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Motivation (1/2)

Goal: given some schedule dataset, render a (schematic?) transit map

Trip63

Trip544

“Bag of trips”

o
-+ Well researched: schematization, line-ordering, labeling, esthetic

aspects, ...

+ Focus today: hands-on presentation of a software suite to achieve
this goal.



Motivation (2/2)

“Just render it automatically”




Schedule Data as Input

- Typical input data for research methods: graph embedding of a transit

network
+ Usually, this is what schedule data gives you:
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Toolchain Overview

1. Raw schedule data GTFS
2. Geographical line courses ﬂandawne{ pfaedle
3. Overlap-free graph of network topo
4. Line-Ordering optimization loom

. o LOOM .
5. Optional Schematization octi
6. Rendering transitmap

Code: https://github.com/ad-freiburg/pfaedle
https://github.com/ad-freiburg/loom


https://github.com/ad-freiburg/pfaedle
https://github.com/ad-freiburg/loom

pfaedle - Generate Geographical Line Courses

Input: GTFS data, OpenStreetMap (OSM) data
Output: GTFS data with geographical line courses

+ Map-matching problem

+ We use a hidden Markov model based approach’

Usage:

pfaedle -x freiburg.osm freiburg-gtfs

"Bast and Brosi, “Sparse map-matching in public transit networks with turn restrictions”.



topo - Extract Overlap-Free Line Graph

Input: Line-labeled graph (line graph) of transit network

Output: “Free” line graph without overlaps

+ Map-construction problem (typical use case: extract road network
from collection of GPS traces)

+ We use a constructive approach similar to an approach by Cao and
Krumm?

Usage:

topo < freiburg.raw.json > freiburg.json

2Cao and Krumm, “From GPS traces to a routable road map”.



loom - Line-Ordering Optimization

Input: Line graph

Output: Line graph with line label orderings which minimize
(weighted) line crossings / separations

- Combinatorial optimization problem (MLCM), we only allow crossings
at nodes (MLNCM)

- Optimization approaches described here?

Usage:

loom < freiburg.json > freiburg.opt.json

g Bast, Brosi, and Storandt, “Efficient Generation of Geographically Accurate Transit Maps”.



octi - Line Graph Schematization

Input: Line graph

Output: Schematic variant of the line graph

+ Uses a grid-based schematization approach, currently supports
ortholinear, octilinear, hexalinear, and orthoradial layouts

+ Optimization approaches described here* and here®

Usage:

octi < freiburg.opt.json > freiburg.octi.json

Z'Bast, Brosi, and Storandt, “Metro Maps on Octilinear Grid Graphs”.

SBast, Brosi, and Storandt, “Metro Maps on Flexible Base Grids".



transitmap - Line Graph Rend

Input: Line graph
Output: SVG drawing of the line graph

+ SVG allows for easy edit, high-quality print, and use in web maps
« Allows easy styling via CSS (which can be included in the GeoJSON file)
+ Can also be used in web maps

+ Approach: see here®

Usage:

transitmap < freiburg.octi.json > freiburg.octi.svg

6Bast, Brosi, and Storandt, “Efficient Generation of Geographically Accurate Transit Maps”.

10



Pipeline Approach

+ We took the chain metaphor seriously: LOOM tools can be plugged
together via Unix pipes

+ Between each step, the tools output and read a GeoJSON graph

+ Allows for easy modification / extension

gtfs2graph <gtfs> | topo | loom | octi | transitmap > map.svg
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Who (do we hope) is this for?

1. Researchers who want to try their own methods
2. Map designers for fast prototyping

3. Schedule planers for visualization of schedules
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Rough Edges - What doesn’t work

1. pfaedle only accepts XML OSM files
2. All tools only accept extracted GTFS feeds - not ZIPs.

3. Labeling is preliminary - for schematic maps, labeling should be part
of the schematization

4. Enlargement of high-density areas in schematic maps

5. Schematic maps are based on a heuristic approach, which is a bit
unstable - small changes to the input may result in a completely
different layout.

6. Very large networks (London, New York) often show constraint
violations, ILP approach takes too long (hours)

7. Tariff zones?

8. Holy grail: interactive map editor
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Thank you!

http://loom.informatik.uni-freiburg.de

http://octi.informatik.uni-freiburg.de
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Activity Ideas

If you are familar with installing Unix tools:

1. Goto http://ad-research.cs.uni-freiburg.de/smwand
follow the instructions, try out some examples

2. Installation can be also be done via Docker for minimal dependencies
If you are not familiar with Unix tools:

1. You can browse the render example at
https://octi.cs.uni-freiburg.de/ and
https://loom.cs.uni-freiburg.de/

2. There you also play around with different layouts or methods

3. Thereis aJS implementation of the octi approach (by Tim Janiak) here:
https://ruhr-uni-bochum.de/schematicmapping/janiak

4. You can play around with the results of a pfaedle run in Germany
(and other areas) here: https://travic.app

Also feel free to ask me any questions!
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