
Efficient and Convenient Search
on Very Large Knowledge Bases

Hannah Bast
Algorithms & Data Structures Group
Department of Computer Science
University of Freiburg, Germany

Lecture @ Reasoning Web Summer School
Luxembourg, September 22, 2018

Introduction 1/4

2

 Knowledge Bases
– A knowledge base can be represented as a collection

of subject-predicate-object triples, for example:

<Neil Armstrong> <Profession> <Astronaut>
<Neil Armstrong> <Nationality> <USA>
<Liu Yang> <Profession> <Astronaut>
<Liu Yang> <Nationality> <China>
<Liu Yang> <Gender> <Female>

– Identifiers refer to some entity or concept, for example:

a particular person, a particular profession, a relation, …

– Crucial: unique identifier for each entity or concept

– Knowledge bases need not be "complete" (and typical are not)

The predicate is actually called
<Country of nationality>

Introduction 2/4

3

 The standard query language is SPARQL
– A simple example query

SELECT ?person {
?person <Profession> <Astronaut> .
?person <Gender> <Female>

}

– Returns a list of all female astronauts in the KB

– Since no particular order is specified (see next slide), the
results can be in any order

– The order is then usually the order of the internal IDs of
result entities … more about these IDs later

Introduction 3/4

4

 The standard query language is SPARQL
– A slightly more complex example query

SELECT ?person ?nationality ?birthdate WHERE {
?person <Profession> <Astronaut> .
?person <Gender> <Female> .
?person <Nationality> ?nationality .
?person <Date_of_birth> ?date_of_birth .
?nationality <Contained_by> <Eurasia>

}
ORDER BY DESC(?date_of_birth)

– Returns: all female astronauts from Eurasia, with their
nationality and birth date, youngest first

Note: the result is a table

Introduction 4/4

5

 Demos
– The demos are from two of our research prototypes

QLever a full-featured SPARQL engine + UI

Broccoli a predecessor for a subclass of SPARQL

– We will see more of them in the following

– And also understand what is going on behind the scenes

I will explain fundamental concepts and techniques of
working with knowledge bases … as well as some of the
specific developments behind QLever and Broccoli

6

Part 0: Introduction
Part 1: Knowledge Base Basics
Part 2: Indexing and Query Processing
Part 3: Combination with Text Search
Part 4: SPARQL User Interfaces

Knowledge Base Basics 1/11

7

 IDs and Literals
– In the introduction, we saw these example triples:

<Neil Armstrong> <Profession> <Astronaut>
<Neil Armstrong> <Nationality> <USA>

– This was a simplified example, actual knowledge bases
use IDs and extra predicates for names and descriptions

wd:Q1615 wdt:P106 wd:Q11631
wd:Q1615 wdt:P27 wd:Q30
wd:Q1615 rdfs:label "Neil Armstrong"@en
wd:Q11631 rdfs:label "Astronaut"@en

– The prefixes stand for URI prefixes, e.g. wd:Q1615
stands for <http://www.wikidata.org/entity/Q1615>

a string object
is called a "literal"

Knowledge Base Basics 2/11

8

 Languages
– General-purpose knowledge bases are often multilingual,

with names in many different languages

wd:Q90 rdfs:label "Paris"@en
wd:Q90 rdfs:label "Baariis"@so
wd:Q90 rdfs:label "Bahliz"@za
wd:Q90 rdfs:label "Bă-là ̤"@cdo
wd:Q90 rdfs:label "IParisi"@zu
wd:Q90 rdfs:label "Lutetia"@la
wd:Q90 rdfs:label "Pa-lí"@nan
wd:Q90 rdfs:label "Paarii"@kbp

… and so on (275 languages)

English
Somali
Zhuang
Min Dong
Zulu
Latin
Min Nan
Kabiye

Knowledge Base Basics 3/11

 Reification of n-ary predicates as triples
– Simple relations are easily cast in triple form

wd:Q42 wdt:P26 wd:Q14623681
– For complex "n-ary" information, we need intermediate entities

wd:Q42 p:P26 wds:Q42-b88670f8-456b-…
wds:Q42-b88… pq:P580 "1991-11-25"@xsd:dateTime
wds:Q42-b88… pq:P582 "2001-05-11"@xsd:dateTime
wds:Q42-b88… pqv:P580 wdv:1c30ade7914d07287…
wds:Q42-b88… pqv:P582 wdv:c8ae0d38443d4671d…
wdv:1c30ade… wb:calendar wd:Q1985727
wdv:1c30ade… wb:precision 11
wdv:1c30ade… wb:timeValue "1991-11-25"@xsd:dateTime
https://en.wikibooks.org/wiki/SPARQL/WIKIDATA_Qualifiers,_References_and_Ranks 9

Douglas Adams spouse Jane Belson

start time
end time

exact to the day

Knowledge Base Basics 4/11

 Reification in Wikidata
– Statement entities are connected to "normal" entities

They lead to ALL complex information about an entity
(triples with the statement entity as subject)

– Value and qualifier entities are connected to statement entities
Multiple triples with value or qualifier entity as subject

– Provenance entities are connected to statement entities
Multiple triples with provenance entity as subject

– Rank entity: exactly ONE per statement entity
PreferredRank: if you want just one statement, take this
DeprecatedRank: wrong or outdated statements
NormalRank: all other statements

10

Knowledge Base Basics 5/11

 Wikidata's most important prefixes
wd: http://www.wikidata.org/entity/
wdt: http://www.wikidata.org/prop/direct/
wds: http://www.wikidata.org/entity/statement/
wikibase: http://wikiba.se/ontology-beta#
p: http://www.wikidata.org/prop/
ps: http://www.wikidata.org/prop/statement/
psv: http://www.wikidata.org/prop/statement/value/
pq: http://www.wikidata.org/prop/qualifier/
pqv: http://www.wikidata.org/prop/qualifier/value/
rdfs: http://www.w3.org/2000/01/rdf-schema#
schema: http://schema.org/
prov: http://www.w3.org/ns/prov#

11

Knowledge Base Basics 6/11

12

 Dimensions of the KBs used in this presentation
– Freebase

Started by Metaweb in 2007, acquired by Google in 2010

1.9B triples, 125M entities, 345M literals

Freebase Easy

Easy-to-use curated version from Bast et al, WWW'14

0.4B triples, 60M entities, 11M literals (English only)

– Wikidata

Latest data dump (3.5B triples without n-ary relations)

7.1B triples, 862K entities, 418K literals

B = Billion

this is huge

Knowledge Base Basics 7/11

13

 Cross products in results
– Since SPARQL results are always tables, there are often

"cross-product" effect

SELECT ?person ?profession ?nationality WHERE {
?person <Profession> ?profession .
?person <Nationality> ?nationality

}

Arnold Schwarzenegger Actor Austria
Arnold Schwarzenegger Bodybuilder Austria
Arnold Schwarzenegger Politician Austria
Arnold Schwarzenegger Actor USA
Arnold Schwarzenegger Bodybuilder USA
Arnold Schwarzenegger Actor USA

excerpt
of results

Knowledge Base Basics 8/11

14

 OPTIONAL
SELECT ?person ?profession ?nationality WHERE {

?person <is-a> <Person> .
OPTIONAL { ?person <Profession> ?profession } .
OPTIONAL { ?person <Nationality> ?nationality }

}

– Without the OPTIONAL, this would only display persons
who have at least one profession and nationality in the KB

This corresponds to an "inner join" … see Part 2

– With the OPTIONAL, get all persons and empty cells in the
result table, if there is no match for the respective triple

This corresponds to an "outer join" … see Part 2

Knowledge Base Basics 9/11

15

 GROUP BY and ORDER BY
– A simple example

SELECT ?profession (COUNT(?person) AS ?count) WHERE {
?person <is-a> <Person> .
?person <Profession> ?profession

}
GROUP BY ?profession
ORDER BY DESC(?count)

– Groups all people in the knowledge base by profession and
counts the number of people in each group

– Outputs the profession and the count, largest count first

Knowledge Base Basics 10/11

16

 GROUP BY and ORDER BY
– A more complex example

SELECT ?profession
(AVG(?height) AS ?average_height)
(COUNT(?x) AS ?count) WHERE {

?x <is-a> <Person> .
?x <Height> ?height .
FILTER (?height < 3) .
?x <Profession> ?profession

}
GROUP BY ?profession
ORDER BY DESC(?average_height)
HAVING (?count > 100)

– Professions ordered by average height, only groups > 100

With QLever:
~ 1sec on

full Wikidata

Knowledge Base Basics 11/11

17

 Queries quickly become huge in SPARQL
– Average height by profession and gender

SELECT ?occupation ?gender (AVG(?height) AS ?average_height)
(COUNT(?height) AS ?count)

WHERE {
?x wdt:P31 wd:Q5 .
?x wdt:P21 ?gender_id . ?gender_id rdfs:label ?gender .
FILTER langMatches(lang(?gender), "en") .
?x p:P2048 ?statement . ?statement psv:P2048 ?value .
?value wikibase:quantityNormalized ?quantity .
?quantity wikibase:quantityUnit wd:Q11573 .
?quantity wikibase:quantityAmount ?height . FILTER (?height < 3) .
?x wdt:P106 ?occupation_id . ?occupation_id rdfs:label ?occupation .
FILTER langMatches(lang(?occupation), "en")

}
GROUP BY ?occupation ?gender
HAVING (?count > 100)
ORDER BY DESC(?average_height)

Wikidata
Query Service:

Timeout
after 20s

Height P2048
Metre Q11573
Instance of P31
Human Q5
Occupation P106
Gender P21

18

Part 0: Introduction
Part 1: Knowledge Base Basics
Part 2: Indexing and Query Processing
Part 3: Combination with Text Search
Part 4: SPARQL User Interfaces

Indexing 1/12

 IDs
– Any sensible index data structure for a knowledge base will

first transform all entities / predicates / literals to integer IDs
<Neil Armstrong> <Profession> <Astronaut>
<Neil Armstrong> <Nationality> <USA>
<Neil Armstrong> <Date_of_birth> "1930-08-05"
<Liu Yang> <Profession> <Astronaut>
<Liu Yang> <Nationality> <China>

– If this were our complete KB, the IDs would be:
<Astronaut> #1 <Neil Armstrong> #6
<China> #2 <Profession> #7
<Date of birth> #3 <USA> #8
<Liu Yang> #4 "1930-08-05" #9
<Nationality> #5

19

We give IDs in
lexicographic

order of the words
That way, we can

efficiently implement
ORDER BY

by sorting IDs, not strings

these IDs have nothing to do
with the string IDs used by

some knowledge base
(e.g. Q30 for USA in Wikidata)

Indexing 2/12

 Values
– We map values to an intermediate mantissa-exponent repre-

sentation which we then map to IDs like on the previous slide
KB name Intermediate repr. ID
"3.1459"@xsd:double "00E3.14590000" #16
"42"@xsd:integer "01E4.20000000" #17
"1000000"@xsd:integer "06E1.00000000" #18

– Then again, we can efficiently implement ORDER BY
by simply sorting internal integer IDs

20

Indexing 3/12

 Naïve Index
– Conceptually, our knowledge base is now an array of integer

triples (usually huge, Wikidata = 7.1 billion triples)
S=#6 P=#7 O=#1
S=#6 P=#5 O=#8
S=#6 P=#3 O=#9
S=#4 P=#7 O=#1
S=#4 P=#5 O=#2
Here and on the following slides, we prefix IDs with a #
and S, P, O depending on their position in the triple
This is just for the sake of explanation, what is actually stored
are just integer IDs

21

<Astronaut> #1
<China> #2
<Date of birth> #3
<Liu Yang> #4
<Nationality> #5
<Neil Armstrong> #6
<Profession> #7
<USA> #8

Indexing 4/12

 Permutations
– We store all six permutations of our array of triples
– We call these permutations SPO, SOP, PSO, POS, OPS, POS
– E.g. SPO = sort by subject, then predicate, then object

SPO PSO
S=#4 P=#5 O=#2 P=#3 S=#6 O=#9
S=#4 P=#7 O=#1 P=#5 S=#4 O=#2
S=#6 P=#3 O=#9 P=#5 S=#6 O=#8
S=#6 P=#5 O=#8 P=#7 S=#4 O=#1
S=#6 P=#7 O=#1 P=#7 S=#6 O=#1

– Note: with 8 Bytes per ID and the 10B triples from our version
of Wikidata, this requires 6 x 3 x 8 x 10B Bytes = 1.4 TB

22that's Terabytes

Indexing 5/12

 Why the permutations?
– For SPARQL queries with a single triple, we now get the

result by a simple scan of the right index
SELECT ?person ?nationality WHERE {
?person <Nationality> ?nationality

}
– Predicate is fixed, Subject and Object are variables
 take the PSO or POS permutation  let's take PSO
P=#3 S=#6 O=#9
P=#5 S=#4 O=#2
P=#5 S=#6 O=#8
P=#7 S=#4 O=#1
P=#7 S=#6 O=#1

23

<China> #2
<Liu Yang> #4
<Nationality> #5
<Neil Armstrong> #6
<USA> #8

Result table (IDs):
#4 #2
#6 #8

Efficient, because
we can read it

off from a range

Result table (names):
Liu Yang China
Neil Armstrong USA

Indexing 6/12

 Order is important
– With more than one triple, ordering becomes more critical

SELECT ?person ?nationality ?profession WHERE {
?person <Nationality> ?nationality .
?person <Profession> ?profession

}
– If we take the PSO index, we get two sets of triples already

ordered by Subject, so that we can easily join those
P=#3 S=#6 O=#9
P=#5 S=#4 O=#2
P=#5 S=#6 O=#8
P=#7 S=#4 O=#1
P=#7 S=#6 O=#1

24

<Astronaut> 1
<China> 2
<Date of birth> 3
<Liu Yang> 4
<Nationality> 5
<Neil Armstrong> 6
<Profession> 7
<USA> 8

Result table (IDs):
#4 #2 #1
#6 #8 #1

For fixed P ordered by S

Result table (names):
Liu Yang China Astronaut
Neil Armstrong USA Astronaut

Indexing 7/12

 Query planning
– For complex queries, the order of the operations, in particular

of the joins, is crucial for an efficient query processing
SELECT ?person1 ?person2 ?movie WHERE {
?person1 <Film performance> ?film .
?person2 <Film performance> ?film .
?person1 <Spouse> ?person2

}
– General principle:

1. Build query graph: nodes = triples, edge if shared variable
2. The nodes correspond to basic SCAN operations
3. An edge corresponds to a JOIN operation
4. Intermediate results are tables (of various widths)

25

T1
T2
T3

T1 T2

T3

joins are cheaper if the
respective columns are sorted

Indexing 8/12

 Query planning
SELECT ?person1 ?person2 ?movie WHERE {
?person1 <Film performance> ?film .
?person2 <Film performance> ?film .
?person1 <Spouse> ?person2

}
– One possible query plan:

1. Process T1 and T2 (in any order)
2. Join tables from T1 and T2
3. Sort result from 2. by ?person1
4. Process T3
5. Join results from 3. and 4.

26

T1
T2
T3

use POS scan (join on ?film)
 table with three columns
by ?person2 would also work
use PSO scan (join on ?person1)
 table with three columns

Is this a good query plan?

No, it's terrible, because the
intermediate results from 2.

will be huge (32M rows)

Indexing 9/12

 Query planning
SELECT ?person1 ?person2 ?movie WHERE {
?person1 <Film performance> ?film .
?person2 <Film performance> ?film .
?person1 <Spouse> ?person2

}
– A better query plan

1. Process T1 and T3 (in any order)
2. Join tables from T1 and T3
3. Sort by ?person2, then ?film
4. Process T2
5. Join results from 3. and 4.

27

T1
T2
T3

PSO (join on ?person1)
 table with three columns

Or: by ?film, then ?person2

PSO (join on ?person2 and ?film)

This is a two-column join

Is this a good query plan?
Yes, because only few
spouses per person,

hence result from 2. not
much larger than result from T1

Indexing 10/12

 Cost estimation
– How do we know which query plan is better, without

executing them all and measuring the time?
– Standard procedure: we estimate the cost of the various

operations, for example:
SCAN: we have to perform the scans anyway, so we might
as well do all of them and determine the exact cost
SORT: cost estimate n ∙ log n, where n = #rows
JOIN: we assume that the join columns have been sorted
before  cost estimate #rows table 1 + #rows table 2

– Bottom line: we need to estimate the size (#rows) of the
intermediate results

28

Indexing 11/12

 Size estimation
– Example 1: each table with two columns, join on first

Input Table 1 Input Table 2 Result Table
#14 #15 #14 #97 #14 #15 #97
#38 #42 #57 #55 #57 #13 #55
#57 #13

– Example 2: same column dimensions, also join on first
Input Table 1 Input Table 2 Result Table
#57 #15 #57 #97 #57 #15 #97
#57 #42 #57 #55 #57 #15 #55
#57 #13 #57 #42 #97

#57 #42 #55
#57 #13 #97
#57 #13 #55 29

result has two rows

result has six rows

multiplicities play a major role
in result size estimation

for SPARQL queries

Indexing 12/12

 Simultaneous size and multiplicity estimation
– Input table 1: s1 = #rows, d1 = #distinct values in join column
– Input table 2: s2 = #rows, d2 = #distinct values in join column
– Average multiplicity is related to #distinct values as follows:

m1 = s1 / d1 and m2 = s2 / d2

– Size estimate of the result table
s = α ∙ m1 ∙ m2 ∙ min(d1, d2)

– We also need to estimate the multiplicity of each column
in the result table (not only the join column)
mi = ???

30

α	= 1 would mean:
all elements from smaller
table occur in larger table

this is tricky to even formulate
see the QLever paper
if you are interested

(which, of course, you are)

Efficiency 1/3

 Details about the index lists
– There are lot more implementation details which I did not

mention, but which are critical for performance / usability:
– Here are a few keywords:

Store the SOP etc. indices such that for each kind of join,
the SCAN ops have to scan only exactly what they need
Keep as little as necessary in RAM, the rest on disk
Use compression on disk (for faster reading)
Resolve internal IDs to names as late as possible … next slide

Efficiency 2/3

 How / where to store the names
– Recall: internally all operations work with integer IDs
– In final result, internal IDs have to be replaced by names
– Seems trivial: the IDs are consecutive, so just use an array
– Problem: for Wikidata, the total size of all names is 80 GB

You don't want to require a machine with 80 GB of RAM
Also, reading 80 GB into RAM at each startup takes long

– Solution: identify names which are rarely needed in result sets,
and store these on disk … here are two examples
wds:q42-b88670f8-456b-3ecb-cf3d-2bca2cf7371e
<long name of obscure movie in obscure language>

Efficiency 3/3

 Figures for the complete Wikidata
– Input size: 9.8 billion triples
– On disk index files: 1.4 Terabyte
– Startup time: ~ 2 minutes
– RAM usage: ~ 20 Gigabytes
– Average query time: ~ 1 second

– Average query time of
Wikidata query service: frequent timeouts after 20 seconds

More about query times in the next part

we added
some triples

34

Part 0: Introduction
Part 1: Knowledge Base Basics
Part 2: Indexing and Query Processing
Part 3: Combination with Text Search
Part 4: SPARQL User Interfaces

SPARQL+Text Search 1/12

 Motivation
– A lot of information is naturally structured

We have seen a lot of examples in the talk so far
– But even more information is naturally unstructured,

typically in text written in natural language
Because it's the natural form of communications for humans

– Also: certain information is hard or unnatural to cast in
structured form, for example:
"Neil Armstrong was the first person to walk on the moon"
There is no meaningful predicate here, which we can reuse
for other knowledge … for example, this would be weird
<Neil Armstrong> <First to walk on planet> <Moon>

SPARQL+Text Search 2/12

 Linking a knowledge base with text
– Identify mentions of an entity from the KB in the text …

this is called named entity recognition
– Annotate that mention with the correct ID from the KB …

this is called named entity disambiguation or linking

In a 2010 interview, Armstrong explained that NASA limited
his moon walk to two hours because …
Q1615 = the Wikidata-ID for Neil Armstrong
Q23548 = the Wikidata-ID for NASA

36

Q1615

Q1615 Q23548

SPARQL+Text Search 3/12

37

 Dimensions of some text corpora linked to a KB
– Wikipedia+Freebase

A dump of all articles from the English Wikipedia with
entity links to Freebase (provided by Bast et al, SIGIR'14)

2.3B word occurrences, 0.5B entity links

– Clueweb+Freebase

A web-scale corpus with entity links to Freebase (provided by
Gabrilovich et al: http://lemurproject.org/clueweb12/FACC1)

32.3B word occurrences, 3.3B entity links

SPARQL+Text Search 4/12

 What SPARQL+Text is not
– Consider the following example triples

<Neil Armstrong> <Profession> <Astronaut>
<Neil Armstrong> <Nationality> <USA>
<Neil Armstrong> <Books written> "First on the moon"

– SPARQL engines like Virtuoso support text search in literals

SELECT ?x ?y WHERE {
?x <Profession> <Astronaut> .
?x <Books written> ?y .
?t bif:contains "walk AND moon"

}

The namespace prefix "bif" stands for "built-in function"

38

Astronauts who have
written a book

with "walk" and "moon"
in the title

no matches with
the KB triples above

SPARQL+Text Search 5/12

 What SPARQL+Text is
– QLever supports two special predicates ql:contains-entity

and ql:contains-word with the following semantics:
SELECT ?x WHERE {
?x <profession> <Astronaut> .
?t ql:contains-entity ?x .
?t ql:contains-word "walk moon"

}
This finds all astronauts, which anywhere in the whole
text corpus co-occur with the words "walk" and "moon"
For a large text corpus many such co-occurrences are a
good signal that the respective astronaut indeed walked
on the moon

39

Wikipedia+FreebaseEasy:
33 hits for Neil Armstrong

Clueweb+Freebase:
2485 hits for Neil Armstrong

SPARQL+Text Search 6/12

 Sentence decomposition
– Decompose each sentence into segments (= subsets of

words) that semantically "belong together"

The usable parts of rhubarb, a plant native to
Eastern Asia, are the medicinally used roots and the
edible stalks, however its leaves are toxic.

"rhubarb", "edible", and "leaves" do not belong together

– The correct contexts are (need not be grammatical):

rhubarb a plant native to Eastern Asia
The usable parts of rhubarb are the medicinally used root
The usable parts of rhubarb are the edible stalks
however rhubarb leaves are toxic

40

This is a hard NLP problem
and would be a

lecture on its own
NLP = natural

language processing

SPARQL+Text Search 7/12

 SPARQL+Text vs. SPARQL with text search in literals
– Wouldn't the query from two slides ago also work

with a text search in literals like Virtuoso's bif:contains ?
SELECT ?x WHERE {
?x <Profession> <Astronaut> .
?x <Description> ?d .
?d bif:contains "walk AND moon"

}
This only works for astronauts, who in the KB are explicitly
connected to a description which contains these words
For most queries of this kind, this is very unlikely
The typical description associated with an entity in a KB is
a very short summary, like the first sentence from Wikipedia

41

 A more complex example
PREFIX fb: http://rdf.freebase.com/ns/
SELECT ?person ?profession ?drug TEXT(?text) WHERE {
?text ql:contains-word "doping" .
?text ql:contains-entity ?person_id .
?text ql:contains-entity ?drug_id .
?drug_id fb:type.object.type ?drug_type .
?drug_type fb:type.object.name "Drug"@en .
?drug_id fb:type.object.name ?drug .
?person_id fb:type.object.name ?person .
?person_id fb:people.person.profession ?profession_id .
?profession_id fb:type.object.name ?profession
} ORDER BY DESC(SCORE(?text))
"People involved in doping, with their profession and the drug"

42

SPARQL+Text Search 8/12
Again: understand that "doping" is

unlikely to be mentioned in the knowledge
base for every entity in question …

… but is likely to be well-covered via text-
entity co-occurrence in a large text corpus

SPARQL+Text Search 8/12

 Additional features
SELECT ?x TEXT(?t) WHERE {

?x <profession> <Astronaut> .
?t ql:contains-entity ?x .
?t ql:contains-word "walk moon"

}
ORDER BY DESC(SCORE(?t))
TEXTLIMIT 1
LIMIT 1000
Specify the text snippet as part of the result
Specify the number of text snippets to return per match
Rank by (some function of) the number of co-occurrences

43

These features are
very useful

when using SPARQL+Text
queries in practice

SPARQL+Text Search 9/12

 Simulation by standard SPARQL
– SPARQL+Text can be "simulated" with standard SPARQL:

Create a new entity for each word and explicitly create two
new relations <contains-entity> and <contains-word>
These are huge: for Clueweb+Freebase, <contains-entity>
has 3.3B triples, and <contains-word> has 32.3B triples

– Then we could simply write:
SELECT ?x ?t WHERE {

?x <profession> <Astronaut> .
?t <contains-entity> ?x .
?t <contains-word> <word:walk> .
?t <contains-word> <word:moon>

}
44

We will see:
for state-of-the-art
SPARQL engines,
this is very slow

This is similar to how
keyword search

can be implemented with
a database and SQL

SPARQL+Text Search 10/12

 Simulation by SPARQL with shallow text search
– If keyword search in literals (bif:contains) is available, we

can do away with the explicit <contains-word> relation
SELECT ?x WHERE {

?x <profession> <Astronaut> .
?t <contains-entity> ?x .
?t bif:contains "walk AND moon"

}

45

We will see:
this is better,
but still slow

SPARQL+Text Search 11/12

 Other SPARQL engines
The following two are well known / widely used:

Virtuoso with keyword search in literals (bif:contains)
Widely used in practice and often comes out on top
in SPARQL performance evaluations

RDF-3X using explicit <contains-word/entity> relations
One of the best research prototypes: supports (almost)
full SPARQL and can beat Virtuoso on medium-sized data

46

SPARQL+Text Search 12/12

Results on FreebaseEasy+Wikipedia (0.5B triples, 2.3B words)

47

Query Type RDF-3X Virtuoso QLever
SPARQL only, simple 98 ms 337 ms 74 ms
SPARQL only, complex 3,349 ms 14,237 ms 262 ms
SPARQL+Text, simple 1,776 ms 941 ms 78 ms
SPARQL+Text, complex 5,876 ms 13,612 ms 208 ms
SPARQL+Text, real 1,063 ms 766 ms 74 ms
SPARQL+Text, text only 10,749 ms 15,037 ms 191 ms
SPARQL+Text, huge result aborted 3,673,492 ms 605 ms
Index Size 138 GB 124 GB 73 GB
Index without Text 17 GB 9 GB 49 GB
Memory used 30 GB 45 GB 7 GB

Qlever uses a
special word-entity
co-occurrence index

See the QLever paper for details

48

Part 0: Introduction
Part 1: Knowledge Base Basics
Part 2: Indexing and Query Processing
Part 3: Combination with Text Search
Part 4: SPARQL User Interfaces

SPARQL Autocompletion 1/4

 Example
– Assume we have entered the following SPARQL triples:

?x <is-a> <Person> .
?x we are about to type a predicate

– Goal: ranked list of suggestions of predicates that actually
lead to results … e.g. <Gender>, but not <Founded_by>

– This can actually be expressed with a SPARQL query
SELECT ?predicate ((COUNT(?predicate) AS ?count)) {
?x <is-a> <Person> .
?x ?predicate ?object

}
GROUP BY ?predicate
ORDER BY DESC(?count)

49

SPARQL Autocompletion 2/4

 Challenge
– Look at the two triples in the query from the previous slide

?x <is-a> <Person> .
?x ?predicate ?object

– This will compute all triples with a person as subject
For Freebase, these are 165,850,440 triples

– All we need is how often each predicate occurs in these
<is-a> 3,970,856 times
<Gender> 2,276,150 times
<Date of birth> 1,915,174 times
<Profession> 1,237,192 times
…

50

Can we
compute this

more efficiently?

SPARQL Autocompletion 3/4

 Let's abstract the problem a bit

– Input: all pairs of entity ID and predicate ID

– Query: a list of entity ids

1 3 7

– Result: predicates from query, sorted by frequencies

#A = 3, #B = 1, #F = 3

– Naive solution: intersect (join) input list with query list

This takes too long, even with the most efficient list
intersection algorithms … because the input is so large

51

1 1 2 3 3 3 4 5 5 5 6 6 7 7 8 8 8
A F C A B F A A B F A D A F A B F
1 1 2 3 3 3 4 5 5 5 6 6 7 7 8 8 8
A F C A B F A A B F A D A F A B F

For Freebase:
1,246,827,727 pairs

For our example:
all 3,970,856 IDs of persons

SPARQL Autocompletion 4/4

 Our solution

– Look at the entity-labels list again:

– Observation: same pattern for many entities

– Idea: store ids of frequent patterns in a simple array

1 2 3 4 5 6 7 8
a x b x b x a b a = AF, b = ABF, x = rare

– Now, given input list, first collect patterns and aggregate:

1 3 5 6  #a = 1, #b = 2  #A = 3, #B = 2, #F = 3

then intersect with remaining rare-patterns entity-labels list

52

1 1 2 3 3 3 4 5 5 5 6 6 7 7 8 8 8
A F C A B F A A B F A D A F A B F
1 1 2 3 3 3 4 5 5 5 6 6 7 7 8 8 8
A F C A B F A A B F A D A F A B F

1 3 5 6
a b b x

This yields
interactive

completion times
on Freebase

Natural-Language Queries 1/5

 The ultimate goal
– Ask questions in natural language:

Which character did Ellen DeGeneres play in Finding Nemo?
– Or even more informally / telegraphically:

who did ellen play in finding nemo?
– Goal: automatically translate such a natural-language or

keyword question into the corresponding SPARQL query
SELECT ?x WHERE {
?m actor Ellen DeGeneres .
?m film Finding Nemo .
?m character ?x

}

53

Natural-Language Queries 2/5

 Challenge 1: Linguistic variation
– The same question can be asked in dozens of ways:

which character did ellen degeneres play in finding nemo
which character did ellen play in finding nemo
who did ellen play in finding nemo
ellen's role in finding nemo
whose voice did ellen do in finding nemo
role ellen nemo
…
This rules out simple pattern-based approaches

54

Natural-Language Queries 3/5

 Challenge 2: Ambiguous entity names
– Ellen could mean

Ellen DeGeneres
Ellen Page
Ellen Burstyn
anyone called "Ellen"
The Ellen Show
The Ellen DeGeneres Show
…
Over 100 different entities named "ellen" in Freebase

55

Natural-Language Queries 4/5

 Challenge 3: Ambiguous relation names
– Like for entity names, but worse, because the relation can

be implicit in the question, for example:
Question: who is the ceo of apple
Query: SELECT ?x WHERE {

?m job-title "Managing Director" .
?m company "Apple Inc." .
?m person ?x .

}

None of the relation words "job title", "company", "person"
appear in the question … nor synonyms of them

56

Natural-Language Queries 5/5

 Aqqu demo: http://aqqu.cs.uni-freiburg.de

– Aqqu is a system that learns to translate natural language
queries to SPARQL queries

– The training data is only question – answer pairs
The correct SPARQL query for a question is not needed,
this makes it easy to generate lots of training data

– Basic idea (very very very briefly):
1. Generate a large number of candidate SPARQL queries

(as possible interpretations of the question)
2. Learn how to rank these candidates  pick the best one

– Paper: More Accurate Question Answering on Freebase
Hannah Bast and Elmar Haussmann, CIKM 2015

57

Literature

 Survey
Semantic Search on Text and Knowledge Bases
Hannah Bast, Björn Buchhold, Elmar Haußmann
Foundations and Trends in Information Retrieval 2016

– It's about everything related to semantic search

– It's big, but easy to read, and the various chapters can
be read and understood stand-alone

For example, there is a chapter about NLP basics

Or one about Search in Knowledge Bases

– If you interested in publications on QLever or Broccoli,
you easily find them via Google ...

58

NLP =
Natural

Language
Processing

Demos and Code

 Code
– The demos I gave shown are freely available

http://broccoli.informatik.uni-freiburg.de google: broccoli search

http://qlever.informatik.uni-freiburg.de google: qlever search

– The code is freely available on GitHub
https://github.com/ad-freiburg/qlever

– Easy to install + comes with several datasets to play
around with: small, medium-sized, and large
You can set up your own instance for one of these
datasets in a few minutes … or build an instance from
your own data
Use it and let us know your comments / suggestions

59

