A Toolcham for Generatmg Transit Maps from
Schedule Data ' ﬁ :

Patrick Brosi 0
University of Freiburg
Schematic Mapping Workshop 2022 - Bochum, Germany.- ’

Ly

April 20-22, 2022

Motivation (1/2)

Goal: given some schedule dataset, render a (schematic?) transit map

Trip63

Trip544

“Bag of trips”

o
-+ Well researched: schematization, line-ordering, labeling, esthetic

aspects, ...

+ Focus today: hands-on presentation of a software suite to achieve
this goal.

Motivation (2/2)

“Just render it automatically”

Schedule Data as Input

- Typical input data for research methods: graph embedding of a transit

network
+ Usually, this is what schedule data gives you:

freiburg, Rathaus im Stihlinger
Freiburg, Europaplatz

d\Rathaus im Stihlinger

Freiburg, Europaplatz

hlinger

Freiburg,

Freiburg, Fahnenbergplaty’ Freiburg Europaptats

Freiburg, EschholzstraRe
Freiburg, Europapla

Freiburg, EschholzstraBe

Freiburg, EschholzstraRe

Freiburg, Hauptbahnhof

Freiburg, Hauptbahihra
reiburg, Stadttheater

Freiburg, Hauptbahnhof
Freiburg, Stad

Freiburg, Oberlinden

Freiburg, Er Freiburg, Erbprinzeng
j’reiburg, Holzmarkt

Freiburg, ErbprinzenstraBeffreiburg, Holzmarkt

Toolchain Overview

1. Raw schedule data GTFS
2. Geographical line courses ﬂandawne{ pfaedle
3. Overlap-free graph of network topo
4. Line-Ordering optimization loom

. o LOOM .
5. Optional Schematization octi
6. Rendering transitmap

Code: https://github.com/ad-freiburg/pfaedle
https://github.com/ad-freiburg/loom

https://github.com/ad-freiburg/pfaedle
https://github.com/ad-freiburg/loom

pfaedle - Generate Geographical Line Courses

Input: GTFS data, OpenStreetMap (OSM) data
Output: GTFS data with geographical line courses

+ Map-matching problem

+ We use a hidden Markov model based approach’

Usage:

pfaedle -x freiburg.osm freiburg-gtfs

"Bast and Brosi, “Sparse map-matching in public transit networks with turn restrictions”.

topo - Extract Overlap-Free Line Graph

Input: Line-labeled graph (line graph) of transit network

Output: “Free” line graph without overlaps

+ Map-construction problem (typical use case: extract road network
from collection of GPS traces)

+ We use a constructive approach similar to an approach by Cao and
Krumm?

Usage:

topo < freiburg.raw.json > freiburg.json

2Cao and Krumm, “From GPS traces to a routable road map”.

loom - Line-Ordering Optimization

Input: Line graph

Output: Line graph with line label orderings which minimize
(weighted) line crossings / separations

- Combinatorial optimization problem (MLCM), we only allow crossings
at nodes (MLNCM)

- Optimization approaches described here?

Usage:

loom < freiburg.json > freiburg.opt.json

g Bast, Brosi, and Storandt, “Efficient Generation of Geographically Accurate Transit Maps”.

octi - Line Graph Schematization

Input: Line graph

Output: Schematic variant of the line graph

+ Uses a grid-based schematization approach, currently supports
ortholinear, octilinear, hexalinear, and orthoradial layouts

+ Optimization approaches described here* and here®

Usage:

octi < freiburg.opt.json > freiburg.octi.json

Z'Bast, Brosi, and Storandt, “Metro Maps on Octilinear Grid Graphs”.

SBast, Brosi, and Storandt, “Metro Maps on Flexible Base Grids".

transitmap - Line Graph Rend

Input: Line graph
Output: SVG drawing of the line graph

+ SVG allows for easy edit, high-quality print, and use in web maps
« Allows easy styling via CSS (which can be included in the GeoJSON file)
+ Can also be used in web maps

+ Approach: see here®

Usage:

transitmap < freiburg.octi.json > freiburg.octi.svg

6Bast, Brosi, and Storandt, “Efficient Generation of Geographically Accurate Transit Maps”.

10

Pipeline Approach

+ We took the chain metaphor seriously: LOOM tools can be plugged
together via Unix pipes

+ Between each step, the tools output and read a GeoJSON graph

+ Allows for easy modification / extension

gtfs2graph <gtfs> | topo | loom | octi | transitmap > map.svg

1

Who (do we hope) is this for?

1. Researchers who want to try their own methods
2. Map designers for fast prototyping

3. Schedule planers for visualization of schedules

12

Rough Edges - What doesn’t work

1. pfaedle only accepts XML OSM files
2. All tools only accept extracted GTFS feeds - not ZIPs.

3. Labeling is preliminary - for schematic maps, labeling should be part
of the schematization

4. Enlargement of high-density areas in schematic maps

5. Schematic maps are based on a heuristic approach, which is a bit
unstable - small changes to the input may result in a completely
different layout.

6. Very large networks (London, New York) often show constraint
violations, ILP approach takes too long (hours)

7. Tariff zones?

8. Holy grail: interactive map editor

13

Thank you!

http://loom.informatik.uni-freiburg.de

http://octi.informatik.uni-freiburg.de

14

http://loom.informatik.uni-freiburg.de
http://octi.informatik.uni-freiburg.de

Activity Ideas

If you are familar with installing Unix tools:

1. Goto http://ad-research.cs.uni-freiburg.de/smwand
follow the instructions, try out some examples

2. Installation can be also be done via Docker for minimal dependencies
If you are not familiar with Unix tools:

1. You can browse the render example at
https://octi.cs.uni-freiburg.de/ and
https://loom.cs.uni-freiburg.de/

2. There you also play around with different layouts or methods

3. Thereis aJS implementation of the octi approach (by Tim Janiak) here:
https://ruhr-uni-bochum.de/schematicmapping/janiak

4. You can play around with the results of a pfaedle run in Germany
(and other areas) here: https://travic.app

Also feel free to ask me any questions!
15

http://ad-research.cs.uni-freiburg.de/smw
https://octi.cs.uni-freiburg.de/
https://loom.cs.uni-freiburg.de/
https://ruhr-uni-bochum.de/schematicmapping/janiak
https://travic.app

