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Abstract

In Knowledge Graph Question Answering (KGQA), the goal is to answer natural
language questions over knowledge graphs. Many previous works focused on question
answering over Freebase, which support was cancelled in 2015. Instead, we further
investigate question answering over the full Wikidata Knowledge Graph and propose
a pipeline for question answering over Wikidata. We focus on simple questions, which
are questions that can be answered with a SPARQL query that only uses a single
triple. Still, our approach is principally not limited to simple questions and could
be extended for complex questions. Given a natural language question, our pipeline
generates a set of query candidates, ranks them according to collected features and
takes the results of the highest ranked query as the answer to the question. One main
focus of our work is the relation matching, where we propose a relation scorer based
on the Sentence-BERT architecture for fast and accurate matching. We also discuss
the quality of existing question answering datasets for Wikidata and experiment with
generating additional questions from Wikipedia articles for fine-tuning. We evaluate
our pipeline on three different benchmarks, achieving good results on each. On the
SimpleQuestions-Wikidata benchmark, our pipeline achieves an accuracy of 0.816.
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Zusammenfassung

Bei Knowledge Graph Question Answering (KGQA) geht es darum, Fragen in natür-
licher Sprache über Knowledge Graphen zu beantworten. Frühere Forschung konzen-
triert sich überwiegend auf die Beantwortung von Fragen über Freebase, dessen
Unterstützung im Jahr 2015 eingestellt wurde. Stattdessen untersuchen wir die Beant-
wortung von Fragen über dem gesamten Wikidata Knowledge Graph und stellen eine
Pipeline für diese Aufgabe vor. Wir konzentrieren uns auf einfache Fragen, das sind
Fragen, die mit einer SPARQL Query beantwortet werden können, die nur ein einziges
Tripel verwendet. Dennoch ist unser Ansatz grundsätzlich nicht auf einfache Fragen
beschränkt und kann für komplexe Fragen erweitert werden. Ausgehend von einer
Frage in natürlicher Sprache, generiert unsere Pipeline eine Reihe von Queries. Diese
werden nach gesammelten Merkmalen sortiert und die Ergebnisse der höchstrangigen
Query werden als Antwort auf die Frage genommen. Ein Schwerpunkt unserer Arbeit
ist das Relation Matching, bei dem wir einen auf der Sentence-BERT Architektur
basierenden Relation Scorer für schnelles und genaues Matching vorschlagen. Wir
diskutieren auch die Qualität bestehender Datensätze für die Beantwortung von
Fragen über Wikidata und experimentieren mit der Generierung zusätzlicher Fragen
aus Wikipedia-Artikeln für das Fine-tuning. Wir evaluieren unsere Pipeline auf drei
verschiedenen Benchmarks und erzielen auf jeder dieser Benchmarks gute Ergeb-
nisse. Auf der SimpleQuestions-Wikidata Benchmark erreicht unsere Pipeline eine
Genauigkeit von 0,816.
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1. Introduction

Knowledge graphs are widely used to store vast amounts of interconnected data. They
mainly organize its data by using the Resource Description Framework (RDF), where
statements consist of a subject, a predicate and an object. These are usually referred
to as triples or facts. A popular general purpose Knowledge Graph is Wikidata1,
which belongs to the Wikimedia Foundation2. Wikidata is the successor of Freebase3,
another general purpose Knowledge Graph, which is not supported anymore since
2015.

Wikidata currently has over 100 million entities, which can be any kind of human
knowledge elements. In many practical cases, this can be persons, locations, books
and similar things. Information is stored by using properties (the Wikidata term for
relations/predicates) to set entities in relation with each other or with other types
of data. Since both entities and properties with the same name exist, for example
persons with the same name, Wikidata uses unique identifiers. For instance, the
Wikidata entity of Barack Obama is <http://www.wikidata.org/entity/Q76>. We
omit the prefixes of entities and properties and only refer to them with their identifiers,
Q76 is the case of Barack Obama. An example triple statement in Wikidata would
be ⟨ Q76, P106, Q82955 ⟩, where P106 is the property “occupation” and Q82955 is
the entity “politician”.

To acquire specific information from knowledge graphs, often the query language
SPARQL (SPARQL Protocol And RDF Query Language) is used. Basic SPARQL
queries also use the same triple statement structure. Elements can be replaced with
variables, and executing the query gives us the set of possible elements for the selected
variables. A SPARQL query for Wikidata that asks for the occupation of Barack
Obama would be the following:

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?o WHERE {

wd:Q76 wdt:P106 ?o .
}

1https://www.wikidata.org/
2https://wikimediafoundation.org/
3https://developers.google.com/freebase/

1



Note that this query, as well as all following queries, makes use of prefixes to abbreviate
the full names. Formulating the SPARQL queries for finding specific information
can be very challenging for non-experts. One needs to have knowledge about the
demanded entity and relation identifiers, the internal structure of the knowledge
graph and the structure of SPARQL queries. Knowledge Graph Question Answering
(KGQA) is a research field that aims to solve these problems by directly translating
a natural language question to the SPARQL query that answers the question. Many
proposed systems, as well as question answering datasets, were built for Freebase.
Our goal is to further explore question answering over Wikidata and to use deep
learning techniques for finding the optimal answer query. For simplicity, we focus
on simple questions, which are questions that can be answered with a query that
uses only a single triple pattern. However, our approach can also be extended for
questions that require queries that use more than one triple pattern. These questions
are called complex questions.

1.1. Problem definition

Given a natural language question q, we want to find the SPARQL query s that
answers the question q using a single triple pattern. Thus, there are two possible
query templates, which we will name analogously to Goette [1]. The first one, we call
it Entity-Relation-Target-Pattern (ERT-Pattern), asks for the object of a knowledge
graph triple. The following query is an example, it searches for the place of birth
(P19) of Albert Einstein (Q937):

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?o WHERE {

wd:Q937 wdt:P19 ?o .
}

The second one, the Target-Relation-Entity-Pattern (TRE-Pattern) asks for the
subject of the triple. The following query is again an example, it asks for entities
whose place of birth (P19) is Ulm(Q3012):

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?s WHERE {

?s wdt:P19 wd:Q3012 .
}
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1.2. Our approach

Our approach builds up on the question answering system Aqqu from Bast et al. [2].
Aqqu was proposed in 2015 for question answering over Freebase. It consists of a
pipeline that processes the question to collect features, which are later used to learn a
ranking of all the queries that might answer the question. It also supports questions,
which can only be answered with using more complex queries. Goette [1] proposed a
new version of Aqqu for simple question answering over Wikidata. He uses a similar
pipeline but focuses on the collection of basic features. Our approach builds up on
the original Aqqu design and the structure relies heavily on the implementation of
Goette. Therefore, we will also refer to our system as Aqqu Wikidata. However, we
rewrote the majority of the code and added new parts.

The general workflow of our pipeline is as follows: Given a natural language question,
our system first identifies possible entity mentions using part-of-speech tags and
simple heuristics. In a followup step, all possible query candidates based on the
detected entities are generated. This is followed by a relation matching step, where
the relation of the generated candidate is compared with the question. We collect
multiple features for both the entity linking and the relation matching step and finally
train a ranker to infer a ranking. We then take the results of the highest ranked
query as the answer of our system.

The main focus in our work is the relation matching step. Using natural language,
there is often a huge variety of ways a relation can be expressed. To still be able
to reliably recognize fitting relations, we use a deep learning architecture called
Sentence-BERT [3]. We evaluate our system on three different benchmarks and
achieve good results on each.

1.3. Contributions

In this thesis:

1. We present an extendable system for simple question answering over Wikidata.

2. We propose a relation matching method that relies on the Sentence-BERT
architecture.

3. We explain how we handle performance issues that arise when working with
the full Wikidata Knowledge Graph.

4. We discuss the quality of different datasets for question answering over Wikidata
and investigate the possibility of generating additional data for fine-tuning from
Wikipedia articles.
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2. Related Work

Yu et al. [4] use bidirectional long short-term memories (LSTMs) to match questions
to relations. Therefore, they generate representation vectors for a given relation and
a given question and then compare these representations. The question representa-
tion is generated by using a hierarchical system of two bidirectional LSTMs, with
the assumption, that both look at different levels of abstraction. For the relation
representation, they use a bidirectional LSTM given both the single words of the
relation and a representation of the full relation as input. To measure how good the
question and the relation match, they finally compute the cosine similarity between
the two representations. They also propose a simple KGQA system that uses an
existing entity linker and their relation detection model. They predict the best query
by combining the entity and the relation scores. They evaluate their system on
both simple questions and complex questions, and report state-of-the-art results. In
our approach, we also generate representations of the question and the relation and
compare these representations. The main difference is that we use the Sentence-BERT
architecture instead of bidirectional LSTMs.

Wu et al. [5] mention that in previous works for answering simple questions, the
systems perform good on the test data, but they perform significantly worse on
relations not seen during training. They extend the system of Yu et al. by introducing
a relation adapter for solving this problem. This adapter uses the relations seen
during training to learn a mapping that is reasonable for all relations. Also, they
reorganize the SimpleQuestions [6] dataset for investigating how good the predictions
are for unseen relations.

Petrochuk et al. [7] find out that the upper bound of the SimpleQuestions dataset is
at 83.4%. They propose a system that only uses standard methods for entity and
relation matching and set a new state-of-the-art. They use a conditional random field
tagger for predicting the most likely entity and a one layer BiLSTM to predict the
most likely relation among all possible relations.

Lukovnikov et al. [8] investigate the usage of BERT for simple question answering
over knowledge graphs. They also inspect the effect of limited training data. In
their work they use a single BERT model to predict entity spans and the relations
together with some further simple measures. They compare the results with two
methods using recurrent neural networks and report a slight increase in accuracy for
both entity span prediction and relation prediction. The main difference to our work
is, that their BERT model outputs probabilities for every relation, while our model
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works with single input pairs. Also, they use a model for entity span prediction and
rely on simple heuristics for ranking, while we use a more simple approach for entity
matching and train a model for ranking the query candidates.

Gu et al. [9] highlight the importance of generalization to questions that are not
similar to the training questions. They focus on i.i.d. generalization, which is that
the system should generalize to questions i.i.d. to the training data, on compositional
generalization, which is about the new composition of items seen during the training,
and zero-shot generalization to answer questions with unseen items. They propose a
new large dataset to learn these generalizations. They also build a Seq2Seq model,
where encoder and decoder are recurrent neural networks, and they use a BERT
model to get the representations for the input tokens of recurrent neural networks
(RNNs). The main differences to our approach are the type of the model, the usage
of a model for entity linking and their focus on complex questions.

In December 2022, Perplexity AI1 presented a Twitter search engine Bird SQL. It
uses OpenAI2 Codex to translate a natural language question into a SQL query
that answers the question. Although this problem has significant differences to our
problem, this was an impressive demonstration of the power of large language models
for query generation. Especially, the large number of different Wikidata entities
and properties would make such an approach difficult for KGQA over Wikidata.
Currently, the Bird SQL service is not available anymore.

1https://www.perplexity.ai/
2https://openai.com/
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3. Background

In our question answering pipeline, we will make use of a Sentence-BERT (SBERT)
model for matching questions with relations. This section aims to give a basic
understanding of the training procedures we use and to give an intuition for our
SBERT model. Therefore, we first give a general overview of neural networks and
their training, and then give an introduction to BERT and our specific model type.

3.1. Neural Networks

Loosely inspired by the neurons in the human brain, Artificial Neural Networks
(ANN) became a powerful tool in the area of Machine Learning. Given collected data
about a problem, ANNs can be trained to learn patterns from this data and to give
valuable predictions for new data.

The fundamental building blocks of neural networks are called neurons. The most
simple neural network architecture, called feed-forward neural network, consists out
of multiple layers of neurons. The first layer is called input layer and the last layer is
called output layer. Each neuron is a function, that takes the outputs of all neurons
of the previous layer as input and calculates a new output. Given the outputs of the
previous layer x1, ..., xn, weights w1, ..., wn, a bias b and a function g, the output a of
a neuron is computed with

a = g

 n∑
j=1

wj · xj + b

 .

g is called activation function. Without using activation functions, the final model
would be linear. An often used activation function is called RELU, where g(x) =
max{0, x}. It simply drops negative outputs.

Initially, the weights and the biases of each neuron of the network often get initialized
randomly. During a training process, these weights and biases can be updated such
that the output layer generates useful outputs for a specific task. In supervised
learning, we have a labeled dataset that we can use for training the model. For
evaluating the performance of the model and for updating the weights accordingly,
loss functions are used. These are functions that usually take the model outputs
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and the expected outputs as input and compute a score that indicates how well the
predictions of the model are. For a binary classification task, the labels in the training
data are usually 0 or 1 and often the binary cross entropy loss function is used:

LBCE = − 1

N

N∑
i=1

yi log(ŷi) + ((1− yi) log(1− ŷi)).

N is the total number of training instances, yi is the label of the i-th instance and
ŷi the corresponding prediction of the neural network. With using loss functions,
we turn the learning process into a numerical optimization problem. The goal is to
minimize the loss function by updating the parameters such that the outputs are as
close as possible to the correct labels. For minimizing the loss function, optimization
techniques like Stochastic Gradient Descent, and newer variations like Adam [10],
are used. The basic idea is to compute the gradient of the loss function at the
current point, and to then go into the direction of the negative gradient of this point.
Therefore, it is necessary to compute the derivative of the loss function with respect
to all weights and biases. This can be done efficiently using backpropagation, which
makes use of the chain-rule of calculus.

Often, for efficiency reasons, multiple instances are propagated through the network
together. This grouping of instances is called batching. During training, the training
data is often propagated multiple times through the network. The process of training
the model on the training data once is called one epoch. The chosen batch size, number
of epochs, as well as other decisions for the model architecture, such as the number of
layers, can have a big impact on the performance of the final model. These parameters
are called hyperparameters. The process of finding the best hyperparameters is called
hyperparameter-optimization.

A problem that often occurs when training a model is called overfitting. This is
when the model fits the training data too closely, meaning that it performs great on
the training data but becomes too specialized for performing good on unseen data.
Therefore, it is important to choose the correct hyperparameters and to evaluate
trained models thoroughly.

Beside the feed-forward neural network, there are multiple other types of neural
networks. Convolutional neural networks are mainly used for working with images,
recurrent neural networks for handling sequential data and transformers to work on
natural language tasks. They all build up on the basics previously explained, but can
consist of more complex architectures.
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3.2. BERT

The type of neural networks that we will work with are transformers, which were
introduced by Vaswani et al. [11]. They rely heavily on the self-attention mechanism,
which allows the model to focus more heavily on different parts of the input text.
Compared to recurrent neural networks, which were often used for similar tasks,
transformers are much faster to train on a GPU because the computations for the
whole sequence can be parallelized. A Transformer is composed of an encoder and
a decoder. For our use case, we will only make use of the encoder part of the
transformer, since we do not want to generate text sequences. An encoder mainly
consists of the multi-head attention mechanism and a feed-forward neural network.
The exact technical details are not relevant for understanding our approach.

Bidirectional Encoder Representations from Transformers (BERT) from Devlin et al.
[12] is a language representation model that consists out of encoders. By stacking
multiple encoders, BERT achieved new state-of-the-art results on eleven natural
language processing tasks.

One generally distinguishes between pre-training and fine-tuning. During pre-training,
the goal is to learn a general understanding of natural language with huge amounts
of unlabeled data. In the case of BERT, it was pre-trained on predicting masked
tokens in a sentence as well as on next sentence prediction. During fine-tuning, a
pre-trained model is taken as starting point. A new output layer is added to the
model architecture that fits the task specifics, and the model is trained on new labeled
data for a specific problem. The main advantage here is, that due to the pre-training,
the model already has a basic understanding of natural language and with that,
training is much faster.

For the input, BERT uses WordPiece embeddings. Given one or two sentences, they
are splitted into smaller parts given a vocabulary of 30,000 tokens. Also, special
tokens such as [CLS] at the beginning of the sequence or [SEP] to separate multiple
sentences are inserted. Because of the huge amount of possible words, the idea
is to split more complex words into word pieces such that there is a token in the
vocabulary that represents this word piece. These tokens then have corresponding
vector representations, called embeddings, which are used as numerical input for the
network.

3.3. Sentence-BERT

BERT has achieved new state-of-the-art results on sentence-pair regression tasks.
Therefore, a cross-encoder architecture was used, where all possible sentence-pairs
are fed to the BERT model together and a similarity score gets computed. If the
set of sentences gets larger, a huge computational overhead is the consequence. Let
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Figure 1.: SBERT model architecture during inference. Figure from Reimers et al.
[3].

n be the number of sentences in a given set, then the number of possible sentence
pairs, that needs to be fed to the network, computes as #pairs = n · (n− 1)/2. For
example, when n = 10, 000, the number of pairs is almost 50 million. Thus, simple
inference tasks can take way too long, even on a GPU. [3]

To solve this problem, Reimers et al. [3] propose Sentence-BERT (SBERT), a
modification of the pretrained BERT network using a siamese or triplet network
architecture. The general idea is, that both sentences are fed separately into the
network such that sentence-embeddings are generated, and then the two embeddings
are compared using cosine-similarity. Thus, each sentence of a given set of sentences
only needs to be processed once. The similarities of all sentence-pairs can then be
determined by comparing the embeddings, which is much more efficient. Figure 1
shows the architecture of an SBERT model during inference. Given sentences A
and B, both are separately processed with BERT. The two BERT models shown in
Figure 1 share its parameters. For every token of the inputted text, BERT outputs
an updated embedding. We obtain the final representations of the two sentences by
doing a pooling operation over all output embeddings. For SBERT, usually mean
pooling is used, where we simply take the mean of all output vectors. The final
similarity score of A and B is then obtained by comparing the two representations
using the cosine similarity. Looking at the previous example with n = 10, 000, the
inference time was reduced from 65 hours to 5 seconds, without a loss in accuracy
[3].
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4. Pipeline

In this section, we will explain our pipeline for answering simple questions over
Wikidata. The pipeline is based on the pipeline of Bast et al. [2] and its Wikidata
version of Goette [1]. Similar to Goette, we also build our pipeline on top of the
natural language processing library spaCy from Honnibal et al. [13]. We begin with
an entity linking step (Section 4.1), followed by a step for generating the candidates for
the identified entities (4.2). Next, a relation matching step that uses a deep relation
scorer is applied for matching the relations of the candidates with the question (4.3).
In these steps, we extract useful features for every candidate. We give an overview of
all collected features (4.4). Finally, a ranker model is trained on the collected values
and all query candidates are ranked to find the most promising answer (4.5).

4.1. Entity linking

During entity linking, our main goal is to identify the relevant entity in a given
natural language question. We will use a simple, rule-based approach to identify a
set of possible entities E. For reducing the search space, we remove unlikely entities
and get the pruned entity set E′.

4.1.1. Entity Index

We build an entity index using RocksDB1, a fast key-value store. When acquiring all
necessary information from Wikidata, we use the same SPARQL query as Goette
[1] for getting the aliases (see Appendix A.1). For each entity, we get its labels,
aliases and the number of Wikipedia sitelinks in this step. We will use the number
of Wikipedia sitelinks as a popularity score for the entities, since this is a useful
indicator for how well known a specific entity is. We build a mapping from each word
sequence that is a label or alias of an entity to all entities it may describe. We also
build a mapping from the entity IDs to all information we have about this entity. We
will use this index in the following steps for quickly identifying the entities and for
fast access to the corresponding information.

1https://rocksdb.org/
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4.1.2. Identifying possible entities

Given a natural language question, we first use a basic spaCy pipeline to tokenize
the question. Tokenization refers to the process of splitting text into smaller chunks
called tokens. These tokens are often words, but there are exceptions, for example
contractions or punctuation symbols. If the last token is a punctuation symbol, we
remove it, since this gives us no further information. Beside the tokenization, spaCy
also assigns part-of-speech tags and collects further useful information that we will
use in later steps of the pipeline.

To find all possible entities, we look at all subsequences of tokens that might be an
alias of an entity. We assume that neighbored tokens, that are both tagged as proper
nouns, belong together. To avoid looking on unnecessary subsequences, we merge
these neighbored tokens. Now we look at all subsequences of tokens that have at least
length two or have length one and are tagged as noun or as proper noun. We use the
entity index to find all entities that have this subsequence as label or as alias. With
this procedure, we generate a set E, containing all entities identified by the system.

4.1.3. Entity pruning

In the subsequent steps of the pipeline, we will have many possible query candidates
for almost every identified entity. To reduce this number and with it the runtime, we
implement a simple entity pruning procedure.

First, we want to limit the number of entities that are matched to a single subsequence.
Given a subsequence s of the question, let Es denote the entities of E that were
matched by s. We only keep the entities of Es that have the highest popularity scores.
This is necessary because for some subsequences, that for example only contain an
often used surname, the number of matched entities can be very high. For example,
for s = “Jackson”, we have 4,793 resulting entities. We rank the entities by their
popularity score and only keep the ten entities with the highest popularity scores.
This is a good threshold according to our experience. The big majority of questions
is not affected and when the gold entity is not in the top ten, it is unlikely that its
candidates would be ranked high anyway.

We sort the entities left primarily by the number of tokens of the longest subsequence
they were matched with, and secondarily by their popularity score. We then only
keep the first 50 entities in order to have an upper limit. Again, 50 is according to our
experience a good threshold. The majority of the questions is not affected because
the number of entities after the first pruning step is often already smaller than 50.
We call the set of entities that are left after the pruning steps E′.
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4.2. Candidate generation

In this section, we use the identified entities from the previous step to generate all
query candidates that might answer the question. Since we are focussing on simple
questions, we have to consider all queries using the ERT- or TRE-pattern that contain
an entity of E′ either as subject or as object.

This step of the pipeline can be very time-consuming because of the huge amount of
items in Wikidata. We use a single SPARQL query, see Appendix A.2, to generate all
candidates as fast as possible. Therefore, we do an inner GROUP BY on the entity
and the property to reduce the time for the subsequent operations. In the original
Aqqu implementation, we would also acquire the size of the result set for each query
candidate. We will not do that because this significantly increases the runtime and
gave no improvements regarding the results in our tests.

Assuming E′ = {Q937}, which is the Wikidata ID of Albert Einstein, 4,190 query
candidates are generated in this step. 2,922 of them use the ERT-pattern, 1,268 the
TRE-pattern.

4.3. Relation matching

In the next step, we want to derive useful measures that state how well the relation
of a query candidate matches the question. First, we collect some basic metrics using
the tokens of the question and the relation label and aliases. Then we will present
our deep relation scorer as a more powerful approach for relation matching.

4.3.1. Relation Index

Similar to the entity index, we also build a relation index using RocksDB. For
acquiring the aliases for all relations, we again use the same query as Goette [1], see
Appendix A.3. We precompute the lemmatized forms of all relation labels and aliases
using spaCy. The lemmatization of a word is its reduction to its base form, which
is achieved by reducing inflectional forms. For instance, the lemmatization of the
words “am”, “is”, “are” is “be”. We build a mapping that maps each relation ID to
its corresponding label, lemmatized label, number of occurrences in the Knowledge
Graph and answer type strings. The answer type strings will be explained in section
4.3.5. We also build a mapping from the relation IDs to the corresponding set of
lemmatized aliases.
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4.3.2. Basic metrics

We define two literal scores similar to Goette [1]. In the following, we will make use of
the lemmatizations of the tokens provided by spaCy. Let Q be the set of lemmatized
words of the question and Ri the lemmatized words of the i-th label/alias of the
Wikidata relation. Let n be the size of the set of the relation label and its aliases.
Then, we define the literal score as follows:

literal score = max
i∈{1,...,n}

|Q ∩Ri|.

Since often simple, meaningless words like “the” or “of” are in both sets, we define a set
QC ⊂ Q, which contains the lemmatized words of all content tokens of the question.
We define content tokens as the tokens, that have one of the following POS-tags:
{CD, JJ, JJS,NN,NNS,NNP,RB, V B, V BD, V BN, V BP, V BZ}, and whose lem-
mas are not “be”, “do”, “go” or “have”. Then we define the second measure similar to
the first one, but with QC instead of Q:

literal content score = max
i∈{1,...,n}

|QC ∩Ri|.

To also have a basic measure that is not as dependent on the chosen words as the
literal score, we also use the similarity score from the original Aqqu [2]. The goal
is to evaluate the similarity of the lemmatized words of the relation label and the
lemmatized content words of the question. For comparing the similarity, we use
300-dimensional word vectors from Word2Vec, learned from parts of the Google News
dataset [14]. Word vectors are representations of words that capture their semantic
and syntactic meaning. We will use them for capturing the similarity between words.
For a given word a, let w(a) be its word vector. First, we get QC ′ from QC by
removing all words that are not in the vocabulary of our word vectors. We define
R as the lemmatized words of the relation label, which are also part of the word
vectors vocabulary. Then we can compute the similarities using the cosine similarity
as follows:

similarity score = max

{
w(q) · w(r)

∥w(q)∥∥w(r)∥

∣∣∣∣ q ∈ QC ′, r ∈ R

}
.

4.3.3. Deep relation scorer using SBERT

The basic metrics can be helpful for many questions, but they depend strongly on
the aliases provided by Wikidata. Also, they do not regard the other words in the
question, which may not directly express the relation but can be a good hint for
what is asked for. For instance, questions like “Who is Stephen Curry?” do not
contain words that would directly indicate for which relation it asks for. Still, an
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often expected answer for such a question would be the occupation (P106) of the
entity. In the case of Stephen Curry (Q352159), this would be “basketball player”
(Q3665646). The goal is to create a model, that gets the question as input and learns
to predict which relations are fitting.

For training the deep relation scorer, we will make use of training data D, which
consists of question-triple pairs. The first element of the triple is the entity that
should be identified in the question, the second element is the relation the question
asks for and the third element is a random element of the results of the correct
query. Wikidata has over 10,000 different properties and there is no training data
D available, which covers all properties. For still being able to generalize to unseen
relations, we decide to turn the problem for finding the best matching relation into a
binary classification problem. We use two sentences as input, one for the question
and one for the relation. Note that sentence in this context rather refers to some
kind of text and not necessarily to a grammatical correct sentence. As output, we
expect a score between 0 and 1 that measures how well the input question matches
the input relation.

For learning a model with these specifications, we use the SBERT architecture
introduced in section 3. Our use case is a bit different compared to typical situations
where an SBERT model is used. Instead of comparing every sentence pair of a set
of sentences, we have exactly one question-relation-pair for every query candidate.
When using a BERT cross-encoder, we need to process a sentence pair for every
candidate. For some questions, despite the usage of only the top 50 entities, we have
over 3,000 query candidates. To process all sentence pairs would then take longer
than 3 seconds on an NVIDIA GeForce RTX 2080. This is of course not optimal
for a question answering system that should be as interactive as possible. Therefore,
SBERT is a nearby choice. Since it allows us to process the question and the relation
sentences independently, we can reduce the number of inference steps significantly.
For a question we can have at most 50 entities and thus, at most 50 different question
sentences. There are over 10,000 possible relations, each with a possibly different
relation sentence. We can easily precompute them after fine-tuning the model, since
the embeddings will not change anymore. Therefore, we can reduce the number
of inference computations from possible multiple thousands to at most 50 for each
question.

We use the pre-trained bert-base-uncased from Huggingface2 for our SBERT model.
It makes no difference between uppercase and lowercase letters, consists of 12 encoders
and has 110 million parameters in total. We linearly map the cosine similarities we
compute to the range between 0 and 1.

2https://huggingface.co/
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Data type Number of properties

External identifier 7,951

Item 1,586

Quantity 642

String 326

URL 97

Commons media file 77

Point in time 63

Monolingual text 60

Mathematical expression 36

Property 21

Lexeme 16

Sense 16

Geographic coordinates 11

Form 7

Tabular Data 6

Musical Notation 6

Geographic shape 3

Table 1.: Data types of Wikidata properties and how many properties of each data
type exist.

4.3.4. Answer type matching

In the triples of the Knowledge Graph, relations often occur together with subjects
and objects of specific types. For example, when looking at the property P19: “place
of birth”, usually the subject is a human and the object is a place. The goal of answer
type matching is to know for which type a question is asking for and which relations
support this type. If the question would be “Where was Albert Einstein born?”,
we would directly know that the question asks for a place - and can prefer query
candidates with relations that often appear with entities that refer to a place. In the
following part, we will explain how we integrate this idea of answer type matching
into our relation scorer.

Wikidata properties are assigned to a specific data type, which all objects they occur
with must have. Table 1 shows all 17 data types that currently exist. We can see
that the majority of Wikidata properties has the data type External identifier, which
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means they connect an entity with some kind of identifier. Of course, some questions
might refer to identifiers, but most questions will refer to the next most prominent
data types. Item refers to all properties that can connect two entities. Properties
like P19: “place of birth” or P106: “occupation” are examples for this data type. Also,
the data types Quantity and String are frequent, the objects are then quantities and
strings.

We precompute an answer type string for each relation for both the ERT- and TRE-
pattern in the following manner: Given property p, we get its data type with the
following SPARQL query:

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wikibase: <http://wikiba.se/ontology#>
SELECT ?type WHERE {

wd:p wikibase:propertyType ?type
}

If p has a data type different to Item, we simply take the data type name from Table
1 as answer type string for the ERT-pattern. We do not need an answer type string
for the TRE-pattern because we only identify Wikidata entities in the question and
not dates or other values. For data type Item, we do a more fine-grained answer
type matching because this will influence most of the relations asked for in questions.
For the ERT-pattern, we will take the label of the most prominent super class of all
possible objects for p as answer type string. For the TRE-pattern we do the same
but for all subjects instead of objects. For the ERT-pattern, we use the following
query:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
SELECT ?label (COUNT(?i) as ?count) WHERE {

?s wdt:p ?o .
?o wdt:P31 ?i .
?i @en@rdfs:label ?label .

}
GROUP BY ?i ?label
ORDER BY DESC(?count)
LIMIT 1

We will add the answer type string of a candidate to the relation sentence that we
use as input for the relation scorer. The general idea is that the model can then learn
a correlation between the words in the question and the answer type string.
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4.3.5. Inputs

As input for the relation scorer, we will use a question sentence and a relation sentence.
Both sentences should support a powerful relation matching as good as possible.

When we would take the question as it is as question sentence, the knowledge of
where the entity in the question is gets lost. Additionally, there would be the risk
of overfitting the entities. Therefore, we try two different strategies: masking and
marking the entity in the question. To completely prevent overfitting to specific
entities, a possibility is to mask the entity in the question. We do this by replacing
the entity mention with “<entity>”. This gives us the possibility to focus on the
words in the question that can express the relation asked for. However, using this
masking, all information about the entity gets lost. For example, it would be hard
to predict for what relation the question “How big is the <entity>?” is asking for.
When we know that the masked entity in this question is Q513: “Mount Everest”,
we could conclude that the relation asked for is P2044: “elevation above sea level”.
As an alternative variant, we propose marking the position of the entity instead of
completely masking the entity. Therefore, we just wrap the entity mention between
the less than and the greater than symbol. The marked question sentence of the
previous example would be “How big is the < Mount Everest >?”.

For the relation sentence, we make use of the Wikidata aliases and the precomputed
answer type strings. For a relation r, let Sr = {r1, ..., rn} be the set that contains its
label and all its aliases. We get a pruned set of aliases S′

r by dropping all aliases from
Sr that only contain uppercase letters because these are likely to just be abbreviations
that are not helpful for the model. If then no aliases are left, we set S′

r = Sr. Let
ar,t denote the answer type string of r and the candidate template t. Then we get
the relation sentence by concatenating the answer type string and all aliases with
semicolons: ’ar,t; r1; ...; ri’.

Figure 2 gives an overview of the processing of a question-relation pair with the
relation scorer.

4.3.6. WikiQuestions

For fine-tuning our model, we will experiment with using additional questions gener-
ated from Wikipedia. The existing datasets for simple questions over Wikidata are
either small or with low variance regarding the relations. This makes the process of
achieving a good generalization over many simple questions hard. To create more
diverse questions with corresponding answers, we use WikiQuestions from Prange [15]
as starting point. The original WikiQuestions dataset consists of 4,390,597 questions
that also include complex questions. For each question, an answer entity or a short
string that describes a date is provided. The dataset was created for Freebase, however
WikiQuestions also supports the creation of Wikidata questions. First, we will give
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Figure 2.: Example forward pass of the relation scorer given the question “What
is the nationality of Elon Musk?” and the relation P27: “Country of
citizenship”.

an overview of how the WikiQuestions dataset was created and then, how we filter
the generated questions to get a simple questions dataset.

We start with all Wikipedia sentences and recognized entities in each sentence. These
sentences are then parsed using a spaCy parser. Following specific rules, an answer
entity or date is selected and a question word (Who, What, Where, Which, When) is
determined. Using various transformations, the sentences are turned into questions,
that ask for the answer entity or date. Given the generated questions, multiple
filtering steps are applied to improve the quality of the final dataset.

For generating simple questions with the corresponding Wikidata triples, we proceed
for each generated question as follows. First, we filter out all questions that contain
more than 14 words or more than one entity. If the answer is a date, we transform it
to the correct Wikidata date format using the parser of the python library dateutil3.
Then, given the entity of the question and the answer entity or date, we can send
a SPARQL query to find all relations connecting these two items. If the answer is
also an entity, we send two queries to look both for the ERT- and the TRE-pattern.
If there are no results, the question is definitely not a simple question and we can
drop it. If there are results, we randomly select one of the relations that connect the
two items as relation for our Wikidata triple. When there are both relations for the

3https://pypi.org/project/python-dateutil/
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ERT- and TRE-pattern, we always select a relation of the ERT-query. Note that
choosing a random relation can introduce noise into the training data. For instance,
if the entity in the question is a person that was born and died in the same city, we
would randomly choose between P19: “place of birth” and P20: “place of death” for
the same question.

Using this procedure, we build a simple question dataset from WikiQuestions. We
start with 1,253,066 Wikidata questions and apply our two additional filtering steps.
The resulting dataset contains 54,584 questions and their solution triples. The dataset
contains 540 different relations. The generation procedure is not perfect and some
questions do not make sense. However, we experiment with fine-tuning the model on
these questions in our evaluation additional to the fine-tuning described in the next
part.

4.3.7. Fine-tuning the SBERT model

We fine-tune the pre-trained SBERT model for matching question sentences with
relation sentences. We propose a fine-tuning procedure using the Multiple Negatives
Ranking (MNR) loss function from Henderson et al. [16]. For datasets with a low
number of different relations, this procedure is not optimal. Therefore, we also propose
an alternative fine-tuning procedure that also makes use of additional relations that
do not appear in the training data.

The MNR loss function is known for being very efficient while achieving good results
on semantic similarity tasks. Since it only needs positive pairs as inputs, we can
directly use each question of our training data D together with the corresponding
relation, which is given in the triple. First, the set of pairs needs to be divided into
batches without any duplicated questions or relations. Let b denote the batch size
we choose for fine-tuning. We transform the questions and the relations of each
batch to the corresponding input sentences, as explained previously. We generate the
question embeddings q1, ...,qb and the relation embeddings r1, ..., rb by processing
these sentences through the model. For all i ∈ {1, ..., b}, the embeddings qi and ri
belong to a correct question-relation pair.

In the following, we will explain how we compute the MNR loss for a given question
embedding qi. We start with computing the cosine similarities of qi and all relation
embeddings of the batch. With that, we also have scores for b− 1 negative question-
relation pairs additional to the score of the single correct question-relation pair. Now,
we softmax normalize the computed scores and apply cross entropy loss. Since exactly
one of the b question-relation pairs is correct, the parts of the incorrect pairs drop out
and the cross entropy loss is similar to the negative log likelihood loss. To increase the
difference between the computed cosine similarities, we multiply them by a scaling
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value s. The following formula expresses the described steps to compute the MNR
loss for qi:

LMNR(qi, r1, ..., rb) = − log

(
exp(s · sim(qi, ri))∑b
j=1 exp(s · sim(qi, rj))

)
,

where sim(q, r) stands for the cosine similarity of q and r:

sim(q, r) =
q · r

∥q∥∥r∥
.

For the scaling value s, we choose the standard value s = 20 of the implementation in
the sentence-transformers4 library. Note that separately computing the embeddings of
the sentences first makes this procedure very efficient. For a batch size of 16, we need
to process 32 sentences individually and get 162 = 256 pairs for training. Therefore,
the performance usually increases for an increasing batch size. For speeding up
the fine-tuning further, we use automatic mixed precision (AMP). This means that
automatically only 16 bit floating point values instead of 32 bit floating point values
are used for operations that do not need full precision. This usually has no negative
effect on the results. We choose appropriate hyperparameters manually according to
results on a set of additional questions, called validation set. We fine-tune the model
for four epochs and use a batch size of 16. A larger batch size is not possible on the
NVIDIA GeForce RTX 2080 we use.

We provide an alternative fine-tuning method for cases, where the training data has
not enough variance. If the data only contains few different relations, it is hard to
achieve good results with the MNR loss function, since it only uses the relations in
the training data. To address this problem, we will add additional negative sentence-
relation-pairs. Before the fine-tuning, we need to process the training data with our
pipeline. For each question, we take the query candidate that uses the entity and the
relation of the triple in the training data as the correct candidate. We will take each
question with the relation of the correct candidate as positive pair (label 1) and each
question with 50 of the relations of the incorrect candidates as negative pairs (label 0).
We limit this number to 50 (or less if there are less) incorrect relations for continuity
reasons. Also, using more than 50 incorrect relations, did not lead to better results
on the validation data. We upsample the positive pairs such that the number of
positive and negative pairs is balanced. For fine-tuning, we will use the contrastive
loss function proposed by Hadsell et al. [17]. It increases the distance between the
embeddings of negative sentence pairs and decreases it for positive pairs. The loss
for a single question-relation pair and their embeddings qi, ri and the corresponding

4https://github.com/UKPLab/sentence-transformers
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label yi can be computed with

LCL(qi, ri, yi) = yi
1

2
∥qi − ri∥2 + (1− yi)

1

2
max(0,m− ∥qi − ri∥2)2.

The parameter m controls the influence of negative pairs. When the distance of
the embeddings of a negative pair is greater than m, it does not contribute to
the loss function. [17] We choose the standard value of the sentence-transformers
implementation and set m = 0.5. We again use AMP for faster fine-tuning and choose
hyperparameters manually. We fine-tune the model for two epochs and use a batch
size of 32. The actual effects of the two different variants will be discussed in the
evaluation.

For creating the training set for our ranker, we need to process all questions of our
training data with the pipeline. To generate relation scores that are not overfitted, we
split all candidates into three separate folds. Then, we fine-tune the relation scorer on
each pair of these folds and predict the relation scores for the candidates of the third
fold. Finally, we fine-tune the relation scorer that will be used during evaluation on
all training questions.

4.4. Candidate features

During the previous steps, we have collected different features for each query candidate.
These features should contain useful information for how relevant a candidate is. In
the next section, we will train a ranking model on these features in order to rank the
candidates to predict the most likely answer.

Table 2 gives an overview of all features we collected. Features 1-4 describe the entity
linking and features 5-11 the relation matching. The idea is, that when we have good
representative features for both entity matching and relation matching, we can easily
learn to rank the candidates for finding the best query.

4.5. Ranking

In this section, we will explain how we train and use a random forest model for
ranking all query candidates. To reduce the runtime of the pipeline further, we also
provide a simple but effective rule for pruning the set of candidates.

For training the ranker, we process all questions of the training data D with our
pipeline and leave out the ranking step. We again define the candidate with the
intended entity and relation as correct candidate and all other candidates as incorrect
candidates. An important question to ask here is, whether other query candidates
that also give the correct answer should also be considered as correct candidates.
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ID Description

1 Exact entity match: Binary value that is one if a subsequence of the question
exactly matches the label of the entity.

2 Exact entity token matches: Number of tokens in the question that appear in
the entity label.

3 Entity popularity score: Number of Wikipedia sitelinks the entity has.

4 Exact relation match: Binary value that is one, if the lemma of a relation alias
matches the lemmatized question tokens of a question perfectly.

5 Literal score

6 Content literal score

7 Exact token matches: Sum of exact entity token matches and literal score.

8 Similarity score

9 Relation score

10 Proportion matched/total tokens: Number of question tokens that were
matched in any way divided by the number of tokens in the question.

11 Occurrences relation KG: Number of times the relation occurs in the knowledge
graph.

Table 2.: Overview of all features we extract for the query candidates.

This would make sense for some candidates, but there are often queries yielding
the correct result, although the used entity is incorrect or the relation has not the
intended meaning.

This gives us a situation different to the standard Information Retrieval ranking
situations. Thus, classical learning to rank approaches may not be appropriate for
our ranking problem. Bast et al. [2] investigate different simple ranker models,
from which we will choose the best performing one - the pairwise random forest
ranker. First, we reduce the number of candidates, such that questions with many
candidates have not a too big influence on the ranker. We do this by only taking
half of the candidates, 200 if the half would be smaller than 200 or all candidates if
there are less than 200. We call the set of feature vectors of the incorrect candidates
C ′ = {c1, ..., cn} and the feature vector of the correct candidate c. As training data
for the ranker, we will create pairs of these vectors and corresponding labels that
state whether the candidate of the first vector should be ranked higher than the
candidate of the second vector. We create the training data for the ranker by taking
all positive pairs (c, ci, c− ci)

n
i=1 with label 1 and all negative pairs (ci, c, ci − c)ni=1

with label 0. We train a random forest with 100 decision trees on this data.

When processing questions with our pipeline, we have around 400 candidates on
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average per question, sometimes even over 2,000. Since the time for the ranking
increases significantly with an increasing number of candidates, we try to remove
candidates that are very unlikely to give the correct answers. In our case, we do this
by a simple rule: We remove all candidates with a content literal score of zero and
a relation score that is smaller than 0.5. This effectively removes more than half of
the candidates on average without decreasing the accuracy of our system. One could
also increase the bound of 0.5, however, this increases the risk of falsely removing a
correct candidate.

For creating the final ranking, we first create the input vectors for each pair of
candidates as described previously. We then process these vectors through the model
and sort the candidates by their number of "won" comparisons. We can now execute
the highest ranked query and take its result as answer of our system. We also acquire
the labels of the results if they exist. For the example query in section 1.1, that asks
for the birthplace of Albert Einstein, we would finally execute the following query:

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT DISTINCT ?o ?label WHERE {

wd:Q937 wdt:P19 ?o .
OPTIONAL {

?o @en@rdfs:label ?label .
}

}

Note that we make again use of the QLever-specific syntax @en@. For other backends,
one can simply use an additional FILTER step for only getting the English label.
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5. Evaluation

In this section, we will evaluate our system on three different benchmarks. First, we
give an overview about which hardware and SPARQL backend we use (5.1). Then,
we give a short introduction to the three benchmarks (5.2) and explain our evaluation
measures (5.3). We discuss our results on the benchmarks and experiment how the
results change when using different configurations of our pipeline (5.4). Finally, we
analyze the concrete errors of the pipeline on the three benchmarks (5.5).

5.1. Hardware and SPARQL Backend

The evaluation was done on a server with an AMD EPYC 7502 32-Core Processor,
64 GB RAM and an NVIDIA GeForce RTX 2080 GPU. As SPARQL backend, we
use QLever, a very fast SPARQL Engine introduced by Bast et al. [18]. Our instance
uses the Wikidata dump from 25.05.2023, has 18,402,458,084 triples in total and is
running on an SSD. To reduce the influence of varying load on the QLever backend
on the evaluation, we average all runtimes over two runs.

All precomputation steps can be done in 45 minutes. This includes acquiring entities
and relations from Wikidata, precomputing lemmatizations and answer type strings,
and building the indices. Processing around 20,000 training questions needs roughly
4 hours. All following training and prediction steps until the pipeline is ready need 9
hours when using the contrastive loss function and 5 hours when using the MNR loss
function.

5.2. Datasets

Most of the existing KGQA datasets were either created for other knowledge graphs
like Freebase, or focus on complex questions. In the following, we describe the datasets
we use for evaluating our system.
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Dataset #q train #r train #q test #r test new relations

SimpleQuestions-Wikidata 19,481 76 5,622 72 0

LC-QuAD 2.0 SQ 6,261 2,845 824 794 593

Own questions 35,009 3438 50 43 6

Table 3.: Overview of the benchmarks for the evaluation. #q is the number of
questions, #r is the number of unique relations. New relations refers to
the number of relations of the test set, that do not occur in the training
set.

5.2.1. Overview

We use three different benchmarks: SimpleQuestions-Wikidata, LC-QuAD 2.0 SQ
and a small set of own questions. SimpleQuestions-Wikidata [19] is the only existing
larger simple question dataset for Wikidata. LC-QuAD 2.0 [20] is a dataset for
question answering over Wikidata that also contains many complex questions. We
will use the simple questions of this dataset and call it LC-QuAD 2.0 SQ. Additionally,
we provide a small own benchmark containing 50 different questions.

Table 3 gives an overview of the three benchmarks. Beside the sizes of the training and
test sets, we also provide the number of different relations they contain. This number
is very important for creating a relation scorer that is able to generalize. We can see
big differences between the datasets. While the LC-QuAD 2.0 SQ training set has
6,261 questions with 2,845 different relations, the SimpleQuestions-Wikidata training
set contains 19,481 questions but only 76 relations. As Wu et al. [5] point out, many
question answering systems perform good on the test data but significant worse on
questions requiring other relations. For being able to better analyze the generalization
capabilities of our pipeline, we also provide the number of relations in the test sets,
that do not occur in the training sets. We can see that the SimpleQuestions-Wikidata
test set has no unseen relations at all, while the majority of questions in the LC-QuAD
2.0 SQ test set uses unseen relations.

5.2.2. SimpleQuestionsWikidata

A well known dataset for simple questions is the SimpleQuestions dataset [6]. It was
designed for question answering over Freebase and contains 108,442 simple questions
written by human annotators.

Diefenbach et al. [19] port the SimpleQuestions dataset to Wikidata by mapping
subjects and objects to Wikidata items with an automatically generated mapping
and by using a handmade mapping for the relations. Although the SimpleQuestions
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dataset contains 1,837 relations, they only map 404 of them to Wikidata, since
they already cover a big amount of the questions. The resulting dataset is called
SimpleQuestions-Wikidata and contains 49,202 questions, from which 27,924 are
answerable over Wikidata. We will only use these answerable questions for our
evaluation.

Due to the mapping of the relations, the answerable questions only cover 76 relations
overall, which is much smaller than the 1,837 in the SimpleQuestions dataset. Since
76 relations are only a very small subset of the over 10,000 relations in Wikidata,
this can be critical for training the relation scorer. Also, all relations in the test set
also appear in the training set, what makes it impossible to test the generalization
abilities of the relation scorer.

5.2.3. LC-QuAD 2.0

LC-QuAD 2.0 is the second version of a large scale question answering dataset for
complex questions. It was created by Dubey et al. [20] and consists of 30,000 questions
with gold queries provided for both Wikidata and DBpedia. The question generation
workflow starts with selecting entities with popular Wikipedia sites. A set of SPARQL
query templates is defined such that many different types of questions can be covered.
Depending on the selected template, a set of predicates is selected and a subgraph
of the KG is generated. With combining the template and the subgraph, the final
SPARQL query is generated. This query is then transformed into a natural language
template called question template. For formulating the natural language question
from this question template, they use a large crowdsourcing experiment consisting
of three steps. In a first step, the so called turker formulates a question out of the
question template. In a second step, for many questions an alternative, paraphrased
question is formulated and finally, the formulations are checked to ensure quality.

For our evaluation, we will focus on the simple questions of LC-QuAD 2.0. Therefore,
we have to distinguish between questions regarding a single fact and questions
regarding a single fact with type. A question using a single fact with type would be
“Which public holiday celebrates the birth of Jesus?”, the corresponding SPARQL
query would be

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?s WHERE {

?s wdt:P547 wd:Q51628 .
?s wdt:P31 wd:Q1197685 .

}
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with P547: “commemorates”, Q51628: “Nativity of Jesus”, P31: “instance of” and
Q1197685: “public holiday”. For generating our training data, we will use the
provided training set. We use all single fact questions as well as all single fact with
type questions. Although our system is not built for answering questions with an
additional type, the questions are often very similar to questions that we consider as
simple questions. This doubles the number of questions we can use for training. For
the single fact with type questions, we simply remove the triple checking the type of
the answer. Concretely, we use all questions of the training set, where the subgraph
is either “center”, “simple question left” or “simple question right”. This gives us a
training set with 6,261 questions.

Analogously, we will use the provided test set for generating our test data. Here, we
will only use the single fact questions, since the single fact with type questions would
optimally require a different query template. Therefore, we will use all questions,
where subgraph is “center”. To prevent confusion, note that all questions marked
with subgraph “simple question left” or “simple question right” are questions asking
for a single fact with type. The resulting test set contains 824 questions.

For both the training and the test set, we observe that the majority of the questions
ask for identifiers. This increases the number of used relations, but may be untypical
for questions the system will answer in practice.

5.2.4. Own questions

Additionally to the two previously described benchmarks, we also provide 50 own
questions to evaluate our system. These questions are all answerable and formulated
with as much variation as possible. We already used these questions during the
development of the system, we are aware that this might lead to overfitting. However,
we did no concrete steps to perform better on these questions and think that the
results are representative for other simple questions. For training the model, we
combine the full datasets SimpleQuestions-Wikidata and LC-QuAD 2.0 SQ.

5.3. Evaluation measures

For evaluating our system, we measure the accuracy and the top-k scores on the
benchmarks.

Accuracy: Let Gi be the set of the results of the gold query for question i and Ci

the set of results of the highest ranked query candidate. Then we define the accuracy
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as the percent of questions for which the predicted answers are the same as the gold
answers:

accuracy =
1

n

n∑
i=1

I(Gi = Ci),

with I being the indicator function.

Top-k: The Top-k score is the fraction of questions, where one of the k best ranked
query candidates returns the set of answers of the gold query. Top-1 equals the
accuracy.

5.4. Results

As standard configuration of our system, we use all features listed in Table 2 and
choose the parameters as explained in section 4. For fine-tuning the relation scorer,
we will use the MNR loss function and entity masking for creating the entity sentences
as standard. Due to the varying quality of the questions in the WikiQuestions dataset,
we will not use it in the standard configuration. We evaluate our system on the three
benchmarks. For the SimpleQuestions-Wikidata dataset, we will use the contrastive
loss function for fine-tuning the relation scorer. As pointed out in section 4.3.7, the
MNR loss function would not be optimal with a small amount of different relations in
the training data. For the evaluation, we limit the number of considered answers per
query to 1,000. Queries using the TRE-pattern can possibly have millions of answers.
In these cases, it would be very expensive to then compare the whole answer sets.
However, this should only make a minor difference. It only influences a subset of the
training questions and also then, comparing the first 1,000 answers of the queries is
usually representative for comparing the whole answer sets.

Table 4 shows the accuracies and the top-k results of our pipeline on all three
benchmarks. We see that our pipeline is able to answer a big majority of the questions
correctly and achieves an accuracy of over 0.81 on all three datasets. Looking at the
top-k results, we see that in many cases when the predicted answers are not correct,
the next highest ranked candidates provide the correct results. In 86% of the cases,
the correct candidate is among the two highest ranked candidates for all benchmarks.
The average runtimes for the questions lie between 0.4 and 0.6 seconds, which can be
considered as interactive.

Table 5 compares the results of our pipeline on the SimpleQuestions-Wikidata bench-
mark to the results of other QA systems on the SimpleQuestions-Wikidata and the
SimpleQuestions benchmark. While we and Goette use the accuracy defined above,
the other QA systems compare the queries for evaluation. This might lead to a slightly
lower accuracy for their systems. With an accuracy of 0.816, our system achieves
the highest accuracy. It is very important to point out that it is hard to compare
the results on SimpleQuestions-Wikdiata to the results on SimpleQuestions. For

28



Dataset Accuracy Top-2 Top-3 Top-5 Top-10 AD

SimpleQuestions-Wikidata 0.816 0.863 0.879 0.889 0.895 0.49

LC-QuAD 2.0 SQ 0.825 0.860 0.865 0.873 0.877 0.57

Own questions 0.820 0.880 0.920 0.960 0.960 0.46

Table 4.: Results of Aqqu Wikidata on our three benchmarks. AD is the average
duration of the questions in seconds.

QA System SimpleQuestions
(FB2M)

SimpleQuestions-
Wikidata

Yu et al. (2017) 0.7871 -

Petrochuk et al. (2018) 0.781 -

Huang et al. (2019) 0.754 -

Lukovnikov et al. (2019) 0.773 -

Oliya et al. (2021) - 0.682

Goette (2021) - 0.586

Aqqu Wikidata (2023) - 0.816

Table 5.: Accuracy of our pipeline on the SimpleQuestions-Wikidata benchmark
compared to the accuracies of other QA systems.

SimpleQuestions-Wikdiata, we have only 76 instead of over 1,000 different relations
and also have no unseen relations in the test data. We see a huge gain in accuracy of
our pipeline compared to the version of Goette. One main factor for this improvement
is the relation scorer. As already mentioned in section 2, the upper bound of the
SimpleQuestions dataset is 83.4%. Achieving a higher accuracy is not possible due to
errors in the dataset and answers that can not be disambiguated. There is no specific
upper bound known for the SimpleQuestions-Wikidata dataset, however an upper
bound in a similar range can be expected.

We experiment with different configurations of our pipeline to investigate how these
changes influence our results. Table 6 shows the configurations together with the
achieved accuracies and the average runtimes per question. Compared to the standard
configuration, leaving out the relation score leads to significant loss in accuracy on
both SimpleQuestions-Wikidata and our own benchmark, while the difference on
LC-QuAD 2.0 SQ is only small. The main reason for this is that the relation scorer
has problems with abbreviations, which often occur in questions asking for identifiers.

1Yu et al. [4] do not provide a publicly available implementation of their system. Huang et al. [21]
mention that they were not able to replicate the reported results.
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SimpleQuestions-
Wikidata

LC-QuAD
2.0 SQ

Own ques-
tions

AD

Full Pipeline 0.816 0.825 0.820 0.50

w/o rel score 0.673 0.808 0.760 0.44

w/o rel occs, w/o sim score 0.811 0.823 0.760 0.40

only rel and popularity score 0.792 0.785 0.740 0.38

entity sentence: marking 0.795 0.826 0.820 0.59

fine-tuning WikiQuestions 0.813 0.823 0.820 0.52

entity pruning: 200/500 0.818 0.819 0.820 1.76

no candidate pruning 0.816 0.825 0.820 2.01

Table 6.: Detailed analysis of our pipeline by evaluating its accuracies on the three
benchmarks using different configurations. For the variant using Wik-
iQuestions, we fine-tune the model for two epochs using the MNR loss
function before the actual fine-tuning step. For the more lenient entity
pruning step, we limit the maximal number of entities per sequence to 200
and the total number of used entities to 5002. AD is the average duration
of all questions of the three benchmarks in seconds.

This will be discussed more in depth in the next section. We also experiment with only
using the relation scorer, together with the popularity score in order to have some way
to prefer entities to other entities. Despite dropping all other features, the pipeline is
still able to achieve an accuracy of 0.74 or more on all three benchmarks. We can see
that both variations of the fine-tuning, marking the entity in the entity sentence and
additionally fine-tune on WikiQuestions, do not really give any improvement. Only
for the LC-QuAD 2.0 SQ there is a small increase in accuracy when marking the
entity. Still, we report the results of the full pipeline as our final results in Table 4
for having a consistent pipeline configuration. For all these variations, the questions
can be answered in under 0.6 seconds on average. Both allowing more entities and
removing the candidate pruning step lead to no significant improvement but increases
the average runtime to 1.76 seconds respectively 2.01 seconds.

Table 7 shows the accuracies on the SimleQuestions-Wikidata and the LC-QuAD 2.0
SQ benchmarks for both fine-tuning approaches. As the results show, our intuition
was correct and we chose the best fine-tuning approaches for both benchmarks. We
can see that the accuracy on the LC-QuAD 2.0 SQ dataset is still very high when using
the contrastive loss function, however looking at Table 6 we see that it is not better
than using no relation scorer at all. On the SimpleQuestions-Wikidata benchmark,

2Since a single query for candidate generation with 500 entities would be too long, we use multiple
queries using at most 50 entities.
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SimpleQuestions-
Wikidata

LC-QuAD 2.0 SQ

MNR loss fine-tuning 0.799 0.825

contrastive loss fine-tuning 0.816 0.807

Table 7.: Results on SimpleQuestionsWikidata and LC-QuAD 2.0 SQ for the two
different fine-tuning approaches.

we achieve an accuracy of 0.799 when using the MNR loss function. After first tests,
we did not expect that this result will be so close to the result of fine-tuning with
the contrastive loss function. This shows, that already a small amount of different
relations can be sufficient for fine-tuning the relation scorer appropriately with the
MNR loss function. Still, we can see that the contrastive loss fine-tuning performs
better than the MNR loss fine-tuning when having a small amount of relations.

5.5. Error analysis

We inspect the errors of our pipeline by hand by looking on big enough subsets of our
benchmarks. On each of the three benchmarks, there are different main sources of
errors. In the following, we will explain them for each benchmark and provide some
examples.

SimpleQuestions-Wikidata

On the SimpleQuestions-Wikidata benchmark, for around 10% of the questions the
correct entity could not be identified. Without the correct entity, it is not possible for
the system to generate the candidate that represents the gold query. The results of
the highest ranked query could still be correct, but this is almost never the case and
not the intended way to answer questions. There are two main reasons for the correct
entity not being identified. The first reason are errors in the dataset. One example
would be the question “who wrote \\"w\\" is for wasted” from the benchmark, where
backslashes were added, which makes it impossible to match it with “"W" is for
Wasted” (Q13422918). A different example is the question “Name a model that died
due to a car accident”, which is not even a simple question. The expected answer
in the dataset are just all people that died during a car accident. However, it is not
possible to identify the correct entity Q9687: “traffic collision” because it has no alias
called “car accident” or “accident”. The other main reason for the correct entity not
being identified are mistakes in the POS-tagging of the pipeline. For considering a
single token as entity label, it must be either tagged as a noun or a proper noun.
This is for example not the case for the question “What’s a gameplay mode in sacred”
and the correct entity “Sacred” (Q1757845).
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Another often occurring source of error is that the best ranked candidates only differ
in their used entity. The relation score is then often the same because the same
relation is used despite the different entity. The only way for us to then infer a ranking
is to use the popularity scores of the entities. When the correct entity has a lower
popularity score than the entities of other candidates, the correct candidate will not
get ranked at first place. For example, when processing the question “What position
does Carlos Gomez play?”, we do not know which of the currently 17 Carlos Gomez
entities in Wikidata the question refers to. The correct Carlos Gomez according to
the dataset is Q2747238 with a popularity score of 7, while there is also a Carlos
Gomez Q203210 with a popularity score of 16. So for these questions, the error also
lies in the benchmark. In very few cases, the question in such a situation is not
answered correctly due to mistakes of the ranker. Then, two candidates with the
same features except of the popularity score are ranked in the wrong order.

LC-QuAD 2.0 SQ

There are two main reasons for errors on the LC-QuAD 2.0 SQ benchmark. The first
one is again the missing identification of the correct entity in the question. Similar
to our findings on the SimpleQuestions-Wikidata benchmark, this is either due to
incorrect POS-tagging or to errors in the questions of the benchmark. A different,
often occurring problem are bad predictions of the relation scorer for questions asking
for identifiers. Especially on the LC-QuAD 2.0 SQ dataset, we have a big amount
of questions asking for identifiers. These questions often have abbreviations in the
question that the relation scorer cannot really work with. Sentence-BERT relies on
WordPiece tokens, which can create difficulties when using a seemingly arbitrary
sequence of letters. Thus, even when the label of the correct identifier relation appears
similar in the question, other identifier relations that should not match get a higher
score. An example would be the question “Which is NLBPA ID for Hank Aaron?”,
where the correct property “NLBPA ID” (P4405) has a relation score of 0.797, while
the incorrect property “Bibliothèque nationale de France ID” (P268) has a relation
score of 1.

Own benchmark

On our own benchmark, we have no problems with errors in the dataset. For one
question, the candidate generation query failed because it exceeded the available
memory of our SPARQL backend. For all other questions of the benchmarks, as well
as for the same question in earlier tests, this was no problem. The other questions
that were not answered correctly can be divided into two groups. The first group are
questions that ask for answer types that do (almost) not occur in the training data,
such as numbers, coordinates or dates. Example questions are “How many people live
in Bavaria?” and “What is the location of the Golden Gate Bridge?”, which both are
not answered correctly. The other group of questions consists of questions that are
more colloquial and often do not use words that express the relation directly. “How
big is the Mount Everest?” would be an example for such a question. Even though
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the pipeline has problems with these questions, often they are still answered correctly.
The deciding factor for these questions is the training data, if we can create more
diverse datasets, these questions could be answered more reliably.
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6. Conclusion

In this work, we presented an expandable system for simple question answering over
Wikidata. For relation matching, we proposed an SBERT model, which effectively
learns how to match questions with relations. Due to its efficiency, as well as
optimization of the SPARQL queries and simple pruning steps, our pipeline is able
to answer questions over the full Wikidata Knowledge Graph in around 0.5 seconds
on average. Especially because of the relation scorer, we could significantly increase
the accuracy of the pipeline compared to the version of Goette [1]. We discussed the
quality of different simple question benchmarks and evaluated our pipeline thoroughly.
We achieved good results on all three benchmarks we evaluated our system on.

6.1. Future work

Our pipeline already can answer the majority of simple questions correctly. However,
there are different possibilities to further improve the results on simple questions and
to further extend the system. In the following, we will give an overview of the most
important possible improvements.

6.1.1. Improved entity matching

Our entity linking procedure is very simple and not fully reliable, as the evaluation
shows. Also, it gives us no preference among the entities, so we have to rely heavily
on the popularity score. A simple approach would be to use a BERT model for
predicting the entity spans. This could be done similarly to Lukovnikov et al. [8].
Also, some robustness to spelling errors would be very helpful. However, this can also
increase the number of possible entities. With focusing more deeply on the entity
matching, it would also make sense to expand the evaluation frontend of Goette [1]
for also directly evaluating the results of the entity linking step. Estimated time: 4
weeks.

34



6.1.2. Working with complex questions

For simplicity, we focus on simple questions in this thesis. However, many real
world questions involve multiple entities in the question and, thus, more complex
query patterns. First, we would need to adapt the candidate generation step for
also generating other queries. As in the original Aqqu, the most straightforward
approach would be to increase the set of query patterns we use. This approach
results in a big amount of query candidates and limits us to the query patterns we
include. Regarding the huge successes of large language models in recent years, it
would be very interesting to train them on predicting a query pattern for a given
question. As mentioned in section 2, Bird SQL is an example of a tool that already
demonstrated the abilities of language models for generating queries. If the resources
for large language models are not available, also smaller sequence-to-sequence models
could give valuable predictions. We would also need to adapt the relation scorer for
handling multiple relations at once. Therefore, one could either input a concatenation
of all relations or take the mean of the single relation embeddings. Estimated time: 3
months.

6.1.3. Faster runtime

Although we can answer questions in around 0.5 seconds on average, there is still
space left for improvement. Especially, it would be very helpful if we could achieve
a consistent runtime of under one second for each question, which is currently not
the case. As already mentioned, the biggest bottleneck regarding the runtime is
the candidate generation step. One could expect that simply getting the relations
of 50 entities together with the subject/object information should be possible in a
consistent and short time period. Maybe, future work on QLever can achieve that.
Another approach could be to precompute all candidates for each entity. However,
this approach would not be applicable to complex questions and thus is not interesting
for us, since we want to provide an extendable system.

Since the focus was to reduce the runtime with an efficient relation matching and
optimizations regarding the candidate generation, there is still room for improvement
in other parts of the pipeline. Beside an improved entity linking step, also a candidate
pruning that makes use of a trained model instead of a simple rule could reduce the
runtime significantly. Estimated time: 2 weeks.

6.1.4. Generating better training data

As mentioned in the evaluation, there is a lack of datasets for simple question
answering over Wikidata. One way to generate more training data would be to take
question answering benchmarks for Freebase, and to translate them to Wikidata.
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There already exist mappings from Freebase entities to Wikidata entities which we
can use. Using a handmade mapping between the relations, as [19] did, only limits
the number of relations in the training data. Therefore, we would suggest sending
a SPARQL query for each question using the subject and the object and searching
for relations that connect them in Wikidata. Then we can randomly take one of
these relations for the dataset. Doing this, we would have the same problem that
we already mentioned in section 4.3.6. The random choice of the set of relations can
lead to an unintended relation and introduce noise in the data.

Another interesting approach would be to update the question generation process
of WikiQuestions. Currently, many questions do not make sense or are not correct.
Improving the quality of the generated questions, we definitely see potential in
generating questions from Wikipedia sentences. Also, one could make again use of
deep learning to achieve a more grammatical correct reformulation of the sentences.
Estimated time: 2 months.
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A. Appendix

A.1. Entity index query

We use the following SPARQL query to get all entity aliases for our entity index.
Table A1 gives the corresponding labels to the used properties. Note that this query
uses @en@, which is a QLever-specific [18] shortcut for restricting the results to those
in English language. [1]

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
SELECT DISTINCT ?entity ?alias WHERE {

?entity (wdt:P734)?/(@en@rdfs:label|@en@skos:altLabel|@en@wdt:P74 ⌋

2|@en@wdt:P1448|@en@wdt:P1449|@en@wdt:P1477|@en@wdt:P1559|@en ⌋

@wdt:P1705|@en@wdt:P1813| wdt:P297|wdt:P298|wdt:P1160) ?alias
.

↪→

↪→

↪→

MINUS {
# Ignore items internal to wikidata (around 7M)
?entity wdt:P31/wdt:P279* wd:Q17442446 .

}
}

ORDER BY ASC(?entity) ASC(?alias)
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Property ID Label

P734 Family name

P297 ISO 3166-1 alpha-2 code

P298 ISO 3166-1 alpha-3 code

P1160 ISO 4 abbreviation

P1813 Short name

P1559 Name in native language

P1477 Birth name

P1449 Nickname

P742 Pseudonym

Table A1.: Properties used in the Query together with their corresponding label

39



A.2. Candidate generation query

We use a single SPARQL query to generate all query candidates for a given set of en-
tities. The following query is an example for E′ = {Q937, Q13426745, Q47513150}:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?entity ?property ?template WHERE {

{
SELECT ?entity ?property (0 AS ?template) WHERE {

{
SELECT ?entity ?property WHERE {

values ?entity { wd:Q937 wd:Q13426745 wd:Q47513150 }
?entity ?property ?x .

}
GROUP BY ?entity ?property

}
?property_entity wikibase:directClaim ?property .

}
} UNION {

SELECT ?entity ?property (1 AS ?template) WHERE {
{

SELECT ?entity ?property WHERE {
values ?entity { wd:Q937 wd:Q13426745 wd:Q47513150 }
?x ?property ?entity .

}
GROUP BY ?entity ?property

}
?property_entity wikibase:directClaim ?property .

}
}

}
ORDER BY ASC(?entity)
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A.3. Relation index query

We use the following SPARQL query to get all relation aliases and the number
of occurrences of each relation. With ql:has-predicate we make again use of a
QLever-specific element which lists all relations that exist for an entity. [1]

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX wikibase: <http://wikiba.se/ontology#>
SELECT DISTINCT ?predicate ?alias WHERE {
{

SELECT ?predicate WHERE {
?x ql:has-predicate ?predicate .

}
GROUP BY ?predicate

}
?entity wikibase:claim ?predicate .
OPTIONAL {

?entity @en@rdfs:label|@en@skos:altLabel ?alias .
}

}
ORDER BY ASC(?predicate) ASC(?alias)
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