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ABSTRACT
Real-world factoid or list questions often have a simple struc-
ture, yet are hard to match to facts in a given knowledge base
due to high representational and linguistic variability. For
example, to answer ”who is the ceo of apple” on Freebase re-
quires a match to an abstract ”leadership” entity with three
relations ”role”, ”organization” and ”person”, and two other
entities ”apple inc” and ”managing director”. Recent years
have seen a surge of research activity on learning-based so-
lutions for this method. We further advance the state of the
art by adopting learning-to-rank methodology and by fully
addressing the inherent entity recognition problem, which
was neglected in recent works.

We evaluate our system, called Aqqu, on two standard
benchmarks, Free917 and WebQuestions, improving the pre-
vious best result for each benchmark considerably. These
two benchmarks exhibit quite different challenges, and many
of the existing approaches were evaluated (and work well)
only for one of them. We also consider efficiency aspects and
take care that all questions can be answered interactively
(that is, within a second). Materials for full reproducibil-
ity are available on our website: http://ad.informatik.

uni-freiburg.de/publications .

1. INTRODUCTION
Knowledge bases like Freebase have reached an impressive
coverage of general knowledge. The data is stored in a clean
and structured manner, and can be queried unambiguously
via structured languages like SPARQL. However, given the
enormous amount of information (2.9 billion triples for Free-
base), mapping a search desire to the right query can be an
extremely hard task even for an expert user. For example,
consider the (seemingly) simple question who is the ceo of
apple. The answer is indeed contained in Freebase, and the
corresponding SPARQL query1 is:

1For the sake of readability, prefixes are omitted from the
entity and relation names.
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select ?name where {
Managing Director job title.people with this title ?0 .
?0 employment tenure.company Apple Inc .
?0 employment tenure.person ?name
}

It would clearly be preferable, if we could just ask the ques-
tion in natural language, and the machine automatically
computes the corresponding SPARQL query. This is the
problem we consider in this paper.

We focus on “structurally simple” questions, like the one
above. They involve k entities (typically two or three, in the
example above: ceo and apple and the result entity), which
are linked via a single k-ary relation in the knowledge base.
For languages like SPARQL, k-ary relations for k > 2 can be
represented by a special entity (one for each k-tuple in the
relation) and k − 1 binary relations (in the example above:
the three binary relations in the where clause, all connected
to the ?0 entity).

The challenge for these questions is to find the match-
ing entities and relations in the given knowledge base. The
entity-matching problem is hard, because the question may
use a variant of the name used in the knowledge base (syn-
onymy), and the knowledge base may contain many entities
with the same name (polysemy). For example, there are
218 entities with the name apple in Freebase, but the right
match for the question is actually Apple Inc. The relation-
matching problem has the same problem, which is even more
difficult for k-ary relation with k > 2. As a further complica-
tion, questions like the above do not contain any word that
matches the relations from the sought for query.2 Note how
these problems exacerbate for very large knowledge bases. If
we restrict to lexical matches, we will often miss the correct
query. If we allow weaker matches, the number of possibili-
ties becomes very large. This will become clearer in Section
3.

1.1 Contributions
We consider the following as our main contributions:

• A new end-to-end system that automatically translates a
given natural-language question to the matching SPARQL
query on a given knowledge base. Several previous systems
factor out part of the problem, for example, by assuming
the right entities for the query to be given by an oracle. See
Section 3 for an overview of our system.

• An evaluation of our system on two standard benchmarks,
Free917 and WebQuestions, where it outperforms all pre-
2This is typical when the verb to be is used in the question.
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vious approaches significantly. These two benchmarks ex-
hibit quite different challenges, and many of the existing
approaches were evaluated (and work well) only for one of
them. See Section 2 for an overview of the existing ap-
proaches, and Section 5 for the details of our evaluation.

• Integration of entity recognition in a learning-based ap-
proach. Previous learning-based approaches treated this
sub-problem in a simplistic manner, or even factored it out
by assuming the right entities to be given as part of the
problem.

• Using learning-to-rank techniques to learn pair-wise com-
parison of query candidates. Previous approaches often use
parser-inspired log-linear models for ranking.

• We also consider efficiency aspects and take care that
all questions can be answered interactively, that is, within
one second. Many of the previous systems do not consider
this aspect, and take at least several seconds and longer to
answer a single query. Again, see Section 5 for some details.

• We make the code of our system publicly available under
http://ad.informatik.uni-freiburg.de/publications .
In particular, this allows reproducing our results. The web-
site also provides various additional useful materials; in par-
ticular, a list of mistakes and inconsistencies in the Free917
and WebQuestions benchmarks.

Throughout this paper, we focus on Freebase as the cur-
rently largest general-purpose knowledge base. However,
there is nothing in our approach specific to Freebase. It
works for any knowledge base with entities and (possibly
k-ary) relations between them.

2. RELATED WORK
Much recent work on natural-language queries on knowl-

edge bases has focused on two recent benchmarks, both
based on Freebase: Free917 and WebQuestions. Section 2.1
gives an overview over this body of work, introducing the
two benchmarks on the way. In Section 5, we compare our
new method against all methods from this section. Section
2.2 briefly discusses work using other benchmarks.

2.1 Work on Free917 and WebQuestions
We consider the works in chronological order, briefly high-

lighting the relative innovations to previous works and the
corresponding gain in result quality. A more technical de-
scription of each of the methods is provided in Section 5.3.

In [7], the Free917 benchmark was first introduced. The
benchmark consists of 917 questions along with the correct3

knowledge-base query. All queries have exactly one (possi-
bly k-ary) relation. The basic approach of [7] is to extend
an existing semantic parser with correspondences between
natural-language phrases and relation names in the knowl-
edge base. The correspondences are learned using weak su-
pervision techniques and from the training portion of the
benchmark (70% = 641 questions).

In [15], query candidates are derived by transforming an
underspecified logical form of a CCG [21] parse. This form is
grounded to Freebase using a set of collapsing and expansion
operators that preserve the type of the expression. This has
the advantage that it leverages grammatical structure in the

3Actually, a small portion of the queries are incorrect, but
this is not a deliberate feature of the benchmark.

question and can adjust knowledge base mismatches, and
the disadvantage that it relies on well-formed questions. A
linear model is learned to score derivations, which are built
using a dynamic programming based parser.

In [2], the WebQuestions (WQ) benchmark was intro-
duced. This benchmark is much larger (5,810 question)
but only provides the result set for each question, not the
knowledge-base query. This allows gathering more train-
ing data more easily (the results were obtained via crowd-
sourcing). The WQ questions are also more realistic (they
were obtained via the Google Suggest API) and language-
wise more diverse than the Free917 questions, and hence
also harder (e.g. who runs china in 2011 asking for the
former Chinese Premier). The basic approach of [2] is to
generate query candidates by recursively generating logical
forms. The generation is guided by a mapping of phrases
to knowledge base predicates and a small set of composition
rules. Candidate scores are learned with a log-linear model.

In a follow-up work [3], the process from [2] is “turned on
its head” by again generating a natural-language question
from each query candidate. Scores are then learned (again
with a log-linear model) based on the similarity between the
question representing the query candidate and the original
question. This allows leverage of text-similarity informa-
tion (paraphrases) from large text corpora (unrelated to the
queried knowledge base).

In [25], the authors go another step further by not even
generating query candidates. Instead their approach tries
to identify the central entity of the question, and then it-
erates over each entity connected (via a single relation) to
that central entity in the knowledge base. It is then de-
cided (via a learned model) separately for each such entity
whether it becomes part of the result set. In principle, this
allows correct answers even when no single relation from
the knowledge base matches the question (e.g., asking for a
brother of someone, when the knowledge base only knows
about siblings). On the downside, this adds a lot of addi-
tional features to the learning process (the attributes of the
result entities). Quality-wise, the approach does not improve
over [2] and [3].

In [19], the authors go yet a step further by not even
using the training data. Instead, weak-supervision is used
to generate learning examples from natural language sen-
tences. The parsing step itself is conceptualized as a graph-
matching problem between the graph of a CCG parse and
graphs grounded in Freebase entities and relations. How-
ever, their approach was evaluated only on small (and topi-
cally narrow) subsets of the two benchmarks.

In [4], the authors try to solve the problem without any
natural-language processing (not even POS-tagging). They
match the results from [3] but do not improve them.

2.2 Other benchmarks
Another recent notable effort in open-domain question

answering is the QALD (Question Answering over Linked
Data) series of evaluation campaigns, which started in 2011.
See [22] for the latest report. So far, five benchmarks have
been issued, one per year. The challenges behind these
benchmarks are somewhat different than those behind the
Free917 and WebQuestions benchmarks from Section 2.1:

• The biggest and most diverse knowledge base used is DB-
pedia, which is more than an order of magnitude smaller
than Freebase (about 4M vs. about 40M entities).
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• A significant fraction of the questions involves more than
one relation or non-trivial comparatives. For example, what
are the capitals of all countries that the himalayas run through
or which actor was cast in the most movies.

• The training sets are relatively small (50-100 queries for
QALD 1-3). This is mainly due to the fact, discussed in
Section 2.1 above, that the ground truth provides not just
the correct result sets but also the corresponding SPARQL
queries, which requires expensive human expert work. The
benchmarks thus give relatively little opportunity for super-
vised learning. Indeed, most of the participating systems are
unsupervised. It is one of the insights from our evaluation
in Section 5 that supervised learning is key for results of the
quality we achieve.

• QALD 3 and 4 contain multi-lingual versions of the data-
sets and questions. For QALD 5, the dataset is a combina-
tion of RDF data and free text.

For these reasons, and because there is such a substantial
body of very recent work on Free917 and WebQuestions
with a series of better and better results, we did not include
QALD in our evaluation. We consider it a very worthwhile
endeavor for future work though, to extend our approach to
the QALD benchmarks.

3. SYSTEM OVERVIEW
We first describe our overall process of answering a natural

language question from a knowledge base (KB). In the next
sections we describe each of the steps in detail. Assume
we are trying to answer the following question (from the
WebQuestions benchmark):

what character does ellen play in finding nemo?

Entity identification. We begin by identifying entities
from the KB that are mentioned in the question. In our
example, ellen refers to the tv host Ellen DeGeneres and
finding nemo refers to the movie Finding Nemo. However,
like for the example in the introduction, this is not obvious:
ellen could also refer to the actor Ellen Page and finding
nemo to the video game with the same name (besides oth-
ers). Instead of fixing a decision on which entities are men-
tioned, we delay this decision and jointly disambiguate the
mentioned entities via the next steps. Hence, the result of
this step is a set of (possibly overlapping) entity mentions
with attached confidence scores.

Template matching. Next, we match a set of query tem-
plates to the question. Figure 1 shows our templates. Each
template consists of entity and relation placeholders. A
matched template corresponds to a query candidate which
can be executed against the KB to obtain an answer.

Our simplest template consists of a single entity and an
answer relation (template 1 in Figure 1). One of the query
candidates for our example is generated by matching the en-
tity for the tv host Ellen DeGeneres and the relation parents
4:

<Ellen DeGeneres> <parents> <T>

This has the (wrong) interpretation of asking for her par-
ents. A slightly more complex template contains two rela-
tions connected to the entity via a mediator object (template

4We use SPARQL-like triple (subject, predicate, object) no-
tation, where uppercase characters indicate variables.

2 in Figure 1). In our example, this matches a query can-
didate connecting Ellen Page to abstract film performance
objects, via a film performance relation, and from there to
all the films she acted in via a film relation:

<Ellen Page> <performance> <M>
<M> <film> <T>

This asks for all films Ellen Page acted in. Yet another
template combines two entities via relations and a media-
tor entity (m in template 3 in Figure 1). In our example,
Ellen DeGeneres and Finding Nemo are connected via two
relations and a film-performance mediator.

<Ellen DeGeneres> <performance> <M>
<M> <film> <Finding Nemo>
<M> <character> <T>

We find this connection using an efficient inverted index (see
Section 4.2) and continue matching from the mediator. In
particular, we create query candidates asking for the charac-
ter (Dory) and performance type (Voice) of Ellen DeGeneres
in Finding Nemo. The final result of this step is a set of all
the matched query candidates.

Relation matching. The query candidates still miss the
fundamental information about which relations were actu-
ally mentioned and asked for in the question. We distinguish
three ways of matching relations of the query candidate to
words in the question: 1) via the name or description of the
relation in the KB, 2) via words learned for each relation
using distant supervision, 3) via supervised learning on a
training set. Each match has a confidence score attached.

In our example, a word learned for the relations perfor-
mance and film connecting an actor to the film she acted in
is play. This matches in the query candidates asking for all
films of Ellen Page and for the performance type or charac-
ter of Ellen DeGeneres in Finding Nemo. Furthermore, the
word character matches the relation with the same name,
whereas the relation performance type doesn’t match. Con-
tinuing this way, all relations in all query candidates are
enriched with information about what words were matched
in which way.

Ranking. We now have a set of query candidates, where
each candidate is enriched with information about which of
its entities and relations match which parts of the question
how well. It remains to rank the candidates in order to
find the best matching candidate. Note that performing
ranking at this final step has the strong benefit of jointly
disambiguating entities and relations. A candidate can have
a weak match for an entity, but a strong match for a relation,
and vice versa. By deciding this at the final stage we can
identify these combinations as correct, even when one of the
matches seems unlikely when considered separately.

Intuitively, for our example, the candidate covering most
words of the question is best. Matching ellen to Ellen Page
does no longer allow matching Finding Nemo because these
aren’t actually related in the KB. On the other hand, ask-
ing for the performance type of Ellen DeGeneres in Finding
Nemo doesn’t match the word character. This leaves us with
the correct interpretation of asking for her character in the
movie.

4. SYSTEM DETAILS
In this section, we describe the details of our system, called

Aqqu. Aqqu works by generating query candidates for each
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Figure 1: Query templates and example candidates with corresponding questions. A query template can
consist of entity placeholders e, relation placeholders r, an intermediate object m and the answer node t.

question. These query candidates are then ranked using a
learned model. The top-ranked query is then returned (or
“no answer” in case the set of candidates was empty). The
following subsections describe the candidate generation and
ranking in detail. The previous section explained the process
by an example.

4.1 Entity matching
The goal of the entity matching phase is to identify all

entities from the knowledge base that match a part of the
question. The match can be literal, or via an alias of the
entity name.

POS-tagging We POS-tag the question using the Stanford
tagger [17]. For entity matching (this subsection), we make
use of the tags NN (noun) and NNP (proper noun). For
relation matching (Section 4.3), we also make use of the
tags VB (verb) and JJ (adjective).

Subsequence generation We generate the set S of all
subsequences of words from the question, with the following
two restrictions. First, a subsequence consisting of a sin-
gle word must be tagged NN . Second, a subsequence must
not “split” a sequence of words tagged NNP ; that is, when
it starts (ends) with a word tagged NNP , it must not be
preceded (succeeded) by a word tagged NNP .

Find matching entities For each s ∈ S, we compute the
list of all entities from the knowledge base that have s as
their name or alias. We use a map from phrases (the aliases)
to lists of entities (the entities with the respective alias) ob-
tained from the CrossWikis dataset [20]. CrossWikis was
built by mining the anchor text of links to Wikipedia en-
tities (articles) from various large web-crawls. CrossWikis
covers around 4 million entities from Wikipedia. Almost
all of these entities also exist in Freebase, together with a
link to the respective Wikipedia entity. For the remaining
Freebase entities, we only consider the literal name match.
Overall, we are able to recognize around 44 million entities
with about 60 million aliases.

We have also experimented with the aliases provided by
Freebase, but they tend to be much more noisy (wrong
aliases) and less complete (important aliases missing).

Scores for the entity matches We compute a score for
each match s, e computed in the previous step, where s is
a subsequence of words from the question and e is an en-
tity from Freebase with alias s. Consider a fixed alias s.
CrossWikis also provides us with a probability distribution
pcross(e|s) over the Wikipedia entities e with alias s. Let e′

be a Freebase entity that is not contained in CrossWikis. Let

emax be the CrossWikis entity with the highest pcross(e|s).
That is, emax is the most likely Wikipedia entity for alias
s. Let pfree(e′|s) = p(emax |s) · pop(e′)/pop(emax ), where pop
is the (alias-independent) popularity score of an entity, as
described in the next subsection. Intuitively, pfree(e′|s) es-
timates the probability that e′ has alias s via its relative
popularity to the most likely Wikipedia entity for s. We
merge pcross(e|s) and pfree(e′|s) into one probability distri-
bution by simply normalizing the probabilities to sum 1.

Popularity scores for each entity For each entity, we
also compute a (match-independent) popularity score. We
simply take the number of times the entity is mentioned
in the ClueWeb12 dataset [9], according to the annotations
provided by Google [13]. The popularity scores are used for
the entity match scores above. They also yield two features
used in ranking each candidate; see Section 4.5.

4.2 Candidate generation
Based on the entity matches, we compute a set of query

candidates as follows. We generate the query candidates in
three (disjoint) subsets, one for each of the three templates
shown in Figure 1. Each template stands for a query with
a particular kind of structure. These three templates cover
almost all of the questions in the Free917 and WebQuestions
benchmarks.

Let E be the set of all entities matched to a subsequence
of the question, as described in the previous section.

Template 1 For each e ∈ E, find all relations r such that
there is some triple (e, r, ·) in the knowledge base. We obtain
these via a single SPARQL query for each e.

Template 2 For each e ∈ E, find all r1, r2,m such that
there are two triples (e, r1,m) and (m, r2, ·) in the knowledge
base, where r1 and r2 are relations and m is a mediator
entity. We obtain these as follows. For each e, we use a single
SPARQL query to obtain all matching r1. For each e, r1, we
then use another SPARQL query to obtain all matching r2.
Note that m remains a variable in the query candidate.

Template 3 For all pairs of entities e1, e2 ∈ E such that the
two subsequences matched in the question do not overlap,
find all r1, r2, r3 such that there are three triples (e1, r1,m),
(m, r2, e2), and (m, r3, ·) in the knowledge base, where r1,
r2, r3 are relations and m is a mediator entity. We obtain
these as follows. For each entity e, we precompute the list
of all (r,m) such that m is a mediator entity and the triple
(e, r,m) exists in the knowledge base. The list is sorted
by the ids of the mediator entities. For given e1, e2 like
above, we then intersect the lists for e1 and e2. For each



mediator m in the intersection, we then obtain all r3 via a
simple SPARQL query. In the query candidate, m remains
a variable.

4.3 Relation matching
Let C be the set of query candidates computed in the

previous subsection. For each query candidate c ∈ C, let
RWc be the set of lemmatized5 words from the relations
from c (there can be one, two, or three relations, depending
on the template from which c was generated). We compute
how well the words from RWc match the subset QW of
lemmatized words from the question that are not already
matched by the entities from c.

We consider four kinds of matches, described in the fol-
lowing: literal, derivation, synonym, context. For each of
these four kinds of matches, we compute a non-negative
score (which is zero, if there is no match at all). It can
happen that all four of these scores are zero. In the basis
version of our system, we keep such candidates, in a variant
we prune them; see Section 4.7.

Literal matches This score is simply the number of pairs
w, q, where w ∈ RWc and q ∈ QW and w = q. Almost all
questions have no repeated words; in that case, this score is
just the number of relation words that occur in the question
(and are not already matched by an entity).

Derivation matches This score is the number of pairs w, q,
where w ∈ RWc and q ∈ QW and w is derivationally related
to q. Here we also consider the POS-tag of w in the question.
We precompute a map from POS-tagged words to deriva-
tions using WordNet [11]. We extract derivation links for
verbs and nouns (e.g. produce.VB - producer.NN and vice
versa). We also extract attribute links between adjectives
and their describing attribute (e.g., high.JJ - height.NN ).
We extend these links with synonyms of the noun in Word-
Net (e.g. high.JJ - elevation.NN ).

Synonym matches For each w ∈ RWc and q ∈ QW , add
s to this score if w is a synonym of q with similarity s. We
compute the similarity between two words by computing
the cosine similarity between the associated word vectors.
We use 300-dimensional word vectors that were computed
with Google’s word2vec on a news text corpus of size around
100 billion words.6 We consider only synonyms, where the
score is ≥ 0.4. This threshold is based on observation, but
chosen very liberally: many word pairs with score above that
threshold are not what humans would call “real synonyms”,
but almost all such “real synonyms” have a score above that
threshold.

Context matches For this score, we precompute weighted
indicator words for each relation from our knowledge base.
These are words which are not necessarily synonyms of words
in the relation name, but are used in text to express that re-
lation; see below for an example. The score is then the sum
of the weights of all words in QW that are indicators for one
of the relations from the query candidate. For templates 2
and 3, we consider r1.r2 as one relation.

We learn indicator words using distant supervision [18]
as follows. First, we identify entity mentions in Wikipedia
using Wiki markup and a set of simple heuristics for co-
reference resolution, as described in [1]. We also identify

5For example, founded → found and was → be.
6https://code.google.com/p/word2vec/

dates and values using SUTime [8]. For the 23 million sen-
tences that contain at least two entities (including dates or
values), we compute a dependency parse using [17].

For each pair e1, e2 of entities occurring in a sentence, we
look up all relations r in the knowledge base that connect
them. We also treat relations r1.r2 that connect the entities
via a mediator as a single binary relation r. If the shortest
path between e1 and e2 in the dependency parse has length
at most four, we consider all words along that path as in-
dicator words for r. We also experimented with considering
all words in the sentence, or words along longer paths, but
these gave considerably worse results.

We find about 4.7 million sentences that match at least
one relation this way. For example, we can thus learn that
born is an indicator word for the relation place of birth from
the following sentence (assuming that our knowledge base
contains the respective fact):

Andy Warhol was born on August 6, 1928 in Pittsburgh.

Note that from the same sentence, we can also learn that
born is an indicator word for the relation date of birth. To
distinguish between the two, we need some kind of answer
type matching; this is described in Section 4.4.

We compute the weights for the indicator words in the
following IR-style fashion. Consider each relation as a doc-
ument consisting of the words extracted for that relation.
Then compute tf.idf scores for all the words in these (rela-
tion) documents in the usual way. For each relation, then
only consider the top-1000 words and sum up their tf.idf
scores. The weight for each word in a (relation) document
is then its tf.idf score divided by this sum. This could also be
interpreted as a probability distribution p(w|r) over words
w given a relation r.

4.4 Answer type matching
For each candidate, we perform a simple but effective

binary check based on the relation leading to the answer
(r1, r2, r3 for templates 1,2 and 3, respectively). We pre-
compute a list of target types for each relation r by count-
ing the types of objects o in all triples (·, r, o), keeping only
the top ten percent of most frequent types. For questions
starting with who, we check whether the computed target
types contain the type person, character, or organization.
For questions starting with where, we check whether the re-
lation leads to a location or an event. For questions starting
with when or since when, we check whether the type is a
date; for all other questions, the check for target objects of
type date is negative.

As our evaluation and error analysis shows, these simple
heuristics work reasonably well for the Free917 and Web-
Questions benchmarks. The reason is that our entity and
relation matching already provide ample information for dis-
criminating between candidates. However, as explained in
Section 4.3, a question word like born alone does not permit
discrimination between the two relations place of birth and
date of birth. However, it is exactly those cases that can be
easily discriminated with the simple answer-type check from
above.

We leave elaborate answer-type detection (which has been
addressed by many QA systems) to future work.

4.5 Candidate features
The previous subsections have shown two things. First,

how we generate query candidates for a given question. Sec-

https://code.google.com/p/word2vec/


ID Description

1 number of entities in the query candidate

2 number of entities that matched exactly with their name, or with a high probability (> 0.8)

3 number of tokens of all entities that matched literally as per the previous feature

4-5 average (4) and sum (5) of entity match probabilities

6-7 average (6) and sum (7) of entity match popularities

8 number of relations in matched template

9 number of relations that were matched literally via their name

10-13 number of tokens that matched a relation of kind: literal (10), derivation (11), synonym (12), context (13)

14 sum of synonym match scores

15 sum of relation context match scores

16 number of times the answer relation (r1, r2, r3 for templates 1, 2 and 3 respectively) occurs in the KB

17 a value between 0 and 1 indicating how well the relation matches according to n-gram features (Section 4.5)

18 sum of features 3 and 10; that is, the number of tokens matching a relation or entity literally

19 number of tokens that match an entity or relation divided by the total number of tokens in question

20-22 whether the result size is 0 (feature 20), 1-20 (feature 21), or larger than 20 (feature 22); all binary

23 binary result of the answer-type check (Section 4.4)

Table 1: Features used by our ranking approaches. Top/middle/bottom: features for entity matches/features

for relation matches/combined or other features.

ond, how we compute various scores for each candidate that
measure how well the entities and relations from the candi-
date match which parts of the question.

In this subsection, we show how we generate a feature vec-
tor from each candidate. Most of these features are based on
the scores just mentioned. Another important feature, de-
scribed below, serves to learn the correspondence between
n-grams from the question and relations from query candi-
dates. Table 1 provides an overview over all our features. In
the description below, we refer to the features by their ID
(first column in the table). In Section 4.6, we show how we
rank candidates based on these feature vectors.

Entity/Relation matching features Features 1-7 are
based on the results from the entity matching described in
Section 4.1. Features 8-16 are based on the results from the
relation matching step described in Section 4.3. Features 18
and 19 quantify the number of words in the question covered
by entity or relation matches (feature 18 = literally, feature
19 = in any way). Features 20-22 quantify the result size.
This is important, because some candidates produce huge
result sizes or empty results sets, which are both rare. Fea-
ture 23 is the binary output of the simple answer-type check
from Section 4.4.

N-Gram relation matching feature This feature consid-
ers correspondences between words (unigrams) or two-word
phrases (bigrams) in the question and the relation in the
query candidate. For example, in the WebQuestion bench-
mark, the question who is ... almost always asks for the
profession of a person. Such a correspondence cannot be
learned by any of the mechanisms described in Section 4.3.
We learn this feature as follows.

For each query candidate, we generate all unigrams and bi-
grams of the lemmatized words of the question. The matched
entities (Section 4.1) are replaced with a special word entity.
For each n-gram, we then create an indicator feature by ap-
pending the n-gram to the relation names of the candidate.
For example, for template 2 from Figure 1, one of the fea-
tures would be employment.company+work for the uni-gram

work and the relations employment.company. We then train
an L2-regularized logistic regression classifier with all correct
candidates as positive examples and all others as negative
examples. The value of feature 17 is simply the (probability)
output by this classifier.

This feature will be part of a subsequent step to learn a
ranking that uses the same training data. To provide realis-
tic feature values (that aren’t overfit) we proceed as follows.
Split the training data into six folds. In turn, leave out one
fold and train the n-gram feature classifier on the remaining
folds. Then, for each example in the left-out fold compute
the n-gram feature value. Use this computed value as part
of the training data for subsequent learning.

4.6 Ranking
For each question, we finally rank the query candidates us-

ing the feature vectors described in the previous subsection.
The top-ranked query candidate is then used to provide the
answer. We say “no answer” only when the set of candidates
is emtpy; this is discussed in Section 4.7 below.7

We have experimented with state-of-the-art techniques
for the learning-to-rank approach from IR [14] [16], includ-
ing: RankSVM [14], RankBoost [12], LambdaRank [6] and
AdaRank [23]. These only lead to moderate results and were
outperformed by our approaches described below. We pre-
sume that this is because our ranking problem is degenerate.
In particular, each query is only associated with a single rel-
evant answer. This is different from a typical IR scenario
where a query usually has several answers, sometimes with
varying degrees of relevance.

We investigate two variants to obtain a ranking: pointwise
ranking and pairwise ranking. These approaches are inspired
by the learning-to-rank approaches from IR.

7Both benchmarks contain a considerable number of ques-
tions starting with how many ..., asking for a count. We
simply replace how many by what in these questions, and
count the size of the result set (unless the answer already is
a count).



Pointwise ranking In the pointwise ranking approach we
compute a score for each candidate. Candidates are sorted
by this score to infer a ranking. The score is computed by a
classifier learned on the candidate features (see Section 4.5)
and training data. We create training data by using the
correct candidate of each question as positive examples and
all other candidates as negative examples.

A drawback of the pointwise approach is that the model
”compares”question-independent examples. That is, correct
(incorrect) query candidates of questions of different type
and difficulty are in the same correct (incorrect) class, when
in practice it is not necessary to compare or discriminate
between them.

Pairwise ranking In the pairwise ranking approach, we
transform the ranking problem into a binary classification
problem. The idea is to learn a classifier that can predict
for a given pair of candidates, whether one should be ranked
before the other.

To infer a ranking, we sort the list of candidates using the
learned preference relation. This works very well in practice,
although our learning does not guarantee that the learned
relation is transitive or anti-symmetric. We have experi-
mented with two alternatives to sorting. Simply computing
the maximum turned out to perform badly. This makes
sense, because the maximum has to “survive” a larger num-
ber of comparisons. Following [10], we have also sorted the
candidates by their number of ”won” comparisons against
all other candidates. The results were identical to those for
sorting, but this method requires Θ(n2) comparisons for n
candidates.

To train the classifiers we create training examples in the
following way. For a question with n query candidates, ran-
domly select n/2, but at least 200 candidates (or n if n/2
< 200) . This is to guarantee that we have enough train-
ing examples for questions with few candidates and to avoid
putting too much emphasis on questions that have more
than 200 candidates.8 Then, for each randomly selected
candidate ri and the correct candidate c, where ri 6= c, cre-
ate a positive example pair (c, ri) and a negative example
pair (ri, c). The feature representation for a pair (a, b) is a
tuple of the individual feature vectors and their difference:
φpair(a, b) = (φ(a)− φ(b), φ(a), φ(b)), where φ is a function
extracting the features in Table 1.

Both ranking approaches, pointwise and pairwise, require
a classifier. Here, we consider two different options.

Linear A logistic regression classifier. In initial experi-
ments, other linear models, such as linear SVMs, have shown
similar performance. Logistic regression is also known to
output well calibrated probabilities and performs well in
high-dimensional feature spaces. We train the model us-
ing L-BFGS-B [26]. To avoid over-fitting we apply L2-
regularization choosing the regularization strength using 6-
fold cross-validation on the training set.

Random forest We learn a forest of decision trees [5].
Random forests are able to learn non-linear decision bound-
aries, require few hyperparameters, are simple to train, and
are known to perform very well on a variety of tasks.

8Our system generates around 200 candidates on average for
a random question, but the exact value had little effect on
performance in our evaluation.

4.7 Candidate pruning
Some questions may have no answers in the knowledge

base. Our system, as described so far, returns “no answer”
only when the set of query candidates is empty. However,
as also described, this would rarely happen, since there are
matching entities for every question, and we do not require
that the relations match any of the words in the question.9

We consider two variants of our system to deal with this
problem: (1) omitting the n-gram feature, and using hard
pruning; and (2) keeping the n-gram feature, and using a
pruning-classifier. Note that a nice side-effect of pruning is
that it speeds up the ranking process because it needs to
consider less candidates.

Without n-grams, with hard pruning When omitting
the n-gram feature, there is no reason to keep candidates
with the wrong answer type or where features 9-15 are all
zero. The natural approach is then to prune such candidates
before we do the ranking; this is what we call hard pruning.
Hard pruning naturally leads to empty candidate sets for
some queries. Indeed, on the Free917 benchmark, 10 ques-
tions have no answer, and our hard pruning yields an empty
candidate set for 7 of them.

With n-grams, with a pruning classifier When keep-
ing the n-gram feature, hard pruning as just described would
be counterproductive. As explained in Section 4.5, the an-
swers for the who is ... questions from the WebQuestions
benchmark are professions. They would be eliminated when
hard pruning by answer type. Also, the profession relation
matches no words from these questions. They would hence
also be eliminated when hard pruning if features 9-15 are all
zero.

The goal of the pruning classifier is to weed out only the
“obviously” bad candidates. For example, candidates that
do not match the answer type, have bad relation matches,
and a weak n-gram feature. We train the pruning classifier
in the same way as the pointwise classifiers (see above) with
the features from Table 1 using logistic regression. To op-
timize the classifier for recall we adjust example weights so
that positive candidates have twice the weight of negative
candidates. Before the ranking step, we apply the classi-
fier to each candidate and only keep candidates classified
positively.

5. EVALUATION
We perform an extensive evaluation of our system. In Sec-

tion 5.1, we provide more details on our two benchmarks. In
Section 5.2, we describe the evaluation measures used. In
Section 5.3, we describe the systems we evaluate and com-
pare to. In Section 5.4, we provide our main results followed
by a detailed analysis in Section 5.5.

5.1 Data
We use all of Freebase as our knowledge base (2.9 billion

facts on 44 million entities). Note that our approach is not
tailored to Freebase and could easily be adapted to another
knowledge base, e.g., WikiData10.

Datasets We evaluate our system on two established bench-
marks: Free917 and WebQuestions. Each benchmark con-
sists of a set of questions and their answers from Freebase.
9In that case, features 9-15 are all zero; however, the n-gram
features could still be positive.

10http://www.wikidata.org

http://www.wikidata.org


The benchmarks differ substantially in the types of questions
and their complexity.

Free917 contains 917 manually generated natural language
questions [7]. The questions cover a wide range of domains
(81 in total). Two examples are what fuel does an inter-
nal combustion engine use and how many floors does the
white house have. The most common domains, film and
business, only make up 6% of the questions [7]. All ques-
tions are grammatical and tend to be tailored to Freebase.
The dataset provides a translation of each question into a
SPARQL-equivalent form. We execute the SPARQL queries
to obtain a gold answer for each question. [7] also provide an
entity lexicon: a mapping from exact text to the mentioned
entity for all entities appearing in the questions. This lexicon
consists of 1014 different entities. It was used for identify-
ing entities by all systems reporting results on the dataset
so far. We only make use of this lexicon where explicitly
stated. To report results, we use the original split of the
questions by [7] into 70% (641) questions to train and 30%
questions (276) to test.

WebQuestions consists of 5,810 questions that were se-
lected by crawling the Google suggest API [2]. Contrary to
Free917, questions are not necessarily grammatical and are
more colloquial. For example: where did jackie kennedy go
to college and what is spoken in czech republic. Due to how
they were selected, the questions are biased towards topics
that are frequently asked from Google. According to [19],
the people domain alone makes up about 7% of questions.
Furthermore, the structure of questions tends to be simpler.
Most questions only require a single entity with an answer
relation [2]. Answers to the questions were obtained by using
crowdsourcing. This introduces additional noise; in particu-
lar, for some questions only a subset of the correct answer is
provided as gold answer. We use the original train-test split
of the questions by [2] into 70% (3,778 questions) to train
and 30% (2,032 questions) to test.

5.2 Evaluation measures
Given a benchmark and a system, denote the questions

by q1...qn, the gold answers by g1...gn, and the answers from
the system by a1...an. Note that an answer can consist of
a single value (in particular, a date or a literal) or a list of
values. We consider the following two evaluation measures.

Accuracy The fraction of queries answered with the exact
gold answer:

accuracy =
1

n

n∑
i=1

I(gi = ai)

where I(e) is an indicator function returning one if expres-
sion e is true and zero else. This is reasonable on Free917
which provides perfect gold answers.

Average F1 The average F1 across all questions:

average F1 =
1

n

n∑
i=1

F1(gi, ai)

where the function F1 computes F1 in the regular way. This
accounts for partially correct results, which is reasonable for
WebQuestions, where gold answers are sometimes incom-
plete.

In our evaluation we focus on accuracy for Free917 and
average F1 for WebQuestions. These are the most reported
and most intuitive measures for these datasets. We also per-
formed the evaluation with other measures that were used

Free917 WebQuestions

Method Accuracy+ Accuracy Average F1

Cai+Yates 59 % – –

Jacana – – 35.4 %

Sempre 62 % 52 % 35.7 %

Kwiat. et al 68 % – –

Bordes et al – – 39.2 %

ParaSempre 68.5 % 46 % 39.9 %

Aqqu 76.4 % 65.9 % 49.4 %

Table 2: Results on the Free917 (267 questions) and

WebQuestions (2032 questions) test set. For the re-

sults in the second column (Accuracy+) a manually

crafted entity lexicon was used.

in previous work, e.g., variants of F1 as defined in [15] and
[25]. These provided no new insights and strongly correlated
with the measures above.

5.3 Systems evaluated
We evaluate and compare the following systems. See Sec-

tion 2 for a brief description of the systems from previous
work. If we (re-)produced results, we explicitly state so.
Otherwise, we report existing results.

Cai+Yates The semantic parser developed by [7].

Kwiat. et al The semantic parser by [15].

Sempre The semantic parser by [2]. We produced results
for Free917 without an entity lexicon using the provided
code.11

ParaSempre The semantic parser suggested by [3]. We
used the code provided by the authors11 to produce results
on Free917 without an entity lexicon.

GraphParser The semantic parser developed by [19]. We
report results obtained from the code provided by the au-
thors12. The results from their code slightly deviates from
the results reported in their paper.

Jacana The information extraction based approach by [25].
We report updated results from [24].

Bordes et al The embedding-based model by [4].

Aqqu Our system, as described in Section 4. We want to
stress that we use the exact same system on both bench-
marks. As shown in Section 5.5 below, results can be fur-
ther improved by adapting the feature set to the benchmark.
However, we consider this overfitting. Note that all of the
systems above, except Sempre and ParaSempre, were only
evaluated on one of the two benchmarks.

5.4 Main results
Table 2 shows the results on the test sets for Free917 and

WebQuestions for all the systems from Section 5.3. Graph-
Parser is discussed separately below, because it was evalu-
ated only on a subset of questions.

On Free917, Aqqu improves in accuracy over the best pre-
vious systems by 8% with an entity lexicon, and by 14%
without entity lexicon. Performance drops considerably for
all systems when not using an entity lexicon. This shows

11http://github.com/percyliang/sempre
12http://github.com/sivareddyg/graph-parser

http://github.com/percyliang/sempre
http://github.com/sivareddyg/graph-parser


Top-2 Top-3 Top-5 Top-10

Free917 74.3 % 77.2 % 79.3 % 83.7 %

WebQuestions 67.1 % 72.7 % 77.5 % 82.3 %

Table 3: Top-k results on Free917 (top) and Web-

Questions (bottom). Percentage of questions with

the best answer in the top-k candidates.

Free917 WebQuestions

Method Acc+ Acc Avg F1

Aqqu-point-lin 73.6 % 63.4 % 46.9 %

Aqqu-point-tree 74.3 % 63.0 % 47.9 %

Aqqu-pair-lin 76.4 % 65.2 % 48.3 %

Aqqu-pair-tree 76.4 % 65.9 % 49.4 %

Table 4: Results for different ranking variants on

the test sets for Free917 and WebQuestions. For

the results in the second column (Acc+) a manually

crafted entity lexicon was used.

that addressing entity recognition is an integral part of the
problem that cannot be ignored. Overall, we achieve an or-
acle accuracy (percentage of questions where at least one
produced query candidate is correct) of 89.1% and 85.5%,
with and without entity lexicon respectively. This indicates
that there is still room for improvement for better matching
and ranking.

On WebQuestions our system improves the state of the
art by almost 10% in average F1. No system uses an entity
lexicon. Note that the WebQuestions benchmark is much
harder and contains a considerable amount of imperfect or
wrong answers. Out of a random sample of 55 questions we
found 9 questions that had a wrong answer, and 10 further
question that had only a partially correct answer. This sug-
gests that the upper bound for average F1 is roughly around
80%. Our oracle average F1 is at 68.5%. [2] and [3] report
48% and 63% respectively. Hence, we successfully identify
most of the entities and relations. However, there is still
much room for improvement in ranking and matching.
GraphParser was evaluated only on a subset of Freebase
relations. The authors provide a train-test split of questions
for WebQuestions. Note that we didn’t restrict our system
to the specific relations and that GraphParser requires an
entity lexicon also on WebQuestions. Our system (without
an entity lexicon) scores an average F1 of 66.1 % compared
to 40.5 % reported for GraphParser. The selected subset of
relations and thus questions seems to be considerably easier
to answer for our system.

5.5 Detailed analysis
Top-k results Table 3 shows the top-k results on the two
datasets. A large majority of questions can be answered
from the top two or three candidates. By providing these
interpretations and results (in addition to the top-ranked
candidate) to a user, many questions can be answered cor-
rectly. Note that on WebQuestions some questions only have
an imperfect gold answer with an F1 score smaller than one.
Therefore, the percentage of best answers in the top candi-
dates can be slightly larger than the resulting average F1.

Ranking variants As described in Section 4.6, we con-

Free917 WebQuestions

best previous 52.0 % 39.9 %

best now 69.2 % 49.4 %

no n-grams, all other 69.2 % 39.6 %

no n-grams, no lit-match 65.2 % 39.6 %

no n-grams, no synonyms 61.6 % 28.2 %

n-grams, all other 65.9 % 49.4 %

n-grams, no pruning 64.4 % 49.3 %

n-grams, no synonyms 62.0 % 48.0 %

n-grams, nothing else 18.1 % 43.8 %

Table 5: Feature analysis for Free917 and WebQues-

tions. No synonyms disables features 11-15 and no

lit-match features 2, 3, 9, 10 and 18. When not us-

ing the n-gram feature a different type of candidate

pruning is performed (see text).

.

sider two possible ranking methods: pointwise (point) and
pairwise (pair), each with two different ranking classifiers:
logistic regression (lin) and random forests (tree). This gives
a total of four different combinations.

Table 4 shows results of all four ranking variants with the
full features of Table 1. On both benchmarks, pairwise rank-
ing is more effective than pointwise ranking. This is consis-
tent with our intuition that learning a pairwise comparator
is better (see Section 4.6). Furthermore, random forests are
slightly more effective than a weighted linear combination.
We therefore use pairwise ranking with random forests as a
standard choice.

Feature analysis To gain insight into which features are
helpful we evaluate our system with different combinations.
Table 5 shows the results. Note that, as described in Section
4.7, without the n-gram feature hard pruning is applied. The
following main observations can be made.

The n-gram feature is extremely helpful on WebQuestions
but slightly detrimental on Free917. The WebQuestions
benchmark contains many questions that are hard to answer
without this kind of supervision, e.g., where is reggie bush
from? (asking for the place of birth) or what to do downtown
san francisco? (asking for tourist attractions). Our sys-
tem is able to successfully learn important features for these
from the training set. On the other hand, the small Free917
benchmark covers a wide range of domains and relations
with only few repetitions. N-gram features aren’t helpful on
this dataset, which is shown by the low performance when
only using the n-gram feature (18.1%). Note that the rank-
ing and learning problem is inherently more difficult when
the number of possible candidates increases. This is the case
when not using hard pruning which goes along with using
the n-gram feature (see Section 4.7). This disadvantage can-
not be fully compensated by the weak n-gram feature and
leaner pruning and, as a result, the score drops by about
3% for Free917. Still, we consider it more important to have
a single approach that performs well on different kinds of
datasets than to optimize for a single dataset.

Literal features provide a small benefit for Free917 but
no benefit on WebQuestions. This is an artefact of the way
Free917 was built. Free917 questions are tailored to Free-
base, often using words from the relation name as part of the



question. Synonym features are important for both datasets.
They give a huge benefit on WebQuestions without the n-
gram feature but only a small benefit on top of it.

Finally, the pruning classifier used with the n-gram feature
helps on Free917 because it allows to return ”no answer”
for some questions that have no answer in the knowledge
base. The difference on WebQuestions (which always has
an answer in the knowledge base) is not significant, and
shows that the pruning classifier doesn’t negatively affect
performance.

Manual error analysis We manually inspected the er-
rors our system makes. Many errors are due to mistakes
in the benchmarks (partially or completely wrong gold an-
swers) and inconsistencies in the knowledge base (different
relations with contradicting answers on the same piece of
information). We provide a list on our website, see the link
in Section 1.1.

On that website, we also provide a list of errors due to
our system. There is no single large class of errors worth
pointing out though.

Efficiency We also evaluated the performance of our sys-
tem. The average response time for a question is 644 ms for
Free917 and 900 ms for WebQuestions.13 None of the other
system from Section 5.3 comes with an efficiency evaluation.
For systems that provide code and for which we reproduced
results, runtimes are (at least) several seconds per query.
Training our system on the large WebQuestions benchmark
takes about 90 minutes in total.

6. CONCLUSION
We have presented Aqqu, a new end-to-end system that

automatically translates a given natural-language question
to the matching SPARQL query on a knowledge base. The
system integrates entity recognition and utilizes distant su-
pervision and learning-to-rank techniques. We showed that
our system outperforms previous state-of-the-art systems on
two very different benchmarks by 8% and more. Aqqu an-
swers questions interactively, that is, within one second.

For around 80% of the queries, the correct answer is among
the top-5 candidates. This suggests that a more interactive
approach, which asks the user’s feedback for critical deci-
sions (e.g., between two relations), could achieve a signifi-
cantly further improved accuracy.
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