
Bachelor Thesis

Dataset Format Analysis and Column
Classification for CompleteSearch

Olivier Puraye

13th February 2018

Albert-Ludwigs-University of Freiburg
Faculty of Engineering

Chair of Algorithms and Data Structures

Processing Time
01. 01. 2018 – 01. 04. 2018

Reviewer
Prof. Dr. Hannah Bast

Supervisor
Prof. Dr. Hannah Bast

Declaration

I hereby declare, that I am the sole author and composer of my Thesis and that
no other sources or learning aids, other than those listed, have been used. Further-
more, I declare that I have acknowledged the work of others by providing detailed
references of said work. I hereby also declare, that my Thesis has not been prepared
for another examination or assignment, either wholly or excerpts thereof.

Contents

Abstract 1

Zusammenfassung 3

1. Introduction 5
1.1. Motivation . 5
1.2. Problem Definition . 6
1.3. Related Work . 9

2. Input File Analyser 11
2.1. Column separator detection . 12
2.2. File structure validation . 12
2.3. Column Parsing . 13

2.3.1. Item index generation . 13
2.3.2. Column-based feature determination 14
2.3.3. Item-based feature determination 15
2.3.4. Subitem separator detection 19

2.4. File property summary . 21
2.4.1. Noisy Feature Elimination . 21
2.4.2. Feature Independence . 22
2.4.3. Analyser Output . 23

2.5. Complexity . 25

3. Column Classification 27
3.1. Naive Bayes . 29
3.2. Data collection . 31
3.3. Training . 31
3.4. Classification . 32

3.4.1. Subitem separator verification 32
3.4.2. Subitem separator unification 33
3.4.3. Parameter classification . 33

3.5. Complexity . 35
3.6. Evaluation . 36

3.6.1. Default configuration . 37
3.6.2. Default configuration without augmented training set 37
3.6.3. Configuration without merging mutually exclusive properties . 39

i

3.6.4. Configuration without separator predetermination 39
3.6.5. Discussion . 40

4. Web Application 41
4.1. Configuration effects . 41
4.2. User Feedback Loop . 43

5. Conclusion 45

Acknowledgments 47

A. Datasets 49

Bibliography 53

Abstract

In this thesis, we analyse tabular text files with the objective to find suitable pa-
rameters to make them searchable using the features of CompleteSearch. We solve
this problem in two separate stages.
In a first stage, we build a file analyser that parses the text files to gather relevant
features related to the format of their content.
In the second stage, we use a Naive Bayes classifier to associate the columns in the
text files to their appropriate CompleteSearch parameter classes.
Furthermore, we integrate this automatic parameter suggestion into the Complete-
Search web application and incorporate its user feedback into the classifier training
in order to further improve the suggested CompleteSearch configurations over time.

1

Zusammenfassung

In dieser Arbeit analysieren wir tabellarische Text Dateien mit dem Ziel geeignete
Parameter zu finden um sie mit den Funktionen von CompleteSearch durchsuchen
zu können. Dabei unterteilen wir das Problem in zwei getrennte Etappen.
Im ersten Schritt analysieren wir die Input Datei und entnehmen ihr diverse Eigen-
schaften, die die Formatierung ihres Inhalts widerspiegeln.
In einem zweiten Schritt, benutzen wir den Naive Bayes Klassifizierungsalgorithmus
um den Spalten in der Text Datei passende CompleteSearch Parameter zuweisen zu
können.
Darüber hinaus, integrieren wir diese automatische Parameter Konfiguration in
die CompleteSearch Web Applikation und nehmen das darüber erhaltenen Nutzer-
Feedback in den Trainingssatz unseres Klassifikators auf um die vorgeschlagenen
Konfigurationen stetig zu verbessern.

3

1. Introduction

1.1. Motivation

This thesis is a continuation of my Bachelor Project [Pur17], which had the primary
objective to develop a web application for searching any table-structured text file
using CompleteSearch [Bas].
In this thesis we will focus more in-depth on the analysis of the input file emphasized
in Figure 1.1. The goal is to improve the parameter suggestions to gather more data
about the structure of the input file and use a classifier to configure CompleteSearch.

Cient

File Upload Application
Settings Console Search UI

Server

Storage

Input �les

Con�gurations

Analysis

Analyser

Classi�er

Setup

Index generation

Search

Create instance

Figure 1.1.: Application architecture

Furthermore the user feedback, that is provided by changing the parameters via the
web application will be used to improve the classifier’s performance and thus find
better configurations through continuous usage.

5

Chapter 1 Introduction

1.2. Problem Definition

Searching in text files can quickly become slow and inefficient. For this reason search
engines convert the input file into multiple different index files. Their content is gen-
erally dependent on the configuration of the search engine and needs be manually
adjusted to fit the file that should be searched.

In the following, we will only discuss the case of CompleteSearch, which is designed
to search table-structured text-files, such as CSV or TSV files.
For generating the needed indexes for CompleteSearch, we first need to specify all
the following parameters for a given input file:

• full-text specifies which columns should be searched on a simple search query,
that solely relies on the query term and doesn’t involve the use of any other
CompleteSearch features, such as filters or facets.

• filter lists the columns for which the filtering feature can be enabled. By
choosing a column to be a filter the search query is restricted to that specific
column.

• facets contains the columns that can be used to further refine the search results
by specifying explicit values for those columns.

• within-field-separator defines the separator that delimits subitems within a
column item. It is not column specific and thus holds for the entire file. within-
field-separator is synonymous with subitem separator, which will be used in
the remainder of this thesis.

• allow-multiple-items indicates to which columns the subitem separator can be
applied to. We will refer to this parameter as allow-subitems in remainder of
the thesis, which is easier to comprehend contextually.

• field-format describes the format of the data in the columns. It can be plain
text, JSON or XML. Unspecified columns are treated as plain text by default.

• show lists the columns, from which items should be shown in search results.

• excerpt determines the columns for which only the section containing the query
words should be shown. This is indented for columns that have items that are
too long to be shown in their entirety in the search results.

• ordering indicates how the columns are ordered. By default items are ordered
lexicographically. Alternatively they can be ordered numerically or by date.
This will allow us to use range inputs for numerical values or date inputs for
adjusting the facets in the web application.

Apart from the parameters for the CompleteSearch index generation, we also require
a few additional settings for the web application user interface.

6

1.2 Problem Definition

• url specifies the columns that contain links. This enables the URLs to be
converted from plain text into clickable links.
• email specifies the columns that contain email addresses. Like the for the

URLs, they are converted from plain text to a clickable mailto: link.
• label lists the columns that show their column name in search results. This

improves the informative value of the search results and is especially useful to
put numerical values into context.

In the following chapters we will proceed to find an approach to determine all these
parameters automatically for any provided input file.
In Table 1.1, we have a dummy movie dataset for which a corresponding Complete-
Search configuration is given in Table 1.2.

Index Title Year Director Actors
1 Back to the Future 1985 Robert Zemeckis Michael J. Fox|Christopher

Lloyd|Lea Thompson
2 Ghostbusters 1984 Ivan Reitman Bill Murray|Dan Aykroyd|

Sigourney Weaver
3 Inception 2010 Christopher Nolan Leonardo DiCaprio|Joseph

Gordon-Levitt|Ellen Page
Table 1.1.: Movie Dataset

Parameter Value
full-text Title, Director, Actors
filter Title, Director, Actors
facet Year, Director, Actors
subitem-separator |
allow-subitems Actors
field-format
show Title, Year, Director, Actors
excerpt
ordering Year:numerical
url
email
label Director, Actors

Table 1.2.: CompleteSearch configuration for Movie Dataset in Table 1.1

As previously mentioned, the parameters field-format and ordering fall back to their

7

Chapter 1 Introduction

default values when they are not explicitly specified.
In this example, all columns are treated as plain text as no field-format column
was provided. For ordering, we only have the column "Year", consequently all other
column are ordered lexicographically.

The process for finding all the necessary configuration parameters for CompleteSearch
mainly consists of two stages:

1. Input File Analysis
In this step, we will be extracting all relevant features from the input dataset
using the analysis process described in chapter 2.

2. Column Classification
In the second step, we will apply the Naive Bayes classification algorithm to
derive the configuration parameters from the features we collected in step 1.
The Column Classification is explained in chapter 3.

8

1.3 Related Work

1.3. Related Work

When focusing on the search aspect of our application, that makes any table-
structured dataset searchable, this could be achieved by using open-source search
toolkits, such as Open Semantic Search [Fre] or Meta-Toolkit [SM].

However as the search functionality is not really the topic of this thesis, we will
take a closer look at the part of finding suitable parameters to configure the search
engine given an input dataset.

Datasette by Simon Willison [Wil] is a conceptually similar to our CompleteSearch
web application. It allows to upload a dataset and filter the records by search and
facets. The dataset is being imported into a SQLite database to use SQLite’s Full-
text search functionality. Datasette also automatically detects for facet columns,
however the method essentially relies on two basic rules:
• The column has to contain between 1 and 30 unique options
• A facet will only show if has less unique options than the total number of

currently filtered rows

While during this thesis, we take a broader approach to determine a range of different
parameters, we can consider more specific methods for individual parameters. For
facet detection, we could take into account cross-column relations. Into this context
fits the free-text facet extraction method proposed by Wisam Dakka and Panagiotis
Ipeirotis in their paper Automatic Extraction of Useful Facet Hierarchies from Text
Databases [DI08], which could be used to verify if a column contains suitable facets
for other columns.

9

2. Input File Analyser

In this chapter, we describe the analysis process of the input file. We extract and
collect features that characterise the structure and the data formats of each column
in the input dataset.
Our Input File Analyser essentially converts the input file into a set of different
scores, that can then be used to classify the columns in chapter 3.

Usage: AnalyserMain [options] <inputfile> <outputfile>

Available options:
--columnNames: <col1>,<col2>,<col3>,...
The names of the columns can be manually assigned in the case they cannot be
found in the first line of the input file.
--mergeExclusiveProps combines all mutually exclusive column properties to im-
prove the independence between the retrieved features. This will become important
for the column classification in chapter 3, where we are using the Naive Bayes al-
gorithm, which makes strong assumptions on the independence of the training set
features.
--samplingStep <step> This option can be used when shorter runtime is more
important than the highest precision of feature scores. It is especially useful for
large input datasets.
--separators <sep1><sep2><sep3>
The default separator set {",", "\t", ";", ".", "|", ":", "#", "/"} can be
replaced by a custom set.
--subitemSeparator <separatorId>
This option is used to analyse the dataset for a given subitem separator and will be
used in chapter 3. This avoids us to perform unnecessary computations for improper
separators.

The proceeding in the Input File Analyser can be divided into four main stages:

1. Column separator detection

2. File structure validation

3. Column Parsing

4. File property summary

11

Chapter 2 Input File Analyser

We will describe the approach in each of these stages in the following sections of
this chapter.

2.1. Column separator detection

In this first step, we will start by determining which symbol the file uses to separate
its columns. This is necessary to be able to split the file and analyse the columns
separately.
The most common separators are commas, tabs and semicolons. By default our anal-
yser supports the following separators: {",", "\t", ";", ".", "|", ":", "#",
"/"}. As previously mentioned, this set can be customised.
To find the correct separator, we parse the input file and count how often each
symbol in the separator set occurs in every row. Tabular data files require to have
the same number of columns in every row. Hence the number of column separator
should be the same in every column. However instead of accepting the symbol with
the most identical counts in every row as the column separator, we prefer to use the
counts from the first row for reference. Generally the first line is less likely to be
improperly formatted, furthermore the first line usually contains the column names
and is thus least likely to contain any other separator symbols.

2.2. File structure validation

This intermediary step validates the file for the separator determined in section 2.1.
It checks if the column separator count matches in every row while taking quote-
escaped separators into account. In case of mismatches it returns an error message
indicating the row numbers of the faulty records.

12

2.3 Column Parsing

2.3. Column Parsing

Having a validated input file and the column separator to our disposal, we can now
begin to extract features for each column in the file. The column parsing process
needs to be executed for every column separately and is made up by the following
sub-steps:

1. Item index generation
2. Column-based feature determination
3. Item-based feature determination

3.1. Item preprocessing
3.2. Item characterisation
3.3 Column score calculation

4. Subitem separator detection
5. File property summary

2.3.1. Item index generation

We begin by building an inverted item index containing every item from the column
together with its occurrence count. Before adding an item to the index, it will first
need to be unescaped and trimmed.

item1, occurrences of item1 in column
item2, occurrences of item2 in column

...

The purpose of this index is to avoid processing the same item more than once. It
serves as fundament for the following sub-steps, in which we will collect the features
for every column. For item-based features, the occurrence recorded in the item index
will be used to accordingly to weight the different items in the calculation of the
column feature scores.

13

Chapter 2 Input File Analyser

2.3.2. Column-based feature determination

In this subsection we determine the column-based feature scores, which can be
calculated without considering the properties of the individual items in the column.
With the item index from subsection 2.3.1 and with n being the count of entries in
this index, we can compute the following column feature scores:
• The fill rate shows us the population density of the column.

fill rate =

n∑
i=1

occurrence(itemi)− occurrence(empty item)
n∑

i=1
occurrence(itemi)

(2.1)

For the remaining features, we need to exclude the empty item in order to get
accurate scores. Unfortunately the empty item is included in the item index. We
define empty item to be the first item item1 in the item index, this allows us to
easily exclude it in our following equations by starting the summations at i = 2.
• The uniqueness score gives us in indication on how distinct the items in a

column are.

uniqueness = n− 1
n∑

i=2
occurrence(itemi)

(2.2)

• To record the item length, we calculate the mean length l and standard length
deviation sl weighted by the occurrences of the individual items in the column.

l =

n∑
i=2

(length(itemi) · occurrence(itemi))
n∑

i=2
occurrence(itemi)

(2.3)

sl =

√√√√√√√
n∑

i=2
(length(itemi)− l)2 · occurrence(itemi)

n−1
n

n∑
i=2

occurrence(itemi)
(2.4)

14

2.3 Column Parsing

2.3.3. Item-based feature determination

For the remaining features, we need to analyse every item in the item index sep-
arately. The process starts by preprocessing the items before they can be evalu-
ated individually. Afterwards their individual item scores are combined and nor-
malised to obtain the column feature scores. We outline this entire procedure in
subsubsection 2.3.3.1 to subsubsection 2.3.3.3.

2.3.3.1. Item preprocessing

Preprocessing allows us to considerably reduce how many times we need to parse
every item in the item index. The primary purpose is to improve the the efficiency
in the following property retrieval steps.

We start by parsing every item character by character and classifying every charac-
ter into one of three categories: Letter, Digit or Symbol. Using this classification,
it is possible to describe the shape of the item by a sequence of integer values. The
assignment looks as follows:
• Letter → -1

• Digit → 1

• Symbol → 0

The length of those sequences can be reduced by regrouping consecutive letters and
digits by adding up their assigned values.

Examples:
• foo → -3

• 0815 → 4

Besides the word shape, we also retain a sequence of every symbol that occurred in
the item. They will be essential to differentiate between different data formats in
the following steps.
Last, we record boolean values for the types of characters that occurred in the item.
This prevents unnecessary parsing of the item shape sequence, which helps to re-
duce runtime especially for longer items. Furthermore, we use these values to create
character type occurrence scores in subsubsection 2.3.3.3.

Example:

user0815@foo.com→ {{-4, 4, 0, -3, 0, -3}, {"@", "."}, {1,1,1}}

15

Chapter 2 Input File Analyser

2.3.3.2. Item characterisation

Using the preprocessed items, we are now able to efficiently analyse every item indi-
vidually. There are still some situations, where we will need to consider the actual
content of an item, however the preprocessing helps to reduce these cases consider-
ably.
The item characterisation is done by checking every item against various commonly
occurring data types/formats. We do this using a set of different boolean pattern
matchers. A pattern matcher returns 1 if an item meets all its constraints and 0
otherwise.

Thus far, the following matchers have been implemented:

0. The Numeric-value matcher checks if an item is only composed of digits and/or
symbols. Additionally we detect the decimal and thousands separators and
verify their count and if they are ordered correctly. Alongside this matcher,
we also search for max integer places and max decimal places as well as min
numeric value and max numeric value in the column. We need these details
to prefix the numeric value when generating the search indexes. In doing so
we will be able to order the items according to their numeric value.

1. The Incremental-index matcher compares an item’s numeric value with the
numeric value of its predecessor in the column to check if it is the predecessor’s
integer successor.

2. The Boolean matcher simply checks if an item’s value is equal to either 1, 0,
Y, N true, false, yes or no.

3. The Value-with-unit matcher starts by determining if the unit is placed in
front or at the back of the value. Next we split the item into a numeric value
and a unit part and trim each of the parts.
The numeric part is passed along to the Numeric-value matcher.
For the unit part, we differentiate depending on its placement. If the unit was
positioned in front, it is highly likely it is a currency and we will compare it
to a list of currency symbols. If it was placed at the back, it is sufficient for
the unit to have a string length less or equal to 5 to be compliant. There are
too many possible units to be able to verify this precisely without increasing
runtime considerably.

4. The Phone-number matcher checks if an item only consists of numbers and/or
a set of admissible symbols ("+", "(", ")", "/", "-", " "). Furthermore
the plus symbol ("+") is only allowed to be placed in front and the last char-
acter in the item has to be a number. We also make sure that all occurring
parentheses are opened and closed correctly.

5. The Date matcher validates numerical dates, e.g. 01.01.2018. First up it
checks if an item actually represents a valid date, this includes the consid-
eration of leap years. For date delimiters we allow the use of the following

16

2.3 Column Parsing

symbols: ".", "-", "/". We support single or two-digit days and months as
well as two-digit or four-digit years. Additionally both orders for days and
months are accepted (dd.mm and mm.dd).

6. The Timestamp matcher detects different timestamp formats. The following
formats are supported: 20180101T235959Z, 2018-01-01T23:59:59+00:00,
2018-01-01T23:59:59Z, 2018-01-01T23:59:59.000Z.

7. The Email matcher first checks if an item contains an "@" symbol, second we
split off the second-level-domain (ex: co.uk) or top-level-domain (ex: com)
and look them up in two corresponding lists.

8. The URL matcher starts by splitting the item in up to four sections: protocol,
subdomain and domain name, second-level-domain and top-level-domain and
path.
For protocols we support http, https, ftp, sftp and file.
The subdomains, domains and paths need to be alphanumeric with the ex-
ception of dots (".") and hyphens ("-"), and additionally slashes ("/") for
paths.
The second-level-domains (ex: co.uk) and top-level-domains (ex: com) are
looked up in two corresponding lists.

9. The JSON matcher validates an item as a JSON string by verifying the place-
ment of curly and square brackets. Furthermore, we check if every key and
every value are wrapped in quotes.

10. The XML matcher validates an item as XML by checking that every tag is
correctly opened and closed. It includes self-closing tags.

Checking all these properties for every item in the item index can quickly become
time-consuming. Luckily we can benefit from the fact that most of these pattern
matchers verify item properties that are mutually exclusive. This means that only
one of these matchers can be true. After one matcher turned out to be correct,
there is no point in checking other matchers for the same item. For this reason the
process’ efficiency can be improved by predicting which matcher will be true. As the
file is processed column by column and items from the same column are very likely
to have the same properties, we can reduce the runtime considerably by rearranging
the execution order of the pattern matchers, such that the last one that was satisfied
is moved to the front of the execution sequence.
In the list of matchers above, the Numeric-value matcher is the only non-exclusive
matcher, as it matches booleans and indexes, thus this matcher has to always be
checked. The overlap between the Incremental-Index matcher and Boolean matcher
is negligible and are thus considered to be mutually exclusive.

17

Chapter 2 Input File Analyser

2.3.3.3. Column score calculation

In this step, we combine the boolean matcher-based property values we gathered for
every item in the last section into column scores for each property. Moreover, we
record values for the word count as well the letter/digit ratio and the character type
scores using the character type boolean values from subsubsection 2.3.3.1.

Same as in subsection 2.3.2, n is the number of entries in the item index and the
sums are calculated starting at i = 2 to exclude the empty item.
matcher can designate any of the patterns matchers from subsubsection 2.3.3.2.

columnPropertyScore =

n∑
i=2

matcher(itemi) · occurrence(itemi)
n∑

i=2
occurrence(itemi)

(2.5)

To record the word count of the items, we calculate the word count mean w and
standard word count deviation sw weighted by the occurrences of the individual
items in the column. The word count of an item is deduced from the number of
spaces that it contains, augmented by 1.

w =

n∑
i=2

(spacesCount(itemi) + 1) · occurrence(itemi)
n∑

i=2
occurrence(itemi)

(2.6)

sw =

√√√√√√√
n∑

i=2
(spacesCount(itemi) + 1− w)2 · occurrence(itemi)

n−1
n

n∑
i=2

occurrence(itemi)
(2.7)

Next we calculate the character type occurrence scores for k = {letter, digit, symbol}.
For the symbol score we will exclude spaces to improve its informative value, as
spaces are already covered by the word count.

characterTypeScore =

n∑
i=2

hasCharTypek(itemi) · occurrence(itemi)
n∑

i=2
occurrence(itemi)

(2.8)

18

2.3 Column Parsing

We also collect some information on the character type composition, by calculating
the letter/digit ratio. Given n′ the count of items containing digits, we can compute
a mean ld and standard deviation sld for these items weighted by their occurrences
in the column.

ld =

n′∑
i=1

(letterCount(itemi)
digitCount(itemi) · occurrence(itemi))

n′∑
i=1

occurrence(itemi)
(2.9)

sld =

√√√√√√√√
n′∑

i=1
(letterCount(itemi)

digitCount(itemi) − sl)
2 · occurrence(itemi)

n′−1
n′

n′∑
i=1

occurrence(itemi)
(2.10)

2.3.4. Subitem separator detection

This step is dedicated to detecting if an item is actually a list of subitems delimited
by a subitem separator.
We begin by splitting every item by the separators it contains. For this we consider
the same set of separators we used in section section 2.1, where the column separator
has been determined. The separation is done for every symbol in the separator set,
even for the column separator, as it could have been escaped.
To reduce the number of separations, we consider three rules that can invalidate a
separator:
• The separator is the first or last character in an item
• Two separators occur directly next to each other
• The separator is followed by a space. In this case it is most likely that the

symbol is part of a sentence.
As a result we get a list of subitems for every valid separator in the separators set.
To evaluate the different separators, we analyse these lists of subitems in the same
way we evaluated the complete items in the column in subsection 2.3.1, subsection 2.3.2
and subsection 2.3.3. For the subitem characterisation, we remove the Incremental
index from our set of pattern matcher, as it is not compatible with partial items.
Apart from the characterisation of the subitems, the subitem analysis also helps us
to determine which separator is viable to be the item separator, as the subitems
created by such a separator should show similar properties.

Even if a subitem separator has been detected, the features that have been collected
for the complete items are still useful, as they help to eliminate faulty separators in

19

Chapter 2 Input File Analyser

classification step in chapter 3.
For instance we could have a column containing decimal numbers (ex.: 1,23), which
can be detected as two integers split by a comma as separator.
To prevent such errors, we record how often and in how many parts items have been
split for every valid separator.

As in previous sections, n is the number of entries in the item index and the sums
are calculated starting at i = 2 to exclude the empty item.
The list occurrence for a given subitem separator is captured as follows:

list occurrence =

n∑
i=2

occurrence(itemi), if subitem separator splits itemi

0, otherwise
n∑

i=2
occurrence(itemi)

(2.11)

The subitem count is the count of a given subitem separator, augmented by 1. Given
m the number of items that contain the subitem separator, we calculate the mean
sc and the deviation ssc.

sc =

m∑
i=1

count(subitem separator, itemi) · occurrence(itemi)
m∑

i=1
occurrence(itemi)

(2.12)

ssc =

√√√√√√√
m∑

i=1
(count(subitem separator, itemi)− sc)2 · occurrence(itemi)

m−1
m

m∑
i=1

occurrence(itemi)

(2.13)

20

2.4 File property summary

2.4. File property summary

In the final step of our analyser, we are arranging the collected data, such that it is
most favourable to our Naive Bayes classification algorithm in chapter 3.
Generally a classifier’s performance can be enhanced by removing noisy features. A
simplified model is especially preferred when using smaller training sets [MRS08].
When using Naive Bayes another important factor is the independence of the features
for a given class. The assumption of independent features is an essential property
of the Naive Bayes algorithm and needs to be satisfied as far as possible.

2.4.1. Noisy Feature Elimination

In our case, the noisy features are those that we collected for all the different subitems
in subsection 2.3.4. In most cases, we gathered subitem feature scores for multiple
subitem separators per column. However at best only one of these separators can
be correct. This means that the other ones are inevitably invalid and should be dis-
carded. We resolve this issue by only retaining the data for the most likely subitem
separator.

When a column has only few items which are lists of subitems, we don’t have enough
data to make an appropriate evaluation. Therefore we discard the separators of that
column for which the list occurrence is very low. The occurrence has to be greater
than 10% and at least 2.

The remaining separators from each column are then evaluated by calculating a
subitem separator score based on the scores that resulted from boolean properties of
their subitems. These boolean properties are the different pattern matchers as well
as the boolean character type indicators, that are gathered in the preprocessing and
characterisation steps in subsubsection 2.3.3.1 and subsubsection 2.3.3.2.
In a best case scenario the subitems of a given subitem separator should have the
same properties. Hence their property scores should either be 0 or 1. The worst
possible property score is 0.5, as this would mean that half of the subitems satisfy
the property and the other half don’t, which represents lowest similarity in regards
to this property.
Given m, the count of boolean-based property scores, the subitem separator score is
calculated as follows:

separator score =
m∏

i=1

propertyScorei, if propertyScorei > 0.5
1− propertyScorei, otherwise

(2.14)

We can now discard the data from all subitem separators, but the most likely subitem
separator, determined by the highest subitem separator score.

21

Chapter 2 Input File Analyser

This leaves us with a separator for each column. However, CompleteSearch only
supports a single subitem separator for the entire file. We will deal with this problem
in chapter 3, where we will unify the separator and decide if and in which columns
the subitem separator is actually applied.

2.4.2. Feature Independence

The Naive Bayes classification algorithm we will be using requires feature inde-
pendence for a given class. Thus we face a feature dependence issue regarding
the feature scores that originated from our mutually exclusive pattern matchers
in subsubsection 2.3.3.2. We solve the problem by only retaining the predominate
property. In this way the exclusive matcher scores are reduced to two features: the
type of the predominate property specified by its placement in the enumeration in
subsubsection 2.3.3.2 and the score for this property.
This approach is backed by the results in section 3.6, when comparing the results
for the default configuration in Table 3.2 in which the mutually exclusive properties
were merged and the results in Table 3.4 where they were not.

22

2.4 File property summary

2.4.3. Analyser Output

In Table 2.1, we collected all the different features that are returned by our analyser
for every column in the file.
The discrete value for the subitem separator corresponds to its position in the sep-
arator set shown in section 2.1 and is the same for all the columns from a given file
as previously mentioned in subsection 2.4.1.
The output is formatted as JSON and has the following structure:

{
"col1": {

"fillRate": 1,
"item": {

"uniqueness": 1,
"length mean": 42,

...
},
"subitem": {

"uniqueness": 1,
...

}
},
"col2": {

"fillRate": 1,
...

},
...

}

23

Chapter 2 Input File Analyser

Feature Value Type Value Range
fill rate continuous [0, 1]
Item Properties
item uniqueness continuous [0, 1]
item length mean continuous [0,+∞[
item length deviation continuous [0,+∞[
item word count mean continuous [0,+∞[
item word count deviation continuous [0,+∞[
item numeric value continuous [0, 1]
item max integer places continuous [0,+∞]
item max decimal places continuous [0,+∞]
item min numeric value continuous [0,+∞]
item max numeric value continuous [0,+∞]
item exclusive property score continuous [0, 1]
item exclusive property type discrete {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
item letter occurrence continuous [0, 1]
item digit occurrence continuous [0, 1]
item symbol occurrence continuous [0, 1]
item letter/digit ratio mean continuous [0,+∞]
item letter/digit ratio deviation continuous [0,+∞]
Subitem Properties
subitem separator discrete {0, 1, 2, 3, 4, 5, 6, 7}
list occurrence continuous [0, 1]
subitem count mean continuous [0,+∞[
subitem count deviation continuous [0,+∞[
subitem uniqueness continuous [0, 1]
subitem length mean continuous [0,+∞[
subitem length deviation continuous [0,+∞[
subitem word count mean continuous [0,+∞[
subitem word count deviation continuous [0,+∞[
subitem numeric value continuous [0, 1]
subitem max integer places continuous [0,+∞]
subitem max decimal places continuous [0,+∞]
subitem min numeric value continuous [0,+∞]
subitem max numeric value continuous [0,+∞]
subitem exclusive property score continuous [0, 1]
subitem exclusive property type discrete {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
subitem letter occurrence continuous [0, 1]
subitem digit occurrence continuous [0, 1]
subitem symbol occurrence continuous [0, 1]
subitem letter/digit ratio mean continuous [0,+∞]
subitem letter/digit ratio deviation continuous [0,+∞]

Table 2.1.: Analyser output content
24

2.5 Complexity

2.5. Complexity

Generally we can consider the runtime of the File Input Analyser to be linear to the
input file size. As we evaluate every item in the file individually, we can approximate
the analyser’s complexity by O(n ·m) with n being the row count and m being the
column count of the input file.
In practice however, the runtime of the analyser is fairly dependent on the content
of the input file.
On one side, the runtime can become shorter when the columns of the input file
contain a lot of reoccurring items. Repeating items decrease the size of our item
index, which constitutes the base for all following operations.
On the other side, the runtime can become a lot worse, when the analyser detects
a lot of potential subitem separators, because it implicates the preprocessing and
characterisation of a high number of subitems.
Furthermore, the analyser offers the option to provide a sampling step, which will
reduce the number of records that will be processed. This offers the ability to
considerably reduce the runtime for last input files and can be useful when speed is
more valuable than the highest feature score precision.

25

3. Column Classification

In this chapter, we carry on from properties we collected from the dataset to finding
suitable parameters for configuring CompleteSearch.
The problem to solve is essentially a classification problem, in which each column
of the input file is assigned to the different CompleteSearch parameter classes. For
this purpose we built a classifier, which can be used as follows:

ClassifierMain [mode] [parameters]

Available modes:
--classify <inputFile>
Classifies a given dataset into the different parameter classes. The input file is not
the actually dataset but the JSON output file containing its features returned by
the Analyser in chapter 2
--train
Trains the classifier by performing all steps that can be computed in advance and
saving the training data. For further details see section 3.3.
--benchmark <configuration>
Splits off a part of the training set into a test set, trains the classifier on the re-
duced training set and evaluates the classification results of the test set. More
details and benchmarking results in section 3.6. Possible configurations: default,
no-augmentation, no-prop-merge, no-sep-predetermination

Parameters:
--props <datasetPropDirectory>
Path to directory containing dataset property files for the input datasets in our
training set. This parameter is required for training and benchmarking
--labels <datasetLabelDirectory>
Path to directory containing dataset label files for the input datasets in our training
set. This parameter is required for training and benchmarking

27

Chapter 3 Column Classification

For the resolution of the problem, we choose the popular Naive Bayes classification
algorithm for a few different reasons:
• It is well-suited for multi-class classification, which is required for parame-

ters that can accept more than two different values, such as field-format and
ordering mentioned in section 1.2.
• It is fast to compute. The complexity is linear to the size of the training set

and the number of features. This is important as we are considering to contin-
uously retrain our classifier using the user feedback from our web application
as explained in section 4.2.
• It outperforms most other classification algorithms, when dealing with smaller

training sets. [DP97][?]
However, before we can proceed to the column parameter classification we need to
solve the subitem separator problem in order to know if we need to use the full item
or subitem features from classifying the columns to the different parameter classes.
As we also make use of the Naive Bayes algorithm to determine the subitem separa-
tor, we will start this chapter by explaining the algorithm. Next, we take a look at
the constitution of our training set and the training of the classifier, before we get
to the actual classification process.

28

3.1 Naive Bayes

3.1. Naive Bayes

Naive Bayes is a supervised learning algorithm that uses conditional probabilities
to assign a problem instance to a finite set of classes C = {c1, c2, ..., ck}. The prob-
lem is represented by an array x = (x1, x2, ..., xn), where x1, ..., xn are its different
attributes.

The probability of a problem being in class c ∈ C is described by conditional prob-
ability p(c | x1, ..., xn).
This expression can decomposed using Bayes’ theorem and reformulated using the
product rule for joint probabilities [RN16]:

p(c | x1, ..., xn) = p(c,x) = p(c) p(x | c)
p(x) (3.1)

= p(c,x)
p(x) (3.2)

= p(c)
p(x)

n∏
i=1

p(xi | xi−1, ..., x1, c) (3.3)

The algorithm is called "naive", because it makes the assumption that the features
are independent from each other given the class [RN16]. This allows to considerably
reduce the number of probabilities that we need to compute. This simplification
results in the following expression:

p(c | x) = p(c)
p(x)

n∏
i=1

p(xi | c) (3.4)

p(x) is an optional constant used for normalisation. It makes sure that the prob-
abilities over the classes adds up to 1 for each feature. It can be calculated as
follows:

p(x) =
k∑

i=1
p(ck) p(x | ck) (3.5)

To avoid a floating point underflow in the probability multiplication in equation 3.4,
we can perform a logarithmic transformation [MRS08]:

plog(c | x) = log(p(c))− log(p(x)) +
n∑

i=1
log(p(xi | c)) (3.6)

The various probabilities that are required can be computed/estimated as follows:

• Class Probability p(c) with c ∈ C

p(c) = occurrences of class c in training set
entries in training set (3.7)

29

Chapter 3 Column Classification

• Conditional Attribute Probability p(xi|c) with c ∈ C and i < n
For the conditional probabilities, we need to distinguish between different data
types. The type of each attribute is indicated in Table 2.1. We differentiate
between discrete and continuous data attributes:

◦ The probabilities for discrete attributes can be calculated explicitly.
Let m be the number of entries in class c and nvc the number of occurrences
of the discrete value v for the attribute xi in class c.

p(xi = v | c) = nvc

m
(3.8)

◦ The probabilities for continuous attributes are estimated using the
Gaussian distribution. For this we first need to compute the the mean µi and
the variance σ2

i for attribute xi in class c to calculate the probability p(xi | c)
for attribute value v. Let m be the number of entries in class c and wi,j the
value of attribute xi in entry j in class c.

µic =

m∑
j=1

wi,j

m
(3.9)

σ2
ic =

m∑
j=1

(wi,j − µi)2

m
(3.10)

p(xi = v | c) = e
− (v−µic)2

2σ2
ic (3.11)

30

3.2 Data collection

3.2. Data collection

In this section, we build the training set for our classifier, which will be used to
compute the different class probabilities and conditional attribute probabilities, that
we need for the Naive Bayes classifier.
Usually a classifier’s performance improves with the size of its training set. Thus
it is favourable to collect as much data as possible. For this thesis we collected 50
different input datasets from various sources, which are all listed in Appendix A.
When searching for suitable input datasets, we were mainly looking for datasets
with different data formats and with as many columns as possible, as these are the
two primary factors that improve the quality of our training set.
First we manually labelled every column in the datasets with the different parameter
classes that apply to that column, including the common subitem separator.
Next we parsed the collected input datasets using our Analyser from chapter 2
to gather their properties. For datasets, which have a subitem separator we ran
the Analyser using the --subitem flag. This prevents us to perform unnecessary
computations for improper separators and avoids the rare case that the Analyser
might retain the data for the wrong subitem separator in subsection 2.3.4.
The training set is formed by combining the properties and the class labels. Our
training set contains a record for every column in the collected datasets.
To further improve the classification for less common subitem separators, we aug-
ment our training set by replicating entries of input datasets that have a subitem
separator for every other separator in our separator set from section 2.1 that doesn’t
occur in the file.
The benefits of this training set augmentation can be seen in section 3.6 by com-
paring Table 3.2 and Table 3.3.

3.3. Training

In the training stage, we perform all steps that can be computed in advance, as they
only need to be executed after the training set changed.
In our case, we can precompute the class probabilities defined in Equation 3.7 and
the probabilities for discrete property attributes in Equation 3.8. It is not possible to
do the same for the probabilities for continuous property attributes in Equation 3.11
as they depend on the input dataset property value. For this reason, we are limited
to mean-deviation pairs for the different attributes in each class.

31

Chapter 3 Column Classification

3.4. Classification

The classification process of an input file is made up of several different steps, the
sequence of which in shown in Figure 3.1.

Analyser
execution

Subitem
separator

veri�cation

Subitem
separator
uni�cation

Classi�cation
of remaining
parameters

Subitem
separator

veri�cation

Analyser
execution

with given subitem
separator

Figure 3.1.: Classification process sequence

First we start by determining which columns have a subitem separator. Afterwards
we seek to conclude on a common separator for all columns in the input dataset. This
will finally allow us to choose the right property attributes to assign the columns of
the input file to the matching CompleteSearch parameters values. We will explain
the procedure in more detail in the following subsections.

3.4.1. Subitem separator verification

After gathering the input file properties using our Analyser from chapter 2, we per-
form a binary classification to determine if the subitem separators that have been
determined for each column are valid or not. Thus we assign the columns of our input
dataset to two classes according to our allow-subitems parameter from section 1.2:
true and false. For this computation we use all the attributes gathered by the
analyser but item max integer places and item max decimal places as well as the
item min numeric value and item max numeric value which are only intended to be
used to order numeric values in CompleteSearch and thus irrelevant for classification.

32

3.4 Classification

3.4.2. Subitem separator unification

Based on the results of the previous subitem separator verification step, which in-
dicates which columns are likely to have a subitem separator, we will conclude to a
common separator for all the columns in the input file. We simply take the separator
that occurs most often in the columns that assumedly allow multiple items. In case
of a tie, we consider the allow-subitems probabilities of these columns and calculate
a joined probability for each separator that is involved in the tie.
Without this preliminary subitem separator determination, the parameter classifi-
cation results would look like those indicated in Table 3.5.

After determining the common separator, we need to rerun the Analyser with the
--subitem flag to ensure that we hold the subitem properties for the common
subitem separator. Furthermore we rerun the subitem separator verification step,
to update the results for the given subitem separator, which gives a final answer to
which columns allow subitems and which do not.

3.4.3. Parameter classification

As we finally have a common subitem separator for the entire file and know in which
columns it is applicable, we can reduce our training set to the relevant features. We
merge overlapping item/subitem features by picking the feature values computed
for the entire item or the values for the subitems according to the results from
the subitem separator verification with the given common separator. This reduc-
tion benefits the classifier’s performance as fewer attributes generally reduce noise.
[MRS08]
As the number of attributes needs to be the same for all columns, independent of
having a subitem separator or not, we have extraneous features for records with-
out separator, such as list occurrence, subitem count mean, subitem count deviation.
The values for these three properties are set to 0.

Now, we can go ahead to classifying the remaining column parameters to their
respective values, as shown in Table 3.1.

33

Chapter 3 Column Classification

Parameter Classes
full-text true, false
allow-subitems true, false
filter true, false
facet true, false
field-format plain-text, JSON, XML
show true, false
excerpt true, false
ordering lexicographical, numerical, date
url true, false
email true, false
label true, false
Table 3.1.: Column parameters and their classes

34

3.5 Complexity

3.5. Complexity

We cover the complexity for training and classification separately.

Let n = total number of records in the input datasets, m = number of records
in the training set, a = number of discrete features, b = number of continuous fea-
tures, c = number of classes and p = number of parameters that need to be classified.

Running the Analyser on all the input datasets can be approximated by O(n ·m)
as mentioned in section 2.5.

The complexity for training the classifier for a given label can be described by O(m).
The step is made up of 3 different operations:

• The class probabilities have a complexity of O(c) and can be neglected.

• The discrete attribute probabilities are computed for each feature value in each
class, thus the complexity is O(a ·m) = O(m)

• For the continuous attributes, we only compute the mean and deviation pairs
for each class and the complexity is only O(b · c). As b and c are constants, it
is negligible.

As we need to perform the training process for every CompleteSearch parameter,
the complexity of the training step results in O(n ·m + p ·m) where p is constant.
Thus we have O(n ·m).
The complexity of assigning an array of property attributes to a class is O(c ·(a+b))
as we need to compute/retrieve (a+ b) probabilities for each class c.

Let x = number of columns and y = number of records in the input dataset whose
parameters should be classified.
The classification step consists of the following operations:

• Running the Analyser for the given input input file has a complexity of O(x ·y)

• Classifying allow-subitems for each column in the input file, which has a com-
plexity of O(x · c · (a+ b))

• The separator unification’s complexity is insignificant.

• Executing the allow-subitems classification again costs O(x · c · (a+ b))

• The classification of the remaining parameters is O((p− 2) · (x · c · (a+ b)) =
O(x · y)

Thus performing the classification step for a given input file has a complexity of
O(x · y + p · (x · c · (a+ b)) = O(x · y), as p, c, a, b are constants.

35

Chapter 3 Column Classification

3.6. Evaluation

To evaluate the performance of our CompleteSearch parameter classifier, we split off
a part of the trining set into a test set. For the following benchmarks, we picked at
random 20% of the input datasets we collected in section 3.2 to constitute the test set.

Below we present the accuracy scores for different configurations of our Analyser
and Classifier.
The default configuration in subsection 3.6.1 shows the results for the procedure
described throughout this thesis and we expect it to be superior to the other config-
urations listed below. We computed the other configuration for comparative reasons
and to discuss the different steps we chose while building our Analyser/Classifier in
subsection 3.6.5.

36

3.6 Evaluation

3.6.1. Default configuration

Parameter accuracy
subitem-separator 0.894737
allow-subitems 0.973684
full-text 0.773279
filter 0.892713
facet 0.704453
field-format 0.989879
show 0.734818
excerpt 0.943320
ordering 0.904858
url 0.985830
email 1.000000
label 0.751012

Table 3.2.: Accuracy for default configuration

3.6.2. Default configuration without augmented training set

Parameter accuracy
subitem-separator 1.000000
allow-subitems 0.989796
full-text 0.806122
filter 0.821429
facet 0.653061
field-format 1.000000
show 0.724490
excerpt 0.943878
ordering 0.969388
url 0.974490
email 1.000000
label 0.714286

Table 3.3.: Accuracy for default configuration without augmented training set

37

Chapter 3 Column Classification

3.6.3. Configuration without merging mutually exclusive
properties

Parameter accuracy
subitem-separator 0.421053
allow-subitems 0.977733
full-text 0.799595
filter 0.872470
facet 0.605263
field-format 0.989879
show 0.748988
excerpt 0.963563
ordering 0.629555
url 0.98583
email 1.000000
label 0.208502

Table 3.4.: Accuracy for configuration without merging mutually exclusive
properties

3.6.4. Configuration without separator predetermination

Parameter accuracy
subitem-separator 0.297571
allow-subitems 0.981781
full-text 0.773279
filter 0.902834
facet 0.755061
field-format 0.989879
show 0.734818
excerpt 0.939271
ordering 0.906883
url 0.991903
email 1.000000
label 0.686235

Table 3.5.: Accuracy for configuration without separator predetermination

38

3.6 Evaluation

3.6.5. Discussion

Considering the small size of out training set, containing 91 datasets after the aug-
mentation step, the performance of our classifier is fairy good with the scores of
preference-independent parameters seen in Table 3.2 reaching accuracies of nearly
90% or more. The facet parameter prediction yields the lowest score with an accu-
racy of 70%, which makes sense as it is the parameter where the value choice is the
least obvious.

We want to note that for some of the parameters exist multiple acceptable values.
The choice of value for these parameters involves some degree of user preference. For
this reason, the accuracy might be even higher, as some values might not correspond
with our choices in the labelling process, but might be acceptable nevertheless. The
parameters in question are full-text, filter, facet, show, excerpt and label.

Looking at the accuracy results without the training set augmentation in Table 3.3.
We see that the augmentation, explained in section 3.2, generally improves our re-
sults with the exceptions of full-text, ordering and the subitem-separator. These
scores decreased by between roughly 4% to 11%, which seems to be due to our small
training set in the first place, for which the augmentation can substantially amplify
the impact of faulty classifications.

In Table 3.4, we can observe how the usage of dependent features in the Naive Bayes
classifier influences our results. It is interesting to see that it only has strong impact
of a few scores, while others remain mostly unchanged. The parameters subitem-
separator, ordering and label stand out the most with accuracy losses between 28%
and 55%.

Last, we consider Table 3.5 containing the scores, when omitting the entire separator
unification and features reduction steps by simply passing the output of the Analyser
into the Naive Bayes classifier. First, we notice the atrocious subitem-separator
score, which isn’t surprising as the separators don’t have any relation to the data
they are delimiting.
However, the fact that the scores of the other parameters are on par with our default
configuration is rather unexpected. For the facets, the score is even slightly superior.
This means that the noise introduced from extraneous item or subitem features in
Table 3.5 and the feature reduction made for Table 3.2 based on the allow-subitem
parameter predictions, which have an accuracy of more than 97%, result in a similar
error rate.

39

4. Web Application

In this final chapter, we will illustrate how our work from the previous chapters ties
into the CompleteSearch web application. We show how the different parameter
values change the user interface and behaviour of the search engine. Furthermore
we will discuss how we can use the user feedback from the application to improve
its automatic configuration trough continuous use.

4.1. Configuration effects

In Figure 4.1 we annotated the different sections of the search user interface, that
change based on the various parameters that we determined throughout this thesis.

1. Filters are displayed as tabs next to the "All" columns tab and allow to
restrict the search query to a particular dataset attribute and thus limit the
search to that specific column in the input dataset.

2. Each search result represents a record from the input dataset. The ordering
of the attributes within a search result is determined by their uniqueness that
was calculated in chapter 2.

3. URLs and Email addresses are converted into clickable links.
4. A label shows the column name of an attribute in front of its value. This helps

to give context to values that are less descriptive, such a numeric values.
5. Excerpts show extracts from longer record items. The settings allow to adjust

the maximum number of excerpts per search result and lengths of each excerpt
by setting a maximum word radius.

6. Facets are shown in the right sidebar. The control interface of the different
facets depend on their ordering and thus their datatype

a. The default facet input is a list of the most common facet values that
match the current search query.

b. The numerical facet input used themin numeric value andmax numeric
value as well as the max integer places and max decimal places of the facet
column to create a slider that allows to define a numerical search range.

c. The date facet input allow to define a date range via two date pickers.

41

Chapter 4 Web Application

1

2

3

6

6a
4

5

6b

6c

Figure 4.1.: Search User Interface (1. Filters, 2. Search result, 3. Link, 4. Label,
5. Excerpts, 6. Facets: a. Lexicographical facet, b. Numerical facet, c. Date
facet)

42

4.2 User Feedback Loop

4.2. User Feedback Loop

Our web application allows the user to manually adjust the automatically sug-
gested configuration parameters of CompleteSearch via the settings interface shown
in Figure 4.2. We will use this user feedback to automatically improve our classifier.

Figure 4.2.: Settings interface: Column Attributes

The user-adjusted configuration essentially contains labels for the given input dataset
and can thus be integrated into the training set and allows us to retrain our classifier
on the side.

43

5. Conclusion

Throughout this the thesis we explored a procedure that allows us to automatically
configure CompleteSearch for any given tabular dataset. For this, we have mostly
been focused on the extraction of the features from the datasets and setting up a
simple and fast classification method. Furthermore we took the user feedback from
the web application into consideration to improve the feature distribution model of
the classifier over time.
The results from section 3.6 show that we largely reached our objective, however
the current implementation could still benefit from the following improvements:

• The most obvious improvement is to add more datasets to the initial training
set, although this point is partly taken care of by the usage of the user feedback
from the web application
• We could extract more features from the datasets e.g. by adding mutually

exclusive matchers to detect more data types and formats, such as coordinates,
file paths, fractions, scientific notations, more date formats, etc. Some of the
these could be accompanied by further search interface customisation. For
instance for coordinates, we could have a map with an origin pin and an
adjustable radius.
• We could take the column names in the input datasets into account. However

this would require a lot of new training data for associating dataset features
to its column names. It would also implicates further challenges such as the
support of multiple languages.
• We could try other classification algorithms, e.g. Multi-class Support Vec-

tor Machine and tweak their parameters to further improve the classification
accuracy.

For the web application itself, we could consider the following improvements:

• To avoid adding faulty data to our training set, when using the user feed-
back, we could measure a configuration’s trustworthiness by the number of
queries that have been made using it. When retraining our classifier, we could
weight the new configurations by this metric. The entries of the initial train-
ing set are given for instance a weight of 100 search queries. As we im-
plemented search-as-you-type functionality, we could consider a new search to

45

Chapter 5 Conclusion

start 5 seconds after the last key was pressed. Furthermore there could be a
minimum threshold of 10 queries that needs to be surpassed, in order for a
configuration to be considered at all.

• We could cache all data for the different subitems when running the Analyser.
This would prevent the case where we have to rerun it with a specific separator.
• We could analyse the input dataset while it is being uploaded, which would

would be most effective for large datasets. This could be easy done by com-
piling our analyser written in C++ into a WebAssembly [Web] module.

46

Acknowledgments

First, I want to thank Prof. Dr. Hannah Bast for giving me the opportunity to
write this thesis extending my work on the CompleteSearch web application beyond
my bachelor project.
I also want to thank my friend and business partner Frank Gelhausen for proofread-
ing this document and enduring my lack of time for working on other projects.

47

A. Datasets

Listed below are all the datasets that have been used throughout this thesis. [ac-
cessed 14-02-18]

• Deutsche Bahn - Reisezentrenliste (Stand: 03/2017)
http://download-data.deutschebahn.com/static/datasets/reisezentre
n/VSRz201703.csv

• Deutsche Bahn - Betriebsstellen Güterverkehr
http://download-data.deutschebahn.com/static/datasets/betriebsste
llen_cargo/GEO_Bahnstellen_EXPORT.csv

• Deutsche Bahn - Stationsdaten
http://download-data.deutschebahn.com/static/datasets/stationsdat
en/DBSuS-Uebersicht_Bahnhoefe-Stand2016-07.csv

• Deutsche Bahn - Terminologie (DE/EN)
http://download-data.deutschebahn.com/static/datasets/sprachenman
agement/Terminologie_DBKonzern_DE_EN_Definition.csv

• Deutsche Bahn - Aufzuege (Stand: 10/2015)
http://download-data.deutschebahn.com/static/datasets/aufzug/DBSu
S-Uebersicht_Aufzuege-Stand2015-10.csv

• U.S. Department of Agriculture’s PLANTS Database
https://www.plants.usda.gov/java/downloadData?fileName=plantlst.tx
t&static=true

• HIFLD Open - Fortune 500 Corporate Headquarters
https://hifld-dhs-gii.opendata.arcgis.com/datasets/e277657582f74e
d78dc2a503eae7fa2e_0

• HIFLD Open - Colleges and Universities
https://hifld-dhs-gii.opendata.arcgis.com/datasets/4061dcd767c340d
4a42fb7a0c6c5d5b4_0

• HIFLD Open - Ports Of Entry
https://hifld-dhs-gii.opendata.arcgis.com/datasets/9ea04e9e2dd6465689a
01eea5f3652fe_0

• HIFLD Open - Cities and Towns NTAD
https://hifld-dhs-gii.opendata.arcgis.com/datasets/c246aa3bef7049d
d9eeb86ae699572c9_0

49

http://download-data.deutschebahn.com/static/datasets/reisezentren/VSRz201703.csv
http://download-data.deutschebahn.com/static/datasets/reisezentren/VSRz201703.csv
http://download-data.deutschebahn.com/static/datasets/betriebsstellen_cargo/GEO_Bahnstellen_EXPORT.csv
http://download-data.deutschebahn.com/static/datasets/betriebsstellen_cargo/GEO_Bahnstellen_EXPORT.csv
http://download-data.deutschebahn.com/static/datasets/stationsdaten/DBSuS-Uebersicht_Bahnhoefe-Stand2016-07.csv
http://download-data.deutschebahn.com/static/datasets/stationsdaten/DBSuS-Uebersicht_Bahnhoefe-Stand2016-07.csv
http://download-data.deutschebahn.com/static/datasets/sprachenmanagement/Terminologie_DB Konzern_DE_EN_Definition.csv
http://download-data.deutschebahn.com/static/datasets/sprachenmanagement/Terminologie_DB Konzern_DE_EN_Definition.csv
http://download-data.deutschebahn.com/static/datasets/aufzug/DBSuS-Uebersicht_Aufzuege-Stand2015-10.csv
http://download-data.deutschebahn.com/static/datasets/aufzug/DBSuS-Uebersicht_Aufzuege-Stand2015-10.csv
https://www.plants.usda.gov/java/downloadData?fileName=plantlst.txt&static=true
https://www.plants.usda.gov/java/downloadData?fileName=plantlst.txt&static=true
https://hifld-dhs-gii.opendata.arcgis.com/datasets/e277657582f74ed78dc2a503eae7fa2e_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/e277657582f74ed78dc2a503eae7fa2e_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/4061dcd767c340d4a42fb7a0c6c5d5b4_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/4061dcd767c340d4a42fb7a0c6c5d5b4_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/9ea04e9e2dd6465689a01eea5f3652fe_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/9ea04e9e2dd6465689a01eea5f3652fe_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/c246aa3bef7049dd9eeb86ae699572c9_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/c246aa3bef7049dd9eeb86ae699572c9_0

Chapter A Datasets

• HIFLD Open - All Places of Worship
https://hifld-dhs-gii.opendata.arcgis.com/datasets/ece7900854a443c
28e1351a2eb3d7e7c_0?uiTab=table

• HIFLD Open - Volcanic Eruptions
https://hifld-dhs-gii.opendata.arcgis.com/datasets/70fbc779b62249548f
2352cf563105fd_6

• HIFLD Open - Emergency Operations Centers
https://hifld-dhs-gii.opendata.arcgis.com/datasets/db3cb0002e664b
3e8b64f92dd8510365_0

• Openflights.org - Airports
https://raw.githubusercontent.com/jpatokal/openflights/master/data
/airports.dat

• ATP Tennis Matches
https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master/a
tp_matches_qual_chall_2017.csv

• Harvard Dataverse - Week of Global News Feeds August 2017
https://dataverse.harvard.edu/file.xhtml?fileId=3123815&version=RE
LEASED&version=.0#

• IMDb - Titles
https://datasets.imdbws.com/title.basics.tsv.gz

• IMDb - Names
https://datasets.imdbws.com/name.basics.tsv.gz

• BuzzFeed News - NBA Owners
https://gist.github.com/jtemplon/4d84d0d2a112d09394b6#file-nba_own
ers_data-csv

• BuzzFeed News - Top Fake News on Facebook 2017
https://github.com/BuzzFeedNews/2017-12-fake-news-top-50/blob/mas
ter/data/top_2017.csv

• BuzzFeed News - Trump Twitter Wars - Tweets
https://github.com/BuzzFeedNews/2018-01-trump-twitter-wars/blob/m
aster/data/tweets/tweets1.csv

• BuzzFeed News - Trump Twitter Wars - Accounts
https://github.com/BuzzFeedNews/2018-01-trump-twitter-wars/blob/m
aster/data/accounts.csv

• DataPortals.org
https://raw.githubusercontent.com/okfn/dataportals.org/master/data
/portals.csv

• CORGIS Dataset Project - Music
https://think.cs.vt.edu/corgis/csv/music/music.csv?forcedownload=1

50

https://hifld-dhs-gii.opendata.arcgis.com/datasets/ece7900854a443c28e1351a2eb3d7e7c_0?uiTab=table
https://hifld-dhs-gii.opendata.arcgis.com/datasets/ece7900854a443c28e1351a2eb3d7e7c_0?uiTab=table
https://hifld-dhs-gii.opendata.arcgis.com/datasets/70fbc779b62249548f2352cf563105fd_6
https://hifld-dhs-gii.opendata.arcgis.com/datasets/70fbc779b62249548f2352cf563105fd_6
https://hifld-dhs-gii.opendata.arcgis.com/datasets/db3cb0002e664b3e8b64f92dd8510365_0
https://hifld-dhs-gii.opendata.arcgis.com/datasets/db3cb0002e664b3e8b64f92dd8510365_0
https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat
https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat
https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master/atp_matches_qual_chall_2017.csv
https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master/atp_matches_qual_chall_2017.csv
https://dataverse.harvard.edu/file.xhtml?fileId=3123815&version=RELEASED&version=.0#
https://dataverse.harvard.edu/file.xhtml?fileId=3123815&version=RELEASED&version=.0#
https://datasets.imdbws.com/title.basics.tsv.gz
https://datasets.imdbws.com/name.basics.tsv.gz
https://gist.github.com/jtemplon/4d84d0d2a112d09394b6#file-nba_owners_data-csv
https://gist.github.com/jtemplon/4d84d0d2a112d09394b6#file-nba_owners_data-csv
https://github.com/BuzzFeedNews/2017-12-fake-news-top-50/blob/master/data/top_2017.csv
https://github.com/BuzzFeedNews/2017-12-fake-news-top-50/blob/master/data/top_2017.csv
https://github.com/BuzzFeedNews/2018-01-trump-twitter-wars/blob/master/data/tweets/tweets1.csv
https://github.com/BuzzFeedNews/2018-01-trump-twitter-wars/blob/master/data/tweets/tweets1.csv
https://github.com/BuzzFeedNews/2018-01-trump-twitter-wars/blob/master/data/accounts.csv
https://github.com/BuzzFeedNews/2018-01-trump-twitter-wars/blob/master/data/accounts.csv
https://raw.githubusercontent.com/okfn/dataportals.org/master/data/portals.csv
https://raw.githubusercontent.com/okfn/dataportals.org/master/data/portals.csv
https://think.cs.vt.edu/corgis/csv/music/music.csv?forcedownload=1

Datasets

• CORGIS Dataset Project - Billionaires
https://think.cs.vt.edu/corgis/csv/billionaires/billionaires.csv?f
orcedownload=1

• CORGIS Dataset Project - Airlines
https://think.cs.vt.edu/corgis/csv/airlines/airlines.csv?forcedown
load=1

• CORGIS Dataset Project - Cars
https://think.cs.vt.edu/corgis/csv/cars/cars.csv?forcedownload=1

• CORGIS Dataset Project - Books - Gutenberg Project
https://think.cs.vt.edu/corgis/csv/classics/classics.csv?forcedown
load=1

• CORGIS Dataset Project - Earthquakes
https://think.cs.vt.edu/corgis/csv/earthquakes/earthquakes.csv?for
cedownload=1

• CORGIS Dataset Project - Food
https://think.cs.vt.edu/corgis/csv/food/food.csv?forcedownload=1

• CORGIS Dataset Project - Hospitals
https://think.cs.vt.edu/corgis/csv/hospitals/hospitals.csv?forcedo
wnload=1

• CORGIS Dataset Project - Publishers
https://think.cs.vt.edu/corgis/csv/publishers/publishers.csv?force
download=1

• CORGIS Dataset Project - Real Estate
https://think.cs.vt.edu/corgis/csv/real_estate/real_estate.csv?for
cedownload=1

• CORGIS Dataset Project - Skyscrapers
https://think.cs.vt.edu/corgis/csv/skyscrapers/skyscrapers.csv?for
cedownload=1

• CORGIS Dataset Project - Supreme Court
https://think.cs.vt.edu/corgis/csv/supreme_court/supreme_court.csv
?forcedownload=1

• CORGIS Dataset Project - Tate
https://think.cs.vt.edu/corgis/csv/tate/tate.csv?forcedownload=1

• Kaggle - Yelp - Businesses
https://www.kaggle.com/yelp-dataset/yelp-dataset/downloads/yelp_bu
siness.csv

• Kaggle - Kickstarter Projects
https://www.kaggle.com/kemical/kickstarter-projects/downloads/ks-p
rojects-201612.csv

51

https://think.cs.vt.edu/corgis/csv/billionaires/billionaires.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/billionaires/billionaires.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/airlines/airlines.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/airlines/airlines.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/cars/cars.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/classics/classics.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/classics/classics.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/earthquakes/earthquakes.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/earthquakes/earthquakes.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/food/food.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/hospitals/hospitals.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/hospitals/hospitals.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/publishers/publishers.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/publishers/publishers.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/real_estate/real_estate.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/real_estate/real_estate.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/skyscrapers/skyscrapers.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/skyscrapers/skyscrapers.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/supreme_court/supreme_court.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/supreme_court/supreme_court.csv?forcedownload=1
https://think.cs.vt.edu/corgis/csv/tate/tate.csv?forcedownload=1
https://www.kaggle.com/yelp-dataset/yelp-dataset/downloads/yelp_business.csv
https://www.kaggle.com/yelp-dataset/yelp-dataset/downloads/yelp_business.csv
https://www.kaggle.com/kemical/kickstarter-projects/downloads/ks-projects-201612.csv
https://www.kaggle.com/kemical/kickstarter-projects/downloads/ks-projects-201612.csv

Chapter A Datasets

• Kaggle - SpaceX Launch Data
https://www.kaggle.com/scoleman/spacex-launch-data/downloads/spac
ex_launch_data.csv

• Kaggle - US Jobs Monster.com
https://www.kaggle.com/PromptCloudHQ/us-jobs-on-monstercom/downlo
ads/monster_com-job_sample.csv

• Kaggle - Celebrity Deaths
https://www.kaggle.com/hugodarwood/celebrity-deaths/downloads/cele
brity_deaths_4.csv

• Kaggle - 1000 Netflix Shows
https://www.kaggle.com/chasewillden/netflix-shows/downloads/1000-n
etflix-shows.zip/1

• Kaggle - Board Games
https://www.kaggle.com/mrpantherson/board-game-data/downloads/boar
d-game-data.zip/5

• Kaggle - Astronauts
https://www.kaggle.com/nasa/astronaut-yearbook/downloads/astronau
ts.csv

• Kaggle - English Premier League Players
https://www.kaggle.com/mauryashubham/english-premier-league-playe
rs-dataset/downloads/epldata_final.csv

• Kaggle - Restaurants on TripAdvisor
https://www.kaggle.com/PromptCloudHQ/restaurants-on-tripadvisor/d
ownloads/tripadvisor_in-restaurant_sample.csv

• Kaggle - Google Job Skills
https://www.kaggle.com/niyamatalmass/google-job-skills/downloads/
job_skills.csv

• Kaggle - Olympic Sports and Medals 1896-2014 - Summer
https://www.kaggle.com/the-guardian/olympic-games/downloads/summe
r.csv

• Kaggle - Rolling Stone’s 500 Greatest Albums of All Time
https://www.kaggle.com/notgibs/500-greatest-albums-of-all-time-r
olling-stone/downloads/albumlist.csv

• Kaggle - The Movies Dataset - Metadata
https://www.kaggle.com/rounakbanik/the-movies-dataset/downloads/m
ovies_metadata.csv

• Kaggle - Periodic Table of the Elements
https://www.kaggle.com/jwaitze/tablesoftheelements/downloads/perio
dic_table.csv

52

https://www.kaggle.com/scoleman/spacex-launch-data/downloads/spacex_launch_data.csv
https://www.kaggle.com/scoleman/spacex-launch-data/downloads/spacex_launch_data.csv
https://www.kaggle.com/PromptCloudHQ/us-jobs-on-monstercom/downloads/monster_com-job_sample.csv
https://www.kaggle.com/PromptCloudHQ/us-jobs-on-monstercom/downloads/monster_com-job_sample.csv
https://www.kaggle.com/hugodarwood/celebrity-deaths/downloads/celebrity_deaths_4.csv
https://www.kaggle.com/hugodarwood/celebrity-deaths/downloads/celebrity_deaths_4.csv
https://www.kaggle.com/chasewillden/netflix-shows/downloads/1000-netflix-shows.zip/1
https://www.kaggle.com/chasewillden/netflix-shows/downloads/1000-netflix-shows.zip/1
https://www.kaggle.com/mrpantherson/board-game-data/downloads/board-game-data.zip/5
https://www.kaggle.com/mrpantherson/board-game-data/downloads/board-game-data.zip/5
https://www.kaggle.com/nasa/astronaut-yearbook/downloads/astronauts.csv
https://www.kaggle.com/nasa/astronaut-yearbook/downloads/astronauts.csv
https://www.kaggle.com/mauryashubham/english-premier-league-players-dataset/downloads/epldata_final.csv
https://www.kaggle.com/mauryashubham/english-premier-league-players-dataset/downloads/epldata_final.csv
https://www.kaggle.com/PromptCloudHQ/restaurants-on-tripadvisor/downloads/tripadvisor_in-restaurant_sample.csv
https://www.kaggle.com/PromptCloudHQ/restaurants-on-tripadvisor/downloads/tripadvisor_in-restaurant_sample.csv
https://www.kaggle.com/niyamatalmass/google-job-skills/downloads/job_skills.csv
https://www.kaggle.com/niyamatalmass/google-job-skills/downloads/job_skills.csv
https://www.kaggle.com/the-guardian/olympic-games/downloads/summer.csv
https://www.kaggle.com/the-guardian/olympic-games/downloads/summer.csv
https://www.kaggle.com/notgibs/500-greatest-albums-of-all-time-rolling-stone/downloads/albumlist.csv
https://www.kaggle.com/notgibs/500-greatest-albums-of-all-time-rolling-stone/downloads/albumlist.csv
https://www.kaggle.com/rounakbanik/the-movies-dataset/downloads/movies_metadata.csv
https://www.kaggle.com/rounakbanik/the-movies-dataset/downloads/movies_metadata.csv
https://www.kaggle.com/jwaitze/tablesoftheelements/downloads/periodic_table.csv
https://www.kaggle.com/jwaitze/tablesoftheelements/downloads/periodic_table.csv

Bibliography

[Bas] Bast, H.: CompleteSearch. Internet: https://ad-wiki.informatik.uni-
freiburg.de/completesearch/. – [Online; accessed 14-February-2018]

[DI08] Dakka, Wisam ; Ipeirotis, Panagiotis G.: Automatic Extraction of
Useful Facet Hierarchies from Text Databases. In: 2008 IEEE 24th Inter-
national Conference on Data Engineering (2008), p. 466–475

[DP97] Domingos, P. ; Pazzani, M.: On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss. In: Machine Learning 29 (1997), p. 103 –
130

[Fre] Free Software Foundation: Open Semantic Search. Internet:
https://www.opensemanticsearch.org/doc/search/csv. – [Online; accessed
03-May-2018]

[MRS08] Manning, Christopher D. ; Raghavan, Prabhakar ; Schütze, Hinrich:
Introduction to Information Retrieval. Cambridge University Press, 2008

[Pur17] Puraye, O.: Bachelor Project: CompleteSearch UI. Internet:
http://completesearch-docs.puraye.com. 2017. – [Online; accessed 14-
February-2018]

[RN16] Russell, S. ; Norvig, P.: Artificial Intelligence: A Modern Approach.
3. Pearson Education Limited, 2016

[SM] Sean Massung, Chase G.: Meta-Toolkit. Internet: https://meta-
toolkit.org. – [Online; accessed 03-May-2018]

[Web] WebAssembly Working Group: WebAssembly. Internet:
https://webassembly.org. – [Online; accessed 02-March-2018]

[Wil] Willison, Simon: Datasette. Internet:
https://github.com/simonw/datasette/blob/master/docs/index.rst. –
[Online; accessed 04-May-2018]

53

	Contents
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Related Work

	2 Input File Analyser
	2.1 Column separator detection
	2.2 File structure validation
	2.3 Column Parsing
	2.3.1 Item index generation
	2.3.2 Column-based feature determination
	2.3.3 Item-based feature determination
	2.3.4 Subitem separator detection

	2.4 File property summary
	2.4.1 Noisy Feature Elimination
	2.4.2 Feature Independence
	2.4.3 Analyser Output

	2.5 Complexity

	3 Column Classification
	3.1 Naive Bayes
	3.2 Data collection
	3.3 Training
	3.4 Classification
	3.4.1 Subitem separator verification
	3.4.2 Subitem separator unification
	3.4.3 Parameter classification

	3.5 Complexity
	3.6 Evaluation
	3.6.1 Default configuration
	3.6.2 Default configuration without augmented training set
	3.6.3 Configuration without merging mutually exclusive properties
	3.6.4 Configuration without separator predetermination
	3.6.5 Discussion

	4 Web Application
	4.1 Configuration effects
	4.2 User Feedback Loop

	5 Conclusion
	Acknowledgments
	A Datasets
	Bibliography

