
Polynomial-time Construction of Contraction Hierarchies
for Multi-criteria Objectives (Extended Abstract)

Stefan Funke
Universität Stuttgart

Institut für Formale Methoden der Informatik
70569 Stuttgart, Germany

funke@fmi.uni-stuttgart.de

Sabine Storandt
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
79110 Freiburg, Germany

storandt@informatik.uni-freiburg.de

Abstract
In this paper we consider a variant of the multi-criteria short-
est path problem where the different criteria are combined
in an arbitrary conic combination at query time. We show
that contraction hierarchies (CH) - a very powerful speed-
up technique originally developed for standard shortest path
queries (Geisberger et al. 2008) - can be adapted to this
scenario and lead - after moderate preprocessing effort - to
query times that are orders of magnitudes faster than stan-
dard shortest path approaches. On the theory side we prove
via some polyhedral considerations that the crucial node con-
traction operation during the CH construction can be per-
formed in polynomial-time, while on the more practical side
we complement our theoretical results with experiments on
real-world data. Our approach extends previous results (Geis-
berger, Kobitzsch, and Sanders 2010) which only considered
the bicriteria case.
This is an extended abstract of the full paper published in
(Funke and Storandt 2013).

Introduction
In many routing applications the objective cannot be de-
scribed sufficiently by only a single weight on the edges. For
example, a driver is certainly keen on reaching his destina-
tion as quickly as possible, but he might be also interested in
keeping the fuel costs low (see Figure 1 for an illustration).
Similarly, when planning a bicycle trip one is not only inter-
ested in the length of the trip but also wants to avoid steep
climbs. Most of the time we have conflicting objectives, that
is, minimizing both values (e.g. travel time and fuel costs,
or distance and positive height difference) at the same time
is impossible. Therefore one either aims for a fair trade-off
of both values or searches for the path which minimizes one
of the values but does not exceed a given bound on the other,
see Figure 1 for an example.

Here we focus on the former problem variant and hence
ask for a minimum cost path for a conic combination of the
edge costs, i.e. given a (di)graph G(V,E) and edge weights
c1, c2 : E → R+ the optimal path π = s, · · · , t for given
α, β ∈ R+ is the one minimizing

∑
e∈π(αc1(e) + βc2(e)).

We call this problem the conic combination shortest path
(CCSP) problem. If the coefficients α, β are known before-
hand, the problem reduces to the single edge weight case and
all available algorithms and speed-up techniques for this sce-
nario apply as well. If the conic combination is revealed at

Figure 1: Alternative paths in the Saarland graph: The pur-
ple path is optimal in terms of travel time (37min), but has
the highest fuel costs (e 4.61). The black path has minimal
fuel costs (e 3.81), but needs time 44min. The red path is a
fair trade-off with costs e 3.87 and a travel time of 40min.

query time only, still Dijkstra’s algorithm can be applied in a
straightforward manner. In larger road networks plain Dijk-
stra is too slow for most applications, though. Hence – like
for conventional shortest path computations – developing
preprocessing techniques to speed up query times is manda-
tory. For conic combinations of edge costs this was con-
sidered first in (Geisberger, Kobitzsch, and Sanders 2010).
In this paper we improve upon their approach in several as-
pects, in particular generalizing the bicriteria setting to the
multicritiera setting and proving polynomial time bounds for
the crucial node contraction operation.

Outline of our Approach
In the general, multicriteria CCSP problem, each edge e
bears d cost values c1(e), . . . , cd(e) and for a query spec-
ified by source s, target t and weights α1, . . . , αd ≥ 0
with

∑
αi = 1 we are to find a path π = v0v1 . . . vk

with edges ei = (vi, vi+1) ∈ E from v0 = s to vk = t

minimizing the weighted sum c(π) =

d∑
j=1

αjcj(π) where



cj(π) =

k−1∑
i=0

cj(ei).

In a preprocessing step, we construct a contraction hierar-
chy (CH) (Geisberger et al. 2008) which preserves optimal
paths for any choice of the αi. The basic idea of a CH is
the iterative removal of nodes from the graph without affect-
ing shortest path distances between the remaining nodes in
the graph. This is achieved by inserting so-called shortcuts.
Here the crucial operation is the decision whether edges uv
and vw have to be replaced by a shortcut uw when a node v
is contracted/removed. If not too many shortcuts are added,
the original graph augmented with all inserted shortcuts al-
lows for very efficient answering of shortest path queries by
a modified bidirectional Dijkstra. Our main contributions
of this paper are twofold: 1. a polynomial-time algorithm
to decide whether a shortcut should be created or not in the
multicriteria case and 2. an experimental evaluation that the
number of added shortcuts is small enough that there is a
considerable speed-up compared to ordinary Dijkstra.

Decision about Shortcut Creation
How can we characterize the set of s-t paths that are optimal
for some choice of the αi? In a dual view, we can associate
with each path π a hyperplane

hπ : y =
∑
i

(αic
i
π)

in Rd+1 (the space where d dimensions correspond to
α1, . . . αd and one dimension to the objective function
value). A path π is optimal for some choice of the αi, iff
its respective plane bounds the lower envelope of the hyper-
planes corresponding to all s-t paths. The decision whether
a shortcut uw has to be created – via the dual view – boils
down to the test whether the path uvw appears on the lower
envelope of the hyperplanes of all u-w paths.

While this lower envelope might have exponential com-
plexity, we show that membership in the lower envelope for
such a hyperplane can be decided in polynomial time. The
high-level idea of our proof is as follows: we first show that
vertices in this arrangement of hyperplanes have a certain
minimum pairwise distance. This can be used to derive a
lower bound on the hypervolume of facets of the lower en-
velope. Our algorithm in each round deliberately chooses
values for the αi, computes the optimal path for this choice
of αi’s, and thereby decreases the hypervolume of the facet
corresponding to the path π on the lower convex hull by a
constant factor in each round. Hence polynomially many
rounds suffice to decide whether π bounds the lower enve-
lope. For a constant number of weights per edge, any algo-
rithm for half-space intersection (or convex hull) can be used
to obtain the desired polynomal running time guarantee.

Experimental Results
We have implemented our CH construction scheme for two
and three edge weights and evaluated them on real-world
data. The used test graphs (SL - Saarland, HE - Hessen,
BW - Baden-Württembeg and CAL - California) are based
on OpenStreetMap data. The implementation was written in

C++, timings were taken on a single core of an Intel Core
i5-3360M CPU with 2.80GHz and 16 GB RAM.

For the two-weight case, some results can be found in Ta-
ble 1. While there is some effort required for preprocessing
(less than 20 minutes for CAL), the resulting query times are
orders of magnitudes faster than ordinary Dijkstra. The case
of three edge weights exhibits similar speed-ups.

Note that we only contracted about 99.95% of the nodes
during the shortcut creation as between the remaining nodes
there was a large number of pareto-optimal paths, so a com-
plete contraction would have added a too large number of
shortcuts – slowing down both preprocessing and query pro-
cessing. The query times are slightly worse than CH-query
times for single edge weights which seems natural given the
more complex problem setting.

The running times – both of preprocessing as well as for
the queries – also depend on the metrics involved. Met-
rics that are somewhat similar – like euclidean distance and
travel time – produce less shortcuts and therefore better
query times. In contrast to that metrics of opposing nature
– e.g. travel time vs. quietness of the route – result in more
CH-edges (about 11 % more) and higher query times (by a
factor of 6.4). Still the speed-up compared to ordinary Dijk-
stra is considerable and in the order of several magnitudes.

nodes edges Dijkstra
polls time(ms)

SL 203731 404521 1.2 ·105 23.72
HE 1121082 2269020 6.1 ·105 176.67
BW 2459354 4993582 1.3 ·106 409.77
CAL 11283833 22918849 7.2 ·106 2097.42

CH Preprocessing Dijkstra-CH Query
time(s) edges polls time(ms) speed-up

SL 4 715571 152 0.05 460
HE 65 4089958 506 0.29 611
BW 121 9186484 599 0.42 965
CAL 1078 44806866 2434 1.98 1059

Table 1: Experimental results: graph sizes and timings for
ordinary Dijkstra (upper table); preprocessing and query
times when employing our multicriteria CH (travel time and
fuel costs). Query times and the poll numbers are averaged
over 1000 random queries with the weight parameters α1

being chosen u.a.r in [0, 1] for each query (α2 = 1− α1).

References
Funke, S., and Storandt, S. 2013. Polynomial-time construc-
tion of contraction hierarchies for multi-criteria objectives.
In In Workshop on Algorithm Engineering and Experiments
(ALENEX), 41–54.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction Hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In Workshop on Experimental
Algorithms, 319–333.
Geisberger, R.; Kobitzsch, M.; and Sanders, P. 2010. Route
planning with flexible objective functions. In ALENEX’10,
124–137.


