads to:

𝑡4 ∈ 𝑂 (𝑉)
⇒ 𝑡4 ∈ 𝑂 ((𝑊 + 𝑅)𝜆)

Build the half-inverted Text Index Table

Let 𝑡5 be the runtime of building the half-inverted text index table. To build the table,
all text records are collected and written to the table. Each entity of a text record is
written once for each block touched by the words of a text record. Under the realistic
assumption that no text record contains words of all blocks, the number of touched blocks
is proportional to the number of words in the text record. Since entities were assigned
to words of the text records, this means the number of entities in a text record is also
proportional to the number of words in a text record. Let 𝑇𝑚𝑎𝑥 be the number of words in
the largest text. This means we have a maximum of 𝑇2

𝑚𝑎𝑥 number of writing operations for
each text record. Since the number of text records is proportional to (𝑊 + 𝑅), this leads
to:

𝑡5 ∈ 𝑂 ((𝑊 + 𝑅) · (𝑇𝑚𝑎𝑥)2)

The assumption that the maximum size of a text record does not grow with the total
number of text records after a certain threshold is reached, leads to 𝑇𝑚𝑎𝑥 being a constant.
This results in:

𝑡5 ∈ 𝑂 (𝑊 + 𝑅)

Sort the half-inverted Text Index Table

Let 𝑡6 be the runtime of sorting the half-inverted index table. To calculate the runtime
of this we need to evaluate the size of the half-inverted index table 𝐼. In calculating the
runtime to build this table we saw it can be built in 𝑂 (𝑊 + 𝑅). From this 𝐼 ∝ (𝑊 + 𝑅)
follows, which leads to:

𝑡6 ∈ 𝑂 ((𝑊 + 𝑅) · 𝑙𝑜𝑔(𝑊 + 𝑅))
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Write the half-inverted Index to disk

Let 𝑡7 be the runtime of writing the half-inverted index table. Each write operation has a
constant cost in terms of the half-inverted index table size. This leads to:

𝑡7 ∈ 𝑂 (𝑊 + 𝑅)

Build the 'docsDB'

To build the 'docsDB' the docsfile is parsed and each entry is written to a file while
keeping track of the end position of each document. Let 𝑡8 be the time building the
'docsDB' takes. Then:

𝑡8 ∈ 𝑂 (𝐷)
⇒ 𝑡8 ∈ 𝑂 (𝑊)

Overall Runtime of the full-text Index Building

Let 𝑡 be the overall runtime. To calculate the asymptotic growth of 𝑡 we will look at the
growth rates of 𝑡1 to 𝑡8:

𝑡1 ∈ 𝑂 (𝑅)
𝑡2 ∈ 𝑂 ((𝑊 + 𝑅)𝜆 · 𝑙𝑜𝑔(𝑊 + 𝑅))
𝑡3 ∈ 𝑂 (𝑊)
𝑡4 ∈ 𝑂 ((𝑊 + 𝑅)𝜆)
𝑡5 ∈ 𝑂 (𝑊 + 𝑅)
𝑡6 ∈ 𝑂 ((𝑊 + 𝑅) · 𝑙𝑜𝑔(𝑊 + 𝑅))
𝑡7 ∈ 𝑂 (𝑊 + 𝑅)
𝑡8 ∈ 𝑂 (𝑊)

We can immediately see when comparing asymptotic growth:

𝑡1, 𝑡3, 𝑡8 < 𝑡5, 𝑡7 < 𝑡6

Since 0 < 𝜆 < 1 it also holds that:

𝑡2 < 𝑡6

𝑡4 < 𝑡5, 𝑡7 < 𝑡6

Therefore 𝑡6 dominates asymptotically leading to:

𝑡 ∈ 𝑂 ((𝑊 + 𝑅) · 𝑙𝑜𝑔(𝑊 + 𝑅))
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Under the assumptions that the number of total words in all literals is proportional to the
RDF vocabulary size. And that the number of maximum words in a single text record is
not proportional to the number of total text records after a certain threshold.

3.5.2 WordScan

The WordScan has four different steps:

1. Look up the correct block for the given WordVocabIndex range

2. Read word list of the block

3. Filter the intermediate result

4. Replace IDs by readable values

We assume the WordScan is the only operation in the query. In this case we include the
last step replacing the IDs by readable values since QLever does this as last step for every
query.

Find the correct block

Finding the correct block for a given WordVocabIndex range is rather simple. During
full-text index building the largest WordVocabIndex of each block has been written to
the metadata in ascending order. Therefore, we can use the upper value of the Word-
VocabIndex range to perform a binary search on this list.

Let 𝑡1 be the runtime of finding the correct block. Let 𝐵 be the number of blocks
written during full-text index building. Then:

𝑡1 ∈ 𝑂 (𝑙𝑜𝑔(𝐵))

Read the word list of the block

Let 𝑡2 be the runtime of reading the word list of the block. Let 𝐵𝑤
𝑖

be the size of the word
list of block 𝑖 that should be returned. Then:

𝑡2 ∈ 𝑂 (𝐵𝑤
𝑖 )

Filter the intermediate result

Let 𝑡3 be the runtime of filtering the intermediate result. Then:

𝑡3 ∈ 𝑂 (𝐵𝑤
𝑖 )
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Replace the IDs by readable values

Let 𝑡4 be the runtime of replacing the IDs by readable values. Let 𝑆 be the size of the
table. We know 𝑆 ∝ 𝐵𝑤

𝑖
. Then:

𝑡4 ∈ 𝑂 (𝐵𝑤
𝑖 )

Overall Runtime for a WordScan

Let 𝑡 be the runtime of a WordScan. Then:

𝑡 ∈ 𝑂 (𝑙𝑜𝑔(𝐵) + 𝐵𝑤
𝑖 )

3.5.3 EntityScan

Since the EntityScan finds all entities co-occurring with a word a prefix it has an assigned
word or prefix. Using this, the EntityScan works similar to the WordScan except the
filtering step. Instead of filtering, the intermediate result is joined with a WordScan. For
simplicity we will assume only one WordScan is used together with an EntityScan. The
steps then are:

1. Look up the correct block for the given WordVocabIndex range

2. Read entity list of the block

3. Join the two sorted results

4. Replacing IDs by readable values

Find the correct block

This is exactly the same as for the WordScan, therefore:

𝑡1 ∈ 𝑂 (𝑙𝑜𝑔(𝐵))

Read the entity list of the block

Let 𝐵𝑒
𝑖

be the size of the entity list of block 𝑖 that should be returned. Then:

𝑡2 ∈ 𝑂 (𝐵𝑒
𝑖 )
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Join the two sorted results

Let 𝑡3 be the runtime of joining the two sorted results. Let 𝑆 be the output size of this
operation. The output size depends on the type of WordScan used. If the WordScan was
executed on a prefix this can lead to the same TextRecordIndex appearing multiple
times in the WordScan result. When joining the EntityScan result with the WordScan
result, each row of the EntityScan containing a certain TextRecordIndex is combined
with each row of the WordScan having the same TextRecordIndex. If the EntityScan
was executed together with a single prefix scan this leads to a worst case of:

𝑆 = 𝐵𝑒
𝑖 · 𝐵𝑤

𝑖

⇒ 𝑡3 ∈ 𝑂 (𝐵𝑒
𝑖 · 𝐵𝑤

𝑖 )

Since the size of the word list of a block is proportional to the size of the entity list this
leads to:

⇒ 𝑡3 ∈ 𝑂 ((𝐵𝑒
𝑖 )2)

Replace the IDs by readable values

Let 𝑡4 be the runtime of replacing the IDs by readable values. Let 𝑆 be the size of the
table. The same upper bound hold as above. This leads to:

𝑡4 ∈ 𝑂 ((𝐵𝑒
𝑖 )2)

Overall Runtime for an EntityScan

Let 𝑡 be the runtime of an EntityScan. Then:

𝑡 ∈ 𝑂 (𝑙𝑜𝑔(𝐵) + (𝐵𝑒
𝑖 )2)
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4. Text Index Literal Filtering
As explained in the introduction, the full-text index can be built or extended using literals
of the RDF vocabulary. We saw the literals could either be strings or a mix of a value
and an IRI specifying the datatype of the value. In QLever, the literals that are a mix of a
datatype and an IRI are classified if possible. One example IRI commonly used in literals
is <http://www.w3.org/2001/XMLSchema#int>. Internally, literals with this
IRI are classified as integers and not as literals. But there are many dataset-specific IRIs
used in literals, which leads to QLever classifying these mixed literals as literals. As
a result, many literals are irrelevant for the full-text index since they, for example, only
contain a number or a label. Another problem of the old building of the full-text index
from literals was the missing retrieval of texts, as well as the overhead of parsing the whole
RDF vocabulary instead of only the literals.

4.1 Feature changes

All three issues mentioned above can be solved with the filtering of triples and pre-saving
of literals during the RDF index building. To filter the most important literals, we can look
at certain predicates. For example, the predicate "<description>" is probably followed by
a more informative literal in terms of the full-text index than the predicate "<label>". A
good query to get an understanding of the important predicates in a dataset can be seen in
Figure 4.1.

SPARQL query to find relevant predicates:

SELECT ?p (COUNT(?o) AS ?count)
(SAMPLE(?o) AS ?exampleO) WHERE {

?s ?p ?o .
}
GROUP BY ?p
ORDER BY DESC(?count)

Figure 4.1: This query can be used to find possible predicates that hint on qualitative
object literals for the full-text index.

A regex filter was implemented that can be used during RDF index building to filter
triples by their predicate. The regex filter looks for a partial match. A full match syntax
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can still be achieved using the standard regex syntax "ˆfullMatch$". The user can specify
whether the filter should work as a whitelist or a blacklist. If the filter works as a whitelist,
all literal objects of matching triples are added to the full-text index. If the filter works as
a blacklist, all literal objects of non-matching triples are added to the full-text index. The
filtering step is performed during the input parsing phase of the RDF index building.

After the filtering is performed, all literals marked as 'inTextIndex' are written to
a file as their VocabIndexes. This file is called the literal file. If the same literal
appears with different values for 'inTextIndex', it is added to the literal file as long as
there is one occurrence where 'inTextIndex' is true. The literal file is used during the
full-text index building together with the RDF vocabulary to retrieve the literals using the
VocabIndexes instead of parsing the whole RDF vocabulary.

If the user builds the full-text index upon an old RDF index that does not have the
literal file, QLever reverts to the old parsing of the whole RDF vocabulary. It is also not
possible to specify a regex when only adding the full-text index.

The literal file is also used for the retrieval. If a text record index i returned in the
result of a WordScan or an EntityScan is out of range of the DocumentIndexes in the
'docsDB', we know it belongs to a literal. Since each literal added to the text index increases
the number of text records by one, we can subtract the highest DocumentIndex of the
'docsDB' from i and get index j. We then know that the j-th literal of the literal file is the
requested text record. This solves the problem of empty results when literals should be
returned.

4.2 Usage

The Text Index Literal Filtering adds two options to the index builder of QLever and
extends the meaning of one already available option:

• –text-index-regex, -r [option]: The option given is the regex used to match predicates.

• –text-index-regex-is-blacklist, -R: If this flag is set the filtering works as blacklist,
excluding all literal objects of matching triples and adding all literal objects of
non-matching triples.

• –text-words-from-literals, -W: This was the option to add literals to the full-text
index. Now this flag works as indicator to add all literals to the full-text index
regardless if they appear as objects or subjects. It cannot be used together with the
'-r' option.
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4.3 Theoretical Analysis

We will evaluate the changes made to the runtime in two different parts. The full-text
index building and the retrieval.

4.3.1 Full-text Index Building

Without Filtering

We will first look at the saving of the literals without filtering. This change modifies the
runtime of each step where the whole RDF vocabulary was parsed to find the literals. This
improves times when building the text vocabulary and the half-inverted text index table,
but it does not change the asymptotic runtime of the full-text index building. Meaning the
total runtime 𝑡 remains in 𝑂 ((𝑊 + 𝑅) · 𝑙𝑜𝑔(𝑊 + 𝑅)).

With Filtering

If we look at the way filtering influences full-text index building we see a major improve-
ment. Depending on the filter used, the number of words in all literals that get written
to the full-text index decreases. This modifies to proportional relation between 𝐿 and 𝑅

from 𝐿 = 𝑘 · 𝑅 to 𝐿 = 𝑙 · 𝑅 with 𝑙 < 𝑘 . How much smaller 𝑙 is than 𝑘 depends on the filter
chosen. In theory this can improve runtime in a noticeable way, but does not change the
asymptotic runtime.

4.3.2 Retrieval

During the retrieval two things change. First, since there are potentially fewer text records
and words the block sizes and the number of blocks are reduced. In theory, this can
improve retrieval times. Second, the cost to look up the value for the TextRecord-
Index changes since now TextRecordIndexes larger than the 'docsDB' correspond
to literals. This cost still remains constant, but is slightly increased. In theory, this can
slightly worsen retrieval times.
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5. Document only Text Index Building
In section 3.2 we looked at the wordsfile and docsfile. While the docsfile
represents a common form of a text database, thewordsfile is rather complicated. Since
QLever can be used as an engine for self-created databases, this format is an obstacle for
users to build their own full-text index. The reason for the format of the wordsfile is
the automatic extraction of entities from documents. In [6] it is explained that documents
have to be split up into smaller so-called contexts to extract triple relations from texts. The
so-called contexts are referred to as text records in the following. The example shown in
[6] is the sentence "Ruth Gabriel, daughter of the actress and writer Ana Maria Bueno,
was born in San Francisco". This sentence contains information that needs multiple triples
to be described. Therefore, this one sentence is split up into the following text records:

1. Ruth Gabriel was born in San Francisco

2. Ruth Gabriel, daughter of Ana Maria Bueno

3. actress Ana Maria Bueno

4. writer Ana Maria Bueno

In this format it is easier to annotate entities to words. While this explains the reason for the
format of thewordsfile, QLever itself or the QLever wiki does not provide a method for
the user to create such awordsfile from a givendocsfile. Besides thewordsfile
not being easily reproducible, this leads to other problems as well. First, if a document
contains a word, for example, "space" and an entity, for example, "<Astronomer>", but
the distance between them is to high, they do not appear in the same text record. This
leads to the query seen in Figure 7.15 not finding them using the old full-text index.
The second problem that can be seen in Figure 7.16 is the repetition of texts. This stems
from the relation between TextRecordIndexes and DocumentIndexes explained in
section 3.2. MultipleTextRecordIndexes are matched to singleDocumentIndexes
and therefore return the same text. This provides no extra information for the user and
clutters the result.

5.1 Feature changes

To combat the above-mentioned problems, QLever now provides two more options for
the full-text index building. The first option is to build the full-text index only from the
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docsfile. This leads to the full-text index being completely separated from the main
RDF index. While this might be wanted for some special cases, it removes the important
feature of a deeply connected SPARQL+Text engine. To still provide the possibility to
connect entities to documents, the second new option allows users to only add entities
from a wordsfile. In both cases, pre-computed scores for words are lost.

Building the full-text index from only the docsfile does not change much during
full-text index building. Instead of parsing the wordsfile to build the vocabulary or
the half-inverted index, the docsfile is parsed. Each document is then split up the
same way as the literals, and each word is transformed to the line format of the words-
file. For example, the word "puddle" from a document with DocumentIndex 5 is
transformed to:

Word or Entity isEntity TextRecordIndex Score
puddle 0 5 0

If the option to only add entities from the wordsfile is used, then the wordsfile
and docsfile are parsed in parallel during the half-inverted index building. This needs
to be done since all word and entity mentions for a text record have to be collected before
the next text record is parsed.

5.2 Usage

The Document only Text Index Building feature adds two options to the QLever index
builder:

• –text-words-from-docsfile, -D: If this flag is given the docsfile is parsed for the
full-text index instead of the wordsfile.

• –text-entities-from-wordsfile, -E: This flag can only be used together with the '-D'
option. If this flag is given the wordsfile is used to link entities to documents.

5.3 Theoretical Analysis

We will look at the runtime of the full-text index building using a wordsfile that only
contains entities and using the docsfile for the words.
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5.3.1 Full-text Index Building

Choosing to build from the docsfile essentially means transforming every word in
the docsfile to a word of the wordsfile. This means we can use the old runtime
analysis but with a changed proportion between the number of documents, 𝐷, and the
number of lines in the wordsfile, 𝑊 . Whereas before the relation was 𝑊 = 𝑘 · 𝐷,
it now is modified to 𝑊 = 𝑙 · 𝐷. It is not easy to say whether 𝑘 or 𝑙 is bigger since the
wordsfile did not contain stop words from the documents but at the same time repeated
the non-filtered words due to the splitting into overlapping text records. For asymptotic
growth, this does not change anything. Therefore, the total time to build the full-text index
𝑡 remains in 𝑂 ((𝑊 + 𝑅) · 𝑙𝑜𝑔(𝑊 + 𝑅)).

5.3.2 Retrieval

Since the wordsfile normally contains all words from all documents excluding stop
words, using the docsfile to build the full-text index can result in more words in the
text vocabulary. This can lead to more blocks, potentially slightly worsening query times.
At the same time, words are not duplicated anymore, which can lead to smaller blocks,
potentially slightly improving query times.
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6. Text Index Block Changes

In chapter 3 we saw how the half-inverted full-text index is built. To recall, each word
is assigned a BlockIndex. Each word having the same four-letter prefix gets the same
BlockIndex assigned. For all shorter words, an own block is created. The Block-
Indexs are assigned in lexicographical order. This ordering is necessary to implement
the half-inverted index. Since naturally some prefixes appear more often then others,
this leads to vastly different block sizes. For the scientists dataset, this can be seen in
Figure 6.1.

The 10 most common prefixes in the scientists dataset

Number of Results Prefix
91,824 work
80,856 scie
79,722 publ
78,069 univ
54,155 comp
51,967 awar
51,965 inte
48,689 rese
47,413 book
44,533 phys

Figure 6.1: The 10 most common prefixes in the scientists dataset. This information was
calculated by executing a WordScan for each prefix 'aaaa' to 'zzzz' on the scientists text
index.

Comparing the first and the tenth most common prefixes in Figure 6.1, we can already
see a factor of two difference. This difference only gets larger when looking at even
less used prefixes. Out of a possible 264 = 456,976 prefixes, only 36,235 appear in the
scientists dataset.

In the past, to efficiently use this block structure, the retrieval was limited to WordScans
with prefixes of a minimum size of four. This leads to fast queries since only one block
has to be read, but it limits the user.
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6.1 Feature changes

To solve the problems mentioned above, a configurable block size was implemented
together with the possibility to execute WordScans with arbitrary prefix lengths. To enable
WordScans with arbitrary prefix lengths, multiple blocks have to be read and merged.
Since the blocks are already sorted, a sorted table merger was implemented to improve the
speeds of this compared to appending and sorting the blocks. We will look at the changes
made in two parts. The full-text index building part and the retrieval part.

6.1.1 Full-text Index Building

The now set block size makes calculating the block boundaries obsolete. Furthermore,
the half-inverted full-text index table is now split into two tables. One for words and
another for entities. An example for the words table can be seen in Figure 6.2, and an
example for the entity table can be seen in Figure 6.3. It can be seen that the column
for the BlockIndex was removed from both tables. Moreover, the column indicating
whether the row belongs to a word or entity was removed since it is not needed anymore.
The entity table contains a column for WordVocabIndexes that is used to track the
co-occurrences of words with entities.

To build these two tables, the wordsfile and, optionally, the RDF vocabulary are
parsed, and each text record is collected like before. All word postings of the text record
are written to the word table. In the old version, the entity postings were written to the
half-inverted full-text index table for each block touched by the words of the text record.
Since we do not know the blocks the words will end up in now, we cannot deduplicate the
postings at this point. Therefore, we have to add each entity posting to the entity table
once for each word of the text record.

After collecting all text records, both tables are sorted by WordVocabIndex. Then
the word table is parsed. The user-specified number of word postings are collected.
Once the specified block size is reached, all entity postings up to the currently largest
WordVocabIndex are collected. The collected posting lists are then sorted by Text-
RecordIndex, WordVocabIndex or VocabIndex, and Score. Now the entity
list is deduplicated. Afterward, both lists are written to the block in the same manner the
old version did.

The set number of word postings per block introduces a new caveat. Word postings
with the same WordVocabIndex now can appear in multiple blocks. Therefore, it is not
enough to track the block boundaries with only the largest WordVocabIndex of each
block. Instead, the smallest and largest WordVocabIndexes for each block are now
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saved. Note that it suffices to write the entities co-occurring with a certain WordVocab-
Index in the first block the WordVocabIndex appears in. This is because during
retrieval all entity lists of all blocks containing the WordVocabIndex are retrieved,
which includes the first block; therefore, no information is lost.

Word table example:

WordVocab-
Index

Text-
Record-
Index

Score Word

0 2 0 :s:firstsentence
1 1 1 astronomer
1 2 0 astronomer
2 1 1 astronomy
2 2 0 astronomy
2 3 1 astronomy
2 4 1 astronomy
3 3 1 concentrates
3 4 1 concentrates
4 3 1 earth
4 4 1 earth
5 1 1 field
5 2 0 field
5 4 1 field
6 3 1 outside
6 4 1 outside
7 3 1 question
8 1 1 scientist
8 2 0 scientist
9 3 1 scope
9 4 1 scope
10 3 1 specific
11 3 1 studies
11 4 1 studies

Figure 6.2: Example for the new word table used in the full-text index building of the Text
Index Block Changes feature.

6.1.2 Retrieval

The new retrieval works similar to the old retrieval except that now not only one block
is returned for a given WordVocabIndex range but multiple. For both WordScans and
EntityScans, we now do two binary searches. One to find the first block containing the
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Entity table example:

Word
Word-
Vocab-
Index

Vocab-
Index

Text-
Record-
Index

Score Entity

astronomer 1 0 1 0 <Astronomer>
astronomer 1 0 2 0 <Astronomer>
astronomy 2 0 1 0 <Astronomer>
astronomy 2 0 2 0 <Astronomer>
field 5 0 1 0 <Astronomer>
field 5 0 2 0 <Astronomer>
scientist 8 0 1 0 <Astronomer>
scientist 8 0 2 0 <Astronomer>

Figure 6.3: Example for the new entity table used in the full-text index building of the
Text Index Block Changes feature.

smaller WordVocabIndex of the queried range, and one to find the last block containing
the larger WordVocabIndex of the queried range. After both blocks are found, they
are collected together with all blocks that are in between. For a WordScan, all blocks are
filtered by the queried WordVocabIndex range. Note, only the first and last block can
contain WordVocabIndexes outside the queried range. After all blocks are collected,
a sorted merge is performed. For a WordScan, only the TextRecordIndex sorting
is preserved; for the EntityScan, the TextRecordIndex and VocabIndex sorting is
preserved. The reason for this stronger sorting during the EntityScan is the removal of
duplicate entity and text record combinations in the result, since multiple blocks could
contain the same entity and text record combinations. Afterward, the same format of result
is returned as in the old retrieval.

6.2 Theoretical Analysis

We will again look at the influence of the changes made to the runtime in two parts. The
full-text index building part and the retrieval part.

6.2.1 Full-text Index Building

Calculating the Block Boundaries

It should be clear that the time needed to calculate the block boundaries is removed from
the full-text index building. This does not change the asymptotic runtime of the total
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full-text index building.

Building the half-inverted Text Index Table

In 3.5.1 we saw that for each text record all entities of the text record were written to the
blocks touched by the words of the text record. We made the assumption that the number
of touched blocks is proportional to the number of words. Now there are no pre-calculated
blocks which means each entity of a text record is written to the entity table once for each
word in the text record. Therefore the worst case for the number of writing operations
done still is (𝑇𝑚𝑎𝑥)2. This leads to the asymptotic runtime remaining the same for this step
and still being in 𝑂 (𝑊 + 𝑅).

Sorting the half-inverted Index Tables

First we will look at the runtime of sorting two tables, one with size 𝐴 and one with size
𝐵, compared to the runtime of sorting a table of size 𝐴 + 𝐵. If 𝐴, 𝐵 > 0:

𝐴 · 𝑙𝑜𝑔(𝐴) + 𝐵 · 𝑙𝑜𝑔(𝐵)
≤ 𝐴 · 𝑙𝑜𝑔(𝐴 + 𝐵) + 𝐵 · 𝑙𝑜𝑔(𝐴 + 𝐵)
= (𝐴 + 𝐵) · 𝑙𝑜𝑔(𝐴 + 𝐵)

The difference is:

(𝐴 + 𝐵) · 𝑙𝑜𝑔(𝐴 + 𝐵) − (𝐴 · 𝑙𝑜𝑔(𝐴) + 𝐵 · 𝑙𝑜𝑔(𝐵))
= 𝐴 · (𝑙𝑜𝑔(𝐴 + 𝐵) − 𝑙𝑜𝑔(𝐴)) + 𝐵 · (𝑙𝑜𝑔(𝐴 + 𝐵) − 𝑙𝑜𝑔(𝐵))

= 𝐴 · 𝑙𝑜𝑔(1 + 𝐵

𝐴
) + 𝐵 · 𝑙𝑜𝑔(1 + 𝐴

𝐵
)

If 𝐴 ∝ 𝐵 this leads to the difference being in:

𝑂 (𝐴)

But since (𝐴 + 𝐵) · 𝑙𝑜𝑔(𝐴 + 𝐵) asymptotically outgrows 𝐴 this does not change the
asymptotic runtime. Since in our case the size of the word table is proportional to the size
of the entity table this holds and the asymptotic runtime stays in𝑂 ((𝑊 +𝑅) · 𝑙𝑜𝑔(𝑊 +𝑅)).

Writing the half-inverted Index Tables

This operation is now extended by the sorting of blocks before they are written. The
number of blocks is proportional to (𝑊 + 𝑅). For each block the size of the word list and
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the entity list are proportional to each other. Let 𝐵𝑠 be the number of word postings per
block the user specified. Then the time to write the half-inverted index tables 𝑡7 is:

𝑡7 ∈ 𝑂 ((𝑊 + 𝑅) · 𝐵𝑠 · 𝑙𝑜𝑔(𝐵𝑠))

The user specified size of the blocks can be viewed as constant leading to:

𝑡7 ∈ 𝑂 (𝑊 + 𝑅)

Overall Runtime

With the block changes made the asymptotic runtime for full-text index building does not
change since (𝑊 + 𝑅) · 𝑙𝑜𝑔(𝑊 + 𝑅) still is the strongest growing term.

6.2.2 WordScan

Finding the correct blocks

With the Text Index Block Changes feature multiple blocks have to be retrieved. This
means two binary searches have to be performed to find the first and last block. This does
not change the asymptotic runtime which is in 𝑂 (𝑙𝑜𝑔(𝐵)) for the number of blocks in the
full-text index 𝐵. Since with this feature the number of blocks is proportional to (𝑅 +𝑊)
this leads to a runtime 𝑡1:

𝑡1 ∈ 𝑂 (𝑙𝑜𝑔(𝑅 +𝑊))

Read the word list of all blocks

Now we know each block has a word list of size 𝐵𝑠. But we do not now the number of
blocks returned. Let 𝑃 be the number of word postings matching the search term of the
query. Then we know that at maximum ⌈𝑃/𝐵𝑠⌉ + 1 blocks are returned. The number of
blocks is proportional to 𝑃 which leads to a runtime 𝑡2:

𝑡2 ∈ 𝑂 (𝐵𝑠 · 𝑃)

If we view 𝐵𝑠 as constant this leads to:

𝑡2 ∈ 𝑂 (𝑃)
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Filter the intermediate result

From all blocks returned only the first and the last can contain WordVocabIndexes out
of the queried range. Since both block word lists are of size 𝐵𝑠, the runtime of this step 𝑡3

is:
𝑡3 ∈ 𝑂 (𝐵𝑠)

If we view 𝐵𝑠 as constant this leads to:

𝑡3 ∈ 𝑂 (1)

Replcaing IDs by readable values

The result size is proportional to 𝑃 which leads to a runtime 𝑡4 of:

𝑡4 ∈ 𝑂 (𝑃)

Over all time for a WordScan

This leads to a total runtime 𝑡 with:

𝑡 ∈ 𝑂 (𝑙𝑜𝑔(𝑊 + 𝑅) · 𝑃)

6.2.3 EntityScan

The size of the entity list is proportional to 𝑃 as well as the size of the word list the entity
list is joined with. This leads to the biggest asymptotic term being 𝑃2 during the join of
both lists. The details why this is where explained in 3.5.3. This leads to the runtime of
an EntityScan 𝑡 ∈ 𝑂 (𝑙𝑜𝑔(𝑊 + 𝑅) · 𝑃2).
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7. Empirical analysis

7.1 Setup

To perform empirical tests, a Hyper-V virtual machine with Ubuntu Server 24.04.3 LTS
was used. The virtual machine runs on a Windows 11 PC with an Intel Core i5-11600K
3.90GHz CPU having 6 cores and 12 logical processors, an NVIDIA GeForce RTX 2070
Super GPU, 32 GB 3200 MT/s DDR4 RAM, and a Samsung SSD 980 PRO 1 TB SSD.
The virtual machine has a set amount of 8 GB of RAM and 6 virtual cores.

7.2 Datasets

Two datasets were used run empirical tests. The scientists dataset and the yago-3 dataset.
Since the yago-3 dataset comes in multiple turtle files, they were merged using the follow-
ing command:

cat *.ttl > yagoComplete.ttl

For the scientists dataset, awordsfilewas created that only contains the entity mentions
from the original wordsfile using the following command:

awk -F’\textbackslash t’ ’\$2 == 1’ \

scientists.wordsfile.tsv \

> scientists.entityfile.tsv

7.3 Program Builds

For each of the three features, the IndexBuilderMain and the ServerMain with a baseline
version and a feature version have been built. The baseline version is the commit the
feature is based upon. This means the difference between the baseline version and the
feature version is only the difference of the feature branch. One exception is the Text
Index Block Changes feature. The difference between the baseline version and the feature
version of the Text Index Block Changes feature is two branches. One branch implements
the Text Index Block Changes, and the other implements the sorted table merge during
retrieval. Also for Text Index Block Changes, there exists a baseline old that refers to
QLever before the implementation of arbitrary prefix search.
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The cmake configure command used:

cmake -DCMAKE_BUILD_TYPE=Release \

-DCMAKE_MAKE_PROGRAM=ninja \

-G Ninja -S . -B ./build \

-DJEMALLOC_MANUALLY_INSTALLED=True \

-DUSE_PARALLEL=true \

-DSINGLE_TEST_BINARY=ON

The cmake build command used:

cmake --build ./build --target all -j 4

For the Text Index Literal Filtering baseline the compilation info is:

-- DATETIME_OF_COMPILATION is "Thu Aug 28 04:44:55 PM UTC 2025"

-- GIT_HASH is "b46dbfd1e0f2470a31c0e79e6f6cee6c75d6d288"

For the Text Index Literal Filtering feature the compilation info is:

-- DATETIME_OF_COMPILATION is "Wed Sep 3 06:00:17 PM UTC 2025"

-- GIT_HASH is "0699d9bf0463a214af8e14c0523af7b2803a2e43"

For the Document only Text Index Building baseline the compilation info is:

-- DATETIME_OF_COMPILATION is "Thu Aug 28 04:44:55 PM UTC 2025"

-- GIT_HASH is "b46dbfd1e0f2470a31c0e79e6f6cee6c75d6d288"

For the Document only Text Index Building feature the compilation info is:

-- DATETIME_OF_COMPILATION is "Thu Sep 4 05:38:40 PM UTC 2025"

-- GIT_HASH is "7355610780daf0187c8c54a84ed059830da20f1b"

For the Text Index Block Changes baseline old the compilation info is:

-- DATETIME_OF_COMPILATION is "Fri Sep 5 09:40:12 AM UTC 2025"

-- GIT_HASH is "d85d630cb6e0b59396737771c31d73bc4cdcf359"

For the Text Index Block Changes baseline the compilation info is:

-- DATETIME_OF_COMPILATION is "Tue Sep 2 10:29:56 PM UTC 2025"

-- GIT_HASH is "299804ed57c615c9f4e87c4c953788f7acd6b45b"

For the Text Index Block Changes feature the compilation info is:

-- DATETIME_OF_COMPILATION is "Tue Sep 2 10:08:44 PM UTC 2025"

-- GIT_HASH is "7f6395b1cb3e43bae46b3696e3b744a6fd149647"
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7.4 Index Builds

The runtime of the index builds was measured using the 'time' command from GNU
Time [11]. For each feature, there are commands with different index building options to
compare the old QLever version with the new features. We will refer to a combination
of options as configuration. Some options are the same across all configurations. The
options '-i', '-f', and '-s' are dataset specific options. Since the 'yago-3' dataset was used
to test the Text Index Literal Filtering feature, the option '-i' specifying the index name
is set to 'yago-3'. Analogously, the 'scientists' dataset was used for the Document only
Text Index Building and Text Index Block Changes features, leading to the index name
'scientists'. The same logic applies to the '-f' option for setting the RDF dataset file and
the '-s' option for setting the settings file. There are two options that are the same across
all configurations. The '-m' option for setting the amount of memory available for index
building. This was set to 8 GB for all builds. The option '-p' specifying whether the index
building should be parallelized was set to true for all configurations. Note that currently
the full-text index building does not offer parallelization; therefore, this option only plays
a crucial role in RDF index building.

As explained in 7.3, the baseline only differs from the feature in the changes made in this
work. Since QLever's index builder provides the option to 'only add the full-text index' on
top of an existing RDF index, this was tested as well. This leads to each configuration being
tested by building both indexes and by only adding the full-text index. Each measurement
of the 'only add full-text index' was executed on the RDF index previously built using the
same configuration for building both indexes. The only exception to this is the Text Index
Literal Filtering feature. Since the regex filter cannot be executed together with the option
to 'only add a full-text index' it was replaced by the option to add all literals. Note this still
leads to a filtered full-text index since the filtering happened during the complete index
building before.

7.4.1 Text Index Literal Filtering

There are three different option configurations that were tested on the Text Index Literal
Filtering feature.

1. Baseline build with add all literals

2. Feature build with add all literals

3. Feature build with filter 'hasGloss'
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Configuration 1 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/TextIndexLiteralFiltering/\

Baseline/IndexBuilderMain \

-i yago-3 -f $YAGO3/yagoComplete.ttl -p true -W \

-s $YAGO3/yago-3.settings.json -m 8GB

Configuration 1 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/TextIndexLiteralFiltering/\

Baseline/IndexBuilderMain \

-i yago-3 -f $YAGO3/yagoComplete.ttl -p true -W \

-s $YAGO3/yago-3.settings.json -m 8GB -A

Configuration 2 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/TextIndexLiteralFiltering/\

Feature/IndexBuilderMain \

-i yago-3 -f $YAGO3/yagoComplete.ttl -p true -W \

-s $YAGO3/yago-3.settings.json -m 8GB

Configuration 2 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/TextIndexLiteralFiltering/\

Feature/IndexBuilderMain \

-i yago-3 -f $YAGO3/yagoComplete.ttl -p true -W \

-s $YAGO3/yago-3.settings.json -m 8GB -A

Configuration 3 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/TextIndexLiteralFiltering/\

Feature/IndexBuilderMain \

-i yago-3 -f $YAGO3/yagoComplete.ttl -p true \

-r ’hasGloss’ -s $YAGO3/yago-3.settings.json -m 8GB

Configuration 3 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/TextIndexLiteralFiltering/\

Feature/IndexBuilderMain \

-i yago-3 -f $YAGO3/yagoComplete.ttl -p true \

-W -s $YAGO3/yago-3.settings.json -m 8GB -A
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7.4.2 Document only Text Index Building

There are four different configurations that were tested on the Document only Text Index
Building feature:

1. Baseline build with options to use wordsfile and docsfile and add all literals

2. Feature build with options to use wordsfile and docsfile and add all literals

3. Feature build with options to only use docsfile and add all literals

4. Feature build with options to only add entities from wordsfile, using the pre
built file explained in 7.2, together with words from the docsfile and add all
literals

Configuration 1 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Baseline/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB

Configuration 1 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Baseline/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -A

Configuration 2 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB
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Configuration 2 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -A

Configuration 3 complete index build::

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv -D -W \

-s $SCIENTIST/scientists.settings.json -m 8GB

Configuration 3 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv -D -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -A

Configuration 4 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv -D -E \

-w $SCIENTIST/scientists.entityfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB

Configuration 4 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/DocsFileOnlyTextIndex/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv -D -E \
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-w $SCIENTIST/scientists.entityfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -A

7.4.3 Text Index Block Changes

There are three different configurations that were tested on the Text Index Block Changes
feature. For completeness the configuration for the old baseline complete index build is
also shown here but this was not timed.

1. Baseline build with options to use wordsfile and docsfile and add all literals

2. Feature build with options to use wordsfile and docsfile and add all literals
with a set block size of 5,000

3. Feature build with options to use wordsfile and docsfile and add all literals
with a set block size of 100,000

Configuration 1 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/BlockChanges/\

Baseline/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB

Configuration 1 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/BlockChanges/\

Baseline/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -A

Configuration 1 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/BlockChanges/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \
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-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -P 5000

Configuration 2 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/BlockChanges/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -P 5000 -A

Configuration 1 complete index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/BlockChanges/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -P 100000

Configuration 3 only add text index build:

/usr/bin/time -v \

$QLEVER/qlever-builds/BlockChanges/\

Feature/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB -P 100000 -A

Complete index building with baseline old (untimed):

$QLEVER/qlever-builds/BlockChanges/\

BaselineOld/IndexBuilderMain \

-i scientists -f $SCIENTIST/scientists.nt -p true \

-d $SCIENTIST/scientists.docsfile.tsv \

-w $SCIENTIST/scientists.wordsfile.tsv -W \

-s $SCIENTIST/scientists.settings.json -m 8GB
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7.5 Results

For each feature in this work, measurements were made for the index building as described
in section 7.4. For each feature, this results in two tables containing measurements for
index building. One table for the complete index builds. And one table for the 'only add
full-text index' builds. The first column of each table corresponds to the configurations
explained in section 7.4. Each table also has columns for the three measurements made,
as well as for the mean, the variance, and the standard deviation.

Together with the measurement tables, there are t-test tables. The t-test tables are used
to show whether the timing difference between two configurations is statistically relevant.
The first column of the t-test tables shows which two configurations are compared. The
second column shows the resulting p-value of the t-test, and the last column shows
whether this p-value is smaller than 0.05. If the p-value is smaller than 0.05, this means
the difference in times between the two configurations is statistically relevant.

Lastly, for each feature, there exists at least one example query executed on each index
to show what difference the feature provides compared to before. The times for the query
runtime have been measured with the QLever UI [1]. The QLever UI shows the time used
to compute a given query. The cache has been cleared after each measurement.

7.5.1 Text Index Literal Filtering

The configurations were:

1. Baseline build with add all literals

2. Feature build with add all literals

3. Feature build with filter 'hasGloss'

Index Building Results

The timings for the complete index building can be seen in Figure 7.1, and the correspond-
ing t-tests in Figure 7.2. The timings for the 'only add full-text index' builds can be seen
in Figure 7.3, and the corresponding t-tests in Figure 7.4.
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Text Index Literal Filtering Timing Results for complete index builds

Con T1 T2 T3 Mean Var Dev
1 984 990 976 983.33 49.33 7.02
2 978 1004 979 987 217 14.73
3 378 393 394 388.33 80.33 8.96

Figure 7.1: Text Index Literal Filtering Timing Results for complete index builds. The
timings are in seconds. The timings are rounded to the nearest second. The mean, variance
and standard deviation are rounded to two decimal places. Configuration 1 is the baseline
and builds using all literals. Configuration 2 is the feature and builds using all literals.
Configuration 3 is the feature and builds with the literal filter 'hasGloss'.

Text Index Literal Filtering Timing Results t-tests for complete index building

Configuration
Combination p-value (p<0.05)

1 and 2 0.7242760 false
1 and 3 0.0000002 true
2 and 3 0.0000039 true

Figure 7.2: Text Index Literal Filtering Timing Results t-tests for complete index building.
The p-values are rounded to seven decimal places. Configuration 1 is the baseline and
builds using all literals. Configuration 2 is the feature and builds using all literals.
Configuration 3 is the feature and builds with the literal filter 'hasGloss'.

Text Index Literal Filtering Timing Results for only add text index builds

Con T1 T2 T3 Mean Var Dev
1 587.99 586.11 576.42 583.51 38.55 6.21
2 587.89 565.76 579.51 577.72 124.84 11.17
3 1.43 1.41 1.42 1.42 0.00 0.01

Figure 7.3: Text Index Literal Filtering Timing Results for only add text index builds. The
timings are in seconds. The timings as well as the mean, variance and standard deviation
are rounded to two decimal places. Configuration 1 is the baseline and builds using all
literals. Configuration 2 is the feature and builds using all literals. Configuration 3 is the
feature and builds upon an index which was built with the literal filter 'hasGloss'.
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Text Index Literal Filtering Timing Results t-tests for only add text index building

Configuration
Combination p (p<0.05)

1 and 2 0.4880432 false
1 and 3 0.0000379 true
2 and 3 0.0001253 true

Figure 7.4: Text Index Literal Filtering Timing Results t-tests for only add text index
building. The p-values are rounded to seven decimal places. The timings as well as the
mean, variance and standard deviation are rounded to two decimal places. Configuration
1 is the baseline and builds using all literals. Configuration 2 is the feature and builds
using all literals. Configuration 3 is the feature and builds upon an index which was built
with the literal filter 'hasGloss'.
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Test Queries

For the test queries, a WordScan query is chosen that scans for a number. Since numbers
are part of many literals that hold no information for the full-text index, this shows the
difference between the filtered and non-filtered version. An example of a common IRI
used together with strings to form literals is the http://yago-knowledge.org/
resource/degrees IRI. This is a 'yago-3' specific datatype which, leads to QLever
categorizing values of it as literal. The query and the results on all three configurations can
be seen in Figure 7.5 and Figure 7.6. The second test query can be seen in Figure 7.7. The
query can be used to find predicates occurring together with literal objects containing the
queried word. The results of this query when executed on an index built with configuration
2 can be seen in Figure 7.8.

WordScan query for a number:

SELECT * WHERE {
?t ql:contains-word "1986" .

}
LIMIT 5

Figure 7.5: A WordScan query scanning for a number.
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Results of executing query seen in Figure 7.5 on all Text Index Literal Filtering
configurations:

Result for Text Index Literal Filtering configuration 1:

?ql_score_word_t_1986 ?t
1 -
1 -
1 -
1 -
1 -

Result for Text Index Literal Filtering configuration 2:

?ql_score_word_t_1986 ?t
1 -1.1986
1 -105.1986
1 -106.1986
1 -11.1986
1 -112.1986

Result for Text Index Literal Filtering configuration 3:

?ql_score_word_t_1986 ?t
1 "a psychoactive drug . . . in 1986 . . . "

Figure 7.6: Results of executing query seen in Figure 7.5 on all Text Index Literal Filtering
configurations. The values in the '?t' column of the second configuration are of type
http://yago-knowledge.org/resource/degrees. Configuration 1 is the
baseline and builds using all literals. Configuration 2 is the feature and builds using all
literals. Configuration 3 is the feature and builds with the literal filter 'hasGloss'.
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Query to find what predicates occur together with literals containing the word
"1986":

SELECT ?p (COUNT(?p) AS ?count) WHERE {
?t ql:contains-word "1986" .
?t ql:contains-entity ?e .
?s ?p ?e

}
GROUP BY ?p
ORDER BY DESC(?count)

Figure 7.7: Query to find what predicates occur together with literals containing the word
"1986".

Results for the query shown in Figure 7.7 executed on the Text Index Literal Filtering
configuration 2

?p ?count
occursSince 9918

wasCreatedOnDate 8355
label 6725

wasBornOnDate 5220
diedOnDate 3401
occursUntil 3329

redirectedFrom 2507
prefLabel 2014

happenedOnDate 776
wasDestroyedOnDate 407

hasLongitude 96
hasLatitude 64

hasArea 3
startedOnDate 2

hasPopulationDensity 1
hasMotto 1
hasGloss 1

hasGeonamesEntityId 1

Figure 7.8: Results of the query shown in Figure 7.7 executed on the Text Index Literal
Filtering configuration 2.
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7.5.2 Document only Text Index Building

The configurations were:

1. Baseline build with options to use wordsfile and docsfile and add all literals

2. Feature build with options to use wordsfile and docsfile and add all literals

3. Feature build with options to use words from the docsfile and add all literals

4. Feature build with options to only add entities from wordsfile, using the pre
built file explained in 7.2, together with words from the docsfile and add all
literals

Index Building Results

The timings for the complete index building can be seen in Figure 7.9, and the correspond-
ing t-tests in Figure 7.10. The timings for the 'only add full-text index' builds can be seen
in Figure 7.11, and the corresponding t-tests in Figure 7.12.

Document only Text Index Building Timing Results for complete index builds

Con T1 T2 T3 Mean Var Dev
1 18.86 18.47 18.61 18.65 0.04 0.29
2 19.01 19.09 19.09 19.06 0.0 0.05
3 11.63 11.93 12.55 12.04 0.22 0.47
4 17.80 18.23 18.24 18.09 0.06 0.25

Figure 7.9: Document only Text Index Building Timing Results for complete index builds.
The timings are in seconds. The timings as well as the mean, variance and standard
deviation are rounded to two decimal places. Configuration 1 is the baseline and builds
using the wordsfile, the docsfile and all literals. Configuration 2 is the feature
and builds using the wordsfile, the docsfile and all literals. Configuration 3 is the
feature and builds using only the docsfile. Configuration 4 is the feature and builds
using words from the docsfile and entities from the wordsfile.
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Document only Text Index Building Timing Results t-tests for complete index
building

Configuration
Combination p (p<0.05)

1 and 2 0.0606830 false
1 and 3 0.0003878 true
1 and 4 0.0421140 true
2 and 3 0.0013540 true
2 and 4 0.0187433 true
3 and 4 0.0002526 true

Figure 7.10: Document only Text Index Building Timing Results t-tests for complete index
building. The p-values are rounded to seven decimal places. Configuration 1 is the baseline
and builds using the wordsfile, the docsfile and all literals. Configuration 2 is the
feature and builds using the wordsfile, the docsfile and all literals. Configuration
3 is the feature and builds using only the docsfile. Configuration 4 is the feature and
builds using words from the docsfile and entities from the wordsfile.

Document only Text Index Building Timing Results for only add text index builds

Con T1 T2 T3 Mean Var Dev
1 16.50 17.62 17.07 17.06 0.31 0.56
2 18.14 18.04 18.24 18.14 0.01 0.10
3 11.11 11.40 11.19 11.23 0.02 0.15
4 16.06 16.03 15.99 16.03 0.00 0.04

Figure 7.11: Document only Text Index Building Timing Results for only add text index
builds. The timings are in seconds. The timings as well as the mean, variance and standard
deviation are rounded to two decimal places. Configuration 1 is the baseline and builds
using the wordsfile, the docsfile and all literals. Configuration 2 is the feature
and builds using the wordsfile, the docsfile and all literals. Configuration 3 is the
feature and builds using only the docsfile. Configuration 4 is the feature and builds
using words from the docsfile and entities from the wordsfile.
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Document only Text Index Building Timing Results t-tests for only add text index
building

Configuration
Combination p (p<0.05)

1 and 2 0.0752769 false
1 and 3 0.0017702 true
1 and 4 0.0844799 false
2 and 3 0.0000015 true
2 and 4 0.0002129 true
3 and 4 0.0001664 true

Figure 7.12: Document only Text Index Building Timing Results t-tests for only add
text index building. The p-values are rounded to seven decimal places. Configuration
1 is the baseline and builds using the wordsfile, the docsfile and all literals.
Configuration 2 is the feature and builds using the wordsfile, the docsfile and all
literals. Configuration 3 is the feature and builds using only thedocsfile. Configuration
4 is the feature and builds using words from the docsfile and entities from the words-
file.
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Test Queries

For the test queries a WordScan on a stop word was chosen to highlight the words added
by the docsfile. The second query chosen is an EntityScan. Query 1 and its results can
be seen in Figure 7.13 and Figure 7.14. Query 2 and its results can be seen in Figure 7.15
and Figure 7.16.

WordScan for a stop word:

SELECT * WHERE {
?t ql:contains-word "is"

}

Figure 7.13: A WordScan query scanning for a stop word.

Results of executing query seen in Figure 7.13 on all Document only Text Index
Building configurations:

Configuration Result Size and Time

1 Fails because no block
containing "is" exists

2 Fails because no block
containing "is" exists

3 Returns 54,261 results in 1ms
4 Returns 54,261 results in 1ms

Figure 7.14: Results of executing query seen in Figure 7.13 on all Document only Text
Index Building configurations. Configuration 1 is the baseline and builds using the
wordsfile, the docsfile and all literals. Configuration 2 is the feature and builds
using the wordsfile, the docsfile and all literals. Configuration 3 is the feature and
builds using only the docsfile. Configuration 4 is the feature and builds using words
from the docsfile and entities from the wordsfile.
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EntityScan Query:

SELECT * WHERE {
?t ql:contains-word "space" .
?t ql:contains-entity <Astronomer> .

} ORDER BY ?t

Figure 7.15: A simple EntityScan query.
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Results of executing query seen in Figure 7.15 on all Document only Text Index Building configura-
tions:

Result for Document only Text Index Building configuration 1:

?ql_score
_word_t
_space

?t
?ql_score_t

_fixedEntity__60
_Astronomer_62_

1 Karl Gordon Henize, Ph. D. . . . 0
1 Astronomer Michelle Thaller . . . 0
1 Astronomer Michelle Thaller . . . 0
1 In Russia, Gurshtein was active . . . 0
1 Michael C. Malin (born 1950) . . . 0
1 Michael C. Malin (born 1950) . . . 0
2 Michael C. Malin (born 1950) . . . 0
1 Rodger Evans Doxsey . . . 0
1 Rodger Evans Doxsey . . . 0

Result for Document only Text Index Building configuration 3:

?ql_score
_word_t
_space

?t
?ql_score_t

_fixedEntity__60
_Astronomer_62_

Result for Document only Text Index Building configuration 4:

?ql_score
_word_t
_space

?t
?ql_score_t

_fixedEntity__60
_Astronomer_62_

0 Karl Gordon Henize, Ph. D. . . . 0
0 David C. Jewitt (born 1958) . . . 0
0 Spencer Jones’s successor . . . 0
0 Woolley is known for his . . . 0
0 On appointment as Astronomer . . . 0
0 " Anyone ", said Terry and . . . 0
0 Astronomer Michelle Thaller . . . 0
0 In Russia, Gurshtein was active . . . 0
0 Michael C. Malin (born 1950) . . . 0
0 Rodger Evans Doxsey . . . 0
0 Alexander (Sasha) Kashlinsky . . . 0

Figure 7.16: Results of executing query seen in Figure 7.15 on all Document only Text
Index Building configurations. Configuration 2 is not shown since it yields the same result
as configuration 1 and does not change anything. Configuration 1 is the baseline and
builds using the wordsfile, the docsfile and all literals. Configuration 2 is the
feature and builds using the wordsfile, the docsfile and all literals. Configuration
3 is the feature and builds using only the docsfile. Configuration 4 is the feature and
builds using words from the docsfile and entities from the wordsfile.
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7.5.3 Text Index Block Changes

The configurations were:

1. Baseline build with options to use wordsfile and docsfile and add all literals

2. Feature build with options to use wordsfile and docsfile and add all literals
with a set block size of 5,000

3. Feature build with options to use wordsfile and docsfile and add all literals
with a set block size of 100,000

4. Baseline build on the old version of QLever where short prefix scans were not yet
available. Build with options to use wordsfile and docsfile and add all
literals. This configuration was not timed but is tested in the test queries.

Index Building Results

The timings for the complete index building can be seen in Figure 7.17, and the corre-
sponding t-tests in Figure 7.18. The timings for the 'only add full-text index' builds can be
seen in Figure 7.19, and the corresponding t-tests in Figure 7.20.

Text Index Block Changes Timing Results for complete index builds

Con T1 T2 T3 Mean Var Dev
1 18.93 18.96 18.09 18.66 0.24 0.49
2 17.15 17.27 17.88 17.43 0.15 0.39
3 16.84 17.39 17.12 17.12 0.08 0.28

Figure 7.17: Text Index Block Changes Timing Results for complete index builds. The
timings are in second. The timings as well as the mean, variance and standard deviation
are rounded to two decimal places. Configuration 1 is the baseline and builds using the
wordsfile, the docsfile and all literals. Configuration 2 is the feature and builds
using the wordsfile, the docsfile and all literals together with a full-text index
block size of 5,000. Configuration 3 is the feature and builds using the wordsfile, the
docsfile and all literals together with a full-text index block size of 100,000.
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Text Index Block Changes Timing Results t-tests for complete index building

Configuration
Combination p (p<0.05)

1 and 2 0.0302771 true
1 and 3 0.0162591 true
2 and 3 0.3222605 false

Figure 7.18: Text Index Block Changes Timing Results t-tests for complete index building.
The p-values are rounded to seven decimal places. Configuration 1 is the baseline and
builds using the wordsfile, the docsfile and all literals. Configuration 2 is the
feature and builds using the wordsfile, the docsfile and all literals together with
a full-text index block size of 5,000. Configuration 3 is the feature and builds using the
wordsfile, the docsfile and all literals together with a full-text index block size of
100,000.

Text Index Block Changes Timing Results for only add text index builds

Con T1 T2 T3 Mean Var Dev
1 17.01 17.35 17.24 17.20 0.03 0.17
2 15.48 16.09 15.52 15.70 0.12 0.34
3 14.85 14.32 14.12 14.43 0.14 0.38

Figure 7.19: Text Index Block Changes Timing Results for only add text index builds. The
timings are in second. The timings as well as the mean, variance and standard deviation
are rounded to two decimal places. Configuration 1 is the baseline and builds using the
wordsfile, the docsfile and all literals. Configuration 2 is the feature and builds
using the wordsfile, the docsfile and all literals together with a full-text index
block size of 5,000. Configuration 3 is the feature and builds using the wordsfile, the
docsfile and all literals together with a full-text index block size of 100,000.
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Text Index Block Changes Timing Results t-tests for only add text index building

Configuration
Combination p (p<0.05)

1 and 2 0.0067131 true
1 and 3 0.0018782 true
2 and 3 0.0127885 true

Figure 7.20: Text Index Block Changes Timing Results t-tests for only add text index
building. The p-values are rounded to seven decimal places. Configuration 1 is the
baseline and builds using the wordsfile, the docsfile and all literals. Configuration
2 is the feature and builds using the wordsfile, the docsfile and all literals together
with a full-text index block size of 5,000. Configuration 3 is the feature and builds using
the wordsfile, the docsfile and all literals together with a full-text index block size
of 100,000.
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Test Queries

For the test queries a WordScan on the short prefix "a*" was chosen. The second query
chosen is a WordScan on the word "workaholic" which is a rare word in the largest prefix
block of the old full-text index. Query 1 and its results can be seen in Figure 7.21 and
Figure 7.22. Query 2 and its results can be seen in Figure 7.23 and Figure 7.23.

WordScan for a short prefix:

SELECT * WHERE {
?t ql:contains-word "a*" .

}

Figure 7.21: A WordScan query scanning for a short prefix.
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Results of executing query seen in Figure 7.21 on all Text Index Block Changes
configurations:

Timing results for query:

Con T1 T2 T3 T4 T5 Mean
1 51 61 61 55 57 57
2 80 80 83 80 73 79.2
3 61 53 51 53 53 54.2
4 Fails since prefix is to short

T-test for timings:

Configuration
Combination p-value (p<0.05)

1 and 2 0.0000242 true
1 and 3 0.3090787 false
2 and 3 0.0000065 true

Figure 7.22: Results of executing query seen in Figure 7.21 on all Text Index Block
Changes configurations. The times are measured in milliseconds. Configuration 1 is the
baseline and builds using the wordsfile, the docsfile and all literals. Configuration
2 is the feature and builds using the wordsfile, the docsfile and all literals together
with a full-text index block size of 5,000. Configuration 3 is the feature and builds using
the wordsfile, the docsfile and all literals together with a full-text index block size
of 100,000. Configuration 4 is the old baseline that did not have arbitrary prefix length for
WordScans.

WordScan for a rare word beginning with a common four-letter prefix:

SELECT * WHERE {
?t ql:contains-word "workaholic" .

}

Figure 7.23: A WordScan query for a rare word beginning with a common four-letter
prefix.
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Results of executing query seen in Figure 7.23 on all Text Index Block Changes
configurations:

Configuration T1 T2 T3 T4 T5
1 1 1 1 1 1
2 0 0 0 0 0
3 1 1 1 1 1
4 1 1 1 1 1

Figure 7.24: Results of executing query seen in Figure 7.23 on all Text Index Block
Changes configurations. The times are measured in milliseconds. Configuration 1 is the
baseline and builds using the wordsfile, the docsfile and all literals. Configuration
2 is the feature and builds using the wordsfile, the docsfile and all literals together
with a full-text index block size of 5,000. Configuration 3 is the feature and builds using
the wordsfile, the docsfile and all literals together with a full-text index block size
of 100,000. Configuration 4 is the old baseline that did not have arbitrary prefix length for
WordScans.
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8. Discussion
The discussion is split up into three parts. One part for each feature. In these parts the
results seen in section 7.5 are evaluated.

8.1 Text Index Literal Filtering

The Text Index Literal Filtering feature had three goals. The first was to remove the
iteration over the whole RDF vocabulary during full-text index building. The second was
the possibility to show literals if they are returned as results of a full-text index scan. The
third goal was the improvement of result quality due to filtering literals that provide no
information for the full-text index.

In Figure 7.2 and Figure 7.4 we see that with the same options, the feature build does
not provide a runtime advantage to the baseline build when it comes to index building.
This changes drastically if we use a regex filter to reduce the number of literals in the
full-text index. In Figure 7.1, we can see the time the complete index building takes with
filtered literals is less than half compared to the time without filtering. The improvement
is even more extreme if we only look at the 'only add text index' builds seen in Figure 7.3.
The 'only add text index' build with filtered literals only takes 1/400 compared to adding
all literals.

The results of evaluating the query seen in Figure 7.5 consisting of a WordScan on
"1986" on the old QLever index can be seen in Figure 7.6. The results showed that while
the engine found text records containing the word "1986", it could not show the literals
the word occurred in. Building the full-text index with all literals with the new feature
leads to the literals containing "1986" being shown, but we see the top results are all
uninformative. Executing the query without a limit leads to 8,918 results. Most of these
results are uninformative, which can be seen with a query showing the predicates appearing
with literal objects that contain "1986" shown in Figure 7.7. The result of this query can
be seen in Figure 7.8 and shows that "1986" appears in many literals following predicates
that hint at uninformative literals. Especially the top 5 predicates hint at literals that are
all only one sentence long. It can also be seen that the predicate 'hasGloss' occurs exactly
once with a literal. Therefore, executing the query for "1986" on the filtered full-text index
returns exactly on result which can be seen in Figure 7.6. While this is the only result, the
text record consists of multiple sentences.

To conclude, the Text Index Literal Filtering feature without filtering already provides
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a benefit for QLever since it can retrieve the literals of full-text index scan queries. While
the feature did not provide the expected runtime improvements when adding all literals, it
certainly did when filtering for specific literals. Together with this, it could be seen that
choosing the right filter together with a suitable dataset improves result quality.

8.2 Document only Text Index Building

The Document only Text Index Building feature had the goal of simplifying the full-text
index building while keeping the functionality of a linked RDF and full-text index.

Comparing the runtime of the different index builds shows interesting results. In
Figure 7.9 and Figure 7.11, it can be seen that, using the same options, the old QLever
version seems to be a bit faster, even though this is not statistically backed up by the t-tests
seen in Figure 7.10 and Figure 7.12. The reasons for this are unclear. One theory is a
potential increase in one of the constant runtime costs. It can also be seen that building
using only the docsfile is much faster than the other configurations. This is expected
since not iterating the large wordsfile and not adding co-occurring entities to the
full-text index saves time. At the same time, this leads to EntityScans not functioning
anymore, as seen in Figure 7.16. When comparing configuration 1 with configuration 4,
it can be seen that configuration 4 seems slightly faster. This is statistically backed up for
the complete index building as seen in Figure 7.10 but not for the 'only add full-text index'
building as seen in Figure 7.12. A theory for this slight improvement in time could be
the total number of words in the docsfile being less than the total number of words in
the wordsfile. While the docsfile contains stop words, the wordsfile splits up
documents into smaller, overlapping text records. The overlapping leads to the repeating
of words, potentially increasing the number of words in the wordsfile beyond the total
number of words in the docsfile.

When looking at the query results in Figure 7.14 for the query shown in Figure 7.13
consisting of a simple WordScan on the stop word "is", it can be seen that building the full-
text index with the docsfile leads to stop words cluttering the full-text index. While
this may be wanted for some in general, this increases the full-text index size without
providing a benefit. When looking at the query results in Figure 7.16 for the query shown
in Figure 7.15 consisting of a simple EntityScan, an interesting phenomenon can be seen
that was explained earlier. Executed on configuration 1, the query returns duplicate results,
and compared to configuration 4, there are some results missing. If we look at one text
appearing for configuration 4 but not for configuration 1, we can see why this happens.
For example, the text: “Spencer Jones’s successor as Astronomer Royal was Richard
Woolley, who on taking up the position in 1956 responded to a question from the press
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and was misquoted as saying " Space travel is utter bilge "”. It can be seen that the word
distance between "Astronomer" and "Space" is quite big. Since to build the wordsfile,
each document was split up into smaller text records; the entity "<Astronomer>" does not
appear in the same text record as the word "Space". The same pattern holds for all text
records that appear in the result for configuration 4 but not in the result for configuration
1. The reason they appear for configuration 4 is that using the wordsfile to only add
entities, each entity belonging to a text record is assigned to the document the text record
originated from. For example, if text records 1 to 4 all came from the document with
DocumentIndex 4, all entities appearing in those text records will be saved as appearing
in text record 4 when only adding entities from the wordsfile. This is the same reason
why, for configuration 1, multiple texts repeat. If, for example, text records 1 and 2 are
returned and they both originated from the same document, this document will be shown
for both of them when looking up their TextRecordIndexes in the 'docsDB'.

Concluding, it can be seen that building the full-text index using only the docsfile
rarely ever makes sense. But building the full-text index using only the docsfile

together with only the entities from the wordsfile provides an easier input format for
the text dataset. In this format, no overlapping text records for documents appear, and it is
simpler for the user to create their own text dataset while keeping the connection between
the RDF and full-text index. One disadvantage of this feature is the increased size of the
full-text index due to adding stop words.

8.3 Text Index Block Changes

The Text Index Block Changes feature had the goal of enabling prefix search for prefixes
shorter than four. It also had the goal of even the block sizes and therefore removing the
calculation of block boundaries. This should theoretically improve full-text index building
times as well as query times for specific words in previously large blocks.

The timing results for the index building seen in Figure 7.17 and in Figure 7.19 show
that full-text index building with the feature is faster when choosing block sizes of 5,000
or 100,000 compared to the baseline. The difference is statistically backed up, as seen
in Figure 7.18 and in Figure 7.20. Two potential reasons for this speedup are the time
saved by not calculating the block boundaries. And the time saved by sorting the word
table and entity table separately, since sorting two smaller tables is faster than sorting
one large table, as seen in section 6.2. This is especially the case since both tables have
fewer columns compared to the old half-inverted index table, which reduces the cost of
comparing two rows. Comparing the mean time of the index building, it can also be seen
that building with blocks of size 5,000 is slower than building with blocks of size 100,000.
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For the complete index building, this is not statistically backed up as seen in Figure 7.18
but for the 'only add full-text index' build it is statistically backed up as seen in Figure 7.20.
There are potential reasons for a big block size being faster than a small block size when
building the full-text index. A larger batch size when writing the blocks to disk as well
as more consecutive steps when iterating the word table and the entity table could lead to
better cache locality.

The timing results seen in Figure 7.22 for the query seen in Figure 7.21 consisting of
a WordScan on a short prefix executed on all configurations show two things. First, it can
be seen that the old QLever index could not return a result for a prefix shorter than four.
Second, merging multiple sorted small blocks is slower than filtering one large block,
even though both of them are in 𝑂 (𝑛). Note that configuration 1 does not do a sorted
merge when returning multiple sorted blocks but instead appends them into a large table
and sorts this table. It can be seen that this is not statistically slower than configuration 3,
which uses a sorted merge to combine the sorted blocks. Executing a query consisting of
a simple WordScan seen in Figure 7.23 on every configuration leads to the results seen in
Figure 7.23. Since the simple WordScan can be executed in one millisecond or less, the
measured values are inaccurate. But one thing can still be seen. Since the time to compute
is rounded to the nearest millisecond, the configuration with the block size of 5,000 seems
to be a bit faster than the others. This would only be reasonable since filtering a small
block for a single word is faster than filtering a big block. In reality, this improvement is
not relevant.

In conclusion, the Text Index Block Changes feature simplified the full-text index
building internally. It does provide a slight improvement when it comes to the index
building times, and for a suitable block size, the query times are similar to the baseline.
Compared with the old QLever full-text index, this feature now allows for a prefix search
of arbitrary lengths while giving the user the ability to choose a block size fitting their
dataset.
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9. Future work
While the three changes improved usability, they also provide a foundation for future
improvements. We will first look at possible improvements to the individual features
before looking at a possible improvement for the full-text index building at the end.

9.1 Text Index Literal Filtering

There are two main things to consider for the future of this feature. Firstly, for now the filter
only works on the predicates of triples. And secondly, the interleaving of the RDF index
building with the full-text index building can be confusing and can lead to unexpected
behavior for the user.

To combat the first problem, the filter is implemented in a way that is easily changeable
to check any part of the triple. If implemented, the filter can be used on objects to filter
certain languages of literals. It could then also filter certain literals containing specific
IRIs.

One clever solution for the second problem would be running a classic SPARQL query
during full-text index building that returns all VocabIndexes of certain filtered literals.
This would add the time of this query to the time the full-text index building takes but
would cleanly separate the RDF index building and full-text index building again.

9.2 Document only Text Index Building

A possible extension of the Document only Text Index Building feature would be a cus-
tomizable tokenizer. Currently the documents and literals are split using a tokenizer that
splits texts at non-alphanumeric characters. This is a rather basic approach and does not
skip stop words. One idea would be a configurable minimal length tokens need. This
would filter out some stop words from the full-text index, making it smaller potentially
improving query times.

9.3 Text Index Text Index Block Changes

The Text Index Block Changes feature leads to an arbitrary length for prefixes in a Word-
Scan and slightly improved index building times. But when it comes to retrieval times, it
could be seen that the merging of multiple sorted blocks is not much faster than appending
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and sorting them. Furthermore, this merging happens in memory since blocks cannot
yet be read lazily from disk. Approaching these two problems could further enhance
this feature. Moreover, the now arbitrary number of retrieved blocks could be used to
implement a new full-text index scan type similar to a WordScan. The scan could take a
starting word or prefix and an ending word or prefix and return all text records that contain
words in this range.

9.4 Text Index Building

The building of the RDF index in QLever is parallelized. This is not the case for the full-
text index building. For building the text vocabulary, this parallelization could be done
similar to the building of the RDF vocabulary. This means building partial vocabularies,
which can later be merged into one text vocabulary. A similar thing could be done to
build the half-inverted full-text index. For the half-inverted full-text index, it is important
that each word and entity from a text record is collected in the same partial index. Since
the wordsfile and docsfile are sorted by text record, a parallelized parser could
be implemented. The sorted partial half-inverted indexes can then be merged into the
complete half-inverted index and written to disk.

9.5 Outlook

While the RDF side of QLever was steadily improved, the full-text side largely remained
untouched. This leads to a difference in quality, especially when it comes to the index
building times since building the RDF index is much faster compared to building the full-
text index. The changes made in this work extend the usability of QLever's full-text index
and lay the groundwork for further improvements strengthening the position of QLever as
SPARQL+Text engine.
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