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Abstract

Question Answering over Knowledge Graphs (KGQA) remains a very challenging problem, with

some seemingly straightforward questions requiring complex, nested queries to be answered. This

thesis presents a novel, template-based approach by identifying knowledge graph-independent

"semantic SPARQL templates". These templates constitute a comprehensive set of syntactic

building blocks used to realize semantic aspects of users’ information needs.

To assess the practical utility of the found templates, they were applied to a newly created

benchmark. This benchmark, called Wikipedia Lists, leverages Wikipedia lists as a verifiable

ground truth, ensuring, to some degree, the correctness of the query. The benchmark covers

a wide range of query structures, addressing a limitation found in most other Wikidata-based

benchmarks.

The "semantic SPARQL templates" have been applied successfully to all examples in the

benchmark with the results of the template-based queries matching those of their hand-written

counterparts.

Moreover, using the templates may improve the quality of the resulting queries compared

to queries written by hand. The general applicability of the templates translates to robust

queries that return the desired outputs with varying input data. This stands in contrast to

human-curated queries, which may rely on world knowledge, which can be incorrect or may only

be applicable during a certain time.

In addition, the application of the templates to the benchmark provided information about the

templates’ usage frequencies, shedding light on structural patterns that appear in SPARQL

queries and how they relate to patterns in the natural language (NL) question.

In summary, this thesis establishes a foundation for a semantic templates-based KGQA system,

while also contributing a new Wikidata-based benchmark and offering preliminary findings about

structural patterns in Wikidata-based SPARQL queries.
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Zusammenfassung
Question Answering over Knowledge Graphs (KGQA), die Beantwortung natürlichsprachlicher

Fragen mittels Wissensgraphen, stellt nach wie vor ein herausforderndes Problem dar. In

manchen Fällen werden zur Beantwortung simpel erscheinender Fragen komplexe, verschachtelte

Querys (Abfragen) benötigt. Diese Arbeit stellt einen neuartigen Ansatz vor, bei dem sogenannte

"semantische SPARQL-Templates" identifiziert werden. Diese Templates bestehen aus syntaktis-

chen Bausteinen, die zur Realisierung semantischer Merkmale der Informationsbedürfnisse der

Nutzer:innen gebraucht werden. Zusammen decken diese Wissensgraph-unabhängigen Templates

die meisten Anfragen ab.

Die Templates wurden auf einen neu erstellten Benchmark angewandt, um ihren praktischen

Nutzen zu bewerten. Dieser Benchmark namens Wikipedia Lists nutzt die Informationen in

Wikipedia-Listen als eine überprüfbare "Ground Truth" und sichert damit bis zu einem gewissen

Punkt die Korrektheit der Query. Der Benchmark deckt eine große Bandbreite von Query-

Strukturen ab, was bei anderen Benchmarks häufig nicht gegeben ist.

Die semantischen SPARQL-Templates konnten erfolgreich auf alle Beispiele des Benchmarks

angewandt werden. Die Ergebnisse der mit Templates generierten Querys stimmten mit denen

entsprechender handgeschriebener Querys überein.

Die Qualität von Querys kann durch die Nutzung von Templates gegenüber handgeschriebenen

Versionen potenziell verbessert werden. Grund dafür ist die allgemeine Anwendbarkeit der

Templates und der damit generierten Querys. Bei der Erstellung handgemachter Querys wird

hingegen ggf. Weltwissen miteinbezogen, welches falsch oder nur zeitlich begrenzt gültig sein.

Des Weiteren lieferte die Anwendung der Templates auf den Benchmark Informationen über ihre

Nutzungshäufigkeiten. Diese geben Aufschluss über in SPARQL-Querys vorkommende Muster

und ihr Verhältnis zu Mustern in der natürlichsprachlichen Frage.

Zusammenfassend legt diese Arbeit den Grundstein für ein auf semantischen Templates basieren-

des KGQA-System, trägt einen weiteren auf Wikidata basierenden Benchmark bei und bietet

erste Erkenntnisse über strukturelle Muster in auf Wikidata basierenden SPARQL-Querys.
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1 Introduction

1.1 The Problem of KGQA

While search engines like Google return web pages that its algorithm deems relevant for the user

based on the search terms they entered, it can only ever return existing web pages created, one

way or another, by a person.

If a user wants very specific information, that information may be spread across multiple web

pages. The user would have to compile the desired results themselves by e.g., lots of copy-pasting,

all the while risking mistakes.

In contrast, if the desired information is available on Wikidata, the user would likely be able to

access this structured information and output it in the desired format using only a corresponding

SPARQL query.

For example, one could query for painters who were born in Germany but died in France. It

stands to reason that compiling this information by hand would be tedious. Given a suitable

query, Wikidata outputs the 1,000+ people matching the description in a fraction of a second.

With a small addition to the query text, it can sort the results by the number of Wikipedia site

links – a proxy for their popularity.

If we assume that the knowledge graph, represented in RDF (Resource Description Framework)

triples, contains all the required information, the main problem with this approach is that the

user must first learn to use the SPARQL (SPARQL Protocol And RDF Query Language) query

language. Even having mastered SPARQL and using a query engine with an auto-completion

feature, the user has to write the query texts themselves. This can be a time-consuming task as

query texts are sometimes surprisingly long and complex, even if the underlying request, the

user’s information need or intent, appears simple enough.

Question Answering over Knowledge Graphs (KGQA) systems allow for users to input NL
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(natural language) questions or prompts into systems that query the underlying knowledge

graph, attempting to return the desired information.

While so-called "simple questions" – usually defined as those that can be answered by a query

containing only 1-2 triples – can nowadays be answered quite well, KGQA systems still struggle

with more complex requests.

The idea to use templates to tackle this problem is not a new one. Several researchers have

either identified templates by hand or generated them (semi-)automatically from data. However,

the consensus in the research community is that the problem behind KGQA is too complex to

be solved using any kind of template.

For example, Höffner et al . who published a survey about KGQA in 2017, describe template-

based approaches as limited to "simple query structures" [1].

Accordingly, many template-based systems only use templates for simple examples, matching

certain linguistic patterns in the natural language (NL) question to them, or instantiating them

exhaustively until a result is found.

However, mapping aspects of the semantic structure of the user’s question to one or more

SPARQL templates might be a very useful step in KGQA systems. One could, for instance,

determine the semantic structure using a system with a GUI that allows users to specify the

semantic requirements without requiring any knowledge of SPARQL.

Moreover, having determined the required templates, one could analyze how the templates are

usually used and combined and how this relates to patterns in the NL question.

This thesis explores this approach by identifying a set of semantics-based SPARQL templates and

showing their application to a newly created benchmark, called Wikipedia Lists. This benchmark,

presented in Chapter 3 was created due to shortcomings of existing KGQA benchmarks, mainly

with regard to the variety of query types.
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1.2 Translating Semantics to Syntax

Humans who are well versed in using query languages like SPARQL, and who want to write

a query – e.g., to retrieve all German politicians and their most recent party – to run over a

knowledge graph, take the following steps:

1. Analyze the semantic structure of the question they want to answer using the KG

2. Translate that semantic structure into a SPARQL query

a) Determine the required syntactic structure

b) Determine elements to be put into the syntactic structure (e.g., IRIs of items or

properties, or literals used as parameters)

In the example, a sketch of the semantic structure of the question – or more fittingly: request –

could look like this:

• entities should be politicians

• entities should be German

• entities should be output with their most recent party

Looking at each characteristic separately, we might call the first and second ones "constraints".

While being a politician might be seen as an attribute of a person, in the context of a knowledge

graph, we reduce the set of all potential entities in the KG to a subset of entities that fulfill the

constraint of being politicians.

Adding the constraint that the entities should be German, we exclude politicians who aren’t

German.

Adding the current party of each politician to the output is, however, not a constraint. Up to

this point, our set of entities would contain the IRIs of German politicians in a single column.

By adding the most recent party for each person, we gain information, and we would likely call

this added information an "attribute", becoming manifest as an additional column of our output.

This is an updated version of the sketch:

• entities should be politicians – CONSTRAINT

• entities should be German – CONSTRAINT

• entities should be output with their most recent party – ATTRIBUTE

3



Now that the rough semantic structure has been established, humans – just like KGQA systems

– face the challenge of finding a suitable syntactic representation for it.

For this, we can tackle each characterization separately. Combining them is later solved by a

shared variable for the entities.

If we want to realize the CONSTRAINT that entities should be politicians, we are likely

to do so by adding a triple to the output that links our entity variable to a class "politician" by

some single property or a property path containing multiple elements.

While there are more complex syntactic means to fulfill a constraint, like using the filter or arg

max construct, these are not applicable here.

For the CONSTRAINT that entities should be German, the situation is the same.

The ATTRIBUTE of each entity’s most recent party is a more interesting case. There

are several syntactic possibilities to realize an ATTRIBUTE:

• If a property "most recent political party" exists, it can be used as the predicate of a single

triple.

• We may need to perform an aggregation involving one or more variables. Possible aggrega-

tions are . . .

– . . . a count, sum, mean, max, . . . (overall or across formed groups)

– . . . an arg max, arg min . . . (overall or across formed groups)

• We might need to combine information from different variables, defining the required

variable ourselves.

If the KG we use is Wikidata, we do not have a property like "most recent political party", but

instead "member of political party" statements, provided with a value (i.e., the IRI of a political

party) and – among others – a qualifier "start time".

As humans, we know that this is the material we need to "define" a variable containing the "most

recent political party" using the arg max aggregation: We want to retrieve the values of the

"member of political party" statements with maximum "start time" qualifier values.

This section gave some insight into one reason why semantic SPARQL templates are useful:

if we can categorize aspects of the semantic structure into categories like CONSTRAINT or

4



Figure 1: Example of a question-query pair

Source: https://ad-blog.cs.uni-freiburg.de/post/semantic-sparql-templates-for-question-answering-over-wikidata

ATTRIBUTE, this might narrow down the syntactic constructs that are needed to realize them.

Which template is the right one can, among other things, be derived from cues in the NL

question.

In the following, Chapter 2 will give an overview of template-based approaches to KGQA.

Existing Wikidata-based benchmarks for KGQA, as well as the new Wikipedia Lists benchmark

will be presented in Chapter 3.

Chapter 4 will detail which types of queries are covered by the approach, which SPARQL

constructs are used in the templates, as well as other methodological details.

The templates are then presented in Chapter 5, along with the other identified semantic categories,

encompassing semantic purposes at a higher, more abstract level.

Chapter 6 will show how a more detailed semantic structure, called a semantic plan, can be

translated unambiguously into a suitable SPARQL query, using semantic templates. This is

done using a small set of eight examples. This set is also used to analyze how often the semantic

templates realize the semantic categories (e.g., ATTRIBUTE, CONSTRAINT).

This section also includes an analysis of how often the semantic templates are used in their

application to the Wikipedia Lists benchmark, how the templates are combined, and how some

combinations relate to certain patterns in the NL languages.

Lastly, Chapter 7 concludes the thesis by summarizing its key findings and suggesting possible

directions for future work.

5
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2 Related Work

In the literature on KGQA, there are many template-based approaches. However, no approach

aims to provide a complete set of semantics-based, basic SPARQL templates to serve as building

blocks for the construction of full queries.

This section gives an overview of template-based approaches to KGQA published between

2012 and 2023. Höffner et al . write in their 2017 survey on KGQA that the development of

template-based approaches seems to have decreased after 2013 [1]. Indeed, many articles using

template-based approaches are relatively old.

Note that the word "question" is used for the user input to distinguish it from the word "query",

reserved for the SPARQL text. "Question" should, however, also encompass keyword-style user

input or input phrased as an imperative.

Due to the large number of publications, this section just lists a few examples that cover the

main strategies and procedures used when tackling the problem of KGQA using templates.

The approaches chosen are all open domain, monolingual, and either use a single KG or are

KG-independent.

2.1 Approaches Using Pre-Made Templates for Structures in the KG

Lopez and Motta (2012) aim to extract so-called linguistic triples from the NL question [2].

These triples, which may be interlinked, are then mapped to ontological triples, representing

subgraphs in the KG. Their system, PowerAqua, is often cited as a template-based system, and

it can indeed be seen as using a single, pre-made template that represents the basic structure of

a triple.

As a result, th system is only suitable for questions that are structurally very simple and do not

7



require subqueries, aggregation, or the operators ORDER BY, LIMIT, OFFSET, MINUS, UNION, BIND,

or FILTER.

A very similar approach was presented by He et al . (2013) and applied in their system Casia [3].

Rahoman and Ichise (2013) present an approach in which they use a fixed set of templates

to connect two KG resources. The resources can either be items (serving as subjects and objects

of triples) or properties (serving as predicates of triples). The templates here span at most two

triples [4].

In a relatively similar approach, Bast and Haussmann (2015) use three templates to represent

graph structures connecting an entity mentioned in the NL question and the answer node [5].

In their system, Aqqu, the templates are instantiated exhaustively and cover structures which,

when translated into a SPARQL query, span at most three triples.

As mentioned before, all these approaches are only able to handle questions that are answerable

with simple SPARQL queries that only contain a few triples.

2.2 Approaches Using Generated Templates for Structures in the KG

Shekarpour et al . (2015) use their system SINA to generate "query graph templates", i.e.,

basic graph patterns representing subgraphs of the KG, for each input question. This is done by

identifying and then connecting the required resources in the KG. The generated templates are

then filled and used to answer the user’s question [6].

Abujabal et al . (2017) use a similar approach but learn templates from questions and their

answers in an offline step [7]. Doing this, they break down so-called "complex questions", i.e.,

questions with coordinating conjunctions and relative clauses, into smaller questions before

they learn templates for them. Their system, Quint, then matches questions to potential

templates. If the question is complex, it is broken down into sub-questions whose corresponding

template candidates are instantiated and stitched together by intersecting the sets of answers

they produce.

All these approaches that purely work with structures in the KG are unable to deal with

queries containing operators like ORDER BY, GROUP BY, FILTER, . . . that are independent of KG

structures.
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2.3 Approaches Using Pre-Made Templates for Full SPARQL Queries

Unger et al . parse the NL question and convert its extracted semantic representation to a

SPARQL template [8]. The resulting templates contain operators like COUNT, FILTER and HAVING,

and they have one template for getting the arg max or arg min using ORDER BY and LIMIT 1.

The article does not go into much detail about which linguistic patterns (e.g., quantifiers,

comparatives, superlatives) are translated to which semantic templates. It is unclear which

queries can be tackled by the approach but it appears that the produced templates are stand-

alone and not meant to be combined.

Park et al . (2014) map different question types to SPARQL templates representing full

queries [9].

They distinguish, among other things, between Boolean questions (answered using ASK queries)

and non-Boolean "simple questions". The latter are answered using a query containing only a

basic graph pattern with one or more triples. Furthermore, they differentiate between three

types of "aggregation function questions" which they map to a template using COUNT, a template

using ORDER BY, OFFSET 0, and LIMIT n, and a template using FILTER.

The mapping is performed using pattern matching: e.g., questions containing "how many" are

mapped to the count template, questions with superlatives to the order by-offset-limit template,

and questions with comparatives to the filter template. Here, too, the range of questions that

can be answered is limited.

A similar approach was presented by Berant and Liang (2014) who map questions to five

pre-made SPARQL templates which they refer to as "logical forms" [10]. The mapping is done

based on the syntactic structure of the question. The limited coverage of these templates can be

illustrated by the only template featuring aggregation taking an overall count of items.

A recent approach by Formica et al . (2023) uses a set of 21 pre-defined templates that they

created following a classification of questions into 21 types [11]. Judging from the revised

literature, this is the largest number of pre-made templates reported so far. However, the

templates listed there are not always basic, as they represent full queries. For example, they use

a question class "[Quantitative] Count over Atleast" which represents questions like "How many

films did at least 9 people do the dubbing for?". Semantically, this combines an aggregation

using COUNT and one for filtering using either FILTER or HAVING, along with templates used for

the triples in the query body. Besides, one could certainly combine this template with the
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"[Quantitative] Count over Atmost" template which would use "<=" instead of ">=" in the

filtering clause. Variants for "<" or ">" are not listed at all in the article.

While all these approaches cover varying numbers of query types, the questions that can be

answered with them are limited. Since the templates represent full SPARQL queries, they are

not intended to be combined, e.g., by nesting one into the other. This would, however, be needed

to answer questions like "Who won the most Oscars after the year 2000?" where we would have

to combine a count, arg max and filter template.

2.4 Approaches Using Generated Templates for Full SPARQL Queries

There also exist approaches that generate a large number of SPARQL templates that represent

full queries. However, the resulting templates are not always purely syntactic but contain

KG-specific entities.

For example, Zheng et al . (2015) mention a template for answering questions of the format

"Which <_> graduated from <_>?" [12]. This template would, thus, contain the KG’s predicate

for ’graduated from’. For Wikidata, this would likely be P69 ("educated at").

More recent approaches use learning to generate millions of such templates. For example, Cui

et al .’s 2017 system, called KBQA, learned close to 30 million templates containing roughly

3,000 predicates [13].

Zheng et al .’s 2018 system, TemplateQA, generates "simple" or "binary" templates by which

they understand templates which "[contain] just one fact" [14]. Training the system on Wikipedia,

DBpedia and Freebase, they generated ∼5 million templates mapping NL question patterns,

created from declarative sentences in the Wikipedia, to predicates in each of the KGs. When a

complex question, i.e., one referring to multiple facts, is input, it is decomposed into multiple

smaller questions which are then mapped to simple templates whose results are combined. “who

acted in Mission Impossible and Vanilla Sky?” is an example they give for a complex question,

containing two facts that would be solved by intersecting the results from the queries used

to retrieve the actors starring in both films. The examples from the paper indicate that this

approach is limited to answering questions requiring basic graph patterns. Using a similar

approach, Ding et al . (2019) solve the problem of generalizing the learned templates to unseen

query structures by looking at query substructures instead of structures of full queries [15]. Their

10



system, SubQG learns these substructures and their predictors, and then maps NL questions

to combinations of substructures to generate queries. These substructures, however, do not

correspond to semantic building blocks but rather to frequently occurring chunks of syntax

found in SPARQL queries. Besides, their coverage is still limited as they do not cover queries

requiring operators like UNION or GROUP BY.

A KG-independent approach, containing purely syntactic templates is presented by Gomes

et al . (2022) [16]. They use a Tree-LSTM and an attention mechanism to determine the

most important semantic information contained in an NL question. Corresponding templates

are learned using a modified version of the LC-QuAD 2.0 dataset. Using this procedure, the

researchers identified 29 SPARQL templates for Wikidata – each representing a full, but slotted

SPARQL query.

The detected templates cover a wide range of queries but are limited in two senses:

Firstly, they are fixed, full queries instead of building blocks that could be nested and combined.

Secondly, they lack many types of queries such as all types requiring an aggregation other than

COUNT. A more diverse benchmark than LC-QuAD 2.0 would be needed to identify other types.

The topic of benchmarks will be discussed in the following chapter.
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3 Wikidata-Based Benchmarks

3.1 Evaluation of Existing Benchmarks

Ever since Wikidata [17][18] became publicly available in 2012, and the Wikidata Query Ser-

vice [19] was launched in 2015, several KGQA benchmarks have made use of its vast amount of

triples, amounting to roughly 18 billion in the year 2023.

The following table gives an overview of some of them, ordered by the year in which they were

published. The citations link to publications presenting the benchmarks.

The column "Complex queries?" lists types of queries contained in the benchmark that can be

considered "complex":

• queries containing modifiers (e.g., GROUP BY, FILTER, or aggregators like MIN and MAX)

• queries containing subqueries

• queries with a minimum of three triples
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Table 1: Wikidata-based benchmarks

Name Year Creation Examples Complex queries?

2017 SQWD [20] Adaptation of
"Simple Questions"
dataset to Wikidata

21,399 none

2018 WebQSP-
WD [21]

Adaptation of
"WebQSP" dataset
to Wikidata

3,913 no gold queries available

2018 CSQA/
CQA [22]

Semi-automatically
generated

1,600,000 no gold queries available

2019 LC-QuAD
2.0 [23]

Semi-automatically
generated

30,000 queries with 3+ triples, COUNT
and FILTER; no grouping, other
aggregators or subqueries

2020 KQA
Pro [24]

Automatically
generated

117,970 queries with 3+ triples; no grouping,
aggregators or subqueries

2022 QALD-9-
plus [25]

Human-curated 412 3+ triples, grouping, aggregators,
subqueries

2022 QALD-
10 [26]

Human-curated 394 3+ triples, grouping, aggregators,
subqueries

2022 WDBench
[27]

Selected from real
query logs [28]

2,658 queries with 3+ triples; no grouping,
aggregators or subqueries

Among the listed benchmarks all but WDBench use synthetic datasets.

However, WDBench only considers real queries that contain basic graph patterns, including prop-

erty paths, and OPTIONAL clauses. Other queries were pruned to contain only those elements. [27]

Even though some of the datasets providing gold queries claim to contain "complex" examples,

only the QALD-9-plus and QALD-10 datasets – the current most recent datasets in the QALD

(Question Answering over Linked Data) series of KGQA benchmarks and competitions – contain

all above-mentioned types of complex queries.

In a previous work [29], we identified 149 out of the 412 examples in QALD-9-plus ( 36%), and

220 out of the 394 examples in QALD-10 ( 56%), as complex.

This is in line with the benchmark authors’ own analysis, according to which QALD-10 contains

the modifiers COUNT, FILTER, GROUP BY and OFFSET significantly more often than previous bench-

marks. [26]

14



Even though QALD-9-plus and QALD-10 present a stark improvement over older benchmarks

when it comes to the spectrum of queries they cover, their overall quality could be improved in

the following aspects:

• SELECT DISTINCT might be used consistently – or at the least where needed – in the

outermost query in cases where duplicate results might occur in the output. For example,

QALD-9-plus, ID 4, contains many duplicate results.

• wdt:P31/wdt:P279* might be used consistently – or at the least where needed – to deal

with the structural inconsistency that is inherent in Wikidata already by design. For

example, not all Q-items of cities in Wikidata are instances of the Q-item Q515, "city".

Instead, many cities are instances of a subclass of "city" and are only retrieved when using

wdt:P31/wdt:P279* instead of wdt:P31 as is for example done in QALD-9-plus, ID 29.

• Some gold queries do not match their NL question, e.g., QALD-9-plus, ID 34,

for which the gold query provides the count of items instead of the items themselves, or

QALD-10, ID 46, with the inverse problem.

Further examples:

– QALD-9-plus, ID 44, asks about the current spouse of a person ("Who is the daughter

of Robert Kennedy married to?") while the gold query also returns ex-spouses

– QALD-9-plus, ID 110, asks about rivers and lakes in South Carolina, but the query

only considers lakes.

– QALD-9-plus, ID 241, asks about the smallest German city by area, yet the query

uses the city’s population values instead.

• Other examples have a wrong set of answers.

– This can be because the queries do not account for ties. For example, QALD-9-

plus, ID 143 asks "Who is the tallest player of the Atlanta Falcons?". If two players

are tied for being the tallest, a random one among them will be output.

– Another reason for this can be that the queries don’t use a required Wikidata

entity. For example, according to the benchmark, QALD-9-plus, ID 15, would output

the entities "Victoria" and "George III of Great Britain". However, "George IV of

the United Kingdom" and "William IV" should also be among the results for this
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NL question: "Which monarchs of the United Kingdom were married to a German?".

They are included when using the item Q111722535, "monarch of the United Kingdom

of Great Britain and Ireland" referring to the period from 1801 to 1927. Looking at

the query, it becomes apparent that only some periods of British history are included.

Surprisingly, the item for "king" but not for "queen" is used.

– Another reason can be the inadvertent use of world knowledge – be it accurate

or inaccurate. One example where this was done is QALD-9-plus, ID 165, which is

about movies directed by Park Chan-wook. The query does not ensure that the result

items are movies, leading to the inclusion of a TV mini-series the director – mostly

known for his films – directed.

In QALD, ID 114, the query just uses "Mark Zuckerberg" (Q36215) as "the founder of

Facebook" instead of querying this information.

Of course, these are just two examples of a broader category that might be labeled

human error.

There are also the following, smaller problems concerning the usability of the benchmark:

• Some gold queries contain syntactic flaws like unused variables (e.g., QALD-9-plus, ID

85), missing WHERE operators, deviating from the standard syntax (e.g., QALD-9-plus, ID

30), or inconsistent capitalization of SPARQL operators (e.g., QALD-9-plus, IDs 407 and

408).

• Some gold queries contain unnatural and/or unnecessarily complex syntax. For

instance, FILTER(?a = ?b) is used instead of simply employing a shared variable in QALD-

9-plus, IDs 81 and 226.

• The naming of variables is very inconsistent and ranges from generic to descriptive, e.g.,

?uri, ?s1 (for "subject 1"), ?o1 (for "object 1"), ?c (for "company"), ?bow (for "body of

water"), or ?islandgroup and ?dateOfBirth.
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Even a perfect KGQA system will not always give the user the results they want due to the

following problems:

• ambiguous questions, e.g., "Who was president of Croatia before milanovic?": The user

may want all presidents coming before Milanović, as the preposition (indicating a range)

suggests, or they may only be interested in the president immediately preceding Milanović.

• vague questions, e.g., "Which US American presidents were inaugurated at an old age?":

What does the user consider to be an old age? Would an above-average age satisfy them?

• implicit assumptions of the user, e.g., asking a question like "Who was president in

1973?", a US-American user may refer to presidents of the USA. Similarly, asking about

"countries", they might assume to only receive current and widely recognized countries.

• missing or faulty data on Wikidata

In general, one can also criticize making partially or fully human-curated benchmarks specifically

for KGQA over Wikidata. If this procedure uses the information available on Wikidata as a

starting point, it might nudge researchers towards creating examples that will be possible –

and maybe even straightforward – to answer using Wikidata. While researchers can make a

conscious effort to use paraphrased NL questions and synonyms to avoid using the exact labels

of properties and items, and while they can intentionally look for harder examples, there might

still be a subconscious bias to adjust the benchmark to the (current) state of Wikidata. This is

of course problematic since users of KGQA systems would not present such a bias.

3.2 New Wikidata-Based Benchmark: Wikipedia Lists

To avoid the potential bias introduced by hand-curated benchmarks, created specifically for

KGQA over Wikidata, and to include a verifiable ground truth, we developed the Wikipedia

Lists benchmark. This benchmark is independent of Wikidata and uses the information stored

in Wikipedia lists as ground truth. Wikipedia lists, often curated by experts or enthusiasts of

the respective topic, contain information that people are interested in and might query a KGQA

system about. This is especially true for Wikipedia lists with a lot of Wikipedia site links.

17



Figure 2: Snippet of a Wikipedia list (left) and corresponding QLever output (right)

Sources: en.wikipedia.org/wiki/List_of_country_calling_codes & qlever.cs.uni-freiburg.de/wikidata/fKDg2G

The benchmark, aptly called Wikipedia Lists, was created in March 2023 and contained 11

examples. It has since been expanded to contain 60 examples. Most of these are complete

re-creations of tabular Wikipedia lists or subsections thereof, e.g., of certain rows like the

top 10 rows according to some ranking. In some cases, a NL question derived from the

information in a Wikipedia list was used. For example, "Which American president was

played by most actors in a movie? Also show the actors" is a question relating to the "List of

actors who have played the president of the United States". We attempted to word these NL

questions unambiguously and to provide all the necessary information regarding the desired

query output.

Discrepancies between the Wikidata output and the Wikipedia list were resolved using other

sources of information. While the data on Wikidata and in Wikipedia lists is sometimes

incomplete or even faulty, the comparisons allowed to improve the quality of the queries, having

them capture information that is sometimes stored structurally inconsistently on Wikidata.

Despite the Wikipedia lists being open source and possibly incomplete or faulty, we believe that

providing and using a verifiable ground truth is necessary to develop scientifically and factually

sound gold queries.

3.2.1 Process of Creation

The lists were chosen from various sources to cover a broad variety of topics and varying

popularity levels of the lists, as measured by their Wikipedia site links:

• the Wikipedia "List of lists of lists" was browsed and a list was taken from each section

• Wikidata was queried for popular Wikipedia lists using the query shown below
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• Wikidata was queried for Wikipedia lists with an ordering by ascending Q identifier,

effectively yielding a random order

SPARQL 3.1: for Table 3

SELECT * WHERE {
?list wdt:P31 wd:Q13406463 . # instance of "Wikimedia list article"
?list @en@rdfs:label ?list_name .
?list ^schema:about/wikibase:sitelinks ?sitelinks .

}
ORDER BY DESC(?sitelinks)

The benchmark is stored as a JSON file using a reduced version of the format used in the

QALD benchmarks. Each example contains the following information:

• example ID

• Boolean indicating whether aggregation is used in the queries

• NL question or indication that a full Wikipedia list was recreated

• link to the Wikipedia List

• QLever link to the hand-crafted query

• text of the hand-crafted query

• QLever link to the template-based query

• text of the template-based query

• section commenting on how well the Wikidata outputs and Wikipedia List information

match

The semantic plans used to generate the template-based queries are not part of the benchmark

as they are very long.

Due to the length of all involved files (e.g., the Wikipedia lists benchmark file, but also a file

containing the semantic plans and various Python scripts to generate and analyze the template-

based queries), they were not included in this written thesis.

While the results of the hand-crafted and generated queries largely matched, there were a few

discrepancies due to QLever using varying orders for the elements in GROUP_CONCAT clauses.

These discrepancies are resolved in the README.md file.
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3.2.2 Evaluation

Some examples turned out to be problematic. For instance, the example with ID 9 fails to

re-create the underlying Wikipedia list due to a lack of data. Instead, it tries to approximate it

using the available data with moderate success. Concretely, since there is no information about

drug sales on Wikidata, the query uses the popularity of drugs as indicated by their Wikipedia

site links.

Other examples, like ID 17, make use of Wikidata-external knowledge. In ID 17, the conversion

rates between different currencies on December 31, 2022, are needed.

Non-changing information, like factors needed to convert between SI units and non-SI units,

were however taken from within Wikidata.

In IDs 3 and 33, due to the lack of a NOW function (as of November 10th, 2023), hardcoded values

were used.

In general, many queries can be considered imperfect. There is no saying how they would

perform with different inputs, i.e., new data in Wikidata, as they are adjusted to the current

state of the Wikipedia lists and of Wikidata. Regarding this problem, the generated queries are

likely more robust to changes in the input data. However, it should be pointed out that some of

the handwritten queries were also – in part – made using the templates presented in Chapter 5,

as the templates proved to be a useful aid during the construction of complex queries.

To show that the benchmark covers a variety of the more complex query structures listed at the

beginning of this chapter, we indicate for each structure up to five examples (IDs) containing

them in their handmade query versions. We also show the total number (absolute and relative)

of examples whose handmade query version contains them.

Table 2: Complexity of the Wikipedia Lists benchmark

structure example IDs # %

3+ triples all IDs except 52 59 98

grouping 1, 2, 3, 4, 5 42 76

aggregation 1, 2, 3, 4, 5 47 78

subqueries 2, 4, 6, 7, 11 20 33
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While only one-third of the examples contain a subquery, it should be noted that among these

20 examples containing them, 8 of the examples contain between two and four subqueries, while

one example (ID 11, ’List of countries whose capital is not their largest city’) contains a total of

21 subqueries. The high complexity of this query is due to having used templates even in the

handwritten version, and due to the nesting of the arg_agg template which, by itself, already

contains two subqueries.

This complex structure is needed to ensure correctness and to avoid duplicates in the output

without including world knowledge. In this particular example, one can assume that it is

relatively unlikely for a country to have two cities with the same most recent population count

(i.e., a tie for being the largest city in the country), but this eventuality is considered by the

query.

As a final note, it should be pointed out that in its current state, the benchmark is not ready to

be used for training and testing KGQA systems.

For the examples with full list recreation, instead of providing links to the lists, one would have

to provide detailed information about the desired columns, including the background knowledge

contained in the description texts for the lists, as well as implicit information that can only be

derived when analyzing the table contents.

For example, the Wikipedia "List of heads of state and government Nobel laureates" contains the

years in which the heads of state and government won a Nobel Prize. The sub-section "In office"

contains heads of state and government who won the Nobel Prize while they were in office. This

sub-list uses this imprecise year information instead of the precise dates on which the people

were awarded the Nobel prizes to determine whether the award was won "in office" or not. This

only becomes apparent after closer inspection (cf. Wikipedia Lists, ID 16).
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4 Approach

4.1 Syntactic Considerations

The precise syntax of the hand-written queries arises from the following considerations:

• SELECT DISTINCT was used consistently in the outermost query, even if it was not required,

to eliminate duplicates in the output.

• wdt:P31/wdt:P279* was used consistently when retrieving instances of a certain class.

• The queries were made as natural and simple as possible, avoiding structures like

FILTER(?var1 = ?var2).

• The names of the variables were chosen to be informative, indicating which Wikidata

entities they hold, and/or being named like the corresponding Wikipedia list column headers.

Abbreviations were kept to a minimum to improve the usability of the benchmark.

• For small lists, attributes about entities – i.e., characteristics that don’t define the set of

result entities, but rather give additional information about them – were made OPTIONAL

to include entities despite them lacking certain statements. This was done to make the

Wikidata output similar to the Wikipedia list, allowing comparisons and ensuring the

validity and completeness of the query.

• UNION, VALUES and wdt:P279* ("subclass of") have been used to deal with structural

inconsistencies – both "inconsistencies" by design (e.g., items being instances of a class

but not of superclasses of that class) as well as undesirable inconsistencies (e.g., use of

different properties to store the same kind of information)
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• Since QLever [30] was used to run the queries, only keywords and functions that are

currently (October 2023) supported were used.

The syntax of the template-based queries is determined by the syntax of the templates. The

following sections go into detail about how the templates were named and which SPARQL

constructs and query types they cover. Notably, the UNION construct will be used in place of

VALUES to deal with inconsistencies.

4.2 Template Selection and Naming

Chapter 5 will present the semantic SPARQL templates that have been identified. They contain

placeholders for variables, IRIs and literals, making them knowledge graph-independent.

Some of the template names are equal to the names of SPARQL operators fulfilling the semantic

aspect in question. While the semantic templates do not have a 1:1 correspondence to SPARQL

operators, some of them naturally realize one particular, basic semantic aspect. For example,

the template to project variables, select, uses the SPARQL SELECT operator. We chose to call it

select rather than, say, project, as the former name immediately brings the template to mind.

The SPARQL 1.1 Query Language [31] specification explains which semantic effects can be

achieved by using the various syntactic constructs (e.g., FILTER being usable to restrict numeric

values). Apart from this, the specification uses a syntax-based categorization of its constructs.

For example, the LIMIT and OFFSET modifiers are considered to be solution sequence modifiers,

just like SELECT, DISTINCT and ORDER BY, as they are syntactic tools used to affect the output of

a (sub-)query, called the solution sequence.

From a semantic point of view, these modifiers are usually used in certain combinations to achieve

specific semantic effects. For example, to get the top three values of an ordered attribute, we

use the value_ranks_all template (Section 5.2.5) that contains the modifiers SELECT, ORDER BY,

LIMIT (with parameter 3) and OFFSET (with parameter 0) modifiers.

Similarly, the documentation lists the various aggregates – again, as syntactic tools – but

does not contain any section about how to fulfill the semantic purpose that e.g., the arg_agg

(Section 5.2.4) or val_ranks_all (Section 5.2.5) templates fulfill.

While the semantic meaning of each aggregate (e.g., taking a maximum or calculating a sum) is
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different, their templates can be subsumed under general aggregation templates as they use the

same syntax.

4.3 Excluded SPARQL 1.1 Constructs

The templates exclusively use SPARQL 1.1 and provide the required functionality to answer

most user questions. The following SPARQL 1.1 Constructs are, however, syntactic sugar and/or

replaceable by other constructs, such that they are excluded.

• blank nodes in basic graph pattern, replaceable by variables

• predicate-object lists as a shorthand notation for triple patterns with a common subject

• object lists as a shorthand notation for triple patterns with a common subject and predicate

• RDF collections

• the keyword a as alternative for rdf:type

• the VALUES construct, replaceable using UNION

• the IN and NOT IN functions, replaceable using !=, =, && and ||.

• the HAVING construct, replaceable using FILTER

It should be noted that some of these constructs, especially VALUES, IN and NOT IN, are very

valuable in practical applications. They are simply excluded because they can be replaced by

other, more widely applicable constructs. This is done to keep the number of semantic templates

small and to list exactly one way to syntactically realize every semantic purpose.

Furthermore, the templates contain prefixed names as relative IRIs. The prefix declarations

containing the base IRIs required to build the full IRIs are left out. Query engines like WDQS

or QLever [30][32] often add them automatically.

While the commonly used constructs FILTER EXISTS and FILTER NOT EXISTS are not syntactic

sugar, they can in almost all cases be replaced by other constructs and are also excluded: Instead

of FILTER EXISTS, we can very often use a VALUES clause, and instead of FILTER NOT EXISTS, we

can very often use MINUS.

For variables, ? is consistently used instead of the alternative symbol $.
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4.4 Excluded Query Types

• CONSTRUCT queries

• ASK queries

• DESCRIBE queries

• federated queries

• queries containing REDUCED

• queries containing GRAPH or FROM NAMED

The first five query types are not required for querying a single, existent KG and providing the

answers to the user’s question as a set of distinct tuples.

Queries containing GRAPH or FROM NAMED are not included as these concepts are not supported

by all KGs.

4.5 A Note about Missing Values

Even if KGs have ways to discern between missing values and meaningful absences of values

(e.g., using the wikibase:rank property in Wikidata), we have to assume that this information

is not always registered. For example, a person without any "spouse" statements in Wikidata

may either never have been married, or they may have been but this information is not available

in Wikidata. For this reason, we might get lower counts for the values of a statement – including

more counts of zero – than we would if the KG was perfectly stocked. This also affects aggregates

of count values.

Since there can be multiple reasons for the absence of statements, the way we treated missing

values depended on the individual examples.
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5 Semantic Categories and Templates

In this chapter, we will use four levels of abstraction (with level 1 being the most abstract and

level 4 being the most concrete).

1. On the highest level of abstraction, we establish five semantic categories into which

we can classify the semantic templates (Section 5.1). These categories are independent of

query languages and KGs.

2. The semantic templates’ identifiers – including the required parameters – represent

lower-level semantic purposes. They are also independent of query languages and KGs.

3. The semantic templates’ syntax represents the realization of the template in SPARQL.

They use a fixed query language but are independent of KGs.

4. An instantiation of a semantic template with slotted-in arguments is a concrete query

or a part of a concrete query. It uses a fixed query language and a fixed KG.

For example, if we want non-steroidal anti-inflammatory drugs (NSAIDs) in our output, this is

the semantic category CONSTRAINT. This is because we reduce the set of all entities of a

KG to the specified ones. Within this category, we then have multiple semantic templates

that might be used to realize the CONSTRAINT. Among those, we might have the template

with identifier path using a triple to realize a constraint. It requires the following parameters: a

variable or IRI as the subject of the triple ([varIRI]), a predicate corresponding to the property

path ([pred]), and an object that may be a variable, IRI or literal ([obj]).

One could now find a syntactic realization for this template in any query language that uses the

RDF data model, e.g., RDQL or SeRQL. However, in this thesis, we use the syntactic realization

using the SPARQL query language as it is the most widely used one.

This syntactic realization contains slots for the parameters that have to be filled with concrete

entities from the KG that is used, as well as with concrete variables and literals. For example,
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one might slot in the variable ?nsaid for [varIRI], the property path

wdt:P31/wdt:P279* for [pred] and the entity wd:Q188724 for [obj] if one uses Wikidata as the

underlying KG. The only output of this query – realizing this CONSTRAINT – is currently

Voltaren gel with the active ingredient diclofenac, an NSAID.

If we however use PubChem as the underlying KG, we get many more results (∼24,000) at

the cost of the above CONSTRAINT requiring more than a single triple to be realized. Instead,

the CONSTRAINT is realized using one instance of path and three instances of add_path that

each realize a sub-constraint This is because we first need to define the class of NSAIDs as a

restriction class concerning the property "has role", and fixate that entities must have at least

one value of "non-steroidal anti-inflammatory drug" for this property. Only then can we retrieve

instances of this restriction class by using a single triple, much like in the Wikidata case.

5.1 Semantic Categories

The semantic templates identified in Chapter 5 can fulfill one or more of the following, high-level

semantic purposes, represented as categories. For most of these five categories, the intended

meaning cannot be defined precisely. As such, the short descriptions for each of them should

only serve to give a general idea of the category’s meaning by providing an example semantic

template. In the following, the term "items" is short for "entities and/or information about them"

- referring to all possible (output) tuples. The pictograms used to represent each category will

be explained later in this section.

1. ATTRIBUTE �

Description: templates that aim to add information about items

Example: template add_path when introducing a new variable, e.g., the second triple

in ?person wdt:P31 wd:Q5 . ?person wdt:P27 ?country_of_citizenship ., adding citi-

zenship information to the entities.

2. CONSTRAINT �

Description: templates that aim to filter out certain items

Example: template filter to add a constraint on the values of an attribute using FILTER
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Note that aggregates are considered to be a separate category, even if they filter out items

with certain values (e.g., non-maximal values).

3. AGGREGATE �

Description: templates that apply expressions over groups of solutions, returning exactly

one value per group; the word "group" can refer to explicit groups, formed using GROUP BY,

or to the overall group containing all items

Example: template agg_all with aggregation type argument MAX to retrieve the maximum

value of an attribute for the overall group

4. COMBINE ⋆

Description:

• templates which define new variables from – usually multiple – existing variables

Example: template bind to assign the result(s) of an expression to a new variable

using BIND

• templates which combine different characterizations into a single one

Example: template union to unite multiple characterizations of the same variable

using UNION

5. OUTPUT �

Description: templates which do not aim to change the set of output items but project

the results to certain columns or determine the ordering of result items

Example: select and order are templates used for this exact purpose

The magnifying glass expresses that we need to access the KG for these categories.Categories

without it are KG-independent. For COMBINE, a star was chosen to symbolize novelty. The

star is made of two halves to indicate that we usually combine two or more things – variables

or pieces of syntax. The eye was chosen for the OUTPUT category as the templates in this

category determine what the user sees in the final query.

This categorization does not partition the set of templates as the same template can fall into

multiple categories. For instance, add_path can realize an ATTRIBUTE or CONSTRAINT.

The reason why certain categories’ meaning is based on what they aim to achieve, is that we

cannot base the meaning on the actual effects that semantic templates in this category have on
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the set of result items.

To illustrate this, when add_path is used to retrieve an ATTRIBUTE, we might end up filtering

out some items if they don’t have a value for the property in question.

The intended additive nature of ATTRIBUTE becomes however apparent when we consider

that we always add a column to the output. Regarding CONSTRAINT, the aim is always to

eliminate the items that don’t fulfill the constraint, potentially reducing the set of items by

filtering out certain rows.

5.2 Semantic Templates

This section contains both the identifiers and the SPARQL syntax required for each

template. It was made sure that the templates were as general as possible. For example, for the

aggregation templates (agg, agg_all) using COUNT, we always include counts of zero, as these

may be needed for queries that require taking the mean of the counts, and as they may simply

be a desirable part of the output. In real queries or queries found in benchmarks, zero counts

are often omitted when only a maximum count which is expected to be greater than 0 should be

output. However, since zero could be the maximum, these queries rely on world knowledge.

In cases where only counts of at least 1 should be included, this can be achieved by applying

the filter template afterward. Similarly, if there is an abundance of zero counts in the results,

these can be moved to the end of the results list by applying a correspondent ordering.

Whenever pieces of syntax are inserted into templates – which will be the case for the elements

filling the slots [cont] and [char[varX]] – the system must check if the inserted piece of syntax

is a subquery. In this case, it needs to be ensured that they are wrapped in curly braces.

For some templates, there can be an arbitrary number of arguments of a certain type. This is

indicated by using a tuple notation.

In general, the templates were crafted such that they cover relevant practical examples, avoiding

unnecessary complexity.

30



5.2.1 Triple Patterns to Retrieve Selected KG Data

Most SPARQL queries contain at least one triple pattern, also called a basic graph pattern. It

is an RDF triple that usually contains at least one variable. For these patterns, there are two

templates, depending on whether the triple pattern is used to establish a base block, i.e., a new

query graph, or if it adds to an existing query graph.

Note that properties in the triple’s predicate may be inverted (constituting an inverted path)

using the caret symbol ()̂. Thus, if an attribute needs to be added to a set of entities stored in a

variable, and this attribute is retrievable with the variable as the object rather than the subject

of the triple, this is also captured by the template.

While, technically, a predicate consisting of a single property is called a property path, we

only use the term property path for multi-element versions to avoid the more verbose term

multi-element property path.

Property paths are used when it is sufficient to have implicit variables, i.e., the variables

connecting two path elements need not be accessed or output.

The path elements are connected by a forward slash as a sequence path. They may also contain

path modifiers like * (zero-or-more path) or + (one-or-more path) to indicate the number of

times a certain path element may be added, e.g., [prop1]/[prop2](/[prop3])*
More information about property paths can be found in the SPARQL 1.1. Query Language

documentation [31].

For these templates, [pred] contains the full property path, connecting the subject and the

object of the triple, with all slashes and path modifiers.

Path

Template identifier: path

Parameters:

• [varIRI]: the semantic subject of the triple: variable or IRI

• [pred]: single property or property path

• [obj]: the semantic object of the triple: variable, IRI or literal
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Template 5.1: path

[varIRI] [pred] [obj] .

The terms semantic subject and semantic object allude to the following two ways this template is usually

used in practice:

• The syntactic subject of the triple is a variable that is defined by the predicate, and by the object

of the triple which is an IRI or literal.

Example: ?human wdt:P31 wd:Q5 ., used to retrieve all instances of the class human, realizing

a CONSTRAINT. The semantic subject – corresponding to the syntactic subject – is then the

variable ?human that is being defined.

• The syntactic subject of the triple is an IRI for which a variable containing new information is

added using the predicate. However, this still constitutes a CONSTRAINT as we reduce the set of

all entities in the KG to those stored in the variable.

Example: wd:Q42 wdt:P18 ?image .

As stated before, the predicate of the triple may be an inverted property path. Thus, in instantiations of

this template, the positions of the syntactic subject and object of the triple may be swapped.

Example: wd:Q5 ^wdt:P31 ?human .

There is also a more rarely found case where we realize a CONSTRAINT using two variables which

must both be considered to be the semantic subject. For example, ?spouse_1 wdt:P26 ?spouse_2 .

retrieves all pairs of married people, defining two variables at the same time.

Add Path

Realizes a CONSTRAINT or ATTRIBUTE using a single triple.

Template identifier: add_path

Parameters:

• [varIRI]: the semantic subject of the triple: variable or IRI

• [pred]: single property or property path

• [obj]: the semantic object of the triple: literal, IRI or variable

• [cont]: query graph to add to
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Template 5.2: add_path

[cont]
[varIRI] [pred] [obj] .

If a CONSTRAINT is realized, the semantic subject is a variable. The variable is further defined by

this added triple. Example: ?person wdt:P27 wd:Q183 . ensuring that persons have the German

citizenship.

If an ATTRIBUTE is realized, the semantic object is a variable – containing the new information. Exam-

ple: ?person wdt:P27 ?country_of_citizenship . outputting persons’ countries of citizenship.

Technically, one would, thus, need two versions of this template – one for each semantic purpose. However,

since they share the same, very basic syntax, they are grouped.

Another reason for doing this is that ATTRIBUTEs are sometimes just realized to realize other AT-

TRIBUTEs or CONSTRAINTs. A common example of this is the access of statement nodes (e.g., using

p in Wikidata) which often just serve to connect statement values and qualifier values. The nodes

themselves, when output, do not carry any meaning. The semantic purpose of accessing statement nodes

is, thus, not quite one of an ATTRIBUTE.

5.2.2 Imposing Relations by Connecting Variables

This template has the specific purpose of connecting two existing variables. Applying this template,

the variables are required to have a certain relation to each other, as specified by the predicate of the

connecting triple.

Template identifier: connect

Parameters:

• [char[var1]]: characterization of first variable to be connected

• [char[var2]]: characterization of second variable to be connected

• [var1]: subject of connecting triple: variable

• [pred]: single property or property path

• [var2]: object of connecting triple: variable
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Template 5.3: connect

[char[var1]]
[char[var2]]
[var1] [pred] [var2] .

5.2.3 Aggregates

Aggregate Values of Attributes – Overall

Template identifier: agg_all

Parameters:

• ([distinct1], \dots): aggregation type modifiers ∈ { DISTINCT, ∅ }

• ([agg1], \dots): aggregation types ∈ { COUNT, MAX, MIN, AVG, SUM, GROUP_CONCAT, SAMPLE }

• ([var1.1], \dots): variables whose values are aggregated

• ([var2.1], \dots): variables to store the aggregated values

• [cont]: query graph to add to

Template 5.4: agg_all, showing two aggregations

SELECT ( [agg1] ( [distinct1] [var1.1] ) AS [var2.1] )
( [agg2] ( [distinct2] [var1.2] ) AS [var2.2] )

WHERE {
[cont]

}

This template covers aggregations of variables across the whole group, i.e., across all items rather than

across specifically created groups.

If we want to perform multiple aggregations, we have an expression in the SELECT clause for each

position of the first four arguments. The expressions are separated by spaces as indicated in the template

above.

For GROUP_CONCAT, one can specify a (default) separator, e.g., a semicolon, to avoid separating the

aggregated items by spaces. However, one could also add this symbol as another parameter of the

template. 1

1For the template-based Wikipedia Lists queries, a semicolon was used as a separator throughout.
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Template 5.5: agg_all, with one GROUP_CONCAT aggregation

SELECT ( GROUP_CONCAT ( [distinct1] [var1.1]; separator="; " ) AS [var2.1] )
WHERE {

[cont]
}

Note that instead of the name of the aggregated variable, being set through arguments, one could also let

the system determine appropriate names, e.g., (COUNT(?museum) AS ?num_museums)

Aggregate Values of Attributes – Across Groups

Template identifier: agg

Parameters:

• ([distinct1], \dots): aggregation type modifiers ∈ { DISTINCT, ∅ }

• ([agg1], \dots): aggregation types ∈ { COUNT, MAX, MIN, AVG, SUM, GROUP_CONCAT, SAMPLE }

• ([var1.1], \dots): variables whose values are aggregated

• ([var2.1], \dots): variables to store the aggregated values

• ([var3.1], \dots): variables to group by

• [cont]: query graph to add to (case ’ no COUNT aggregation’)

• [cont1]: query graph characterizing the counted variable (case ’COUNT aggregation’)

• [cont2]: query graph characterizing the variable(s) used for grouping (e.g., for which counts

are retrieved) and of the variables used exclusively in non-COUNT aggregations (case ’COUNT

aggregation’)

If we have multiple aggregations, they are handled as described in Section 5.2.3. The case of

GROUP_CONCAT is also handled just as in Section 5.2.3.

The parameter ([var3.1], \dots) is realized syntactically by separating the elements of the tuple by

spaces.

Case: no COUNT aggregation

If the aggregation type is not COUNT, [cont] is used in the WHERE body.
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Template 5.6: agg, showing two non-COUNT aggregations

SELECT ( [agg1] ( [distinct1] [var1.1] ) AS [var2.1] )
( [agg2] ( [distinct2] [var1.2] ) AS [var2.2] )
([var3.1], \dots)

WHERE {
[cont]

}
GROUP BY ([var3.1], \dots)

Case: COUNT aggregation

If one of the aggregation types is COUNT, [cont1] is used and realized within an OPTIONAL clause, while

[cont2] outside of it. The characterization of the counted variable is put into an OPTIONAL clause to

include values of zero.

It is important that the variable(s) for which counts are retrieved are characterized outside of the

OPTIONAL clause, and that the variable whose values are counted is characterized within it.

Template 5.7: agg, with COUNT

SELECT (COUNT ( [distinct1] [var1.1] ) AS [var2.1] ) ([var3.1], \dots)
WHERE {

[cont2]
OPTIONAL { [cont1] }

}
GROUP BY ([var3.1], \dots)

About the order of elements in the WHERE clause

It should be emphasized that the order of the OPTIONAL clause and the other section(s) in the WHERE

clause must not be changed as this would affect the result. If the wrong order is used, we end up excluding

counts of zero unless all counts would be zero. See this website for more information.

Combinations of COUNT and other aggregates: The combination of COUNT and GROUP_CONCAT

occurs often in practice and is shown here to provide another example:
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Template 5.8: agg, with COUNT and GROUP_CONCAT

SELECT ( COUNT ( [distinct1] [var1.1] ) AS [var2.1] )
( GROUP_CONCAT ( [distinct2] [var1.2]; separator="; " ) AS [var2.2] )
([var3.1], \dots)

WHERE {
[cont2]
OPTIONAL { [cont1] }

}
GROUP BY ([var3.1], \dots)

It is possible to include [char[varX.1]] both inside and additionally outside of the OPTIONAL clause

and this will in fact be useful when applying the templates in practice.

Note that the current version of this template is designed to handle at most one COUNT aggregation,

as this appears to be sufficient in praxis. To handle multiple COUNT aggregations, one would add an

OPTIONAL clause for each of them.

5.2.4 Arguments of Aggregates

Arguments of Aggregates – Overall

Template identifier: arg_agg_all

Parameters:

• [distinct]: aggregation type modifier ∈ { DISTINCT, ∅ }

• [agg]: aggregation type ∈ { MAX, MIN, AVG }

• [var1]: variable whose value(s) corresponding to the aggregated value should be output (arg)

• [var2]: variable whose values are aggregated

• [var3]: variable to store the aggregated value

• ([var4.1], \dots): additional variables to project

• [cont]: query graph to add to

Template 5.9: arg_agg_all

SELECT [var1] [var3] ([var4.1], \dots) WHERE {
[cont]
BIND ( [agg] ( [distinct] [var2] ) AS [var3] )
FILTER ( [var2] = [var3] )

}
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In practice, [var1] will usually represent an entity (e.g., Wikidata Q-item), while ([var4.1], \dots)

will represent attributes for these entities (e.g., their label).

Wikipedia Lists IDs 2 and 39 are practical examples that use the "additional variables to project".

For this template, it was made sure that ties were included. A simpler template using ORDER BY and

LIMIT 1 is therefore not generally adequate and might return an arbitrary entity among multiple tied

entities.

Arguments of Aggregates – Across Groups

Template identifier: arg_agg

This template applies arg_agg with specified groups.

Parameters:

• [distinct]: aggregation type modifier ∈ { DISTINCT, ∅ }

• [agg]: aggregation type ∈ { MAX, MIN, AVG }

• [var1]: variable whose value(s) corresponding

to the aggregated value should be output (arg)

• [var2]: variable whose values are aggregated

• [var3]: variable to store the aggregated value

• ([var4.1], \dots): variables to group by

• ([var5.1], \dots): additional variables to project

• [cont]: query graph to add to

Template 5.10: arg_agg

SELECT [var1] [var3] ([var4.1], \dots) ([var5.1], \dots)
WHERE {

{
SELECT ( [agg] ( [distinct] [var2] ) AS [var3] ) ([var4.1], \dots)
WHERE { [cont] } GROUP BY ([var4.1], \dots)

}
{

SELECT ( [var2] AS [var3] ) [var1] ([var4.1], \dots) ([var5.1], \dots)
WHERE { [cont] }

}
}
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For this template, as in Section 5.2.4, it was made sure that ties are included.

Some practical examples using the "additional variables to project" are Wikipedia Lists IDs 6, 13, 48, and

50. They are used when the agg template is combined with the arg_agg template, and when statement

qualifier information that is not aggregated should be output.

5.2.5 Ranked Values

Template identifier: val_ranks_all

Similar to agg_all but instead of retrieving one aggregated value, we retrieve values on potentially

multiple, specified ranks of a given ordering. Note that the ordered values are not necessarily distinct. For

example, if we want to retrieve the elevation values of the world’s two highest mountains (cf. Wikipedia

Lists, ID 59 ), we get two elevation values for Mount Everest if we use the mountain’s country statement

as a way to ensure that the mountain is located on Earth. This is because it is located both in China

and Nepal. To ensure that the mountain entities (in [var1]) occur only once in the output, we can use

aggregation before applying val_ranks_all.

Parameters:

• [order]: direction of the ordering ∈ { ASC, DESC }

• [var1]: variable whose values are ranked

• [limit]: natural number for the LIMIT clause, fixing the number of ranks to consider

• [offset]: natural number for the OFFSET clause, fixing that ranks start at [offset] + 1

• ([var2.1], \dots): additional variables to project

• [cont]: query graph to add to

Template 5.11: val_ranks_all

SELECT [var1] ([var2.1], \dots)
WHERE {

[cont]
}
ORDER BY [order] ( [var1] )
LIMIT [limit]
OFFSET [offset]
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5.2.6 Arguments of Ranked Values

Template identifier: arg_ranks_all

Similar to arg_agg_all, but instead of using an aggregated value, we use values on specified ranks

according to a given ordering.

Parameters:

• [var1]: the variable whose values correspond to the values on the indicated ranks (arg)

• [order]: direction of the ordering ∈ { ASC, DESC }

• [var2]: variable whose values are ranked (ranks)

• [limit]: natural number for the LIMIT clause, fixing the number of ranks to consider

• [offset]: natural number for the OFFSET clause, fixing that ranks start at n+1

• ([var3.1], \dots): additional variables to project

• [cont]: query graph to add to

Template 5.12: arg_ranks_all

SELECT [var1] [var2] ([var3.1], \dots)
WHERE {

{
SELECT [var2]
WHERE { [cont] } ORDER BY [order] ( [var2] )

LIMIT [limit]
OFFSET [offset]

}
{

SELECT [var1] [var2] ([var3.1], \dots)
WHERE { [cont] }

}
}

Note that this template applies the specified ordering to the projected variables. In practice, this template

will often be slotted into the select template to get distinct results, and then into the order template.

A practical example with "additional variables to project" are Wikipedia Lists IDs 6 and 37. As these

examples show, "additional variables to project" may be necessary when the arg_ranks_all template is

combined with the agg template, and when qualifier information that is not used in the arg_ranks_all

template (as either [var1] or [var2]) should be output.

ORDER BY \dots LIMIT \dots OFFSET may use non-distinct, duplicate values. This may or may not

be desirable. Thus, same as for the val_ranks_all template, we may need to use aggregation in [cont]
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to ensure that values of distinct entities are used.

It is assumed that we only order by one variable, as this appears to be sufficient in practice.

Arguments of Ranked Values and Ranked Values Across Groups

Surprisingly, it is not trivial to establish templates arg_ranks and val_ranks which apply arg_ranks_all

and val_ranks_all to specified groups. While queries that calculate these can be written in practice,

they are computationally expensive (e.g., variants using the cross product) or must be pre-generated,

depending on the value for [limit] (e.g., a variant using a combination of MAX, MINUS, and UNION).

To realize this semantic purpose efficiently, clearly, and without the need for pre-generating, it might

be the best solution to extend the functionality of SPARQL engines. For instance, one could adapt the

PARTITION BY and RANK constructs from SQL to SPARQL. These constructs enumerate the items in

each specified group after applying a desired ordering to them. With these ranks available, the task of

realizing arg_ranks_grp and val_ranks_grp becomes simple.

5.2.7 Negative Characterizations

Template identifier: minus

To indicate constraints that a variable should not fulfill, the MINUS construct can be used. It can

be seen as a way to combine a regular, "positive" characterization with a "negative" one. If multiple

negative characterizations should be combined, the negative characterization can use the union template

(Section 5.2.8), or the minus template can be used multiple times.

Parameters:

• [cont]: query graph to add to (containing a positive characterization of the variable)

• [char[var]]: negative characterization of the variable

Template 5.13: minus

[cont]
MINUS { [char[var]] }
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5.2.8 Characterization Alternatives

Template identifier: union

To combine multiple characterizations of a variable, the UNION construct is used.

Parameters:

• ([char1[var]], [char2[var]], \dots): characterization alternatives of the variable

• [cont]: query graph to add to

Template 5.14: union, with two characterization alternatives

[cont]
{ [char1[var]] }
UNION
{ [char2[var]] }

Additional characterization alternatives are appended as UNION { [charX[var]] } in the WHERE-clause.

5.2.9 Filtering Values and Ensuring the Inequality of Variables

This template is mostly used to constrain ranges for the values of a variable. The values are often

(alpha)numeric or (parts of) date literals. The template also often used to enforce that two variables are

unequal.

Template identifier: filter

Parameters:

• [constraint[var1, \dots]]: constraint

• [cont]: query graph to add to

Template 5.15: filter

{ [cont] }
FILTER ( [constraint[var1, \dots]] )
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The FILTER constraint may contain various functions.

The position of the FILTER clause in the WHERE group is arbitrary as it is always evaluated after the

group in which it appears has been evaluated [31].

[cont] is always be included in brackets as leaving them out may cause memory errors in some engines.

5.2.10 Definition of New Variables Using Expressions

Template identifier: bind

In some cases, a new variable has to be defined from existing ones by an expression that is not an

aggregation. An example of this is a variable for the concept of ’population density’ for which some KGs

may not have a ready-made property. In these cases, the variable can be defined as the quotient of the

’population’ variable and the ’area’ variable – if available. A common use of this is the extraction of the

year information in a date literal using YEAR.

Parameters:

• [expression[var1, \dots]]: expression

• [varX]: newly defined variable

• [cont]: query graph to add to

Template 5.16: bind

[cont]
BIND ( ( [expression[var1, \dots]] ) AS [varX] )

For the bind template, it is important to realize that BIND ends the basic graph pattern preceding it [31].

This means that the characterization of the variables used in the BIND expression must come before BIND,

as is ensured by the template.

5.2.11 Optional Attributes

Template identifier: optional

This template always realizes an ATTRIBUTE. The OPTIONAL clause encompasses information that

should be included if available.
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Parameters:

• [cont1]: query graph to add to (non-optional)

• [cont2]: optional query graph

Template 5.17: optional

[cont1]
OPTIONAL { [cont2] }

5.2.12 Add Names

Template identifier: add_name

This template is needed for most queries and adds the labels of the items stored in the indicated variables

as separate columns. It can also be used to add the aliases of items. The template is able to add several

labels at once. As with the aggregation templates, the tuple parameters are realized position by position,

as the template demonstrates. When working with a specific KG, one could fix the predicate to the

respective value, e.g., rdfs:label for Wikidata.

Parameters:

• ([var1.1], \dots): variables for which labels should be added

• ([var2.1], \dots): variables storing the labels

• [pred]: the predicate used to retrieve the labels

• ([lang1], \dots): the language(s) to use for the labels

• [cont]: query graph to add to

Template 5.18: add_name, naming var1 and var2

[cont]
[var1.1] [pred] [var2.1] . FILTER ( LANG[var2.1] = [lang1] )
[var1.2] [pred] [var2.2] . FILTER ( LANG[var2.2] = [lang2] )
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5.2.13 Add Descriptions

Template identifier: add_desc

This template works exactly like add_name except that it adds descriptions. Syntactically, it is identical

to the add_name template but has a different semantic purpose. When working with a specific KG, one

could fix the predicate to the respective value, e.g., schema:description for Wikidata.

Parameters:

• ([var1.1], \dots): variables for which descriptions should be added

• ([var2.1], \dots): variables storing the descriptions

• [pred]: the predicate used to retrieve the description

• ([lang1], \dots): the language(s) to use for the descriptions

• [cont]: query graph to add to

Template 5.19: add_desc, retrieving descriptions of var1 and var2

[cont]
[var1.1] [pred] [var2.1] . FILTER ( LANG[var2.1] = [lang1] )
[var1.2] [pred] [var2.2] . FILTER ( LANG[var2.2] = [lang2] )

In the case of KGs with only one (default) language for the labels, the languages(s) parameter is the

empty tuple and the FILTERs are left out.

5.2.14 Project Output Variables

Template identifier: select

Parameters:

• [distinct]: projection type modifier ∈ { DISTINCT, ∅ }

• ([var1], \dots): variables that should be selected to be part of the final output

• [cont]: query graph to add to

45



Template 5.20: select

SELECT [distinct] ([var1], \dots) WHERE {
[cont]

}

SELECT DISTINCT should be used by default to eliminate duplicate values in the output variable(s).

5.2.15 Order Output by Variables

Template identifier: order

Parameters:

• ([order1], \dots): directions for variables used for ordering (order modifier) ∈ { ASC, DESC }

• ([var1], \dots): variables used for ordering

• [cont]: query graph to add to

Template 5.21: order, sorting by [var1]

[cont]
ORDER BY [order1] ( [var1] ) [order2] ( [var2] )

As indicated in the template, there is an ordering expression for each position of the tuples of the first

two parameters. Multiple ordering expressions are added separated by spaces.

This template must have a template with shape SELECT \dots WHERE { } in its [cont] slot.

5.3 Shortcomings of the Established Templates

5.3.1 Resource-Use of the "connect" Template

If we think of a SPARQL query as a tree, the connect template combines two sub-trees (i.e., subqueries)

by adding an edge between them. In RDF terms, it takes a variable from one sub-tree as subject and

connects it to a variable from another sub-tree, the object, using a predicate. However, using this template

may in some cases cause time-outs if very large cartesian products have to be calculated between variables

that are yet to be connected by the template. To avoid this, one can use a single query tree where no
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new variable is introduced without specifying its relation to the existing variables.

For example, in Wikipedia Lists ID 11 (WL 11), calculating the cartesian product of cities and countries

leads to this problem. It can be solved by first characterizing the cities using path, then connecting them

to a variable ?country via the wdt:P17 property using add_path, and then characterizeing the country

variable using add_path. In this variant, one sub-tree is "grown" directly from another.

5.3.2 Arbitrary Containment Relations

Except for the path template, all templates have a slot where other instantiated, potentially combined,

templates can be inserted. We refer to this as one template containing another. This containment

relation may, however, not generally be interpreted as a hierarchical relation indicating the order in which

thecorresponding query parts are evaluated. In some cases, e.g., when there are multiple instances of

path and add_path in a WHERE clause, their order can be swapped arbitrarily without changing the effect

of the query.

Most of the devised templates have exactly one slot for other, possibly combined, templates. Because

of this, multiple subqueries that are "on the same level" must be realized in a way where one contains

the other. This means that variables projected by the subqueries may have to be projected upwards

artificially (cf. the parameters with description "additional variables to project"). This causes unnecessary

nesting.

5.3.3 Constraints and Expressions in FILTER and BIND as String Inputs

As can be seen in the template specifications, the constraints and expressions of the FILTER and BIND

templates are input as strings.

In a more fine-grained template-based system, one might implement (sub-)templates that generate the

constraints and expressions.

5.4 Further Observations Regarding the Established Templates

5.4.1 Non-Deterministic Usability of Templates

It is important to realize that there are often multiple possibilities to structure a query using the devised

templates. For example, instead of applying the minus template to several instances of path connected

by union, one could use several instances of minus, each negating one path.
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Similarly, one could use arg_agg_all and arg_ranks_all as well as agg_all and val_ranks_all

interchangeably if only the top or bottom rank should be considered. When analyzing usage frequencies

of templates, this needs to be kept in mind.

5.4.2 Hidden Frequency Differences of Aggregators

Some aggregation operators may be used much more often than others in, e.g., the agg template. These

frequency differences for different aggregation operators are, however, hidden when counts are computed

for the general agg template.

For example, GROUP_CONCAT is used very frequently to avoid duplicate entities in the output – matching the

Wikipedia lists – while operators like SUM or AVG are much less frequently used. Whether GROUP_CONCAT

is needed to eliminate duplicates, can only be known once the result set is known. The NL question does

not indicate this. In this sense, GROUP_CONCAT is a special aggregation operator that may be applied by

a KGQA system by default whenever needed. When performing frequency analyses, this is another thing

to keep in mind.

5.4.3 Possible Template Additions

limit_offset Template

One could add a limit_offset template. Contrary to the arg_ranks_all and val_ranks_all templates,

this template would not consider duplicate values on the specified ranks. Instead, the limit_offset

template would be used for user inquiries containing requests like "Show me 10 results". In this case, the

user would be sure to get at most 10 results – fewer if there are less than 10 results. Using LIMIT and

OFFSET, the template would then allow to slice off the sections of the results that the user does not want

to see.

Template Combining agg and arg_agg

It might also be useful to add a template that combines the agg and arg_agg templates. In Wikipedia

Lists ID 13, agg is applied to sum up the box office values of several movies in each series, to calculate

their average box office value, and to count how many movies there are in each series. arg_agg is used to

determine the highest-grossing movie per series. Since these templates are applied separately, the box

office information must be retrieved twice. While few queries seem to require both templates, it might be

worthwhile to introduce a combined template for the two types of operations.
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6 Usage of Templates

6.1 Example Usage of Templates

This section shows the application of the semantic templates to eight concrete examples. For each

example, a tabular overview of its semantic structure called its semantic plan, is given. This overview

may contain multiple tables which each contain the following information for each semantic characteristic

(representing one row in the table):

• its number

• a description of the semantic characteristic in natural language

• its semantic category represented using the symbol and the semantic template used to realize

it, with filled slots

For convenience, here is a reminder of which symbols represent which semantic category:

ATTRIBUTE �

CONSTRAINT �

AGGREGATE �

COMBINE ⋆

OUTPUT �

For each example, a link to the full query in QLever is provided. The query text was formatted using the

SPARQLer Query Validator.

Each example contains at least one new (i.e., not previously shown) template and each template is covered

by at least one example.

Example 8 demonstrates that the templates can be used with a knowledge graph other than Wikidata:

PubChem.

Some of the examples were taken from benchmarks, while others were self-made. In the former case, their

origin is indicated.
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6.1.1 Example 1: The city with most museums for each country.

. . . Show the number of museums and the coordinates of each city and order the results by

descending number of museums. QLever link

The query currently has 841 results – more than there are countries in the world. The large number is in

part due to the inclusion of historical countries but also due to the inclusion of ties. For example, some

country entities may not have any museums registered in Wikidata. In this case, all the cities for this

country qualify as the city with the most (i.e., zero) museums in the country.

Table 3: Top-level structure (Example 1)

# description semantic category and template

1. number of museums per city � Table 4 projecting ?city, ?num_museums

2. countries per city � add_path(?city, wdt:P17, ?country, [1])

3. cities with maximum number
of museums per country

� arg_agg(∅, MAX, ?city, ?num_museums,
?max_num_museums, (?country), ∅, [2])

4. coordinates per city � add_path(?city, wdt:P625, ?coordinates, [3])

5. name per city and country � add_name((?city, ?country), (?city_name,
?country_name), rdfs:label, ("en", "en"), [4])

6. output city name, country
name, maximum number of
museums, coordinates

� select(DISTINCT, (?city_name,
?country_name, ?max_num_museums,
?coordinates), [5])

7. order by descending
maximum number of
museums

� order((DESC), (?max_num_museums), [6])

Characteristic 2. contains multiple sub-characteristics and is represented in its own table. When the

characteristics are chosen intuitively, the need for sub-characteristics arises naturally. The representation

with sub-tables also makes the tables at each level clearer and more concise.

Using the semantic structure, we can, as a first step, transform every characteristic into a piece of syntax.

As a second step, we then nest the templates as indicated by the parameters of type [cont]. When

nesting, if [cont] is a subquery, curly braces are added around it.

The add_name and add_desc templates are said to realize ATTRIBUTEs despite containing FILTER

clauses. This is because we consider the whole template, realizing the semantic characteristic of adding

(specific) names or descriptions.
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SPARQL 6.1: for Table 3

SELECT DISTINCT ?city_name ?country_name ?max_num_museums # [6]
?coordinates

WHERE
{ { SELECT ?city ?country ?max_num_museums # [3]

WHERE
{ { SELECT (MAX(?num_museums) AS ?max_num_museums) ?country

WHERE
{

[1]
?city wdt:P17 ?country . # [2]

} GROUP BY ?country
}
{ SELECT (?num_museums AS ?max_num_museums) ?city ?country

WHERE
{

[1]
?city wdt:P17 ?country .

}
}

}
}
?city wdt:P625 ?coordinates . # [4]
?city rdfs:label ?city_name . FILTER(LANG(?city_name)="en") # [5]
?country rdfs:label ?country_name . FILTER(LANG(?country_name)="en")

}
ORDER BY DESC(?num_museums) # [7]

The comments are meant as a help for the reader and do not precisely specify the parts. Instead, they

indicate where the parts (e.g., [4] above) start to add something new to the query text. In the case of the

UNION and MINUS constructs, the comments are positioned in the line of the operator (cf. Example 2).

Table 4: Partial structure (Example 1): [1] number of museums per city

# description semantic category and template

1.1. cities � path(?city, wdt:P31/wdt:P279*, wd:Q515)

1.2. museums � path(?museum, wdt:P31/wdt:P279*,
wd:Q33506)

1.3. museums located in cities � connect([1.1], [1.2], ?museum, wdt:P131+,
?city)

1.4. number of museums per city � agg((DISTINCT), (COUNT), (?museum),
(?num_museums), (?city), ∅, [1.3], [1.1])
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SPARQL 6.2: for Table 4, characteristic [1]

SELECT (COUNT(DISTINCT ?museum) AS ?num_museums) ?city # [1.4]
WHERE
{

?city wdt:P31/wdt:P279* wd:Q515 . # [1.1]
OPTIONAL {
?city wdt:P31/wdt:P279* wd:Q515 . # [1.3], contains \dots
?museum wdt:P31/wdt:P279* wd:Q33506 . # \dots [1.1] and [1.2]
?museum wdt:P131+ ?city .

}
}
GROUP BY ?city
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6.1.2 Example 2: How many countries have never been a member of the UN?

Origin: QALD-10, ID 58. The gold query has been modified to use MINUS instead of FILTER NOT EXISTS.

QLever link

Since the query is not too complex, it is represented using a single table and a single piece of SPARQL. It

shows how the minus and agg_all templates are used.

Table 5: Structure (Example 2)

# description semantic category and template

1. countries � path(?country, wdt:P31/wdt:P279*,
wd:Q6256)

2. UN member entities � path(?country, wdt:P463/wdt:P279*,
wd:Q1065)

3. UN non-member countries � minus([1], [2])

4. number of UN non-member
countries

� agg_all((DISTINCT), (COUNT),
(?country), (?num_countries), [3])

SPARQL 6.3: for Table 5

SELECT (COUNT(DISTINCT ?country) AS ?num_countries) # [4]
WHERE
{

{ ?country wdt:P31/wdt:P279* wd:Q6256 } # [1]
MINUS # [3]

{ ?country wdt:P463/wdt:P279* wd:Q1065 } # [2]
}
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6.1.3 Example 3: Which US president was played by the most actors in a movie?

. . . Show the number of actors and their names. Origin: Wikipedia Lists, ID 2

Wikipedia List | QLever link

This example shows how the arg_agg_all template is used, and how multiple aggregations are performed

using the agg template.

Table 6: Top-level structure (Example 3)

# description semantic category and template

1. number of actors that played a US
president in a movie per president,
and the names of these actors

� Table 7 projecting ?num_actors,
?actor_names, ?president

2. president(s) with the highest
number of actors from 2.

� arg_agg_all(DISTINCT, MAX, ?president,
?num_actors, ?max_num_actors,
(?actor_names), [1])

3. name per president from 3. � add_name((?president),
(?president_name), rdfs:label, ("en"), [2])

4. output president name, number of
actors, actor names

� select(DISTINCT, (?president_name,
?max_num_actors, ?actor_names), [3])

SPARQL 6.4: for Table 6

SELECT DISTINCT ?president_name ?max_num_actors ?actor_names # [4]
WHERE
{ { SELECT ?president ?president_name ?max_num_actors ?actor_names # [2]

WHERE
{

[1]
BIND(MAX(?num_actors) AS ?max_num_actors)
FILTER(?num_actors=?max_num_actors)

}
}
?president rdfs:label ?president_name . # [3]
FILTER(LANG(?president_name)="en")

}
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Table 7: Partial structure (Example 3): [1] number of actors that played a US president in a
movie per president, and the names of these actors

# description semantic category and template

1.1. US presidents � path(?president, wdt:P39, wd:Q11696)

1.2. actors who played a US
president in a movie

� Table 8 characterizing ?actor,
?actor_name

1.3. number of actors from 1.2 per
president

� agg((DISTINCT, ∅), (COUNT,
GROUP_CONCAT), (?actor, ?actor_name),
(?num_actors, ?actor_names), (?president),
∅, [1.2], [1.1])

SPARQL 6.5: for Table 7, characteristic [1]

SELECT (COUNT(DISTINCT ?actor) AS ?num_actors) # [1.3]
(GROUP_CONCAT(DISTINCT ?actor_name; separator="; ") AS ?actor_names)
?president

WHERE
{

?president wdt:P39 wd:Q11696 . # [1.1]
OPTIONAL
{

[1.2]
}

}
GROUP BY ?president

Note that US presidents are characterized in both [1.1] and [1.2.1] because in this query, the triple

appears within the OPTIONAL and non-OPTIONAL sections of the agg template using COUNT. However, it

is only obligatory in the non-OPTIONAL section.

SPARQL 6.6: for Table 8, characteristic [1.2]

?president wdt:P39 wd:Q11696 . # [1.2.1]
?president ^pq:P453 ?p161 . # [1.2.2]
?actor wdt:P106/wdt:P279* wd:Q33999 . # [1.2.3]
?p161 ps:P161 ?actor . # [1.2.4]
?movie wdt:P31/wdt:P279* wd:Q11424 . # [1.2.5]
?p161 ^p:P161 ?movie . # [1.2.6]
?actor rdfs:label ?actor_name . # [1.2.7]
FILTER(LANG(?actor_name)="en")
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Table 8: Partial structure (Example 3): [1.2] actors who played a US president in a movie

# description semantic category and template

1.2.1. US presidents � path(?president, wdt:P39, wd:Q11696)

1.2.2. statement nodes with qualifier
"has role of" with value
president (nodes)

� add_path(?president, ^pq:P453, ?p161,
[1.2.1])

1.2.3. actors � path(?actor, wdt:P106/wdt:P279*,
wd:Q33999)

1.2.4. value per node is actor � connect([1.2.2], [1.2.3], ?p161, ps:P161,
?actor)

1.2.5. movies � path(?movie, wdt:P31/wdt:P279*,
wd:Q11424)

1.2.6. subject of node is movie � connect([1.2.4], [1.2.5], ?p161, ^p:P161,
?movie)

1.2.7. name per actor � add_name((?actor), (?actor_name),
rdfs:label, ("en"), [1.2.6])
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6.1.4 Example 4: Famous twins

. . . Show each twin with their twin sibling (if available), as well as with both people’s names,

descriptions and date of birth. Origin: Wikipedia Lists, ID 9 | Wikipedia list | QLever link

The query shows how some queries can become very complex when they combine directly accessible

information (here: using the "twin" class) with indirectly accessible information (here: twins beings

characterized as people with a biological sibling born on the same date).

In general, it is possible for a twin to occur both as ?twin and ?twin_2 in the output. Moreover, in the

case of triplets, quadruplets, etc., the same person will even occur multiple times as ?twin, and multiple

times as ?twin_2.

Besides, due to their twofold characterizations, some ?twin entities appear twice in the results list. One

can deal with this by using GROUP_CONCAT (cf. the benchmark queries for this example, WL 9).

The example shows the use of the optional, add_desc, filter and union templates.

Table 9: Top-level structure (Example 4)

# description semantic category and template

1. twins with birthdate and name and
description of twin sibling if
available

� Table 10 characterizing ?twin,
?date_of_birth, ?twin_2_name,
?twin_2_desc

2. twins are humans � add_path(?twin, wdt:P31/wdt:P279*,
wd:Q5, [1])

3. description per twin � add_desc((?twin), (?twin_desc),
schema:description, ("en"), [2])

4. name per twin � add_name((?twin), (?twin_name),
rdfs:label, ("en"), [3])

5. number of site links per twin � add_path(?twin,
^schema:about/wikibase:sitelinks,
?sitelinks, [4])

6. output twin name, twin description,
date of birth, twin sibling name,
twin sibling description

� select(DISTINCT, (?twin_name,
?twin_desc, ?date_of_birth,
?twin_2_name, ?twin_2_desc), [5])

7. order by descending number of site
links of twin to show famous twins
first

� order((DESC), (?sitelinks), [6])
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As mentioned before, the query retrieves people who are characterized as twins via the "twin" item as

well as via familial relations. For the people characterized via the "twin" item it is not guaranteed that

information about their twin sibling will be available. This is covered by the union template used in

[1].

SPARQL 6.7: for Table 9

SELECT DISTINCT ?twin_name ?twin_desc ?date_of_birth # [6]
?twin_2_name ?twin_2_desc

WHERE
{

[1]
?twin wdt:P31/wdt:P279* # [2]
?twin schema:description ?twin_desc . # [3]
FILTER(LANG(?twin_desc)="en")
?twin rdfs:label ?twin_name . # [4]
FILTER(LANG(?twin_name)="en")
?twin ^schema:about/wikibase:sitelinks ?sitelinks . # [5]

}
ORDER BY DESC(?sitelinks) # [7]

Table 10: Partial structure (Example 4): [1] twins with birthdate, and name and description
of twin sibling if available

# description semantic category and template

1.1. twin (using type "twin") � path(?twin, wdt:P31/wdt:P279*, wd:Q159979)

1.2. birthdate per twin from 1.1 � add_path(?twin, wdt:P569, ?date_of_birth, [1.1])

1.3. twins (characterized
indirectly) with name and
description of twin sibling and
shared birthdate

� Table 11 characterizing ?twin, ?date_of_birth,
?twin_2_name, twin_2_desc

1.4. twins with birthdate, and
name and description of twin
sibling if available

⋆ union(([1.2], [1.3]), ∅)
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SPARQL 6.8: for Table 10, characteristic [1]

{
?twin wdt:P31/wdt:P279* wd:Q159979 . # [1.1]
?twin wdt:P569 ?date_of_birth . # [1.2]

}
UNION # [1.4]

{ [1.3] }

The following structure is used to characterize people as twins, using the fact that they have a biological

sibling born on the same date.

1.2.1 contains sub-characteristics because we need to ensure the precision of at least 11 for the date of

birth, to use "complete" birthdates, containing the day, month, and year.

1.2.2 contains sub-characteristics because we combine mothers characterized via the "mother" property

as well as mothers characterized via the "parent" property, as well as via the "sex or gender" property and

the "female" item.

Table 11: Partial structure (Example 4): [1.3], twins (characterized indirectly) with name and
description of twin sibling and shared birthdate

# description semantic category and template

1.3.1. date of birth with precision
11 or higher per twin

� Table 12 characterizing ?date_of_birth

1.3.2. mother per twin � Table 13 characterizing ?mother

1.3.3. children per mother (twin
siblings)

� add_path(?mother, wdt:P40, ?child, [1.3.2])

1.3.4. twin sibling has same
birthday as twin

� add_path(?child, wdt:P569,
?date_of_birth, [1.3.3])

1.3.5. twin sibling is different
from twin

� filter("?twin != ?child", [1.3.4])

1.3.6. name per twin sibling � add_name((?twin_2), (?twin_2_name),
rdfs:label, ("en"), [1.3.5])

1.3.7. description per twin sibling � add_desc((?twin_2), (?twin_2_desc),
schema:description, ("en"), [1.3.6])
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SPARQL 6.9: for Table 11, characteristic [1.3]

{
[1.3.1]
[1.3.2]
?mother wdt:P40 ?twin_2 . # [1.3.3]
?twin_2 wdt:P569 ?date_of_birth . # [1.3.4]

}
FILTER(?twin != ?twin_2) # [1.3.5]
?twin_2 rdfs:label ?twin_2_name . # [1.3.6]
FILTER(LANG(?twin_2_name)="en")
?twin_2 schema:description ?twin_2_desc . # [1.3.7]
FILTER(LANG(?twin_2_desc)="en")

The indirect characterization of twins starts by retrieving a new set of items with a sufficiently precise

value for "date of birth":

Table 12: Partial structure (Example 4): [1.3.1] date of birth per twin with precision 11 or
higher

# description semantic category and template

1.3.1.1. date of birth node per twin
(nodes)

� path(?twin, p:P569, ?p569)

1.3.1.2. node has best rank � add_path(?p569, rdf:type,
wikibase:BestRank, [1.3.1.1])

1.3.1.3. date of birth value node
per node (value nodes)

� add_path(?p569, psv:P569, ?psv569,
[1.3.1.2])

1.3.1.4. time precision per value
node

� add_path(?psv569, wikibase:timePrecision,
?time_precision, [1.3.1.3])

1.3.1.5. time precision at least 11 � filter("?time_precision >= 11", [1.3.1.4])

1.3.1.6. time value per value node � add_path(?psv569, wikibase:timeValue,
?date_of_birth, [1.3.1.5])
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SPARQL 6.10: for Table 12, characteristic [1.3.1]

{
?twin p:P569 ?p569 . # [1.3.1.1]
?p569 rdf:type wikibase:BestRank . # [1.3.1.2]
?p569 psv:P569 ?psv569 . # [1.3.1.3]
?psv569 wikibase:timePrecision ?time_precision . # [1.3.1.4]

}
FILTER(?time_precision >= 11) # [1.3.1.5]
?psv569 wikibase:timeValue ?date_of_birth . # [1.3.1.6]

Table 13: Partial structure (Example 4): [1.3.2] mother per twin

# description semantic category and template

1.3.2.1. mother per twin (using
property “mother”)

� path(?twin, wdt:P25, ?mother)

1.3.2.2. parent per twin � path(?twin, ^wdt:P40, ?mother)

1.3.2.3. parent is female � add_path(?mother, wdt:P21, wd:Q6581072,
[1.3.2.2])

1.3.2.4. mother per twin ⋆ union(([1.3.2.1], [1.3.2.3]), [1.3.1])

In addition to using the "child" property, one could use the "son" and "daughter" properties, but this was

not done to avoid further complexity.

SPARQL 6.11: for Table 13, characteristic [1.3.2]

{ ?twin wdt:P25 ?mother } # [1.3.2.1]
UNION # [1.3.2.4]
{

?twin ^wdt:P40 ?mother . # [1.3.2.2]
?mother wdt:P21 wd:Q6581072 . # [1.3.2.3]

}
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6.1.5 Example 5: List of countries whose capital is not their largest city

. . . Show the country flag image, the country name, capital name, largest city name, the

population for both cities, and the ratio between the populations.

Origin: Wikipedia Lists, ID 11 | Wikipedia list | QLever link

The version of the query presented here is a simplified version, using some shorter variable names and

leaving out some CONSTRAINTs to reduce complexity. The characteristics that were left out are listed

at the end of this subsection.

This example shows how the bind template is used and includes an instance of the arg_agg template

with grouping by multiple variables. It also contains an instance of the agg_all template with grouping

by multiple variables.

Table 14: Top-level structure (Example 5)

# description semantic category and template

1. countries whose capital is not
their largest city

� Table 15 characterizing ?capital, ?city
(largest city), ?city_pop

2. flag image per country from 1. � add_path(?country, wdt:P41, ?flag_image,
[1])

3. population per capital from 1. � add_path(?capital, wdt:P1082,
?capital_pop, [2])

4. ratio of largest city’s population
and capital population

⋆ bind("?city_pop / ?capital_pop",
?pop_ratio, [3])

5. name per country, capital and
largest city

� add_name((?country, ?capital, ?city),
(?country_name, ?capital_name, ?city_name),
rdfs:label, ("en", "en", "en"), [4])

6. output flag image, country name,
capital name, capital population,
(largest) city name, (largest) city
population, population ratio

� select(DISTINCT, (?country_name,
?capital_name, ?capital_pop, ?city_name,
?max_city_pop, ?pop_ratio), [5])
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SPARQL 6.12: for Table 14

SELECT DISTINCT ?flag_image ?country_name ?capital_name # [6]
?capital_pop ?city_name ?max_city_pop ?pop_ratio

WHERE
{

[1]
?country wdt:P41 ?flag_image . # [2]
?capital wdt:P1082 ?capital_pop . # [3]
BIND((?max_city_pop/?capital_pop) AS ?pop_ratio) # [4]
?country rdfs:label ?country_name . # [5]
FILTER(LANG(?country_name)="en")
?capital rdfs:label ?capital_name .
FILTER(LANG(?capital_name)="en")
?city rdfs:label ?city_name .
FILTER(LANG(?city_name)="en")

}

Due to heavy nesting, this partial structure and query is best displayed as a whole, including further

sub-characteristics:

Table 15: Partial structure (Example 5): [1] countries whose capital is not their largest city

# description semantic category and template

1.1 countries � path(?country, wdt:P31/wdt:P279*, wd:Q6256)

1.2. cities � path(?city, wdt:P31/wdt:P279*, wd:Q515)

1.3. cities are in countries � join([1.1], [1.2], ?city, wdt:P17, ?country)

1.4. population per city � add_path(?city, wdt:P1082, ?city_pop, [1.3])

1.5. cities with maximum
population per country

� arg_agg(∅, MAX, ?city, ?city_pop,
?max_city_pop, (?country), ∅, [1.4])

1.6. capital per country � add_path(?country, wdt:P36, ?capital, [1.5])

1.7. capitals unequal to
largest cities

� filter("?city != ?capital", [1.6])
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SPARQL 6.13: for Table 15, characteristic [1]

{ { SELECT ?city ?country ?max_city_pop # [1.5]
WHERE
{ { SELECT (MAX(?city_pop) AS ?max_city_pop) ?country

WHERE
{ ?country wdt:P31/wdt:P279* wd:Q6256 . # [1.1]

?city wdt:P31/wdt:P279* wd:Q515 . # [1.2]
?city wdt:P17 ?country . # [1.3]
?city wdt:P1082 ?city_pop . # [1.4]

}
GROUP BY ?country

}
{ SELECT (?city_pop AS ?max_city_pop) ?city ?country

WHERE
{ ?country wdt:P31/wdt:P279* wd:Q6256 .

?city wdt:P31/wdt:P279* wd:Q515 .
?city wdt:P17 ?country .
?city wdt:P1082 ?city_pop

}
}

}
}
?country wdt:P36 ?capital .

} # [1.6]
FILTER(?capital != ?city) # [1.7]

Note that one could do all of the following things to avoid the inclusion of historical and unrecognized

countries, and to eliminate duplicate values that arise when using wdt:

• exclude instances of

– "historical country"

– "state with limited recognition"

– "micronation"

• use the most recent capital, i.e., the one with the maximum "start time" qualifier value, and no

"end time" qualifier value

• use the most recent population value, i.e., the one with the maximum "point in time" qualifier value

Since the question does not specifically require these things, these steps are left out here.
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6.1.6 Example 6: What is the combined total revenue of the three largest Big Tech

companies ordered by number of employees?

. . . Use the most recent values for the total revenue and the number of employees. Origin:

QALD-10, ID 203 | QLever link

Modifications to QALD-10, ID 203:

The words "most recent" were added to the NL question twice for clarity.

Due to using the templates, the query constructed here accounts for ties regarding the "three largest

Big Tech companies". Moreover, the query uses the most recent available value for both the number

of employees and the total revenue, avoiding potential multiple values that could arise when using wdt.

While the QALD gold query also uses the most recent total revenue value, it retrieves the numbers of

employees with wdt.

This query is very long (132 lines including prefixes) due to the arg_agg and arg_ranks_all templates

that both contain duplicate code.

The distinctive naming of the variable pairs ?time and ?max_time, and ?time_2 and ?max_time_2 is

not necessary due to them having different scopes. However, it is done to avoid confusion and to indicate

that the variables don’t share a scope.

While there is a Q-item "Big Tech", companies like Microsoft are only registered as "part of" the "Big

Tech (web)". As such, the latter item was used.

This example shows the application of the arg_ranks_all template.

Table 16: Top-level structure (Example 6)

# description semantic category and template

1. most recent total revenue per
Big Tech company with number
of employees on ranks 1 through
3 (descending order)

� Table 17 projecting ?company,
?total_revenue, ?max_time

2. sum of total revenues from 1. � agg_all((∅), (SUM), (?total_revenue),
(?sum_total_revenue), [1])
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SPARQL 6.14: for Table 16

SELECT (SUM(?total_revenue) AS ?sum_total_revenue) # [2]
WHERE
{

[1]
}

Table 17: Partial structure (Example 6): [1] most recent total revenue per Big Tech company
with number of employees on ranks 1 through 3 (descending order)

# description semantic category and template

1.1. Big Tech companies with
number of employees on
ranks 1 through 3
(descending order)

�Table 18 projecting ?company

1.2. "total revenue" statement
node per company (nodes)

� add_path(?company, p:P2139, ?p2139,
[1.1])

1.3. value per node (total
revenue)

� add_path(?p2139, ps:P2139,
?total_revenue, [1.2])

1.4. point in time per total
revenue

� add_path(?p2139, pq:P585, ?time, [1.3])

1.5. most recent total revenue
per company

� arg_agg(∅, MAX, ?total_revenue, ?time,
?max_time, (?company), ∅, [1.4])
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SPARQL 6.15: for Table 17, characteristic [1]

SELECT ?total_revenue ?company ?max_time # [1.5]
WHERE
{ { SELECT (MAX(?time) AS ?max_time) ?company

WHERE
{

[1.1]
?company p:P2139 ?p2139 . # [1.2]
?p2139 ps:P2139 ?total_revenue . # [1.3]
?p2139 pq:P585 ?time . # [1.4]

}
GROUP BY ?company

}
{ SELECT (?time AS ?max_time) ?total_revenue ?company
WHERE
{

[1.1]
?company p:P2139 ?p2139 .
?p2139 ps:P2139 ?total_revenue .
?p2139 pq:P585 ?time .

}
}

}

Table 18: Partial structure (Example 6): [1.1] Big Tech companies with number of employees
on ranks 1 through 3 (descending order)

# description semantic category and template

1.1.1. Big Tech companies � path(?company, wdt:P361, wd:Q30748112)

1.1.2. "employees" statement node
per company (nodes)

� add_path(?company, p:P1128, ?p1128,
[1.1.1])

1.1.3. value per node (number of
employees)

� add_path(?p1128, ps:P1128, ?employees,
[1.1.2])

1.1.4. point in time per node � add_path(?p1128, pq:P585, ?time_2, [1.1.3])

1.1.5. most recent number of
employees per company

� arg_agg(∅, MAX, ?employees, ?time_2,
?max_time_2, (?company), ∅, [1.1.4])

1.1.6. Big Tech companies with
number of employees on ranks
1 through 3 (descending
order)

� arg_ranks_all(?company, DESC,
?employees, 3, 0, ∅, [1.1.5])
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SPARQL 6.16: for Table 18, characteristic [1.1]

SELECT ?company # [1.1.6]
WHERE
{ { SELECT ?company ?employees

WHERE
{ SELECT ?employees ?company ?max_time_2 # [1.1.5]

WHERE
{ { SELECT (MAX(?time_2) AS ?max_time_2) ?company

WHERE
{ ?company wdt:P361 wd:Q30748112 . # [1.1.1]

?company p:P1128 ?p1128 . # [1.1.2]
?p1128 ps:P1128 ?employees . # [1.1.3]
?p1128 pq:P585 ?time_2 . # [1.1.4]

}
GROUP BY ?company

}
{ SELECT (?time_2 AS ?max_time_2) ?employees ?company

WHERE
{ ?company wdt:P361 wd:Q30748112 .

?company p:P1128 ?p1128 .
?p1128 ps:P1128 ?employees .
?p1128 pq:P585 ?time_2 .

}
}

}
}
ORDER BY DESC(?employees)
OFFSET 0
LIMIT 3

}
{ SELECT ?company ?employees
WHERE
{ SELECT ?employees ?company ?max_time

WHERE
{ { SELECT (MAX(?time_2) AS ?max_time_2) ?company

WHERE
{ ?company wdt:P361 wd:Q30748112 .

?company p:P1128 ?p1128 .
?p1128 ps:P1128 ?employees .
?p1128 pq:P585 ?time_2 .

}
GROUP BY ?company

}
{ SELECT (?time_2 AS ?max_time_2) ?employees ?company

WHERE
{ ?company wdt:P361 wd:Q30748112 .

?company p:P1128 ?p1128 .
?p1128 ps:P1128 ?employees .
?p1128 pq:P585 ?time_2 .

}
}

}
}

}
}



6.1.7 Example 7: How many years did the second oldest dog in the world live?

Origin: QALD-10, ID 119 | QLever link

While the gold query retrieves entities that are instances of the "dog" class using wdt:P31, the query

constructed here includes entities of type "dog" that are instances of sub-classes of the "dog" class

using wdt:P31/wdt:P279*. It includes ∼20 additional dogs. The retrieval of the age of the dogs seems

to successfully exclude fictional dogs.

This example shows the use of the val_ranks_all template.

Table 19: Structure (Example 7)

# description semantic category and template

1. dogs � path(?dog, wdt:P31/wdt:P279*, wd:Q144)

2. date of birth per dog � add_path(?dog, wdt:P569, ?date_of_birth,
[1])

3. date of death per dog � add_path(?dog, wdt:P570, ?date_of_death,
[2])

4. approximate age per dog ⋆ bind("((YEAR(?date_of_death) -
YEAR(?date_of_birth)) -
IF(((MONTH(?date_of_death) <
MONTH(?date_of_birth)) ||
((MONTH(?date_of_death) =
MONTH(?date_of_birth)) &&
(DAY(?date_of_death) <
DAY(?date_of_birth)))), 1, 0))", ?age, [3])

5. age value on rank 2 � val_ranks_all(DESC, ?age, 1, 1, ∅, [4])
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SPARQL 6.17: for Table 19

SELECT ?age
WHERE
{ # [5]

?dog wdt:P31/wdt:P279* wd:Q144 . # [1]
?dog wdt:P569 ?date_of_birth . # [2]
?dog wdt:P570 ?date_of_death . # [3]
BIND(((YEAR(?date_of_death) - YEAR(?date_of_birth)) # [4]

- IF(((MONTH(?date_of_death) < MONTH(?date_of_birth))
|| ((MONTH(?date_of_death) = MONTH(?date_of_birth))
&& (DAY(?date_of_death) < DAY(?date_of_birth)))), 1, 0)) AS ?age)

}
ORDER BY DESC(?age) LIMIT 1 OFFSET 1
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6.1.8 Example 8: NSAID compounds with molecular weight < 200 g/mol

Origin: QLever example query for the PubChem backend | QLever link

This example illustrates how the templates may be applied when using a knowledge base other than

Wikidata. In the above example, the class of NSAIDs is not available as a pre-made item but has to be

defined as a restriction class, as described in the beginning of Chapter 5.

The example highlights how PubChem stores some information in a key-value structure: The attribute

of "molecular weight" is characterized by the key "molecular weight calculated by the PubChem software

library" ([2.1.2]); its value is accessed afterward ([2.2.1]).

Table 20: Top-level structure (Example 8)

# description semantic category and template

1. NSAID compounds with molecular
weight smaller than 200 g/mol

� Table 21 characterizing ?nsaid,
?compound, ?mol_weight_val

2. name per NSAID � add_name((?nsaid), (?nsaid_name),
rdfs:label, (), [1])

3. output compound, NSAID name � select(DISTINCT, (?compound,
?nsaid_name), [2])

SPARQL 6.18: for Table 20

SELECT DISTINCT ?compound ?nsaid_name # [3]
WHERE
{

[1]
?nsaid rdfs:label ?nsaid_label . # [2]

}
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Table 21: Partial structure (Example 8): [1] NSAID compounds with molecular weight smaller
than 200 g/mol. Show names of NSAIDs.

# description semantic category and template

1.1. NSAIDs (non-steroidal
anti-inflammatory
drugs)

� Table 22 characterizing ?nsaid

1.2. NSAID compounds � add_path(?nsaid, ^rdf:type, ?compound, [1.1])

1.3. attributes per NSAID
compound

� add_path(?compound, sio:SIO_000008,
?mol_weight_attr, [1.2])

1.4. molecular weight
attribute per NSAID
compound

� add_path(?mol_weight_attr, rdf:type,
sio:CHEMINF_000334, [1.3])

1.5. molecular weight value
per NSAID compound

� add_path(?mol_weight_attr, sio:SIO_000300,
?mol_weight_val, [1.4.])

1.6. molecular weight value
is smaller than 200

� filter("?mol_weight_val < 200", [1.5])

SPARQL 6.19: for Table 21, characteristic [1]

{
[1.1]
?compound ^rdf:type ?nsaid . # [1.2]
?compound sio:SIO_000008 ?mol_weight_attr . # [1.3]
?mol_weight_attr rdf:type sio:CHEMINF_000334 . # [1.4]
?mol_weight_attr sio:SIO_000300 ?mol_weight_val . # [1.5]

}
FILTER(?mol_weight_val < 200) # [1.6]

SPARQL 6.20: for Table 22, characteristic [1.1]

?nsaid rdfs:subClassOf ?class . # [1.1.1]
?class rdf:type owl:Restriction . # [1.1.2]
?class owl:onProperty obo:RO_0000087 . # [1.1.3]
?class owl:someValuesFrom obo:CHEBI_35475 . # [1.1.4]
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Table 22: Partial structure (Example 8): [1.1] NSAIDs (non-steroidal anti-inflammatory drugs)

# description semantic category and template

1.1.1. NSAIDs sub-class of
to-be-defined class

� path(?nsaid, rdfs:subClassOf, ?class)

1.1.2. class is restriction class � add_path(?class, rdf:type, owl:Restriction,
[1.1.1])

1.1.3. class refers to role � add_path(?class, owl:onProperty,
obo:RO_0000087, [1.1.2])

1.1.4. class has value
non-steroidal
anti-inflammatory drug

� add_path(?class, owl:someValuesFrom,
obo:CHEBI_35475, [1.1.3])
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6.2 Analysis of Semantic Alternatives

In this section, we briefly explore which semantic purposes the templates perform, using the semantic

categories introduced in Chapter 5 and the eight examples just presented.

This analysis is performed at the level of the templates. If we, for example, consider people (variable

?person) and want to add the information who their parents are (?parent) using the "mother" and

"father" properties, the union template is used for that. By itsel f, this template does not realize

an ATTRIBUTE. Instead, it realizes the category "COMBINE" by uniting two characterizations of

the ?parent variable. The triples in the union template are instances of path that each realize a

CONSTRAINT by defining the new variables ?person and ?parent.

The counts are shown once for only the Wikidata-based examples (Examples 1–7, "WD") and once for

all examples, including the PubChem example (Example 8, "WD & PC").

The counts are not indicative of the true frequency distributions, but they can provide some insights into

which templates are able to fulfill which semantic roles.

6.2.1 � ATTRIBUTE

add_path add_name add_desc

WD 21 4 1

WD & PC 24 5 1

All examples except for Example 2 (Section 6.1.2) contain at least one ATTRIBUTE.

6.2.2 � CONSTRAINT

path add_path connect filter minus arg_ranks_all val_ranks_all

WD 16 4 4 3 1 1 1

WD & PC 17 8 4 4 1 1 1

All examples include a template realizing a CONSTRAINT as this is needed for a non-empty output.
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6.2.3 � AGGREGATE

agg agg_all arg_agg arg_agg_all

WD 2 2 4 1

WD & PC 2 2 4 1

Most of the examples contain aggregation. However, it must be taken into account that the examples

were chosen such that all templates, including aggregation templates, were covered.

6.2.4 ⋆ COMBINE

union bind

WD 2 2

WD & PC 2 2

Only a few examples contain templates realizing COMBINEs. In real queries, rather than example

queries, union is sometimes used extensively to deal with structural inconsistencies, making it appear

more often.

6.2.5 � OUTPUT

select order

WD 5 2

WD & PC 5 2

Three of the eight queries contain neither a select nor a order template as they each return a single

numeric value.

6.2.6 Conclusions

Almost all templates appear to realize exactly one semantic category. The only exception is add_path,

which – according to this small dataset – realizes an ATTRIBUTE 75% of the time and a CONSTRAINT

25% of the time. Cf. the discussion about its semantic purpose in Section 5.2.1.

The CONSTRAINT category appears to be the most complex one, containing seven different templates

to realize it.
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6.3 Analysis of Template Usage

6.3.1 Template Counts

Among the 1,130 template instances, ∼51% are triple patterns of either type path or add_path (cf.

Figure 3). The next most frequent template, add_name, only makes up ∼8% of the instances.

However, it must be noted that the high number of the triple patterns is in part due to code repetition

in certain templates: arg_agg, arg_ranks_all, agg when used with COUNT while using the whole

non-OPTIONAL part as the OPTIONAL part.

Taking this into account, the differences should be a little less dramatic.

Since select was used with all examples to receive distinct results, and exactly once, its count is 60.

Two-thirds of the examples used a custom order with order.

Figure 3: Template counts for Wikipedia Lists
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Among the aggregation templates, agg occurs the most often, making up ∼4% of all template instances.

A lot of this is due to GROUP_CONCAT being used while eliminating duplicate values. One-third of the

instances of agg contain an aggregation with GROUP_CONCAT as their only aggregation.

Non-surprisingly, add_name is used often to produce human-readable output.

optional ensures that entities are output despite having missing attribute values. union is used to

capture structural inconsistencies.

bind is used often in the benchmark, mostly because of conversions between values in meters and feet

which require the template once for performing calculations, and once for choosing the best value with

COALESCE (i.e., preferring directly available values over calculated ones). These instances account for

∼29% of all bind instances.

Another frequent use of bind is the extraction of the year part of a date, accounting for ∼25% of all

bind instances. Calculations other than those used for unit conversions, with and without parts of date

literals, account for (∼22%). Less frequent uses of the template are the formatting of result commons

with CONCAT (∼12%), and uses of COALESCE (∼10%) to preferably use one variable’s value over another’s

outside of unit conversions.

filter is mostly used to apply constraints on the ranges of numerical or date values using comparison

operators like > or ≤ (∼66% of all filter instances).

The remaining instances are in roughly equal parts instances using the following:

• != to ensure unequal variable values, e.g., ?var1 != ?var2

• = combined with YEAR, e.g., YEAR(?marriage)=1990

• REGEX, e.g., REGEX(?description, "canceled")
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6.3.2 Template Containment Relations

This section shows how often the instances of the different template types contained one another in the

Wikipedia Lists benchmark. Due to the large number of templates, templates that are exclusively found

inside WHERE clauses were grouped together as the group "where". The full heatmap, without grouping, is

found in the appendix.

It comes as no surprise that the order template exclusively "contains" the select template, as select

was applied to all benchmark examples before an optional ordering.

select contains agg fairly often (∼32% of the time), in large part due to the use of GROUP_CONCAT.

Figure 4: Template containment relations with grouping for Wikipedia Lists
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Containment Relations of Subquery-Inducing Templates

Apart from arg_agg, all subquery-inducing templates (i.e., aggregation and ranks templates) contained

other subquery-inducing templates. These combinations produce highly nested queries. Since the resulting,

nested queries are structurally challenging and also "high-level" enough to be indicated by aspects of the

NL question, we analyze them here.

For each combination, we list the NL question if available, highlighting parts that might point to the

combinations being needed in boldface.

Note that instances of templates being contained by arg_ranks_all each contribute two counts instead

of one to the heatmap. This is due to the code duplication in arg_ranks_all.

• agg containing arg_agg:

This containment relation is artificial and non-informative with both variables logically being on

the same level and using different variables.

• agg_all containing val_ranks_all:

– "How many inhabitants did the world’s three largest cities (by population in the year

2018) have combined?"

• arg_agg_all containing agg

– "Which US president was played by the most actors in a movie? Also show the actors"

– "Which Formula One driver won the most championships and in which years?"

– "Which movie has won the most Oscars?"

– "Who composed the music for the most Pixar films (excluding short films)?"

– "Which country borders the most other countries?"

• val_ranks_all containing agg:

This containment relation is due to grouping to eliminate duplicates for the entities whose attribute

values are ranked (cf. Section 5.2.5).

• arg_ranks_all containing agg:

– No NL question available. The templates are used to retrieve the top 10 languages – more

than 10 in the case of ties – ranked by the number of countries using them as an official

language.

– "Which are the top 10 countries and territories with the highest average elevation?"
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• arg_ranks_all containing arg_agg

– No NL question available. The templates are used to retrieve the top 50 TikTokers – more

than 50 in the case of ties – ranked by their most recent follower count.

In the case of arg_agg_all containing agg, there is enough data to show a clear pattern.

To define this pattern, the NL questions of the corresponding examples were parsed using the Stanford

Lexicalized Parser v2.0.4. [33], using the English PCFG (probabilistic context-free grammar) model. This

parser outputs tags from the Penn Treebank syntactic tagset and POS tagset.

Figure 5 shows the syntactic structure that was identified. Fixed, obligatory parts of it are represented in

dark blue while light blue parts represent exemplary realizations of required parts. Parts marked ". . . "

represent optional syntactic extensions. As can be seen, there are two versions in the WHNP part. With

more data, one could further refine the structure.

Figure 5: Syntactic structure of NL questions that may correspond to queries with arg_agg_all

containing agg

In all the examples, arg_agg_all uses MAX, and the contained agg uses COUNT as its aggregator.

Importantly, encountering this structure in an NL question does not mean that we need to use this

template combination. Consider the example "Which country has the most inhabitants?" where we would

employ arg_agg_all, but would not use agg. Instead, the number of inhabitants per country can be

retrieved using add_path and the "population" property: ?country wdt:P1082 ?inhabitants .
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Whenever the number of something is a ready-made property in the KG, its maximum value can be

retrieved without using COUNT. Other examples would be "Which building has the most (above-ground)

floors?" or "Who has the most children?", using the properties "floors above ground" and "number of

children" respectively.

There might also be examples using SUM instead of COUNT in agg, e.g., "Who is the most prolific author

in history by word count?", where we would have to sum up the "number of words" values of the author’s

works.

Regarding the other combinations of subquery-inducing templates, there is too little data to infer any

patterns. We can however formulate certain hypotheses:

• the word "combined" indicates that an aggregation template with SUM is needed

• the word "average" indicates that an aggregation template with AVG is needed

• the structure "CD JJS" – a cardinal number followed by an adjective in the superlative, such as

"three largest" – indicates that either val_ranks_all or arg_ranks_all is needed; the latter

being indicated by "WDT" (e.g., "which", "what" being used as determiners).

• the word "top" followed by a cardinal number indicating one of the ranking templates

6.3.3 Conclusions

One finding from this chapter is that triple patterns make up about half of the templates when re-creating

Wikipedia lists and asking questions about them.

One reason for this may be the structural inconsistency in Wikidata, which also accounts for union

being used quite a lot. If a ground truth like a Wikipedia list is used, it is easy to uncover structural

inconsistencies: Entities missing from the QLever output are analyzed (i.e., their Wikidata pages) and

other properties that are used to store the same information are discovered. For example, in WL 15, the

designers of board games should be output. For these people, the properties "designed by", "author", and

"developer" are being used.

Regarding the more complex templates, we found that certain subquery-inducing templates contain each

other. These combinations have certain patterns in the NL question corresponding to them.

However, except for arg_agg_all containing agg, there is not enough data to conclude what they are,

and we have to content ourselves with plausible-sounding hypotheses.
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7 Conclusion

In this thesis, we identified a comprehensive set of SPARQL templates rooted in semantic aspects of

the user’s inquiry. We were able to successfully apply these syntactic building blocks to a benchmark

containing 60 examples by generating a template-based query for each example.

The benchmark aims to overcome various shortcomings found in other Wikidata-based benchmarks,

such as a lack of complex query structures, and the inclusion of flawed queries that often rely on world

knowledge.

Beyond that, the benchmark was created to explore the idea of using Wikipedia lists as a verifiable ground.

This approach worked quite well. However, the full range of query structures could only be covered by

formulating questions about certain aspects or parts of the Wikipedia lists, rather than just re-creating

all their rows and columns. This also had the advantage of having NL questions readily available for

analysis purposes.

The templates were made to ensure the correctness and general applicability of the resulting queries,

taking into account ties in rankings and including values of zero when taking counts.

With the Wikipedia lists as a "model output", we could uncover structural inconsistencies in Wikidata

with ease. By capturing those inconsistencies, the benchmark queries yielded more comprehensive outputs.

We also noticed that there is no simple way to return (arguments of) values on certain ranks within

groups, as would be needed for examples like "What are the two largest countries on each continent?".

This problem became apparent while we were trying to fill this semantic gap or asymmetry by finding

a matching template. The easiest way to solve this problem would be to extend the functionality of

SPARQL engines.

Since the Wikipedia Lists benchmark is fully structured by templates, it is easy to analyze how often each

template type occurs in it. Despite only containing 60 examples, the benchmark uses more than 1,000

instances of templates. This is because the re-creation of full Wikipedia lists often requires large queries.

To give an idea of what can be done, we performed some preliminary frequency analyses of the different

templates, both individually and in combination with others. We analyzed in more depth how certain

subquery-inducing templates are nested within each other, and how these combinations relate to patterns

in the NL question.

Future work could be directed towards further extending and polishing the benchmark, e.g., by removing
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problematic examples and by making it fully usable as a benchmark for testing KGQA systems. To do so,

one could use the JSON format employed by the QALD benchmarks. In this file, instead of providing a

link to the Wikipedia lists, one could specify the contents of the Wikipedia lists that should be recreated.

Based on the semantic templates and categories that were identified, one could also create a graphical user

interface to more easily write quality queries, or add the functionality to an existing GUI of a SPARQL

engine. While working on the handmade queries of the benchmark, the templates turned out to be a

helpful aid during the construction of large, nested queries.

Lastly, one could work towards the development of a KGQA system that leverages the semantic templates

and categories and combines it with a different, e.g., deep learning-based, approach.
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9 Appendix

Figure 6: Template containment relations without grouping for Wikipedia Lists
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