Bachelor’s Thesis

Segmentation Of Layout-Based
Documents

Elias Kempt

Examiner: Prof. Dr. Hannah Bast

Advisers: Claudius Korzen

University of Freiburg
Faculty of Engineering
Department of Computer Science

Chair for Algorithms and Data Structures

September 14 2021

Writing Period

14.06. 2021 — 14.09. 2021

Examiner

Prof. Dr. Hannah Bast

Advisers

Claudius Korzen

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.

I hereby also declare that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

Abstract

The Portable Document Format (PDF) continues to be one of the most prominent
file formats for exchanging electronic documents. Thus, applications that extract
high-quality text from PDF documents are also high in demand. However, PDF is a
layout-based format that only stores characters and their positions rather than the
plain text itself. PDF also does not store any whitespaces, and characters can be
stored in an arbitrary order. Therefore, the task of extracting text in the correct
reading order is unexpectedly hard to solve. In this thesis, we address an important
subtask of text extraction, which is text block extraction. This task includes detecting
text blocks and sorting them by reading order. In a separate step, we also split the
extracted text blocks into individual words.

We propose a top-down page segmentation algorithm based on the recursive XY-cut
algorithm for text block detection. Additionally, we evaluate different strategies
for detecting reading order, including learning-based approaches. On average, our
application detected around 51% of the expected text blocks perfectly, about 13%
were split too often, and about 15% were not split enough. For reading order,
we achieved an average normalized Kendall-T-correlation [1] between expected and

detected reading order of 0.873.

iii

Contents

1 Introduction

2.2.1 Visual segmentation using object detection

2.2.2 Pre-trained models for document understanding

2.2.3 Pre-trained models for reading order detection

2 Related Work
2.1 Rule-based approaches
2.1.1 Top-down approaches
2.1.2 Bottom-up approaches
2.2 Learning-based approaches . .
3 Background
3.1 Layout-based documents . . .
3.1.1 Document
312 Page
3.1.3 Text block
3.1.4 Characters and Glyphs
3.1.5 Figures and Shapes . .
3.1.6 Bounding Box.
3.2 Page segmentation

321 Cut
3.2.2 Representing XY-trees

11
12
12
13
15

17
17
17
18
18
19
19
20
21
21
22

3.2.3 Visualizing segmentationo

4 Approach
4.1 Problem Definition 0o
4.2 Data preparationo
4.3 Page segmentation algorithm
4.3.1 Computing valid cuts
4.3.2 Choosing the best cut
4.3.3 Splitting thepage.
4.4 Text block post-processing
4.5 Improving reading ordero
4.5.1 Motivation
4.5.2 Rule-based approaches
4.5.3 Score-based approaches 0L
4.5.4 Context-based approaches
5 Experiments
5.1 Datasets
5.2 Model training
53 Results.
5.3.1 Methodology
5.3.2 Discussion
6 Conclusion
7 Acknowledgments
Bibliography

vi

25
25
26
27
30
31
33
34
35
36
38
39
43

47
47
o1
52
52
59

65

67

71

List of Figures

ot

O o0 N O

11
12
13
14
15

16
17
18
19
20

Segmentation and XY-trees L. 7
Recursive XY-cut algorithm, 10
Text blocks 19
Bounding boxes 21
Cuts and their validity oL 23
Problem definition 26
PdfAct output 27
Basic page segmentation Lo 28
Computation of valid cuts 32
Valid cuts to choose from 0L 32
Text block post-processing 35
Reading order detection 37
Fully linear logistic regressor 42
Fully linear context model 44
Transformer context model 45
Training and validation dataset structure 49
Labels from ground truth 50
Computation of evaluation metrics 58
Missing text blocks in the ground truth 60
Limits of the XY-cut method 63

vil

List of Tables

1 Text block detection

2 Reading order detection L.

X

List of Algorithms

1 Page segmentation algorithm

2 Recursive XY-cut algorithm

x1

1 Introduction

PDF is one of the most widely used file formats to store and exchange textual infor-
mation. It is operating-system independent and convenient to use. PDFs come with
an increasing number of features like digital forms or contracts to an extent where
they can replace regular paper documents completely. This fact combined with its
usability explains the sheer amount of PDF-Viewers and similar tools available today
that allow working with PDFs easily. Features like text search, copying, or extracting
text from PDFs have become standard. However, these features do not always work
as well as we would expect. Sometimes we may be unable to find some words using
the search even though they exist within the document.

We can understand how such mistakes can happen when looking at how PDF works.
PDF is a layout-based format, meaning that it does not store text line-by-line or
word-by-word but character-by-character. To complicate matters further, characters
do not even have to be stored in the natural reading order of the document. PDF also
does not store whitespace characters. Spacing is created by adjusting the positions of
characters belonging to different words. Thus, there is no trivial way to detect word
borders. For instance, let us consider a two-column layout, as seen in the following

figure:

Three Rings for the Elven-kings under of Mordor where the Shadows lie. One

the sky, Seven for the Dwarf-lords in Ring to rule them all, One Ring to find
their halls of stone, Nine for Mortal them, One Ring to bring them all and
Men doomed to die, One for the Dark in the darkness bind them In the Land
Lord on his dark throne In the Land of Mordor where the Shadows lie.

You might expect that the characters are saved column-wise, as shown here:

[L'hree Rings for the Klven-kings under]

ki Mordor where the Shadows lie. Ond

[the sky, Seven tor the Dwari-lords in|

IRing to rule them all, One Ring to find|

ftheir halls of stone, Nine for Mortal

fthem, One Ring to bring them all and]

[Men doomed to die, One for the DarK

inthe darkness bind them In the Landl

lord on his dark throne In the Landl

ot Mordor where the Shadows liel

columns:

However, PDF could also store the characters from left to right and therefore across

[L'hree Rings for the Klven-kings under

of Mordor where the Shadows lie. Ond

the sky, Seven for the Dwari-lords in

Ring to rule them all, One Ring to find|

ftheir halls of stone, Nine for Mortal

them, One Ring to bring them all and]

[Men doomed to die, One for the Dark in the darkness bind them In the Land]
Cord on s dark 1 o ihe Land FNord Ty Tl

An application that provides a text search feature needs a list of all the words in the
document. Detecting the reading order is also necessary to process search queries
consisting of multiple words. For example, without knowing the correct reading order,
we may not get any results when searching for “under the sky” in our example page.
Though, we might obtain results for “under of Mordor”. Finally, PDFs also come in
an almost arbitrary amount of different layouts. Overall, this makes the extraction of
words and reading order from PDFs a surprisingly difficult task.

In this thesis, we propose a page segmentation algorithm based on the recursive
XY-cut algorithm. Page segmentation is the process of segmenting the characters of
a layout-based document back into semantic units like words, lines, text blocks, or
columns. In this work, we will segment characters into text blocks. In addition to
detecting these text blocks, we also sort them by reading order. Reading order will
be a primary focus of this work, as this is a common weakness of many existing tools
[2]. In particular, we will evaluate multiple rule-based and learning-based approaches
for detecting reading order.

The rest of this thesis is structured as follows: In Chapter 2, we will review publi-

cations relevant to our work. In Chapter 3, we will discuss necessary background

information about layout-based documents and page segmentation and introduce the
terminology used in this thesis. Chapter 4 presents our approach, mainly the core
concepts and structure of our page segmentation algorithm. Our datasets, details
on the learning-based aspects of this work, and evaluation results are discussed in

Chapter 5. Lastly, Chapter 6 concludes this thesis.

2 Related Work

Approaches for page segmentation have been the subject of extensive research for over
30 years. In this chapter, we want to discuss different techniques that are employed
to segment layout-based documents. In particular, we will discuss different rule-based

and learning-based segmentation approaches.

2.1 Rule-based approaches

They are two main types of rule-based segmentation: top-down approaches and
bottom-up approaches. Top-down approaches start by dividing a complete page into
smaller blocks. Namely, they start segmenting at the top and go down by dividing
further and further. These divisions are chosen based on information considering
the whole page. For example, this can be information about free space between
units or font types and font sizes. A different approach for page segmentation is the
bottom-up approach. These methods begin by considering the smallest units of the
page (e.g., characters). From that point on, they start to aggregate these small units
into larger units (e.g., words or text blocks) using only local information about the

initial units.

2.1.1 Top-down approaches

Almost 30 years ago, in 1992, Nagy et al. published a paper about layout analysis
on scientific articles [3]. In their paper, among other things, they present a data
structure called XY-tree. They use it to describe the layout of a page by segmenting
it into rectangular blocks. These blocks can represent words, text lines, columns, etc.,
depending on how a page is segmented. The chosen granularity of the subdivisions
can vary depending on the task that is solved. Nagy et al. segment each page down
to paragraph-level.

Nagy et al. create their segmentation by successively applying horizontal or vertical
subdivisions (also called cuts) to the page. An XY-tree represents the resulting
hierarchy of these cuts. Hence the name XY-tree as only cuts through the x- or the
y-axis are allowed. Also, the hierarchy of cuts forms a tree structure. Each node of
an XY-tree corresponds to a rectangular block on the page. If a block is cut, the two
resulting subblocks will be child nodes of the original node in the XY-tree. Figure
1 shows cuts that divide a page into nested rectangles and an XY-tree representing
this segmentation.

To obtain an accurate description of a document’s layout this way, we have to choose
these cuts carefully. That is, we need to divide the page using the correct cuts.
However, before choosing the correct cuts, we first need to compute where we can
cut at all. This step is essential for meaningful page segmentation. For example, it
does not make sense to choose a cut that crosses the text on the page. Nagy et al.
solve this problem by scanning the document horizontally and vertically in a raster
scanning pattern. They then identify all rows and columns of the scanning raster
that contain only white pixels. After we have computed the possible cuts, we can
start segmenting the document.

There are multiple approaches to construct an XY-tree from a given page layout.
Nagy et al. use block grammars for this purpose. A block grammar is a set of

rules on how to subdivide a given block further. For example, a title page is usually

A Benchmark and Evaluation for Text Extraction from PDF

Hannah Bast
University of Freiburg
79110 Freiburg, Germany
bast@cs.uni-freiburg.de

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

ABSTRACT

Extracting the body text from a PDF document is an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). There is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

1.1 Kinds of semantic information

In the following, we briefly describe the kind of semantic informa-
tion that we investigate in this paper.

Word identification. This is crucial for applications like search:
a word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line, and there is no fixed rule to

(a) Horizontal and vertical subdivisions applied to a page

12

A Benchmark and Evaluation for Text Extraction from PDF

3[4 Hannah Bast
University of Freiburg
79110 Freiburg, Germany
bast@cs.uni-freiburg.de

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

5[6ABSTRACT

Extracting the body text from a PDF document is an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). There is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

7 1.1 Kinds of semantic information

In the following, we briefly describe the kind of semantic informa-
tion that we investigate in this paper.

Word identification. This is crucial for applications like search:
a word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line_and there is no fixed rule to

(b) Resulting subdivision of the page into nested rectangles

(c) XY-tree representing the subdivision

Figure 1: Segmentation and XY-trees. Figure (a) shows a simple segmentation
consisting of only three cuts, (b) shows the corresponding division into
nested rectangles, and (c) shows the corresponding XY-tree.

split into a headline, authors, and the text body. A corresponding block grammar
could specify the expected positions of these units and indicate which cuts to choose.
Each of the resulting blocks then has its own block grammar defining how to divide
further. However, these rules are always heuristic, meaning what holds true for one
document might not hold for another. Usually, these rules are also not known from
the start but have to be inferred indirectly from the layout specification. This can
be done by analyzing geometric properties of a specific layout type like heading,
line, and paragraph spacing. It is also possible to learn such grammars using a
machine-learning approach as shown by Shilman et al. [4] in 2005.

Nagy et al. use their segmentation results to associate blocks of plain text with their
original positions on the page. They do not need more information about the reading
order for their purpose. Thus, no further reading order detection is performed.
Overall the approach of Nagy et al. still has weaknesses. Their block grammars
require a priori knowledge about the expected layout to split pages correctly. When
scanning documents, they are also susceptible to skew (i.e., misalignment of the
page while scanning). Too much skew can prevent possible horizontal or vertical
subdivisions. Lastly, when increasing the scanning resolution, their approach becomes

quite time-intensive because they consider all of the scanned pixels.

Three years later, in 1995, Ha et al. proposed a refinement of the XY-tree approach
[5]. The method of Nagy et al. computed possible cuts by looking at every pixel
of the scanned document. Even at a lower scanning resolution, this process can
become quite time-intensive. Ha et al. present means to reduce the computational
complexity of this problem. They achieve this by considering bounding boxes of
connected components (e.g., symbols like letters, digits, punctuation, etc.) instead of
individual pixels.

They apply their technique to the recursive XY-cut algorithm. This algorithm
constructs an XY-tree by choosing a cut through the page and recursively splitting
the resulting subpages. In each recursion step, Ha et al. split the page along all

cuts in a specific direction that exceed a certain size threshold. The direction of the

considered cuts alternates between recursion steps. Ha et al. mention that their
XY-tree allows a sequential ordering of the detected blocks. However, no further
details on how this order can be inferred are provided. Figure 2 shows an example
execution of the recursive XY-cut algorithm up to a depth of 3.

The approach of Ha et al. improves upon some of the weaknesses the method of Nagy
et al. had. In particular, they improved efficiency and reduced skew dependency
by using skew correction. However, their approach almost blindly divides a page
wherever possible until a certain threshold. This leaves much room for improvement
in the choice of cuts.

For our approach, we use a slightly modified version of the XY-tree data structure.
That is, our algorithm only constructs binary XY-trees, whereas Nagy et al. and Ha et
al. allow multiple cuts within a single recursion step. We make use of the techniques
proposed in Ha’s paper by using a recursive XY-cut structure that computes valid

cuts using bounding boxes. We explain the full details in Chapter 4.

An XY-cut approach specifically targeted at detecting reading order was proposed by
Meunier in 2005 [6]. As suggested by Ha et al., Meunier implemented his XY-cut
algorithm on bounding boxes. His approach also divides each subpage until no cuts
above a certain size threshold are possible. Thus, the method of Meunier only divides
each page into rectangular blocks while not targeting proper text block detection. He
also proposes to choose cuts by maximizing a score function that assesses the resulting
blocks and their order. His score function favors arranging the created blocks into
columns, as he found this to be most suited for scientific articles. He achieves this
by rewarding the cumulative height of the resulting columns. Meunier employs a
dynamic programming approach (i.e., a combination of recursion and memoization)
for efficiently maximizing his score function.

On an evaluation set of 800 document pages, Meunier’s approach ordered 98% of
blocks correctly. Unfortunately, no more precise evaluation results are presented.
Nevertheless, Meunier’s algorithm seems to perform well even though it only considers

geometric features (e.g., distances between lines, heights of columns, etc.). His results

A Benchmark and Evaluation for Text Extraction from PDF

Hannah Bast
University of Freiburg
79110 Freiburg, Germany
bast@cs.uni-freiburg.de

ABSTRACT

Extracting the body text from a PDF document is an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). There is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

1.1 Kinds of semantic information

In the following, we briefly describe the kind of semantic informa-
tion that we investigate in this paper.

‘Word identification. This is crucial for applications like search:
a word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line, and there is no fixed rule to

(a) Whole page on depth 1, next cut (represented by the red line) is between title and authors.

A Benchmark and Evaluation for Text Extraction from PDF

University of Freiburg
79110 Freiburg, Germany
bast@cs.uni-freiburg.de

ABSTRACT

Extracting the body text from a PDF document is an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). There is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

1.1 Kinds of semantic information

In the following, we briefly describe the kind of semantic informa-
tion that we investigate in this paper.

‘Word identification. This is crucial for applications like search:
a word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line, and there is no fixed rule to

(b) Subpages on depth 2, next cut (represented by the green line) is between authors and columns.

A Benchmark and Evaluation for Text Extraction from PDF

University of Freiburg
79110 Freiburg, Germany
bast@cs.uni-freiburg.de

University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

Extracting the body text from a PDF document is an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). There is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

In the following, we briefly describe the kind of semantic informa-
tion that we investigate in this paper.

Word identification. This is crucial for applications like search:
a word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line, and there is no fixed rule to

(c) Subpages on depth 3, next cuts (represented by the blue lines) are between authors and between
columns.

Figure 2: Recursive XY-cut algorithm. The figure shows subpages across three
recursion steps. In each subpage, we marked where the subpage will be
split in the next step.

10

also agree with our evaluation, in a sense that we also achieved decent results in

reading order detection using only geometric features (see Section 5.3.2).

2.1.2 Bottom-up approaches

Another method for page segmentation is the so-called bottom-up approach. In
contrast to our previous examples, a bottom-up approach would start combining
characters into words, words into lines, lines into text blocks, and so forth.
O’Gorman proposed a noteworthy representative of this segmentation approach in
1993, called the docstrum (short for Document Spectrum) |7]. He used a nearest-
neighbors clustering [8] to aggregate page components. Nearest neighbor clustering
works by computing distances between all components on a page and combining
components that are close together. O’Gorman’s method focused primarily on
reassembling text blocks and did not specifically sort the detected blocks by reading
order.

Bottom-up approaches are often better applicable to various layout types than top-
down approaches. This is because layouts usually differ more on the global scale of
headlines, columns, etc., than locally on a character scale. However, many bottom-up
algorithms, including docstrum, suffered from their quadratic complexity in time and
space due to computing distances for all unit pairs on a page. In 1997, Simon et
al. showed that complexity can be reduced to linear when using heuristics and path
compression [9]. They achieved this using an approach based on Kruskal’s algorithm
[10] and a special distance-metric between unit pairs. They represented the final

layout hierarchy as a minimum-spanning tree.

11

2.2 Learning-based approaches

There are many different learning-based approaches to page segmentation. The
most common approaches we will discuss in this section are: (1) visual segmentation
approaches using object detection on document images, and (2) semantic segmentation

approaches leveraging textual and layout information.

2.2.1 Visual segmentation using object detection

Convolutional neural networks (CNNs) have long been used for computer vision tasks
like image classification. They have been improved and extended many times. A
particular noteworthy extension of the classic CNN is the region-based CNN (R-CNN)
[11]. R-CNNs excel at object detection tasks. In contrast to regular CNNs, they do
not simply classify an image, but they propose bounding boxes of objects detected in
the image. For each detected object, the R-CNN then predicts a label (e.g., person,
cat, bicycle, etc.).

While not being designed for page segmentation, CNNs and, in particular, R-CNNs
can also be applied to document images. Yi et al. showed which modifications were
necessary to reliably detect semantic units like headings, paragraphs, figures, tables,
etc., in document images [12]. For their work, they partially redesigned the R-CNN,
its training strategy, and its network structure. In particular, they scaled down the
network size and adjusted the region-proposal step to better suit document images,
which are far less noisy than natural images and rarely contain overlapping objects.
For page segmentation, their modified R-CNN model significantly outperformed all the
other non-modified R-CNN models. In particular, when detecting text lines, formulas,
figures, and tables, they achieved a mean average precision of 81.5%. Interestingly,
their model excelled at detecting text lines at an average precision of 95.3% whereas
the model struggled noticeably with figures at an average precision of only 66.8%.

Even though R-CNNs are exceptionally suited for object detection tasks and have been

12

shown to work well on document images, they all come with a disadvantage. That is,
they all work exclusively on document images. When converting a digital-born PDF
into an image, potentially important information is lost. This includes information
such as font names and font sizes. For example, we could use font information to
distinguish headlines from paragraphs, footnotes from body text, etc. Positional
information on individual characters, while still implicitly contained in the document

image, also gets blurred.

A recent blog post by Team Konfuzio, published February 2021, demonstrates an
another example of page segmentation on document images [13]. In their blog post,
they describe their approach for automatic text summarization in PDFs. Automatic
text summarization is a process where text is extracted from a PDF first and then
the key aspects of the said text are summarized. Thus, the first step of their work is
closely related to what we want to achieve: page segmentation. But as we will see,
their approach is quite different. They work on a purely visual level using images of
the considered documents. This allows them to use the visual segmentation techniques
described above but also introduces potential loss of important information. Their
pipeline consists of three main steps. First, they employ a computer vision approach
using faster R-CNNs [14] for object detection. This step divides the document into
semantic units. Team Konfuzio used the following semantic units: title, text, table,
list, and figure. Second, they convert all elements that classify as text into actual
text. This conversion is performed by using optical character recognition (OCR). In
the third step, they summarize the extracted text using a transformer model [15].

We do not provide further detail as this step is not relevant to our work.

2.2.2 Pre-trained models for document understanding

In 2019, Xu et al. presented a paper on a pre-trained deep learning model for document
image understanding, called LayoutLM [16]. Document image understanding describes

various tasks that all aim to extract and structure information from scanned document

13

images. These tasks include form understanding, receipt understanding, and document
image classification. Form understanding is the task of extracting and structuring
textual contents of forms (e.g., extracting key-value pairs like name, age, etc. together
with their respective values). Receipt understanding involves using a scanned receipt
image to fill out predefined semantic slots (e.g., company, address, date, and total).
Document image classification aims to predict a class label (e.g., letter, form, email,
etc.) for each document image. Up until this point, most other approaches only focused
on processing textual information. That is, they neglected layout information which
is crucial for document image understanding. The model of Xu et al. jointly processes
both text and layout information at the same time. Until this point, these two types of
information have not been modeled simultaneously within a single framework. Using
their model, they achieve new state-of-the-art results in the previously mentioned
document image understanding tasks. In particular, they managed to outperform
two of the previous pretrained state-of-the-art natural language processing models:
BERT [17] and RoBERTa [18]. In form understanding, they achieved an F1 score
of 0.7927, improving on the previous best of 0.656. In receipt understanding, they
achieved an F1 score of 0.9524. In document image classification, they achieved a
classification accuracy of 94.42%. Despite their strong results, their approach does
not directly consider reading order. Reading order is only implicitly modeled as part
of the general document understanding task. Nevertheless, the model of Xu et al.
exemplifies how to use extracted text for deeper document understanding. Even
though they do not work directly on extracted characters like our approach does, we
can also apply the idea of combining semantic information with layout information
to our page segmentation algorithm. That is, we leverage information on semantic
roles of text blocks to improve our reading order detection. The details of this step

are explained in Section 4.5.

14

2.2.3 Pre-trained models for reading order detection

Recently, in August 2021, Wang et al. proposed an extension of the LayoutLM
model [16], the LayoutReader [19]. In their publication, they focused specifically
on reading order detection. Only a few previous approaches for detecting reading
order took advantage of more advanced deep learning techniques. The ones that
did were mostly trained on specifically created in-house datasets and thus not easily
transferable to other tasks. Wang et al. made two major contributions to improve
this situation. First, they present their dataset for reading order detection that
consists of 500,000 document pages. They created their dataset by leveraging the
reading order information embedded in the XML metadata of WORD documents. In
addition to making their dataset publicly available, they provide a pre-trained deep
learning model to solve the reading order detection task. Like LayoutLM, they trained
their model on text and layout information. To solve the reading order prediction,
they employ a sequence-to-sequence (seq2seq) approach [20]. They use sequences
of words on a page together with their bounding boxes as an input for their model.
In the encoding step, they feed the input sequence into LayoutLM while using a
self-attention mask. However, they modify the sequence generation step to predict
indices in the input sequence. The predicted indices represent the detected reading
order of the input sequence. Wang et al. managed to achieve an average page-level
BLEU score [21] of 0.9819 and an average relative distance of 1.75. Compared to
their other baselines, LayoutReader thus achieves state-of-the-art results in reading

order detection.

15

3 Background

In this chapter, we want to discuss the key concepts and terminology used throughout
this work. Most of these definitions are motivated by PDF not being a text-based
but a layout-based format. PDF stores individual elements like glyphs, figures, and
shapes together with their respective attributes. For each of these concepts, we will
(1) give an intuitive but likely informal description and (2) a precise formal definition

for each term.

3.1 Layout-based documents

3.1.1 Document

To represent a multi-page document, we will use a list of pages. We intuitively order
this list by page numbers in ascending order. Formally, let P = {Py,..., Py} be a set
of k pages (k > 0). A document D consisting of these pages is a totally ordered set
(P, <p), where <p represents the natural order induced by the page numbers. Or

formally, for all P;, P; € P

P; <p P; <= P,.page_number < Pj.page_number.

17

3.1.2 Page

Every page of a layout-based document has its specific contents (e.g., text organized
in paragraphs, tables, figures, etc.). The height and width of the page can also convey
important information about the layout. Lastly, we use page numbers to distinguish
pages, as we will mainly work with multi-page documents. We define a page to be a
class with the following attributes: (1) a list of glyphs (see Section 3.1.4), (2) a list of
figures and shapes (see Section 3.1.5), (3) height, (4) width, and (5) a page number.
When we talk about glyphs, figures, or shapes on a page, we also want to know
their position. Therefore, we use a coordinate system to describe these positions on
a page. The origin of this coordinate system is the lower-left corner of each page,
x-coordinates increase from left to right and y-coordinates from bottom to top. The

unit of measurement is the typographic point (pt). 1 pt is equal to 7—12 inch.

3.1.3 Text block

A text block is a set of words that are adjacent in a document’s layout. Sections or
paragraphs can consist of multiple text blocks. Text blocks differ from paragraphs in
that they can also contain non-body text like headings or author information. Text
blocks also have semantic roles within a document. Throughout this work, we use
the following semantic roles: title, author (includes names, affiliations, and email
addresses), heading, paragraph, abstract, caption, date, footnote, formula, marginal
(e.g., page headers, footers, or page numbers), reference, table, table-of-contents, and
other (used if no suitable role can be predicted). Figure 3 shows text blocks and their

semantic roles on an example page.

18

title

A Benchmark and Evaluation for Text Fxtraction from PDH
author AHar}nah Bagt author C}audius Korgen
University of Freiburg University of Freiburg
79110 Freiburg, Germanyj 79110 Freiburg, Germany
bast@cs.uni-freiburg.de korzen@cs.uni-freiburg.dd
heading L1 Kinds of semanficinformationl heading
xtracting the body text from a PDF document 1s an important but] n the following, we briefly describe the kind of semantic informa
paragraph surprisingly di(’ﬁcu}ivl task. The reason is that PDF is a la?/outfbased ftion that we in%estigate inythis paper. paragraph
format which specifies the fonts and positions of the individuall ‘Word identification. This is crucial for applications like search]
characters rather than the semantic units of the text (e.g., words word that has not been identified correctly will not be found.
jor paragraphs) and their role in the document (e.g., body text or} ord identification in a PDF is non-trivial and challenging for a
caption). There is an abundance of extraction tools, but their quality| mumber of reasons. The spacing between letters can vary from|
land the range of their functionality are hard to determine. line to line and even within a line, and there is no fixed rule to|

Figure 3: Text blocks. A page split into text blocks, each with its semantic role.

3.1.4 Characters and Glyphs

The term character refers to a symbol, most often a letter or a digit. Every character
in a layout-based document has a visual representation within the document. This
representation depends on additional attributes like font, font size, font color, etc.,
associated with the character. We call this visual representation of a character a
glyph. In addition to their visual attributes, every glyph has a bounding box (see
Section 3.1.6).

More precisely, we consider the following attributes of a glyph: (1) an underlying
character, (2) a bounding box (see Section 3.1.6), (3) a font name, (4) a font size,
and (5) additional font specifiers for bold and italic. Font color is another visual

attribute of a glyph which we, however not consider in this work.

3.1.5 Figures and Shapes

Figures and shapes are visual units within a layout-based document. Figures mostly
correspond to images, graphics, etc., within a document. On the other hand, shapes
are small visual elements that make up compound images or graphics (e.g., lines,
circles, or curves). For figures and shapes, we only consider the bounding box as an

attribute (see Section 3.1.6).

19

Note that figures and shapes do not directly influence the textual content of a PDF.
However, they do affect the layout. Yet, we only need to know that they exist and
where they are on the page. That is the reason we do not consider additional attributes

figures and shapes could possess (e.g., a figure’s content or a shape’s color).

3.1.6 Bounding Box

The bounding box of a glyph, a figure, or a shape is the smallest rectangle that
completely encloses said object. More specifically, it is the smallest rectangle that
contains every pixel of the graphical representation of the object. Formally, let O
be one of glyph, figure, or shape. We can uniquely define a rectangle by its lower
left and its upper right corner. Thus, the bounding box of O can be defined as two
points (z1,y1) and (22, y2) such that

1<z <wmpand y1 <y <o

for each pixel (x,y) belonging to O where z; and y; are maximal and zy and y are
minimal with this property.

This definition canonically extends to compound objects like words, lines, text blocks,
or tables. More specifically, the bounding box of a word is the smallest rectangle that
contains the bounding box of every glyph belonging to the word. Analogously, the
bounding box of a line contains the bounding boxes of its words, the bounding box
of a table contains the bounding boxes of all glyphs, figures, or shapes in the table,
and so forth. Note that a bounding box also describes the position of the object it

encloses. Figure 4 shows the bounding boxes of words on a page.

20

A BenchmarKkand [Evaluationl fod Texfi Extractionl from/[PDH

HannaH Basil
[Oniversity|pfl[Freiburg]
[0 Fretburg | Germrany]
[ABSTRACT]
[Extracting ha pody] <1 Fom @ PDB Aociment i an fmportant bl
urprisingTy|difficull fa<k] (A reomy 8 (Gl PO (M fayout-based

Formar kwhich ppecifies thd Fontd bnd positiond kil thd Individual
kcharacterd rathen Fhanl Fhe kemantid inifs bffhe fexife.g] kvardd

CTandis Korzen
[Oniversirg GlfFretburg
[T Frefburg] Cermany
[korzen@cs.uni-Treiburg.dd

L1 Kinddoflsemanitidinformationl
Il Ehd following] mra[priefly] describd fhd kind bflkemantid informad
Gon fhail wafmvestigatd i hid papery

Wordlidenfification] ThidiSkrucialfodppplicationd [[kdkearch]
@ kvord Fhail [had Bol beenl Edentified Forrectly] bvill mofl bd Found]

m paragraphs) bnd Fheid kold il thd Hocumend e] pody] EExAom
[caption)] MherdiHembhundancdbflextraciion fools] buffheifguality]
bnd Ehdramgg bifhet functionality] ara hard Fakeferminel

[Word [dentification il @ PDH ¥ hon-frivial bnd fchallenging] Fod e
number bAlrersnmsy MThe fpacing] between [efferd rzm vary] Froml
[nd I [nd End even kithinl m[fne] bnd Fherd £ mm Fxed bnld Eq

Figure 4: Bounding boxes. The figure shows bounding boxes of words on a page.

3.2 Page segmentation

3.2.1 Cut

A cut specifies the location and the direction (horizontal or vertical) of a subdivision
on a page. A cut consists of an interval [a, b] C R, specifying the position on the page
we cut through, and a flag, specifying if the interval is on the x- or the y-axis. We
use Y for horizontal and X for vertical cuts. Therefore, from now on, we will also
refer to horizontal cuts as y-cuts (as they cut through the y-axis of the page) and
vertical cuts as x-cuts (as they cut through the x-axis of the page). Formally, a cut
C is an element of Cuts = {[a,b] CR | a < b} x {X,Y}.

Later on, we also want to compare cuts by their size. We define the size of a cut to
be the length of its corresponding interval. Note that this definition is independent

of the direction of a cut. Formally, we express the size as a function

Cuts - Rt
([a,], dir)

size :

~ b—a.

To divide a page using cuts, we need to compute the set of valid cuts. A cut is valid
on a page if no glyphs, figures, or shapes on the page overlap with the range of the

cut. Each valid cut divides a page into two subpages. In which order we should read

21

these subpages is defined by the direction of a cut. Here, we need to distinguish
between x-cuts and y-cuts. An x-cut divides the page vertically into a left and a
right subpage. We define the reading order according to our left-to-right writing
system as left first, then right. Analogously, y-cuts divide the page horizontally, and
we define the upper subpage comes first, then the lower one, as it is common in our
writing system. Note that when using other writing systems like right-to-left (e.g.,
Arabic, Hebrew) or vertical (e.g., Chinese, Japanese), we need to adjust this definition
accordingly. Figure 5a gives an example of cuts dividing a page.

We will now precisely define when a cut is valid on a given page. Let C' = ([a, b], dir)

be a cut and P a page. Given a bounding box B = (z1,y1), (z2,y2), we say

r9 <a or b<ux, forx-cuts,
B does not overlap C' <—

yo <a or b<yp, fory-cuts.

We now define that a cut C' is valid on page P, iff no bounding box (z1,y1), (z2,y2)
of any object on P overlaps with C. Note that if a cut is valid or not is determined
only by the bounding boxes of page elements. However, if a cut makes sense or not
on a specific page has to be decided by a cut-choosing strategy (see Section 4.3.2).

Figure 5b shows some examples of valid and invalid cuts on a page.

3.2.2 Representing XY-trees

In this work, we use nested lists to represent XY-trees. Each inner node of an XY-tree
is a list consisting of three elements: (1) the cut chosen on the subpage represented
by the current node, (2) the left subtree of the current node, and (3) the right subtree
of the current node. Leaf nodes are empty lists. Note that nodes of the XY-tree
still correspond to blocks on the current page. The root node represents the blocks
corresponding to the whole page. The left and right child nodes of the root represent

the subblocks that emerge when applying the cut associated with the root to the

22

A Benchmark|and Evaluation|for Text Extraction|from PDF A Benchmark and Evauation

any
bast@cs.uni-freiburg de

ABSTRACT ABSTRACT nformation
ind of semar

1 INTRODUCTION

(a) Cuts dividing a page into subpages (b) Valid and invalid cuts on a page

Figure 5: Cuts and their validity. (a) shows a page divided into smaller subpages
by cuts, and (b) shows three valid cuts (green) and two invalid cuts (red)
that either collide with the glyphs or the figure on the page.

whole page. In general, the child nodes of a node represent subblocks of their parent

block.

3.2.3 Visualizing segmentation

In this work, we often use figures to visualize a segmentation. Depending on what
the figure shows, we may visualize the chosen cuts, the resulting nested rectangles,
or the detected text blocks. When visualizing chosen cuts or nested rectangles, we
try to visually distinguish different recursion levels. We do this in two ways: (1) we
color-code objects with respect to increasing recursion depth from red to green to
blue (red is the top-level and blue is the deepest visualized recursion level), and (2)

we decrease line or border width with increasing recursion depth (object on deeper

23

recursion levels appear thinner). For detected text blocks, we also the described
coloring scheme to visualize the detected reading order. When recursion depth or the
order of the cuts or text blocks are particularly important within a figure, we will also
enumerate cuts accordingly. Figure 5a shows such a visualization leveraging color
and width to visualize recursion depth. Note that despite also using colors, Figure 5b
shows different valid and invalid cuts on the same recursion level. In that example,

colors visualize cut validity and not recursion depth.

24

4 Approach

In this chapter, we will discuss our approach and the basic structure of our page
segmentation algorithm. For this, we will give a precise definition of the problem
we want to solve first. After that, we will briefly talk about the necessary data
preparation and then describe the general structure of the algorithm. In particular,
we will discuss the functionality of the three major subroutines the page segmentation
algorithm is built on. We will also explain how we post-process the detected text
blocks. Lastly, we propose a method for improving reading order detection and

discuss the different strategies we used for this.

4.1 Problem Definition

Intuitively the problem we want to solve consists of two parts: For a given document,
(1) we want to detect text blocks using page segmentation and then (2) sort the
detected text blocks by reading order. We illustrate an input and a corresponding
output in Figure 6.

Let us now be more precise: the input for our algorithm is a list of pages that
represents the document we want to segment. Each page comes with the glyphs,
figures, and shapes it contains (we explained the properties of these objects in detail
in Section 3.1). The resulting output is a division of the given document into text

blocks sorted by reading order.

25

[Effficlient Genermaitiorn of Geographiicallly Acoorsaiie Tmansii Maps 1 [Efficient Generation of Geographically Accurate Transi

el B Pl Bosi] Sabine Siomaod 2| Hannah Bast 3 [Pafrick Brosi 4 Sabine Storandt
o (IS0 iy ive " ni i
By, Doy Brslip, oo kg, Gy ¥
BESTRACD S 770
arp
o
i 4
diynax A
Bk 2 3
)
-
‘exprssion Rafiiyas o o it gt o Bn
oo Btfiks oo b 10 s oo b ey ot cl) \
N
‘xR s ek o i B el e, o
P e " e e p——
o

9 KEYWORDS

S
aificunih ol Cheuwt-peif oul) aideitn, o=
e e St oot

(a) Input for the algorithm (b) Output of the algorithm

Figure 6: Problem definition. Figure (a) shows a page and the bounding boxes of
all the glyphs, figures, and shapes we get as an input for the algorithm.
(b) shows the output of the algorithm, that is the detected text blocks
sorted by reading order.

4.2 Data preparation

To properly prepare the input for our algorithm, we need to extract the glyphs,
figures, and shapes from the given PDF. For this step, we use a PDF extraction tool
called PdfAct |22| developed by Korzen in 2017. PdfAct provides the extracted page
elements together with the dimensions of each page in a JSON file. Figure 7 shows a
simple example page and the corresponding output from PdfAct. We omitted some
additional glyph attributes from the example for better readability (e.g., font names,
specifiers like bold or italic).

We then use a self-implemented parser that converts the information provided by
PdfAct into instantiations of our predefined classes (see Section 3.1). Note that all

glyphs, figures, and shapes belong to a page. Thus, we can represent the whole

26

document by a list of pages. This preparation step yields the desired input format

for our algorithm.

"glyphs": [
{

"char": "A",
"font size": "1ipt",

6 "bounding box": [1, 4, 2.5, 6],
7 "page": 1
6 s %,
9 {
5 10 "char": "4",
1 "font size": "1ipt",
4 12 "bounding box": [1, 1, 3, 31,
13 "page": 1
3 1 1,
15 "figures": [
2 ////////47 4\\\\\\\\ 16 { "bounding box": [5, 4, 9, 6.5], "page": 1 }],
17 "shapes": [
\\\\\\\\‘7 4”////// 18 { "bounding box": [5, 1, 9, 3], "page": 1 }],
1 19 "pages": [
20 { "number": 1, "width": 10, "height": 7 }]
0 21 }
0 1 2 3 4 5 6 7 8 9 X
(a) Example page with bounding boxes (coor- (b) Simplified output of PdfAct

dinate grid for illustration only)

Figure 7: PdfAct output. Figure (a) shows an example page with two glyphs, one
figure, and one shape. (b) shows the simplified output of PdfAct.

4.3 Page segmentation algorithm

In the previous section, we discussed how to extract a list of pages from a given PDF.
In this step, we will talk about how the algorithm segments pages to detect text

blocks. We segment each page as follows:

1) start with the rectangle representing the whole page,

2) compute all valid x- and y-cuts on the page,
4
5

(1)

(2)

(3) choose one of the valid cuts,

(4) split the page along the chosen cut (this step generates two subpages)
(5)

construct the XY-tree by using the chosen cut as a root node and computing

the left and right subtrees by recursing on the two subpages.

27

A Benchmark and Evaluation

Hannah Bast
University of Freiburg
79110 Freiburg, Germany
bast@es uni-freiburg de

ABSTRACT

Extracting the body text from a PDF document is an important but

T this paper, we show how to construct a high-quality bench.
mark of principally arbitrary size from parallel TeX and PDF data
‘We construct such a benchmark of 12,098 scientific aticles from
arXivorg and make it publicly available. We establish a set ofcrite-
i for a clean and independent assessment of the semantic abilties
of a given extraction tool. W

o 14 stae-a-the-rt tols fo e extraction frm PDF on o
benchmark according to our eriteria. We include our own method,
Leecie, which significantly outperforms all other tools, but is still
not perfect, We outline the remaining steps necessary to fnally
make text extraction from PDF a *solved problem’

provide an extensive evaluation

KEYWORDS
Text Extraction, PDF, Benchmark, Evaluation
Reference format:
Hannah Bast and Claudius Korzen. 2017. A Benchmark and Evaluation
for Text Extraction from PDF.In Procedings of Joint Confernce On Digital
Libraie, Torono, Oiari, Canada, June 2017 (JCDL'17, 10 paes.
T A————

1 INTRODUCTION
PDF continues to be one of the most popular electronic document
formats. Google alone currently indexes over 3 billion PDF docu-
ments, more than for any other document format except HTML.
Unfortunately, PDF s a layout-based format: it specifies the pos
tions and fonts of the individual characters, of which the text is
1 for an example. Many

for Text Extraction from PDF

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
Korzen@es uni- freiburg de

11 Kinds of semantic information
I the following, we briefly describe the kind of semantic nforma-
tion that we investigate in this paper.

 word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing betuween letters can vary from

e blcks of the et

ox ™

i semanic role 0 5, whether e o et s prt o the body
or of & footrote or of a caption)

Figure 1: A
around each character. For some

teresting places to look

el ot providedss par of the PDF

provided.and ot neer o the el esded for s applcsions

a, in the text

line to line and even within a line, and there s no fixed rule to

etennine the extent of 8 word rom e spatng sone” Long
ords with b

inwhichcase ey apea ok i two pats
at different positions in the PDF. i

Forll ot e, contc th o b
KDL, T, Otari,Cantda

TP o e ik o e drcly st i

‘DO 10,1145 annnnmn anannnn

Thetent psage er the abact

A Benchmark and Evaluation|

for Text Extraction from PDF

Hannah Bast

Claudius Korzen

University of Freibur
——— e

Dniversity of Freibur
BN T T

asT@Cs Uy relburg de

T Cerman
e UrE 0

ABSTRACT

1.1_Kinds of semantic i

e e o
haracers aths thm the semantic s fthe et (5, words
o paragraphs nd their role i he document (. body ex o
apton Tere s anabandance of extracion ol bt thee qaly

T the following. e brielly deseribe the kind of semanti informs.
_—
R e e e
a word that has not been identified correctly will not be found
Wod dentifation o P s nr-tivial and chalenging fo
number of reasons. The spacing between letters can vary fror

i he s o hee Gunctonalic ar had o dtermine.
mak o principlly rbitvary sz fom paralll TeX and PDF data
We consructsucha benchunarkof 12,098 scenific ricles rom
arkivorg and make i publicly avalable We bl a st of e
T for aclean and independentasessment o he semantic abiles
o given extracton too. We provide an extnsive evaluation
oF 14 st the 4 tols for ex exteaction rom PDF on our
enchmark aceonding 10 our criteri. We include our own method,
et which sigaificantly ouperforms all athr ool but i sl
ot perec. We outine th remining sieps necesary o fnaly
i text extration fom FDF soled protlen

KEYWORDS
“Text Extraction, PDF, Benchmark, Evaluation

ACM Reference format:
i st nd Cllis Ko, 217, A Bencher o Elion
for

<o
Civis Tt O, Coat um 057 300730 g
[T ———

1 INTRODUCTION
PDF continues to be one of the most popular electzonic docurment
formats. Google alone currently indexes over 3 billion PDF doc
ments, more than for any other document format except HTML.
Unfortunately, PDF is a layout-based format: i specifies the posi-
tions and fonts

of the individual characters, of which the text is
L for an example.
ad informaton sbout the semaniic building blocks o th text

E, e word and the Paragraphe Ind secioms] ot

e semantc e ¢ . whethr a plec o 0t it of e by

text or of a footnote or of caption). This semantic information s
ot provided i the PDF.

Figure 1: A page from a PDF document with bounding boxes
around each character. For some interesting places to look
at, see the references to this figure in the text.

Tor. T ——— Eym——
o an o et e o et o s

line 0 line and even within line, and there is no fixed rule to
dtermin th etent o 3 word fom the spin sl Long

gl ot ‘,:u‘m; g it e]t
ol othr e, coniac th o kbt
e ————

2017 Copyrigh bl by the e autho). 97-x s SYYAOL 51500
DO 103145 o s

frequent in formats with two
broken” in two pats
at different positions in the PDF. Words can contain ligatures (lke

in which case the

TP e e drts o v ety ot
ok he s or ll FDF dcuments. ok nte e osness fte boses o o i
e e e et the v

(a) Starting point of the algorithm

(b) Computing valid cuts on the current page

A Benchmark and Evaluation|

for Text Extraction from PDF

Hannah Bast

Claudius Korzen

Umiversity of Freibure
GRS ey

riversity of Fretburz
T T —

T T

T Treq
ABSTRACT

1.1_Kinds of semantic i

e e o T
Characers aths han the sematic unt ofthe et (¢ . words
raph) and het role i he document . body et or
Copion Thre s n sbundanceof racton ol bttt g

T he following e briely describe the kind of semantic informs

——

e e awlx_mum\s The search:
o ha i ot been enifedcomectlywil ot be found

e s o hee fuctinalty re hard t dtcemine
o prinipall rbitarysioe fom paralle eX and PDF dta
We construc uch a benchamarof 1209 sietic atices fom
koo and ke publicly avlable We ctblsh st o crie-
i for clean nd ndependent asessment of he semanic bitis
o g
O 14 state-oFthe-art tols for 1 extraction from PDF on our
benchmark aceoring o ourcieria. We nclude ou own method.
it which signifcantly outperforms ll ther ool bt i sill
ot peree. W outine th remining tepsnecessary 0 fnaly

ke et exraction fom P a solved probent

1 extraction tool. We provide an extensive evaluation

KEYWORDS
Text Extraction, PDF, Benchmark, Evaluation

ACM Reference forma:

Hannsh Bast and Clandius Korzen. 2017. A Benchmark and Evaluation
for T o fom D n s of o a,,.y.,m. on Digial
Libraie, Torono, Oniario,Canada, June 2017 (JCDL'17), 10 pages.

DO 10145/ nnnmnan.annnnnn

1 INTRODUCTION
PDF continues to be one of the most popular electronic document
formats. Google alone currently indexes over 3 billion PDF docu-
ments, more than for any other document format except HTML
Unfortunately, PDF i a layout-based format: it specifies the posi-
tions and fonts of the individual characters, of which 1

for an example.

xtis

1 for
instead information about the semantic builing blocks of the text
— e S T Bl S T

whether a picce of text i part o the body

their semantic roles (e,

Tigure 1: A page from a PDF document with bounding boxes
around each character. For some interesting places to look

text or o a footnote or of caption).
wsually! not provided f the

ully!

proided.and ot s o . e eeded oty apphcaions.

Penmision o make el o b opisof part o all o i work o personal o

Hin 1o ine and even within line, and there is no fixed rle to
word from the spacing alone.® Long
it o bbbt gl et s it v

determine the extent of a

P s s et h et e
KDL, T, Otari, Canada

broken” in two parts
at different postons inthe PDF. Words can contan igatures (ike

. siso0

o

et psge sher e mact

A Benchmark and Evaluation for Text Extraction from PDF

Hannah Bast
University of Freiburg
79110 Freiburg, Germany
bast@es.uni-freiburg de
ABSTRACT
Extra

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
Korzen@es.uni-freiburg e

1.1 Kinds of semantic information

e body text rom a PDF de tant b

caption). There i an abundance of
and the range of thei functionaliy are hard to détermine.
I this paper, we show how to construct a

We construct such a benchmark

et
Sopringly bt ok The resson o |h'u POt s ot s
format which specifies the fonts and positions of the individusl
Character athes tha the semantic units af the ex (e . words
or paragraphs) and their role in the document (., body text o

extraction tols, but ther quality

high-quality bench-
‘mark of principally arbitrary size from parallel TeX and PDF data.

of 12098 scientifc artcles from
arivorgand make i pulicly valble We sabish st o i

v we bielly of
tion that we i estigate inthis paper

a word that has not been identified correctly will not be found.
‘Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between leters can vary from

of 14 state-of-the-art tools for text extraction from Pl

benchmark according to our criteria. Wi

make text extraction from PDF a *solved prob
KEYWORDS
Text Extraction, PDF, Benchmark, Evaluation

ference format:

by given extraction tool. We provide an extensive cvaluation

m PDF on our
e our own method,
eeeite, which significantly outperforms all other tools, but i sl
ot petect We ulin the remaining lps nesesary o fnaly

Hanmah Bast snd Cladins Korsen, 2017, A Benchmark and Evaluation
for o

Libraris, Toront, Otari, Canada, une 2017 (1CDL17) 10 pges.
[t ———

1 INTRODUCTION

Composed e Fgure 1 o s vl

PDF continues to be one of the most popular elctronic docurent
formats. Google alone currently indeses over 3 bilion PDF docu-
ments, more than for any other document format except HTML.
Unfotutely PDF i youtbused fort i specfis the pos

o th i e of i e et s
 applications require
o o o he st e ks of e v

textorof a ootnote or of caption).
usually! ot provided as part o the PDF.

their semantic rols (g, whether a piece o text s part of the body
“This semantie information is

Figure 1: A
around each character. For some interesting places o look
at,see the references to this figure in the text.

providc, i imos e n th el veded oyl splcions

lne o lne and even within o L, and here i o fxed e to
determine the extent of @ m the spacin o

o
o sl i s ey e ke it

amfcitige Copri oy oo b DF. We ligatures (ik

Forlloth s conat the e uhorts

KDL, ot O, Coad i Figar 1 thebose o th harcers ithinan word ar ity sdacent i

(c) Choosing the best valid cut

Figure 8: Basic page segmentation.
page, (b) shows the computed valid cuts on the page, (c) indicates the
best cut we use to split the page, (d) shows the resulting subdivision (i.e.,

the subpages we recurse on).

28

(d)

on subpages

Split page along the chosen cut and recurse

(a) shows the block representing the whole

We illustrated steps (1)-(4) in Figure 8. The design of the algorithm, especially the
page segmentation using XY-trees, is influenced by the already mentioned paper
on XY-trees by Nagy et al. [3]. Our algorithm also employs a recursive XY-cut
approach using bounding boxes as described by Ha et al. [5]. We will present the

basic structure of the algorithm in pseudo-code.

Algorithm 1 Page segmentation algorithm

Input: list of pages p1,...,pn
Output: list of XY-trees t1,...,t, (where t; is the tree for page p;)
Initialize t1,...,t, as empty trees
foreach page p; do
t; + recursive-zy(p;)
end for
return t1,...,t,

where recursive-xy is the recursive XY-cut algorithm that builds an XY-tree in a
nested list representation (see Section 3.2.2) for each page of our document. recursive-

xy is defined as:

Algorithm 2 Recursive XY-cut algorithm

Input: a page p
Output: an XY-tree t

1. cuts < valid-cuts(p) > Compute valid cuts

2: best-cut < choose-best-cut(cuts) > Choose the best cut

3: if best-cut is null then

4: return list() > A leaf node is created in the
base case of the recursion

5: end if

6: p1,p2 < split-page(p, best-cut) > Split page into two subpages

7. return list(best-cut, recursive-zy(p1),

8: recursive-zy(p2)) > Build nested list representa-

tion of the XY-tree

In line 1 of the recursive XY-cut algorithm, we compute all valid cuts on the current
subpage (see Section 4.3.1). In line 2, we make a cut choice, meaning we decide where

to split the current subpage (see Section 4.3.2). Lines 3-5 cover the base case for our

29

recursion. When no valid cuts to choose as the best cut remain, we stop recursing. In
line 6, we use the chosen cut to create two new subpages from our current subpage
(see Section 4.3.3). Lastly, in lines 7 and 8, we create the nested list representation
of our XY-tree by using the chosen cut as a node and recursively computing its two

subtrees.

4.3.1 Computing valid cuts

For a given subpage, our goal is to compute all valid x- and y-cuts on this subpage.
Note that one subpage corresponds to one recursion step. We can intuitively un-
derstand this step as determining where we can draw a vertical or horizontal line
through the given subpage without crossing any objects on the subpage. Each line
that we can draw in this fashion corresponds to a valid cut on the subpage.

We will now discuss how to compute valid cuts algorithmically. First, we will split the
computation of all valid cuts into the computation of x-cuts and y-cuts respectively.
Let us consider an example of how to determine all the valid x-cuts on a given page.
The given page will contain a list of objects that each has a bounding box. We will

consider a page with four objects:

{01:(0,1),(2,3)},{02: (1,0),(3,1)},{0s : (4,2),(6,3)}, {04 : (5,0),(6,2)},

see Figure 9a for a visualization of these objects. For the computation of valid x-cuts,
it is sufficient to consider the x-coordinates of the bounding boxes. Therefore we will

simplify the bounding boxes to the interval they occupy on the x-axis:

{o1:[0,2]}, {0z : [1,3]}, {03 : [4,6]}, {04 : [5,6]}.

This yields a list of intervals representing sections of the x-axis that are blocked by

objects on the subpage. We illustrated these additional blocked sections in Figure 9b.

30

We now compute to the union of these intervals which yields

[0,2] U[L,3] U [4,6] U[5,6] = [0,3] U [4,6].

Note that none of these resulting intervals will overlap. We now computed all intervals
we can not cut through vertically without crossing a bounding box of one or more
objects. So our final step is to compute the gaps of these intervals. For this, we sort
intervals by their starting point. Then, for each pair of consecutive intervals [a;, b;]
and [a;+1,b;+1] we consider the gap [b;, a;11] between them. Our example yields
exactly one such gap, as seen in Figure 9c. This interval represents the first possible
valid x-cut on our example page.

In this fashion, we can compute all intervals of valid x-cuts on a given subpage.
When computing valid y-cuts, we only need to switch out x- for y-coordinates. After
computing both x- and y-cuts, we pair these intervals with the corresponding flag
(i.e., X or Y) indicating an x- or a y-cut. This process results in a list of all valid
cuts we need to consider for a given subpage.

Our initial goal is to detect text blocks. Thus, we are only interested in cuts that split
between text blocks and not through them. We can preemptively filter valid cuts by
using a threshold m > 0 and only considering cuts whose interval has a length of at
least m. In practice, our algorithm computes the value of m in every recursion step.
The computed value of m is the maximum of the average font size on the current
subpage (multiplied by a constant) and a heuristic value that estimates line spacing.
This mostly prevents us from splitting text blocks more than necessary (e.g., between

lines of text).

4.3.2 Choosing the best cut

The previous step yields the set of all valid cuts on a given subpage. As a next step,

we need to choose the best cut from this set. We then use the chosen cut in the

31

Figure 9: Computation of valid cuts. (a) shows the bounding boxes of the objects
on the page. (b) also shows the space these objects block vertically, the
blocked space is colored in a slightly more transparent color as the object
that blocks it. (c) shows the remaining free space (or the gap) in red.

next step of the algorithm. This step is crucial for detecting text blocks accurately.
The choices made here directly influence the structure of the XY-tree. Thus, a poor
decision in this step can potentially change the whole perceived layout of a document.
Therefore, making good choices here is especially important. Our goal is to always
choose the best cut from a layout perspective. That is, the best cut should have
two basic properties: (1) it should be consistent with text block boundaries (e.g., it
should split between and not through text blocks); (2) it respects the natural reading
order (e.g., we can read everything on one side of the cut first and then continue on

the other side; see Section 3.2.1). In some cases, the best cut can be ambiguous. For

w

03
2

04 1

1 2 3 4 5 6 X 0 1 2

(a) Example objects

y
3
03 03
2 01
04 1 04
02
0

3

(b) Blocked vertical space

4 5 6 X 0 1 2 3 4 5

example, let us consider the cuts shown in Figure 10.

6

X

(c) Free space for a valid cut

4

1 A Benchmark and Evaluation|

Hannah Bast
University of Freiburg
9110 Freiburg, Germany
2 bast@cs.uni-freiburg.de

Claudius Korzen
University of Freiburg

79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

3 ABSTRACT

xtracting the body text from a PDF document 1s an important but|
urprisingly difficult task. The reason is that PDF is a layout-based
ormat which specifies the fonts and positions of the individuall
haracters rather than the semantic units of the text (e.g., words
r paragraphs) and their role in the document (e.g., body text or}
aption). There is an abundance of extraction tools, but their quality|
d the range of their functionality are hard to determine.

IL1__Kinds of semantic informationl

[the following, we brielly describe the Kind of semantic informa:
tion that we investigate in this paper.

Word identification. This is crucial for applications like search;
la word that has not been identified correctly will not be found
Word identification in a PDF is non-trivial and challenging for a|
number of reasons. The spacing between letters can vary from|

ine to line and even within a line, and there is no fixed rule to

Figure 10: Valid cuts to choose from. The figure shows four examples of valid cuts
on an a page. Bounding boxes of text blocks are for illustration only.

32

Here, cuts 1 and 2 possess both properties (1) and (2) and thus are both possible
candidates for the best cut. The other cuts are also valid but do not have both of
these properties. Cut 3 splits between text blocks but does not respect reading order,
as we would have to read everything above it first and then everything below it.
Cut 4 also disregards reading order. Additionally, it splits through the text block
containing the title.

Now we have established a basic understanding of what the best cut is. Though we
still need a strategy on how to choose the best cut from the set of valid cuts. There
are many possible ways to try choosing the best cut. For text block detection, we
used a simple rule-based strategy based on cut size, the weighted-largest cut strategy
(see Section 4.5.2). We will also discuss different cut-choosing strategies specifically

for reading order detection in Section 4.5.

4.3.3 Splitting the page

Unlike the previous subroutine, applying a chosen cut to a given subpage is pretty
straightforward. We solve this by creating two new subpages that represent the two
new subpages that emerge when applying the chosen cut to the current subpage. In
the next step, we assign all page elements of the current subpage to one of the two
new subpages.

We will now represent this step formally. Let C' = ([a, b], dir) be a cut and let O be
the set of all objects (i.e., glyphs, figures, and shapes) on the page

O = {o; : (21, 41), (25, 93) | 1 < i <},

where (z%,4%), (24, v4) is the bounding box of 0;. We now need two consider two

different cases depending on if C' is an x- or a y-cut:

33

1. If C is an x-cut the first subpage contains the following set of objects
O1 = {o; : (2, 91), (25, 43) | 2} < a},
similarly the second subpage has the following objects
02 = {oi : (21, 91), (23, y5) | @1 > b}.
2. If C is a y-cut the subpages will look as follows
O1 = {o; : (21,91), (25.95) | v3 < a},

and

Oy = {0; : (z,9}), (x5, y5) | yi > b}

From the way we compute valid cuts on a page, we know that each element of O has

to be either in O7 or Os if C is valid.

4.4 Text block post-processing

Detecting text blocks using only cut size and a size threshold (see Section 4.3.1)
usually works reasonably well. However, there are situations where we would want
to apply some post-processing to the detected text blocks. For instance, consider
the text block shown in Figure 11a. In this example, we did neither separate the
heading from the paragraphs nor the two paragraphs from each other. These cases
cannot always be reliably detected using only line spacing. Yet, both cases are clearly
identifiable when looking at the text block. The heading has a different font type
than the paragraph and the second paragraph begins with an indentation. After
we have detected our text blocks, we can check them for headings and paragraph

indentations that have not been properly split. If needed, we split the detected text

34

blocks again. Figure 11b shows the post-processing result of the text block from the
previous example.

In a next step, we will split all detected text blocks down into words, as we will need
the information about the contained words later (see Section 4.5). To split a text
block into words, we can simply segment each text block again using a smaller size
threshold (see Section 4.3.1). We choose the threshold m = 0.5 pt which is usually low
enough to allow cuts between lines of text and between words within a line. Figure

11c shows the post-processed text blocks from our example split down into words.

1.1 Kinds of semantic information IL1__Kinds of semantic informationl

n the following, we brieily describe the kind of semantic mlorma1
ion that we investigate in this paper.

‘Word identification. This is crucial for applications like search]
word that has not been identified correctly will not be found

[n the following, we briefly describe the kind of semantic informa
tion that we investigate in this paper.
Word identification. This is crucial for applications like search
word that has not been identified correctly will not be found.

Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from

line to line and even within a line, and there is no fixed rule to|

Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line, and there is no fixed rule to|

(a) Detected text block (b) Post-processed text blocks

L1 | Kindslofisemantichntformationl

IInftheftollowing,|we|brietly|describejthelkind offsemanticjiniormay
|tion|that{we investigate|in|this|paper. |

Word[identification. [Ihisfiskrucialfforfapplicationsflikefsearch:
la]word|that has|not|been|identified|correctly|will|not|be [found
Word|identification finfa|PDF}is jnon-trivialjand|challenging [forfa
Inumber|of|reasons.| The|spacing [between|letters|can|vary|from|
line|to]line|and|even|withinaline |and|there]is|nolfixed|rule[to

(c) Post-processed text blocks split down into words

Figure 11: Text block post-processing. (a) shows a raw detected text block, (b)
shows the post-processed version of the text blocks where the heading
and the paragraph break are correctly split, (¢) shows the post-processed
text blocks split into words.

4.5 Improving reading order

In this section, we will motivate and discuss the strategies we investigated for

improving reading order detection.

35

4.5.1 Motivation

When we segment a document to detect text blocks, we infer a preliminary reading
order from the chosen cuts (see Section 3.2.1). However, we detect text blocks using
only a rule-based strategy based on cut size. Thus, the preliminary reading order is
only based on cut size as well. This can lead to problems with the detected reading
order. For instance, let us consider the example shown in Figure 12. When only trying
to detect text blocks, it does not matter if we split between authors and columns
or treat the authors as part of the columns. In both cases, we can still detect all
text blocks correctly. However, when treating the authors as part of the columns, the
preliminary reading order is incorrect. In such a situation, it is difficult to reliably
choose the best cut with respect to text block detection and reading order when only
considering cut size.

That is why we propose detecting reading order in a separate step from text block
detection. While detecting reading order, we will then know the bounding boxes of
the detected text blocks already and can focus solely on ordering them. In addition
to the information about their bounding boxes, we will also use information about
the semantic roles of the detected text blocks, as seen in Figure 12c. PDF does not
provide these semantic roles. Therefore, we have to compute them ourselves. To solve
this task, we use another tool developed by Korzen at the chair of Algorithms and
Data Structures at the University of Freiburg. This tool is still under development
and not yet published. It provides functionality to predict semantic roles of text
blocks using a machine-learning model. The model uses features like bounding boxes,
contained text, font names, font size, etc., to make its predictions. Korzen’s tool
achieves a classification accuracy of 92.7%. Further information and evaluation results
can be found under http://ad-research.cs.uni-freiburg.de:17002.

In the following, we will discuss the three types of strategies we used for reading
order detection: (1) rule-based approaches, (2) score-based approaches, and (3)

context-based approaches.

36

http://ad-research.cs.uni-freiburg.de:17002

A Benchmark and Evaluation for Text Extraction from PDF

Hannah Bast
University of Freiburg
79110 Freiburg, Germany
bast@cs.uni-freiburg.de

ABSTRACT

Extracting the body text from a PDF document is an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). There is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

1.1 Kinds of semantic information

In the following, we briefly describe the kind of semantic informa-
tion that we investigate in this paper.

Word identification. This is crucial for applications like search:
a word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line, and there is no fixed rule to

(a) Split between the two columns and treat authors as part of the columns

A Benchmark and Evaluation for Text Extraction from PDF

Hannah Bast
University of Freiburg
79110 Freiburg, Germany
bast@cs.uni-freiburg.de

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

ABSTRACT

Extracting the body text from a PDF document is an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). There is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

1.1 Kinds of semantic information

In the following, we briefly describe the kind of semantic informa-
tion that we investigate in this paper.

Word identification. This is crucial for applications like search:
a word that has not been identified correctly will not be found.
Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from
line to line and even within a line, and there is no fixed rule to

(b) Split between authors and columns to treat authors separately

paragraph

Hannah Bast
University of Freiburg

9110 Freiburg, German
bast@cs.uni-freiburg.de

ABSTRATT heading

author

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
orzen@cs.uni-freiburg.de

LI Kinds of semanfic informationl heading

author

xtracting the body text from a PDF document is an important but|
surprisingly difficult task. The reason is that PDF is a layout-based|
fformat which specifies the fonts and positions of the individual|
icharacters rather than the semantic units of the text (e.g., words|
r paragraphs) and their role in the document (e.g., body text or|
aption). There is an abundance of extraction tools, but their quality|

nd the range of their functionality are hard to determine.

n the following, we briefly describe the kind of semantic informa
tion that we investigate in this paper.
Word identification. This is crucial for applications like search
la word that has not been identified correctly will not be found.
ord identification in a PDF is non-trivial and challenging for a|
mumber of reasons. The spacing between letters can vary from|
lline to line and even within a line, and there is no fixed rule to

paragraph

(c) Page with information about text blocks and their semantic roles

Figure 12: Reading order detection. (a) and (b) exemplify a situation where geo-
metric information does not suffice to reliably detect reading order, and
(c) shows the information on text blocks and their semantic roles that
we can use for better decisions.

37

4.5.2 Rule-based approaches

This category consists of the simplest (i.e., also the weakest) cut-choosing strategies.

While being extremely basic, they are convenient to implement and use.

Largest cut

Layout-based documents often use distance for the visual distinction of their individual
parts. For example, the distance between the title and the following body of text
will be larger than the distance between two lines within a paragraph. We can make
use of this by choosing cuts according to their size. This leads us to the largest-cut
strategy. This strategy iterates over all valid cuts and chooses the one with the largest
size. However, when considering the previous example from Figure 12, the largest-cut
strategy would treat the authors as part of the columns. This is because the distance
between columns is larger than the distance between the authors and the headings

below.

Weighted-largest cut

While the previous section showed that distance is an important indicator when
choosing cuts, it is not perfect. Specifically, we saw that the size of the vertical
cut between the columns was too large compared to the size of the horizontal cut
below the authors. This is quite common in PDF and other layout-based formats.
Horizontal distances can often be larger than vertical distances. In such cases, even
when comparing cuts of a similar semantic level (e.g., like the cut between columns
and the cut below the authors), x-cuts will be larger than y-cuts.

Thus, we can generalize our largest-cut strategy to the weighted-largest-cut strategy.
This approach works almost exactly like largest-cut, but it will prefer y-cuts by a

given scaling parameter r > 1. It is easy to see that weighted-largest-cut generalizes

38

largest-cut. For r = 1 both strategies are the same. How to choose the value of
r depends on the documents we want to segment. When manually experimenting
with this value, we still used a much smaller dataset of about 20 PDFs, consisting
mainly of scientific articles using a two-column layout. Using this dataset, we found a
r-value of 2.5 worked best for our documents. Note, the optimal value of r can vary,
and what worked well on our small dataset does not need to work well in general.
Nevertheless, using the weighted-largest-cut strategy with » = 2.5 yielded the overall
best results of all rule-based approaches we tested.

In our previous example from Figure 12, the weighted-largest cut strategy would split
between the authors and the columns. This is because, while the distance between
columns is larger than the distance between authors and the headings, it is not 2.5
times larger. Thus, the strategy prefers the smaller y-cut below the authors. However,

there are still many layouts where choosing cuts only by size will not suffice.

4.5.3 Score-based approaches

The second category we will discuss are the score-based approaches. This strategy
type is more complex than the rule-based approaches due to the way we will compute
scores. However, they come with a significant advantage. While our rule-based
approaches only focus on cut size, score-based approaches can be generalized to
work with multiple properties. All score-based approaches employ the same working
principle. We compute a score for each cut and choose the cut that maximizes this

score. That is, a higher score signals a better cut to choose.

Parameter cut
Before we discuss this strategy, we need to define the term parameter. A parameter p

is a function from the set of valid cuts to the interval [0, 1]. We use parameters to

assess cut properties, where larger parameter values are better. Let us look at an

39

example of such a parameter. We consider the parameter pg;.. that assigns each cut its
size relative to the size of the largest cut in the same direction. Let C' = ([a, b], dir¢)
be a cut and Cpez = ([c,d],dirg,,,,) the largest valid cut with dirc = dir¢,,,, .
Then we compute pg;.e as follows:

b—a size(C)
d—c size(Craz)

Dsize (C) =

The larger the size of a cut the higher its pg;.. value is, the largest cut will have the
maximum value of 1.

We now consider a fixed set of parameters {p1,...,pn} that we want to use for
cut-choosing. For example, this set can include parameters for cut properties like size,
position, direction, fonts and font sizes on both sides of the cut, etc. The parameter-
cut strategy then uses a score-aggregation function to combine the parameter values
into a single score. We say a function f : [0, 1]™ — [0, 1] is a score-aggregation function

iff it satisfies the following two properties:

1) For all z1,...,2n,y1,...,Yn € [0,1] the implication
n
Nzi<yi = fl@r,..m0) < fyr,. - un)
i=1

holds (i.e., f is monotonically increasing in every variable).

2) For all xq,...,x, €[0,1]

n
/\xizl — f(x1,...,2y) = 1.
i=1

A comprehensible example of a score-aggregation function is the arithmetic mean T

of the input vector

40

Our definition also allows for weighted score-aggregation functions. For example,
let wy,...,w, be positive weights with), w; = 1. Then the weighted arithmetic

mean

To o (0,7 = [0,1]

n
($17"'7xn) = szxz
i=1

is a score-aggregation function. The arithmetic mean T from the previous example is
a special case of the weighted arithmetic mean with wy = -+ = w, = %

Given a score-aggregation function f, we can now assign scores to cuts. We com-
pute these scores by evaluating the expression f(pi(C),...,pn(C)) for each cut
C. When choosing cuts using this strategy, we choose the cut C' that maximizes
f(p1(C),...,pn(C)). The adjustable set of parameters and the choice of the score-
aggregation function make this strategy extremely flexible. However, it turns out
properly tuning these values is difficult. For example, simple weight adjustments can
impact seemingly unrelated parameters and thus lead to a lower overall cut-choosing
quality.

We used only two parameters with this strategy, as including more than two led to
difficult to predict behaviour. The two parameters include the already mentioned
Dsize and a position-based parameter ppos. Ppos assess how close a cut is to the natural
reading order. That is, it prefers x-cuts close to the left margin and y-cuts close to
the top of the page. Let W be the width, H be the height of the current page, and

C = ([a, b],dir) a cut. Then pp,s is computed as follows:

1— %, for x-cuts,

yh for y-cuts.

For score-aggregation, we used the arithmetic mean of pg;.. and ppos.

41

LogisticRegressor

While the previous strategy already has most of the advantages that score-based
approaches offer, it has one major drawback. Incorporating new properties is time-
consuming due to the manual definition of parameters and weights. However, deriving
a parameter from a given property and weighting its importance is a suitable task for
a neural network. This leads to our first learning-based strategy, a simple logistic
regressor. Our LogisticRegressor model uses a fully linear architecture. In our default
configuration, it uses three hidden layers with sizes 256, 256, and 64. We visualized
the default configuration in Figure 13. The model takes tensors representing different
cut properties as an input features (see Section 5.2 for details on the used properties).
We refer to the size of the feature tensors by F'. The model then outputs a single
score for each cut in the input. If needed we can map the output scores to the interval
[0,1] (e.g., using a Sigmoid function). When using this strategy, we only need to
translate all desired cut properties into a feature tensor. The network then takes care
of weighting and aggregating these individual values into one final score. For details

on how we trained our models, refer to Section 5.2.

Input Hidden Hidden Hidden Output
layer layer layer layer layer

H,y

H,y

Figure 13: Fully linear logistic regressor

42

4.5.4 Context-based approaches

Our third and last category of cut-choosing strategies are the context-based approaches.
This type of strategy is the most sophisticated but also the most complex of the ones
we use in this work. They all share the same principle of comparing cuts against
each other directly instead of rating them individually. The implementation of these
strategies is also more complex than previous approaches. In particular, we implement
each strategy by a deep neural network with a specific architecture. They all share
the same input and output shape. The input shape is (S, F') where S is the maximum
number of cut samples we look at, and F' is the size of the feature representation of a
cut (see Chapter 5.2 for details on the used features). When choosing cuts with a
context model, we translate all valid cuts in a recursion step into a tensor of shape
(S, F'). Each row of this tensor corresponds to a valid cut. If there are less than S
valid cuts, we pad the input with zeroes. The output is a tensor of length S. Each
element of the output tensor corresponds to a probability that the corresponding
cut in the input is the best cut. This is analogous to a multi-class classification
problem where we have S classes that correspond to indices in the input sequence.
We choose the best cut by choosing the cut at the index corresponding to the class
with the highest probability. In the following paragraphs, we will present the different
context-based strategies or, more precisely, the architecture of the underlying models

we used. For details on how we trained our models, refer to Section 5.2.

BatchClassifier

The BatchClassifier model is the simplest of our context-based models. It employs a
fully linear architecture. The first layer “flattens” the (S, F') input tensor into a tensor
of length S - F'. This step is necessary as we cannot directly feed our two-dimensional
input into a linear layer. Following that, the model uses multiple linear layers, each

including a ReLLU activation function. The last linear layer produces the desired

43

output tensor of length S. Our default BatchClassifier model uses three hidden layers

with sizes 256, 256, and 64, respectively. Figure 14 shows the architecture.

Input Hidden Hidden Hidden Output
layer layer layer layer layer

flatten

Figure 14: Fully linear context model

Transformer

The Transformer model is the most experimental context model we use. It uses a
transformer encoder [15] for feature learning followed by a linear classifier for decoding.
The transformer encoder does not change the shape of the input, but only alters
its values. The linear decoder then transforms the (S, F)) shape to an output with
the desired S shape. Our default Transformer model uses a four-layered transformer

encoder with five attention heads. Its linear decoder shares the exact architecture of

the BatchClassifier. Figure 15 shows the architecture.

44

[(S, F)

encoder layer

E || B || €
= & = & =
=) —) — (S, F) g
S — & 1 = =
s~} = = =
s} <] <] =
S 1 51
= = =
3} 3} 3}

Encoder Decoder

Figure 15: Transformer context model

45

5 Experiments

In this chapter, we will discuss three main topics: (1) the creation and structure of
our datasets, (2) the training methodology we used to train our models, and (3) the

evaluation results of our different strategies.

5.1 Datasets

Before we explain how we created our datasets, we will discuss their purposes and
their desired structure. We use three different datasets: (1) a training dataset for
training our models to choose the best cuts for detecting reading order, (2) a validation
dataset for checkpointing our models during training, and (3) an evaluation dataset
for assessing the capabilities of our algorithm. To create our datasets, we used about
35,500 randomly selected documents from arXiv. arXiv is an open-access repository
for scientific publications. In addition to a PDF version, arXiv usually provides the
respective source material, usually the underlying TEX code, of each article.

As a first step, we generate a ground truth for each of the selected documents. Each
ground truth contains the expected text blocks for the respective document, sorted by
natural reading order. To create these ground truths, we make use of the technique
described by Bast and Korzen [2|. They devised a method for generating high-quality
text extraction benchmarks from PDF files with available TEX data. Using their
method, we can compute the expected text blocks, the semantic roles of the text

blocks, and the reading order for all selected documents.

47

In the next step, we divide the set of ground truths into training, validation, and
evaluation datasets. We used about 85% of the documents for training, 10% for
validation, and 5% for evaluation. For the evaluation dataset, the structure of
the ground truths already fits perfectly, as we later want to evaluate how well our
algorithm detects and orders text blocks. However, for training and validation, we
need datasets that can be used to learn choosing cuts. That is why we need a different
structure for these datasets.

We selected a TSV file structure for these datasets. Our goal is to learn how to choose
cuts for detecting the reading order of the detected text blocks. Therefore, for each
document and each page, we will train on the recursion steps of the page segmentation
algorithm where cuts between text blocks are possible. For each recursion step, our
TSV file contains a line of meta-information with the following information: (1) the
name of the current PDF, (2) the current page number, (3) the absolute width and
height of the page, (4) the bounding box of the current subpage, (5) the current
recursion depth, and (6) the direction of the chosen cut in the recursion level above
(if present). After this meta-information line, we list all valid cuts in the current
recursion step. For each cut, we provide (1) the respective interval, (2) the direction
of the cut, (3) the semantic roles of blocks left or above the cut, (4) the semantic roles
of blocks right or below the cut, and (6) a binary label (i.e., 1 or 0) that indicates if
the current cut is the best cut. Note that for cuts that split through text blocks, we
do not provide semantic roles, as such cuts are not interesting for detecting reading
order. We illustrate the structure in Figure 16.

We can compute most of the information needed to create these datasets easily. For
instance, computing valid cuts is already part of our page segmentation algorithm
(see Section 4.3.1), and semantic roles are provided in the ground truth. The only
missing part is the labeling of the cuts. For the labeling, we need to compute the
best cut. To solve this problem, we can use the expected text blocks from the ground
truth.

To better understand how we can achieve this, let us consider the example in Figure

48

name page num width height subpage depth direction
example.pdf 42 612,796 0,0,360,640 2 X

cut left /upper semantic roles right /lower semantic roles label
([530,550],Y) heading paragraph 1
([270,290],Y) paragraph paragraph 0
([170,175],X) - - 0
example.pdf 43 612,796 0,0,612,796 1 -
([720,740],Y) marginal heading,paragraph 0
([680,685],Y) - - 0
([420,430],Y) table,paragraph formula, caption 0
([296, 316], X) heading,table,caption marginal paragraph,formula 1

Figure 16: Training and validation dataset structure. Lines starting with # are
intended for clarification only and are not part of the dataset.

17. The figure shows the ground truth and all valid cuts for a page. We know that the
best cut will not split through the detected text blocks, as we are only interested in
ordering them. Thus, we can already assign the label “0” to all cuts that split through
text blocks. In Figure 17¢, we marked all valid cuts from our previous example that
cross a text block in gray. Furthermore, we also label all cuts that conflict with the
reading order of the ground truth with “0” as well. We illustrated this in Figure 17c¢
such that all cuts that violate reading order are marked in blue. Most often, only a
single cut will now remain unlabeled. This cut is then our wanted best cut. If more
than one cut remains, the best cut is ambiguous in this situation. This case occurs
in our example as we still have two valid green cuts left. Both of these cuts split
between text blocks and respect reading order. By convention, for x-cuts, we will
choose the left-most, and for y-cuts, the upper-most cut, as the best cut. We now
label the best cut with “1” and all other potentially remaining cuts with “0”.

After generating the training and validation dataset from our set of ground truths,
the resulting TSV files consist of roughly 4,275,000 recursion steps and contain about
77,000,000 individual cuts.

49

paragraph

title

Hannah Bast
University of Freiburg

9110 Freiburg, Germany
bast@cs.uni-freiburg.de

heading
[Fxfracting the body text from a PDF document is an important buf|
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words|
or paragraphs) and their role in the document (e.g., body text or|
icaption). There is an abundance of extraction tools, but their qualit

|and the range of their functionality are hard to determine.

author

Claudius Korzen
University of Freiburg

author

79110 Freiburg, Germany
orzen@cs.uni-freiburg.de

ion that we investigate in this paper.

Word identification. This is crucial for applications like search:
word that has not been identified correctly will not be found.
ord identification in a PDF is non-trivial and challenging for a|
umber of reasons. The spacing between letters can vary from|

ine to line and even within a line, and there is no fixed rule to

(a) Ground truth

A Benchmark and Evaluation

for Text Extraction from PDF

Hannah Bast

Claudius Korzen

University of Freiburg

University of Freiburg

79110 Freiburg, Germany

79110 Freiburg, Germany

bast@cs.uni-freiburg.de

korzen@cs.uni-freiburg.de

ABSTRACT

1.1 Kinds of semantic information

Extracting the body text from a PDF document is an important but

In the following, we briefly describe the kind of semantic informa-

surprisingly difficult task. The reason is that PDF is a layout-based

tion that we investigate in this paper.

format which specifies the fonts and positions of the individual

Word identification. This is crucial for applications like search:

characters rather than the semantic units of the text (e.g., words

a word that has not been identified correctly will not be found.

or paragraphs) and their role in the document (e.g., body text or

Word identification in a PDF is non-trivial and challenging for a

caption). There is an abundance of extraction tools, but their quality

number of reasons. The spacing between letters can vary from

and the range of their functionality are hard to determine.

line to line and even within a line, and there is no fixed rule to

(b) Valid cuts

A Bend I [Evaluafion for Texi E ot PDE

Hannah Bast
University of Freiburg
9110 Freiburg, Germany

bast@cs.uni-freiburg.de

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany

korzen@cs.uni-freiburg.da

haracters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or|

[L1__Kinds of semantic informationl

n the following, we briefly describe the kind of semantic informa-
ion that we investigate in this paper.

‘Word identification. This is crucial for applications like search
word that has not been identified correctly will not be found
ord identification in a PDF is non-trivial and challenging for a|
umber of reasons. The spacing between letters can vary from
ine to line and even within a line, and there is no fixed rule to|

paragraph

(c) Labeling valid cuts using the ground truth

Figure 17: Labels from ground truth. (a) shows the ground truth of the page, (b)
shows all valid cuts on the page, and (c) shows how we distinguish cuts
using the ground truth: gray cuts cut through text blocks, blue cuts
violate reading order, and green cuts are candidates for the best cut.

50

5.2 Model training

Now that we have discussed how we created our datasets, we will explain how and
with what features we trained our models. In particular, we want to train our models
for reading order detection. To detect reading order, we segment each page again.
However, pages will now contain the previously detected text blocks, instead of
characters, figures, and shapes. This allows us to use information about the semantic
roles of text blocks (see Section 4.5) as an additional input for our models.

Let us now discuss the exact features we use to represent valid cuts. The geometric
features we use include (1) relative position on the page, (2) direction, (3) size relative
to the largest valid cut with the same direction, (4) the relative bounding box of
the current subpage, and (5) the aspect ratio of the page. Additional non-geometric
features are (6) the current recursion depth, (7) the direction of the cut in the recursion
level above, and (8) a flag indicating if we currently are on the title page. Lastly, we
use the (9) semantic roles of the text blocks adjacent to the cut. In particular, we
distinguish on which side of the cut the respective semantic roles are located.

Now that we have discussed features, we will talk about how we trained our models.
The score-based model takes a batch of cuts as input and predicts a score for each
one. We optimized the score-based model on a binary labeling task using binary
cross-entropy loss. That is, we trained the model to predict a score of 1 for cuts labeled
“1” and 0 otherwise. The context-based models take all valid cuts of a single recursion
step as input and predict a single “class” label. In this case, classes correspond to
indices in the input sequence of cuts. For instance, if the model predicts class 2
for a given input, we would choose the cut with index 2 in the input. In training,
we optimized the context-based models on a multi-class classification task using
cross-entropy loss. We trained the models to predict the class corresponding to the
index of the best cut for each recursion step in our dataset.

We trained all models on our training dataset for 100 epochs using early stopping

with patience of 10 epochs. We used the Adam optimizer with a learning rate of

ol

10~* and a batch size of 64. We obtained our hyperparameters by performing a small
manual grid search on learning rate and batch size. For checkpointing our models, we
used the cut-choosing accuracy on the validation dataset. The cut-choosing accuracy
is the quotient of the number of recursion steps where we chose the best cut correctly

divided by the total number of considered recursion steps.

5.3 Results

In this section, we will discuss evaluation results. In particular, we will present our

evaluation methodology together with the gathered results.

5.3.1 Methodology

To evaluate the capabilities of our strategies, we need to compare their results against
a known ground truth. For this purpose, we use the ground truth generated from
TEX data discussed in Section 5.1. In particular, the relevant information we will use
is the list of expected text blocks and their respective reading order.

We will now formalize our evaluation process. First of all, we describe the output of
our algorithm and the structure of the ground truth mathematically. Note that we
will be evaluating on a per-page basis. Therefore, for each page of a document, we
define two sets: (1) the set of expected text blocks Rg (i.e., the ground truth), and
(2) the set of text blocks R4 detected by the algorithm (i.e., the set that we want to
evaluate). To accord for the reading order, we will equip both sets with a strict total
order (Rg, <) and (R4, <4) that corresponds to the respective reading order. Now
we can describe our evaluation more precisely. First, we want to compare the elements
of Rg and Rj. We compare text blocks by comparing their bounding boxes. In the
best case, we would have Rg C Ry (i.e., the algorithm detected all expected text

blocks) but also R4 C Rg (i.e., the algorithm did not detect any “wrong” text blocks).

52

For the best case follows that R4 = Rg. Secondly, we want to compare the reading
orders against each other. While it is difficult to compare orders on different base
sets, we can easily compare the induced orders (R N Ry, <g) and (Rg N Ra,<4).
Ideally, the orders <g and <4 should coincide on the subset Rg N R4.

Now that we have formalized the objects we want to evaluate, we can define our
evaluation metrics. Let (Rg, <¢) be a ground truth and (R4, <4) a result of our
algorithm. We will use six different metrics: Bg, B3, Bg , By, Tn, and Tﬂ: . The
first four of these metrics assess block detection, that is they compare R, against
Rg. The fifth and sixth metric measures similarity of expected and detected reading
order. B is the number of expected blocks that were correctly detected relative to

the total number of expected blocks. Formally,

_ |RgNR
Bg = 7| < A‘.
| Rq|
B7 is the number of detected blocks that were actually expected relative to the total

number of detected blocks. Formally,

B = R 0 Ra|
|Ral
To properly define Bg and B, we will introduce some additional notation. For two
text blocks 71, 79, we will use the notation 7y Nry # () to express that the bounding
boxes of r; and ro overlap. This notation makes sense because every bounding box
can be canonically seen as a closed and connected subset of R? which contains all
points that lie within the bounding box. Two bounding boxes overlap if and only if
the corresponding subsets of R? intersect. BJGr is the number of expected blocks that
have been split too much by the algorithm relative to the total number of expected
blocks. We say an expected block is split too much if it overlaps with two or more

detected blocks. Formally,

_HreRe| e Ralrnr £0) 2 2}|

B+
“ pizel

93

Similarly, B is the number of detected blocks that have not been split enough
relative to the total number of detected blocks. We say a detected block is not split

enough if it overlaps with two or more expected blocks. Formally,

re Ra |l e kol v 20} > 2)]
| Rl '

When detecting text blocks, we want to maximize both B and B} while keeping
BZTC and B, as low as possible. Our fifth metric 7, is the normalized Kendall-7-
correlation [1] of the detected order (Rg N R4, <4) compared to the expected order
(Rg N R4, <g). To compute the non-normalized value of 7, we need to count the
number of concordant pairs nc and the number of discordant pairs nd of the two orders.
A concordant pair is a pair of distinct elements r1,7r9 € Rg N R4 where 1 <g 19 and
r1 <4 7T2. A discordant pair is a pair of distinct elements 1,79 € Rg N R4 where
r1 <g ro but ro <4 r1. The last value we need to compute 7 is the total number
of ordered pairs np. For a totally ordered set of cardinality n, the total number of

w. Because we defined our orders on sets, they cannot

ordered pairs is np =
contain duplicates. Thus, all ordered pairs are either concordant or discordant and
therefore np = nc 4+ nd. Finally to obtain 7, we take the difference of nc and nd and
divide it by np. This yields the T-correlation coefficient between —1 and 1. To obtain
Tn, We normalize 7 by adding 1 to it and dividing it by 2. 7, now specifies if <g

and <4 are more positively correlated (7, > 0.5), uncorrelated (7, = 0.5), or more

negatively correlated (7, < 0.5). Formally,

ne = [{(r1,r2) € (Ra N Ra)* | 11 <¢ ra,r1 <a 12},

nd = |{(r1,72) € (Ra N Ra)* | 11 <g r2,r2 <a r1}l,

nc—nd nc—nd

T = =
np ne +nd’

T+1
Tn = 5

o4

Our last metric T»,{ will be computed exactly like 7,, except during computation we
will disregard all blocks from Rg whose semantic role is one of: table, caption, or
marginal. We will discuss our reasons for considering this metric and its interpretation
in Section 5.3.2.

To better understand how to compute and interpret these metrics, we will consider
some example evaluations. Figure 18a shows the ground truth Rg for our two
examples. Its base set consists of seven text blocks. We will refer to each text block
by using the letter next to it. Thus, Rg = {4, B,C, D, E, F,G}. The numbers next
to the text blocks induce the required total order on R¢g. Therefore, the total order
for our ground truth is A <g B <qg C <g D <¢g F <g F <g G. Now let us compare
(Ra, <) against our first example result from Figure 18b. The base set of this
example consists of the same seven text blocks, R}4 ={A,B,C,D,E,F,G}. We can
describe its total order by A <}4 B <114 D <h E <}4 C <}4 F <}4 G. Now we can

calculate all of our metrics. As we have already seen, we have Rg = RlA in this case

and thus
B= — |[Rg N RY| _|Ral _]
¢ |Rql |Ral
and
_ RoNRY R:
BZ:\G A‘_‘A‘_l'

IO
Furthermore, we obtain Bg = B = 0 because each block only overlaps with exactly
one other block, that is itself. The By and B} values tell us that the algorithm
not only managed to find all text blocks it was supposed to find but it also did not
detect any wrong blocks. Additionally, the values of Bg and B, indicate that no
blocks were split too much or too less. In total, this is a perfect result for text block
detection. However, we do have some mistakes with reading order in this example.
According to <! blocks D and E come before block C' which contradicts with <.

Thus, we have two discordant pairs

nd = |{(r1,7m2) € (Rg N R114)2 | r1 <@g 12,72 <114 ri} = |{(C,D),(C,E)}| =2,

95

|RGNRY |-(|IReNRY|-1)
2

and because |[Rg N R4| = 7, we obtain np = = L0 = 21. In total,

we can conclude

nc=np—nd=21—-2=19.
With this we can compute the value of 7 and thus the value of 7,

ncfnd_1972_ 17

= = = — =~0.81
T np 21 21 ’
T+1 081+1
= ~ ~ 0.91
Tn 5 9)

which tells us that while not being identical these orders are still strongly correlated.
This result is in line with our expectation as only two pairs of blocks appeared in the
wrong order.

As for our second example from Figure 18c, we have only six text blocks as our base set,
R% ={A,B,C,H,I,J}. Their order is as follows A <% B<% C <} H <} 1<% J.

Lets again calculate our metrics scores. For B¢, we obtain

" |Rg] ~ HAB,C,D,E,F,GY 1 7
and for B} we get
_ _ |Rgn R {A,B,C}| 3
|R%| {A,B,C,H,I,J}| 6

These values tell us that the algorithm only managed to detect about 43% of the
expected blocks correctly whereas 50% of the detected blocks were also expected. We

can obtain more information about the type of mistakes when computing Bg and

o6

B . For Bg, we obtain

e Re | € B e #0312 9)]

B
¢ |Ra|
_ Iteil
{A,B,C,D,E, F,G}|
_1
7
~ 0.14,

and for B, we get

{T‘ERQA | {r' € Rg | N’ #£ 0} 22}|
| R

-

{H, 1}|
{A,B,C,H,1,J}]

_2
6

=0.3.

This tells us that about 14% of expected blocks were split too much whereas 33.3%

of detected blocks should have been split further. Before calculating 7,,, we need

to take the intersection of R124 and Rg. This step is necessary to compare <g

and <% on the same base set. We obtain Rg N R4 = {4, B,C} and because

<¢l {A,B,C} =<%| {A, B,C} we do not have any discordant pairs in this example.

Therefore, we obtain

_nc—nd_nc—nd_nc—o

nc 1+1
S ne

= = = _1:7:
np nc+nd nc+0 nc 2 e

which tells the orders are not only strongly correlated but identical. Thus, we know

that all correctly detected text blocks appear in the correct reading order.

Note that we omitted the computation of 7}{ in our examples, as it is equal to 7, in

both cases. We will see cases where T,{ and 7, differ in the next section.

o7

E,5

Al

ABend l [Evaluaiion for Texi E onf PDE

Hannah Bast
University of Freiburg

9110 Freiburg, Germanyj
bast@cs.uni-freiburg.de

B,2

Lxtracting the body text irom a PDF document 1s an important but
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
icharacters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
icaption). There is an abundance of extraction tools, but their quality]|
and the range of their functionality are hard to determine.

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

C3

L1 Kinds of semantic informationl F,6

tion that we investigate in this paper.

‘Word identification. This is crucial for applications like search:
la word that has not been identified correctly will not be found.
(Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from|
ine to line and even within a line, and there is no fixed rule to

n the following, we briefly describe the Kind of semantic informa G.7
)

(a) Ground truth

E.4

Al

ABend l [Evaluaiion for Texi E onf PDE

Hannah Bast
University of Freiburg

9110 Freiburg, Germanyj
bast@cs.uni-freiburg.de

B,2

Lxtracting the body text from a PDF document 1s an important but|
surprisingly difficult task. The reason is that PDF is a layout-based
format which specifies the fonts and positions of the individual
icharacters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
icaption). There is an abundance of extraction tools, but their quality]|
and the range of their functionality are hard to determine.

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

C5

L1 Kinds of semantic informationl F,6

[the following, we briefly describe the kind of semantic informa.
tion that we investigate in this paper.

Word identification. This is crucial for applications like search:
la word that has not been identified correctly will not be found.
(Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from|

ine to line and even within a line, and there is no fixed rule to|

G,7

(b) Segmentation result 1

H,4

Al

ABend l [Evaluaiion for Texi E onf PDE

Hannah Bast
University of Freiburg

9110 Freiburg, Germanyj]
bast@cs.uni-freiburg.de

B,2

Claudius Korzen
University of Freiburg
79110 Freiburg, Germany
korzen@cs.uni-freiburg.de

C3

ABSTRACT

or paragraphs) and their role in the document (e.g., body text or
icaption). There is an abundance of extraction tools, but their quality]|
and the range of their functionality are hard to determine.

1.1 Kinds of semantic information

(Word identification in a PDF is non-trivial and challenging for a
number of reasons. The spacing between letters can vary from|

ine to line and even within a line, and there is no fixed rule to|

Extracting the body text from a PDF document is an important but In the following, we briefly describe the kind of semantic informa: 15
surprisingly difficult task. The reason is that PDF is a layout-based tion that we investigate in this paper.

format which specifies the fonts and positions of the individual m
characters rather than the semantic units of the text (e.g., words la word that has not been identified correctly will not be found} J,6

(c) Segmentation result 2

Figure 18: Computation of evaluation metrics. (a) shows the ground truth for our

o8

example, (b) and (c) show different segmentation results. (b) detected
all text blocks correctly but failed at the reading order while (c) failed
at detecting text blocks correctly but not at reading order. We identify
text blocks by the letter next to them, whereas the numbers next to
them describe reading order.

As mentioned above, we compute these metrics on a per-page basis. To compute
metrics for a document, we compute the metrics for each page first. After that, we
can aggregate the computed values by using a reduction like arithmetic mean, median,

etc.

5.3.2 Discussion

We evaluated text block detection and our reading order detection strategies on a set
of roughly 1,750 documents from arXiv (see Section 5.1). We also compare the results
of our algorithm to PdfAct [22], as PdfAct also provides text block and reading order
detection. The values we report are obtained by taking the arithmetic mean once

over the pages of each document and once overall documents.

Text block detection

Table 1 shows our results for text block detection. On average, our algorithm managed
to detect 51.4% of expected blocks perfectly, whereas 46.7% of the detected blocks
were also expected. 12.9% of expected blocks were split too much, and 14.7% of
detected blocks were not split enough by our algorithm.

Compared to PdfAct, our algorithm performs worse with respect to all computed
metrics. Especially for B¢, PdfAct outperforms our approach by over 15%. Similar
differences can be seen in B where only around half as many detected blocks are split
too less. For the other two metrics, the differences become smaller while remaining

evident.

B; By Bi B,

Thesis 51.4% 46.7% 12.9% 14.7%
PdfAct 66.5% 54.3% 10.1% 7.5%

Table 1: Text block detection

99

All new examples C — P, of the preceding remark have a variation V of Hodgd
structures similar to the examples of J. de Jong and R. Noot [25], and of E. Viehweg]
hnd K. Zuo [47], which we call pure (1,n) — VHS. Let Hg(V) denote the generic Hodgd
eroup of V and let K denote an arbitrary maximal compact subgroup of Hg*!(V)(R). In|
Section 4.4 we prove that a pure (1,n) — VHS induces an open (multivalued) period map
to the symmetric domain associated with Hg*(V)(R)/K, which yields the dense sets of
omplex multiplication fibers. We obtain the following result in Chapter 6: PARAGRAPH

Theorem 3. There are exvactly 19 families C — P, of cyclic covers of P*, which have a
pure (1,n) — VHS (including all known and new examples).

We will use the fact that the monodromy group Mon’(V) is a subgroup of the derive
eroup Hg?* (V) and we will study Mon®(V). Let 1 be a generator of the Galois group
f C — P, and C(¢)) be the centralizer of ¢ in the symplectic group with respect to the
intersection pairing on an arbitrary fiber of C. In Chapter 4 we obtain the result, which|
will be useful for our study of Hg%" (V) and Mon’(V): PARAGRAPH

Lemma 4. The monodromy group Mon®(V) and the derived Hodge group Hgd* (V) are
contained in C(v)).

Unfortunely we will not be able to determine Mon"(V) for all families C — P, of cyclid
covers onto PL. But we obtain for example the following results in Chapter 5: PARAGRAPH

Figure 19: Missing text blocks in the ground truth. The figure shows an example
from our ground truth that contains TEX environments the ground truth
cannot recognize.

One point also protrudes from the results. For both PdfAct and our approach, B
values are noticeably higher than the respective B} values. This has to do with
the way expected text blocks are computed in our ground truth. To recognize a
block in the ground truth, we need to parse the TEX environment that generates
it. For instance, this could be a paragraph or a table environment. However, many
environments are either uncommonly used or even custom-defined. Such environments
are not recognized in the ground truth, as seen in Figure 19. Thus, both PdfAct and
our algorithm will sometimes detect more text blocks than expected, leading to lower

B7 values.

Reading order detection

Table 2 shows our results for reading order detection. For both considered metrics,
the score-based LogisticRegressor achieved the best results. All strategies achieved

a strong correlation between expected and detected reading order with 7, values

60

between 0.86 to 0.873. When filtering the expected text blocks, we achieve a nearly
perfect correlation with Tq{ values between 0.978 and 0.994. However, overall our
evaluated strategies differed only marginally. That is, the difference for 7,, between
our best strategy, the LogisticRegressor, and our worst strategy, the Transformer, is
barely noticeable at 0.013. For ﬂ{ , the difference increases slightly to 0.016.

When comparing our results to PdfAct, all strategies managed to achieve a small
improvement in 7, values over PdfAct. For T,{ , weighted-largest cut, parameter
cut, and the Transformer performed slightly worse than PdfAct, whereas largest
cut, the LogisticRegressor, and the BatchClassifier performed slightly better. The
LogisticRegressor achieved the largest improvements with an increase of 0.014 in
7, and an increase of 0.009 in 7'/: over PdfAct. However, these results need to be
seen in the context of the number of correctly detected text blocks, as only these are
used to evaluate the detected reading order. As discussed before, PdfAct significantly

outperforms our algorithm in text block detection. Therefore, we need to be careful

when interpreting and comparing these values.

strategy Tn 7'7{
Largest cut 0.872 0.993
Weighted-largest cut 0.863 0.983
Parameter cut 0.865 0.984
LogisticRegressor 0.873 0.994
BatchClassifier 0.872 0.992
Transformer 0.860 0.978
PdfAct 0.859 0.985

Table 2: Reading order detection

Two aspects stand out from the results. First, all strategies performed almost the
same. In particular, our learning-based approaches did not manage to outperform
our much simpler rule-based approaches. Second, for all strategies, the value of 7'7{ is

much higher than the respective 7, value. We will now discuss possible reasons for

61

these observations.

Why do all strategies perform nearly identical? There could be multiple reasons
for this. The most obvious reason is that text blocks for which we need semantic
information to correctly detect reading order (see the example described in Section
4.5) only make up a small part of the total number of text blocks in a document. For
example, in the document from the example shown in Section 4.5, the two text blocks
in question only correspond to roughly one percent of the total number of text blocks
(=~ 200) in the document. Another reason could be that documents that contain such
text blocks are under-represented in our evaluation dataset.

A much less apparent reason for the similar results is the nature of ordering blocks
using the XY-cut method. Our strategies can only decide which cuts to choose and
in which order. However, they can neither influence the set of valid cuts nor our
definition of which side of the cut to read first (see Section 3.2.1). In some cases,
this can massively restrict a strategy’s impact on the detected reading order. For
instance, consider the text blocks shown in Figure 20a. When we segment the page
containing these text blocks again to detect reading order, we will always obtain
the segmentation seen in Figure 20b. The reason for this is the arrangement of
the text blocks. In each recursion step, there is only one valid cut. Therefore, it
does not matter which strategy we use to sort these blocks, as all strategies have to
choose the one available cut. In the end, every strategy produces the reading order

r1 <ro <rgz<rg<rTs.

Why is TT{ higher than 7, for all strategies? The reason for this is the additional
filtering we apply before computing 7'7{ . Namely, we remove all blocks with semantic
role table, caption, or marginal. To understand why these text blocks negatively
impact detected reading order, we need to explain a few details on how our ground
truth is generated. The reading order for each document in the ground truth comes
from the respective document’s TEX code. Let us now consider an example wherein

the TEX code, a table is defined after a paragraph. TEX could choose to place the

62

1 T1

72 T2
ry T4
r3 r3
5 T
(a) Detected text blocks (b) Only possible seg-
mentation

Figure 20: Limits of the XY-cut method. (a) shows detected text blocks on a page.
(b) shows the only possible segmentation on this page.

table (and its caption) above the paragraph in the compiled PDF. This is due to
TEX’s way of positioning float environments. However, in our ground truth, the
table and its caption will always come after the paragraph. Since this is the order,
they appear in the TEX code. Thus, the reading order for tables and captions can
sometimes be wrong. A similar case happens with marginal, which is also used for
page numbering. In the ground truth, a text block containing a page number will
always be one of the first blocks on a page with respect to reading order. However, in
many documents, page numbers are at the bottom of the page. This leads to another
case where the reading order detected by our algorithm will differ from the ground
truth. To evaluate the impact of these mistakes on the detected reading order, we
added T,{ as a metric. Our results show that this negative impact is very noticeable.
Filtering out text blocks with potentially wrong reading order results in a nearly

perfect correlation between expected and detected reading order.

63

6 Conclusion

This work aimed to extract text blocks from layout-based documents sorted by their
natural reading order. Furthermore, we investigated if reading order detection can
be improved by incorporating information on semantic roles. To solve this task,
we devised an algorithm based on the recursive XY-cut algorithm to group the
glyphs of a document into text blocks. The algorithm segments pages of layout-based
documents by successively applying horizontal or vertical cuts. Afterward, we tested
multiple strategies for sorting the detected text blocks by reading order. These
strategies included simple rule-based approaches but also more complex learning-
based approaches which incorporated semantic role information.

In summary, we managed to achieve decent results on text block detection and reading
order detection. When filtering out potential mistakes from our ground truth, we
even came close to a perfect result for reading order detection on correctly detected
text blocks. However, we could not show any relevant improvements in reading order
detection when using information about the semantic roles of the text blocks.

Our work leaves three main points for improvement in future work. The most
important of these points is improving text block detection. Our evaluation showed
that detecting text blocks based only on cut size does not yield satisfactory results.
Thus, a more sophisticated approach that leverages font information and more reliably
estimates line and column spacing could be used. Another aspect we did not consider
in this work is resolving diacritic marks and hyphenation problems after splitting text

blocks into words. However, these features are essential for proper text extraction.

65

Lastly, in our discussion, we explained the limits of the XY-cut method when it
comes to reading order detection. We could bypass these limitations by using a
learning-based reordering approach like described by Wang et al. [19]. Such an
approach could also allow us to make better use of the information on the semantic
roles of the detected text blocks.

We hope that our findings can help improve current page segmentation techniques
and overall contribute to making text extraction from layout-based documents a

“solved problem”.

66

7 Acknowledgments

First and foremost, I would like to thank my adviser Claudius Korzen for many hours
of exchange and discussion, his work on the datasets, and his extensive guidance and
feedback. I also want to thank Hannah Bast for being my examiner and for the many
helpful guidelines and tips on writing a thesis found on the chair’s website. I thank
Frank Dal-Ri and Matthias Hertel for helping me overcome the technical difficulties I
encountered when training my models. Last but not least, I want to thank my friends
and family who took the time to read my thesis write-up and suggested many helpful

improvements.

67

Bibliography

1]

2]

3]

4]

[5]

(6]

M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no. 1-2,

pp. 81-93, 1938. https://doi.org/10.1093/biomet/30.1-2.81.

H. Bast and C. Korzen, “A benchmark and evaluation for text extraction
from PDF,” in JCDL, pp. 99-108, IEEE Computer Society, 2017. https:

//ieeexplore.ieee.org/document/7991564.

G. Nagy, S. C. Seth, and M. Viswanathan, “A prototype document image
analysis system for technical journals,” Computer, vol. 25, no. 7, pp. 10-22, 1992.

https://ieeexplore.ieee.org/document/144436.

M. Shilman, P. Liang, and P. A. Viola, “Learning non-generative grammatical
models for document analysis,” in ICCV, pp. 962-969, IEEE Computer Society,

2005. https://ieeexplore.ieee.org/document/1544825.

J. Ha, R. M. Haralick, and I. T. Phillips, “Recursive X-Y cut using bounding
boxes of connected components,” in ICDAR, pp. 952-955, IEEE Computer

Society, 1995. https://ieeexplore.ieee.org/document/602059.

J. Meunier, “Optimized XY-cut for determining a page reading order,” in ICDAR,
pp. 347-351, IEEE Computer Society, 2005. https://ieeexplore.ieee.org/
document/1575567.

69

https://doi.org/10.1093/biomet/30.1-2.81
https://ieeexplore.ieee.org/document/7991564
https://ieeexplore.ieee.org/document/7991564
https://ieeexplore.ieee.org/document/144436
https://ieeexplore.ieee.org/document/1544825
https://ieeexplore.ieee.org/document/602059
https://ieeexplore.ieee.org/document/1575567
https://ieeexplore.ieee.org/document/1575567

17l

8]

19]

[10]

[11]

[12]

[13]

[14]

70

L. O’Gorman, “The document spectrum for page layout analysis,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 15, no. 11, pp. 1162-1173, 1993. https:

//ieeexplore.ieee.org/document/244677.

N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric
regression,” The American Statistician, vol. 46, no. 3, pp. 175185, 1992. https:
//www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879.

A. Simon, J. Pret, and A. P. Johnson, “A fast algorithm for bottom-up document
layout analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 3, pp. 273—
277, 1997. https://ieeexplore.ieee.org/document/584106.

J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical Society, vol. 7,

no. 1, pp. 48-50, 1956. https://www.jstor.org/stable/2033241.

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in CVPR, pp. 580—
587, IEEE Computer Society, 2014. https://ieeexplore.ieee.org/document/
6909475.

X.Yi, L. Gao, Y. Liao, X. Zhang, R. Liu, and Z. Jiang, “CNN based page
object detection in document images,” in ICDAR, pp. 230235, IEEE, 2017.

https://ieeexplore.ieee.org/document/8269977.

Team Konfuzio, “Automatic text summarization in documents with
faster R-CNN and PEGASUS.” Blog post at https://konfuzio.com/en/

automatic-text-summarization-in-pdf-files, accessed September 2021.

S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” CoRR, vol. abs/1506.01497,
2015. https://arxiv.org/abs/1506.01497.

https://ieeexplore.ieee.org/document/244677
https://ieeexplore.ieee.org/document/244677
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://ieeexplore.ieee.org/document/584106
https://www.jstor.org/stable/2033241
https://ieeexplore.ieee.org/document/6909475
https://ieeexplore.ieee.org/document/6909475
https://ieeexplore.ieee.org/document/8269977
https://konfuzio.com/en/automatic-text-summarization-in-pdf-files
https://konfuzio.com/en/automatic-text-summarization-in-pdf-files
https://arxiv.org/abs/1506.01497

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. https://arxiv.org/abs/1706.03762.

Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, and M. Zhou, “LayoutLM: Pre-training of
text and layout for document image understanding,” CoRR, vol. abs/1912.13318,
2019. https://arxiv.org/abs/1912.13318.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” CoRR, vol. abs/1810.04805,
2018. https://arxiv.org/abs/1810.04805.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019. https://arxiv.org/
abs/1907.11692.

Z. Wang, Y. Xu, L. Cui, J. Shang, and F. Wei, “LayoutReader: Pre-training of
text and layout for reading order detection,” CoRR, vol. abs/2108.11591, 2021.
https://arxiv.org/abs/2108.11591.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” CoRR, vol. abs/1409.3215, 2014. https://arxiv.org/abs/
1409.3215.

K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: A method for automatic
evaluation of machine translation,” in ACL, pp. 311-318, ACL, 2002. https:
//aclanthology.org/P02-1040.

C. Korzen, “PdfAct.” Repository at https://github.com/ad-freiburg/pdfact,

accessed September 2021.

71

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1912.13318
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2108.11591
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://github.com/ad-freiburg/pdfact

	1 Introduction
	2 Related Work
	2.1 Rule-based approaches
	2.1.1 Top-down approaches
	2.1.2 Bottom-up approaches

	2.2 Learning-based approaches
	2.2.1 Visual segmentation using object detection
	2.2.2 Pre-trained models for document understanding
	2.2.3 Pre-trained models for reading order detection

	3 Background
	3.1 Layout-based documents
	3.1.1 Document
	3.1.2 Page
	3.1.3 Text block
	3.1.4 Characters and Glyphs
	3.1.5 Figures and Shapes
	3.1.6 Bounding Box

	3.2 Page segmentation
	3.2.1 Cut
	3.2.2 Representing XY-trees
	3.2.3 Visualizing segmentation

	4 Approach
	4.1 Problem Definition
	4.2 Data preparation
	4.3 Page segmentation algorithm
	4.3.1 Computing valid cuts
	4.3.2 Choosing the best cut
	4.3.3 Splitting the page

	4.4 Text block post-processing
	4.5 Improving reading order
	4.5.1 Motivation
	4.5.2 Rule-based approaches
	4.5.3 Score-based approaches
	4.5.4 Context-based approaches

	5 Experiments
	5.1 Datasets
	5.2 Model training
	5.3 Results
	5.3.1 Methodology
	5.3.2 Discussion

	6 Conclusion
	7 Acknowledgments
	Bibliography

