Improved Simple Question Answering over Wikidata Bachelor's thesis presentation

David Otte

University of Freiburg

June 28, 2023

David Otte (University of Freiburg) Simple Question Answering over Wikidata

• Simplified subset of Wikidata in RDF format:

Subject Predicate		Object
"Eiffel Tower"	"named after"	"Gustave Eiffel"
"Eiffel Tower"	"visitors per year"	6,207,303
"Gustave Eiffel"	" place of birth"	" Dijon"

3 N 3

• Simplified subset of Wikidata in RDF format:

	Subject	Predicate	Object
	"Eiffel Tower"	"named after"	"Gustave Eiffel"
	"Eiffel Tower"	"visitors per year"	6,207,303
	"Gustave Eiffel"	"place of birth"	" Dijon"
•	Simplified example query	/:	
	SELECT ?o WHERE {		
	"Eiffel Tower" "na		
	}		

David Otte (University of Freiburg) Simple Question Answering over Wikidata

э

• Simplified subset of Wikidata in RDF format:

	Subject	Predicate	Object		
	"Eiffel Tower"	"named after"	"Gustave Eiffel"		
	"Eiffel Tower"	"visitors per year"	6,207,303		
	"Gustave Eiffel"	"place of birth"	" Dijon"		
•					
	SELECT ?o WHERE {				
"Eiffel Tower" "named after" ?o .					
	}				

Results:

• Subset of Wikidata in RDF format (Prefixes omitted):

Subject	Subject Predicate	
Q243	P138	Q20882
Q243	P1174	6,207,303
Q20882	P19	Q7003

• Example query:

```
SELECT ?o WHERE {
  wd:Q243 wdt:P138 ?o .
}
```

Results:

?o Q20882

• Question: What is the height of Mount Everest?

∃ >

- Question: What is the height of Mount Everest?
- What are the required Wikidata IDs? How is the required data organized in Wikidata? How to fomulate the correct query?

- Question: What is the height of Mount Everest?
- What are the required Wikidata IDs? How is the required data organized in Wikidata? How to fomulate the correct query?
- Query that answers question:

```
SELECT ?o WHERE {
  wd:Q513 wdt:P2044 ?o .
}
```

Problem: Definition

• Focus on Simple Questions

< 47 ▶

문 🛌 🖻

Problem: Definition

- Focus on Simple Questions
- Given: Natural language question q
- Goal: Find query that answers *q* using one of the following two patterns:

```
Target: Object
SELECT ?o WHERE {
    <entity> <relation> ?o .
}
Target: Subject
SELECT ?s WHERE {
    ?s <relation> <entity> .
}
```

Questions?

<ロト < 四ト < 三ト < 三ト

3

Approach: Pipeline

David Otte (University of Freiburg) Simple Question Answering over Wikidata J

< □ > < □ > < □ > < □ > < □ > < □ >

/ 23

э

- Question: In which city was Leonhard Euler born?
- Identified entities for each subsequence:

S	Es
"Leonhard Euler"	$\{Q7604, Q58118685,\}$
"city"	${Q515,}$

- Question: In which city was Leonhard Euler born?
- Identified entities for each subsequence:

- Get final set E' by combining all E_s and by dropping less promising entities
- $E' = \{ \underline{Q7604}, \underline{Q58118685}, \underline{Q515}, ... \}$

• For each entity in E', we generate all possible query candidates:

• For each entity in E', we generate all possible query candidates:

Entity	Relations Target: Object	Relations Target: Subject
Q7604	{ <u>P19</u> , P937,}	$\{P138,\}$
Q515	$\{P135,\}$	$\{P31, P1813,\}$

 In this case 930 query candidates are generated, including the correct query:

```
SELECT ?o WHERE {
  wd:Q7604 wdt:P19 ?o .
}
```

Approach: Relation Matching

• Illustration of relation scorer for the correct candidate:

Question

<u>Relation</u>

In which city was Leonhard Euler born?

P19: place of birth

→ < ∃ →</p>

э

Approach: Relation Matching

• Illustration of relation scorer for the correct candidate:

Question

In which city was Leonhard Euler born?

In which city was <entity>born?

Relation

P19: place of birth

answer type string velation aliases [big city; birthplace; birth place; born in; location born; [born; birth city; location of birth; location born; born at

ヨト イヨト

Approach: Relation Matching

• Illustration of relation scorer for the correct candidate:

David Otte (University of Freiburg) Simple Question Answering over Wikidata June 2

10/23

- Fine-tune relation scorer with the Multiple Negatives Ranking (MNR) loss function:
 - Create batches without duplicates, $q_1, ..., q_b$ question representations, $r_1, ..., r_b$ relation representations

• Use cross entropy loss

- Fine-tune relation scorer with the Multiple Negatives Ranking (MNR) loss function:
 - Create batches without duplicates, $q_1, ..., q_b$ question representations, $r_1, ..., r_b$ relation representations

- Use cross entropy loss
- Alternative if few relations: contrastive loss function

• Create feature vector for each candidate. Vector of correct candidate: [1, 2, 174, 1, 2, 1, 4, 0, 0.997, 0.57, 3288499]

- Create feature vector for each candidate. Vector of correct candidate: [1, 2, 174, 1, 2, 1, 4, 0, 0.997, 0.57, 3288499]
- Use random forest model for binary classification to infer a pairwise ranking

12 / 23

- Create feature vector for each candidate. Vector of correct candidate: [1, 2, 174, 1, 2, 1, 4, 0, 0.997, 0.57, 3288499]
- Use random forest model for binary classification to infer a pairwise ranking
- Compare each pair of candidates and sort candidates by number of "won" comparisons

12/23

Questions?

3

• Three different benchmarks, all provide simple questions together with the corresponding gold query

- Three different benchmarks, all provide simple questions together with the corresponding gold query
- SimpleQuestions-Wikidata: Translated from SimpleQuestions dataset, low variety in questions

- Three different benchmarks, all provide simple questions together with the corresponding gold query
- SimpleQuestions-Wikidata: Translated from SimpleQuestions dataset, low variety in questions
- LC-QuAD 2.0 SQ: Simple questions of LC-QuAD 2.0 dataset

- Three different benchmarks, all provide simple questions together with the corresponding gold query
- SimpleQuestions-Wikidata: Translated from SimpleQuestions dataset, low variety in questions
- LC-QuAD 2.0 SQ: Simple questions of LC-QuAD 2.0 dataset
- Own questions: 50 own questions, high variety

• Accuracy: Fraction of questions, for which the answers of the predicted query are the same as the answers of the gold query

- Accuracy: Fraction of questions, for which the answers of the predicted query are the same as the answers of the gold query
- Main results on the three benchmarks (AD is the average duration per question):

Dataset	Accuracy	AD
SimpleQuestions-Wikidata	0.816	0.49
LC-QuAD 2.0 SQ	0.825	0.57
Own questions	0.820	0.46

• Accuracy on SimpleQuestions-Wikidata compared to the accuracies of other QA systems:

QA System	SimpleQuestions	SimpleQuestions-
	(FB2M)	Wikidata
Yu et al. (2017)	0.787	-
Petrochuk et al. (2018)	0.781	-
Oliya et al. (2021)	-	0.682
Goette (2021)	-	0.586
Aqqu Wikidata (2023)	-	0.816

Questions?

• • • • • • • •

æ

Appendix: All features

ID	Name
1	Exact entity match
2	Exact entity token matches
3	Entity popularity score
4	Exact relation match
5	Literal score
6	Content literal score
7	Exact token matches
8	Similarity score
9	Relation score
10	Proportion matched/total tokens
11	Occurrences relation KG

3 × 4 3 ×

Appendix: MNR loss

$$L_{MNR}(\mathbf{q}_i, \mathbf{r}_1, ..., \mathbf{r}_b) = -\log\left(\frac{\exp(s \cdot sim(\mathbf{q}_i, \mathbf{r}_i))}{\sum_{j=1}^b \exp(s \cdot sim(\mathbf{q}_i, \mathbf{r}_j))}\right),$$

with $sim(\mathbf{q}, \mathbf{r}) = \frac{\mathbf{q} \cdot \mathbf{r}}{\|\mathbf{q}\| \|\mathbf{r}\|}$

A D N A B N A B N A B N

æ

Loss for single question-relation pair (embeddings \mathbf{q}_i , \mathbf{r}_i) and label y_i can be computed with

$$L_{CL}(\mathbf{q}_i, \mathbf{r}_i, y_i) = y_i \frac{1}{2} \|\mathbf{q}_i - \mathbf{r}_i\|_2 + (1 - y_i) \frac{1}{2} max(0, m - \|\mathbf{q}_i - \mathbf{r}_i\|_2)^2.$$

with m being a parameter that controls the influence of negative pairs.

	SimpleQuestions- Wikidata	LC-QuAD 2.0 SQ		
MNR loss fine-tuning	0.799	0.825		
contrastive loss fine-tuning	0.816	0.807		

글▶ 글

	SimpleQuestions-	LC-QuAD	Own ques-	AD
	Wikidata	2.0 SQ	tions	
Full Pipeline	0.816	0.825	0.820	0.50
w/o rel score	0.673	0.808	0.760	0.44
w/o rel occs, w/o sim score	0.811	0.823	0.760	0.40
only rel and popularity score	0.792	0.785	0.740	0.38
entity sentence: marking	0.795	0.826	0.820	0.59
fine-tuning WikiQuestions	0.813	0.823	0.820	0.52
entity pruning: 200/500	0.818	0.819	0.820	1.76
no candidate pruning	0.816	0.825	0.820	2.01

< 4[™] ▶

æ

Dataset	Accuracy	Top-2	Top-3	Top-5	Top-10	AD
SimpleQuestions-Wikidata	0.816	0.863	0.879	0.889	0.895	0.49
LC-QuAD 2.0 SQ	0.825	0.860	0.865	0.873	0.877	0.57
Own questions	0.820	0.880	0.920	0.960	0.960	0.46

< 1 k

문 🛌 🖻