
Using Multi-Sense Embeddings
for

Named Entity Disambiguation

Bachelor Thesis
Felix Jablonski
26.04.2019

Problem statement

▪ Named Entity Disambiguation (NED)

▪ Given a text containing mentions of Wikidata entities:

▪ Disambiguate each mention to the correct named entity

▪ E.g., disambiguate between the different meanings of „Apple“

▪ Mentions are already provided by a NER-tagger

▪ Evaluate the performance against a reference and two baselines

2

Motivation

▪ Evaluate a novel way of linking mentions to knowledgebase entities

▪ Tasks that benefit from NED:

▪ Enriching text with details about contained entities

▪ Extract features from entities in text for search indexing

3

Overview

▪ Main idea:

▪ Learn representations for words

▪ Extract the meaning of a word given its context

▪ multi-sense embeddings

▪ Learn representations for each entity in the knowledge base

▪ Compute a representation for each mention in the text

▪ For each mention representation select the best matching entity

4

Prelimiaries

Word Embeddings

▪ How to encode words?

▪ Vector representations for words:

▪ Dense

▪ High-dimensional (100-500, most often 300)

▪ Comparable

▪ Encode information

6

Word2Vec (Mikolov et al. 2013)

▪ „You shall know a word by the company it keeps” (Firth, J. R. 1957:11)

▪ For each word learn to predict its context with a neuronal network

„What words are used alongside with ‘Apple’?”

▪ Input: Unlabeled text corpus

▪ Output: Embeddings for each word in the corpus

▪ CBOW: Predict the central word given a context

▪ Skip-Gram: Predict the context given a center word

7

Word Embedding Similarity

▪ Compare word embeddings using cosine similarity:

▪ 𝑠𝑖𝑚 𝑥, 𝑦 ∈ −1, 1

▪ 0 = no relationship, 1 = same meaning, -1 = opposite meaning

▪ Robust against different lengths and high dimensionality

Word a Word b sim(a, b)

Coffee Tea 0.68

Toyota Freiburg im Breisgau 0.12

𝑠𝑖𝑚 𝑥, 𝑦 =
𝑥 ∗ 𝑦

𝑥 ∗ | 𝑦 |

8

Multi-Sense Embeddings

▪ Word embeddings have a single representation per word

▪ „Apple“ is learned with a fruit and a computer context

▪ Solved by learning an embedding per word meaning

▪ Number of meanings can be fixed or dynamic

▪ E.g.: AdaGram (Bartunov et al. 2015) or SenseGram (Pelvina et al. 2016)
Source: [3]

9

SenseGram Sense Disambiguation

▪ NEDard models use the word sense disambiguation performance

▪ Find the correct sense of a word given its context

▪ 1. For a word 𝑤 get all known senses 𝑆 = s0, … , sa

▪ 2. Calculate average of context word embeddings ҧ𝑐

▪ 3. Select the sense most similar to ҧ𝑐

𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖
ҧ𝑐 ∗ 𝑠𝑖

|| ҧ𝑐|| ∗ | 𝑠𝑖 |

10

NEDard models

Overview

Preprocessing Training Indexing Querying

Preprocessing: Example

Mention tokens Start (inclusive) Stop (exclusive)

‚Microsoft‘ + ‚Windows‘ 0 2

‚operating‘ + ‚system‘ 5 7

Microsoft‘s Windows10 is a widely-used operating system in Malagati

[Microsoft, Windows, is, widely, used, operating, system, in]

13

Multi-Word Mentions

▪ The embedding model only knows single words

▪ Ideas for dealing with multi-word mentions and entities:

▪ Use every sense embedding on its own: NEDard

▪ Calculate the weighted average over the sense embeddings: NEDardv2

14

Training: Learning Weights (NEDardv2)

▪ Learn tf-idf weights for each word in the entity labels

▪ Goal: Give more weight to words that are more descriptive

15

Training: Sense disambiguation

▪ Perform word sense disambiguation on „Florian“ and „Eichinger“

▪ German

▪ Film industry

▪ Producer

Token Context window (size 5) and without stopwords Sense embedding

Florian [Eichinger, German, film, producer] Florian#0

Eichinger [Florian, German, film, producer] Eichinger#3

ID rdfs:label schema:description
Q1000006 Florian Eichinger German film producer and screenwriter

16

Training: Index Storing

▪ Found sense embeddings: Florian#0 and Eichinger#3

▪ NEDard:

▪ Store both embeddings as distinct entity embeddings Q1000006#0 and Q1000006#1

▪ NEDardv2:

▪ Calculate tf-idf weighted average of the sense embeddings

▪ Store the average embedding as entity embedding Q1000006

17

Querying: NEDard

„computer“ sense of „Microsoft“ and „Windows“ „Microsoft“ + „Windows“ Q1406

Mention „Windows“ in „computer“ context

„computer“ mention of „Windows“ is resolved to „Microsoft Windows“ Q1406

Get the closest entity-word embedding. E.g. the „Windows“ in „Microsoft Windows“.

Index

18

Querying: NEDardv2

„computer“ sense of „Microsoft“ and „Windows“ „Microsoft Windows“ Q1406

Mention „Windows“ in „computer“ context

„computer“ mention of „Windows“ is resolved to „Microsoft Windows“ Q1406

Get the closest entity embedding. E.g. „Microsoft Windows“ Q1406

Index

19

Advantages

▪ Unsupervised learning

▪ Pretrained embedding model can be used

▪ Adding new entities on the fly

20

Disadvantages

▪ Fuzziness

▪ Depends on quality of embeddings

21

Baselines and reference

Candidates

▪ Restrict the considered entities to candidates

▪ The candidate set is taken from Niklas Baumert‘s bachelor thesis[6]

▪ For each link text in Wikipedia remember the articles it is linked to

▪ Relevance: The fraction of times this article is linked to

Mention (lnrm) Wiki link Relevance Wikidata id

lnrm__freiburg Freiburg_im_Breisgau 0.99 Q2833

lnrm__freiburg Canton_of_Fribourg 0.01 Q12640

23

Baselines

▪ Oracle performance

▪ Baseline 1 – Random candidate

▪ Baseline 2 – Candidate with highest relevance

▪ Reference – DBPedia spotlight

▪ Uses entity-context matrix based on Wikipedia

24

Evaluation

Evaluation Sets

▪ 3 evaluation sets with different characteristics

▪ Extracted from Wikipedia inter-article links:

▪ Link text as mention

▪ Wikidata id of target article as entity

▪ Wikipedia articles with no Wikidata entity are ignored

Article Article text Position Mention Entity

Windows „Windows is a operating system…“ [12:28] operating system Q9135

Windows „Windows is a operating system…“ [0:7] Windows Q1406

26

Evaluation Set 1: Wiki-2k

▪ NEDard is trained on first 5 million Wikidata entities

▪ 3,661,533 could be learned by NEDard

▪ First 2,000 Wikipedia articles including 100,320 disambiguations

27

Evaluation Set 2: Wiki-ambig

▪ Subset of Wiki-2k

▪ Disambiguations with multiple strong
candidates

▪ Highest candidate relevance < 0.8

▪ More difficult evaluation set

▪ 20,626 disambiguations

28

Evaluation Set 3: Wiki-oneword

▪ Only single-word mentions

▪ Subset of Wiki-2k

▪ 37,732 disambiguations

29

Evaluation Run

▪ Input: Text and mentions of 𝑛 articles

▪ The correct entities are not known to the model

▪ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑖 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑠𝑎𝑚𝑏𝑖𝑔𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎𝑖

▪ 𝑡𝑜𝑡𝑎𝑙 𝑎𝑖 = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑎𝑚𝑏𝑖𝑔𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎𝑖

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
σ𝑖
𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑎𝑖)

σ𝑖
𝑛 𝑡𝑜𝑡𝑎𝑙(𝑎𝑖)

30

Evaluation Results

31

Error analysis

Error Analysis: NEDard

Apple Inc. is an American multination technology company headquartered in Cupertino, California.

Mention Candidates Cosine distances

Apple Inc. Q312#0, Q421253#0, Q421253#1

Apple, Apple Store, Apple Store

0.0, 0.0, 0.88 to „Apple“

0.58, 0.58, 0.81 to „Inc.“

Cupertino Cupertino, 3x Santa Clara County, Copertino 0.0, 0.4, 0.75, 0.43, 0.77

California 612 candidates… Multiple 0.0

Wikidata Id Cosine distance Entity label Correct?

Q312 0.0 Apple Yes

Q189471 0.0 Cupertino Yes

Q3650742 0.0 California Golden Bears football No

33

Error Analysis: NEDardv2

Apple Inc. is an American multination technology company headquartered in Cupertino, California.

Mention Candidates Cosine distances

Apple Inc. Q312, Q421253

Apple, Apple Store

0.21, 0.26 to „Apple Inc.“

Cupertino Cupertino, Santa Clara County, Copertino 0.0, 0.5, 0.776

California 254 candidates… Multiple 0.0

Wikidata Id Cosine distance Entity label Correct?

Q312 0.21 Apple Yes

Q189471 0.0 Cupertino Yes

Q1134176 0.0 California No

34

Demonstration

Sources
1. https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

2. https://www.slideshare.net/ChristopherMoody3/word2vec-lda-and-introducing-a-new-hybrid-
algorithm-lda2vec-57135994

3. Bartunov et al. “Breaking Sticks and Ambiguities with Adaptive Skip-gram”.
In: (2015). URL: https://arxiv.org/abs/1502.07257

4. Pelevina et al. “Making Sense of Word Embeddings”.
In: (2016). URL: http: //aclweb.org/anthology/W/W16/W16-1620.pdf

5. Thomas Mikolov. “Efficient Estimation of Word Representations in Vector Space”. In: (2013). URL:
https://arxiv.org/abs/1301.3781

6. Niklas Baumert. “Web-scalable Named-entity Recognition and Linking with a Wikipedia-backed
Knowledge Base”. In: (2018).
URL: http://ad-publications.informatik.uni-freiburg.de/theses/Bachelor_Niklas_Baumert_2018.pdf

36

Appendix

NED Example

Windows is a widely used operating system, but Jobs and Linus wanted to build their own.

Mention Named entity Wikidata ID

Windows Microsoft Windows Q1406

operating system operating system Q9135

Jobs Steve Jobs Q19837

Linus Linus Torvalds Q34253

38

Word Embedding Properties

▪ Semantic modelling

▪ Related words are more similar in embedding space

▪ Semantic reasoning

▪ Embeddings support arithmetic operations

𝑣𝑒𝑐 𝑘𝑖𝑛𝑔 − 𝑣𝑒𝑐 𝑚𝑎𝑛 + 𝑣𝑒𝑐 𝑤𝑜𝑚𝑎𝑛 ≈ 𝑣𝑒𝑐(𝑞𝑢𝑒𝑒𝑛)

39

Semantic Modelling

Source: [1]

40

𝑣𝑒𝑐 𝑘𝑖𝑛𝑔 − 𝑣𝑒𝑐 𝑚𝑎𝑛 + 𝑣𝑒𝑐 𝑤𝑜𝑚𝑎𝑛 ≈ 𝑣𝑒𝑐(𝑞𝑢𝑒𝑒𝑛)

Semantic Reasoning

Adapted from: [2]

41

Word2Vec Architecture

Source: [5]

42

Word2Vec Architecture: CBOW

Source: https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html

43

Word2Vec Architecture: Skip-Gram

Source: https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html

44

Chinese Whispers (Biemann 2006)

▪ Graph clustering algorithm for NLP

▪ Knowledge-free and unsupervised

▪ Complexity: Linear in number of edges

▪ Grouping together based on word similarity

▪ Similarity is the co-occurrence significance of two words

▪ Every node (word) starts with own label

▪ Iterative updating of group based on evidence from connected nodes

▪ Termination: Max iterations or no more changes

45

SenseGram Training

▪ 1. Take an existing word embedding

▪ 2. Get the 200 most similar
embeddings

▪ 3. Build an ego-network graph out of
the similar words

▪ 4. Connect words if they are similar
themself

▪ 5. Perform graph clustering with
Chinese Whispers

Source: [4]

46

SenseGram Training

▪ For each cluster compute the similarity-weighted average

▪ 𝜸: 𝑽 → ℝ mapping each embedding to its similarity to the ego word

▪ 𝐶𝑖 = 𝑣𝑒𝑐1, … , 𝑣𝑒𝑐𝑎 denoting each cluster

𝑠𝑖 =
σ𝑘=1
𝑎 𝛾 𝑣𝑒𝑐𝑘 𝑣𝑒𝑐𝑘
σ𝑘=1
𝑎 𝛾 𝑣𝑒𝑐𝑘

▪ These are the sense embeddings of the ego word

47

Word-Context Matrix

▪ Co-occurence matrix for context window

Pizza Sauerkraut Frankfurt Apple

Italy 4 0 0 1

Germany 0 4 5 2

USA 2 1 2 3

Delicious 4 3 0 4

48

Pointwise Mutual Information

▪ Measure of association used in information theory.

▪ How much more likely we get a pair than if it were at random?

▪ They occur more together than at random = high PMI

▪ Tf-idf is used to normalize term document matrices

▪ PMI is used to normalize word-context matrices

▪ Approximation by vector multiplication: 𝑃𝑀𝐼(𝑎, 𝑏) = 𝑣𝑒𝑐(𝑎) ⋅ 𝑣𝑒𝑐(𝑏)

𝑃𝑀𝐼 𝑋, 𝑌 = log2
𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

49

Word Similarity

𝑃𝑀𝐼(𝑤, 𝑎) = 𝑃𝑀𝐼(𝑤, 𝑏)
𝑣𝑒𝑐 𝑤 ∗ 𝑣𝑒𝑐 𝑎 = 𝑣𝑒𝑐 𝑤 ∗ 𝑣𝑒𝑐 𝑏
𝑣𝑒𝑐 𝑤 ∗ 𝑣𝑒𝑐 𝑎 − 𝑣𝑒𝑐 𝑏 = 0

Needs to work for all words 𝑤
𝑣𝑒𝑐 𝑎 = 𝑣𝑒𝑐(𝑏)

Source: https://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html
50

Word Differences

Semantic reasoning can be describes as vector operations:

This is the relative occurrence of a word within different contexts.

Source: https://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html

𝑣𝑒𝑐 𝑠ℎ𝑒 − 𝑣𝑒𝑐 ℎ𝑒

𝑣𝑒𝑐 𝑤 ∗ 𝑣𝑒𝑐 𝑎 − 𝑣𝑒𝑐 𝑏 = log 𝑃 𝑤 𝑎 − log[𝑃 𝑤 𝑏]

51

Training: Input

▪ Get a context for each entity inside Wikidata:

▪ Take one entity

ID rdfs:label schema:description
Q1000006 Florian Eichinger German film producer and screenwriter
Q1000007 IFA S4000 truck
Q1000008 Neuvireuil commune in Pas-de-Calais, France
...

52

TF-IDF

▪ Term frequency (tf):

▪ count of word in entity label

▪ Inverse document frequency (idf):

▪ Importance of word over all entity labels

𝑡𝑓𝑖𝑑𝑓 = #𝑤𝑜𝑟𝑑_𝑖𝑛_𝑙𝑎𝑏𝑒𝑙 ∗ log
|𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠|

|𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑙𝑎𝑏𝑒𝑙|

53

Potential of combination

Linear combination of baseline2 and NEDardv2

▪ Split evalution set into 70% train and 30% test

▪ Learn to combine NEDardv2 score and relevance

▪ Run logistic regression to predict likelihood for each candidate

56

Visualization: NEDard

57

Visualization: NEDardv2

58

Error Analysis: General

▪ Same word with different meanings

▪ „Apple“ as company vs. as fruit

▪ Same real-world object in different contexts

▪ „Berlin“ and „Alt-Berlin“. Current vs. Historic.

▪ Same mention with similar context but different entity

▪ „French revolution“ as TV series or real event.

▪ Too specific Wikidata entity

▪ „Jews“ -> History of the Jews in Kazakhstan (Q2067366)

▪ Noise in candidate set and Wikidata entities

59

