Metro Maps on Flexible Base Grids

Hannah Bast¹, Patrick Brosi¹ and Sabine Storandt²

¹University of Freiburg

² University of Konstanz

17th International Symposium on Spatial and Temporal Databases August 23-25, 2021

Motivation - Octilinear Berlin Subway Map

Motivation - Orthoradial Berlin Subway Map (incl. local trains)

Motivation - Hexalinear London Subway Map

Given a line graph G = (V, E, L, L) with edge lines $L(e) \subseteq L$, render a schematic drawing of G following a predefined layout

Input line graph G

Goal (ctd.)

- Allow arbitrary number of edge bends to circumvent obstacles and approximate geographical courses
- Preserve the topology of the input graph (no crossings, preserve the (circular) edge order at nodes)
- · Maintain a minimim distance between nodes
- Optimize number and accutenes of bends, node displacement, segment length

Existing Approach

Basic idea: Find a minimum-cost image of G in an octilinear grid graph Γ covering the (padded) bounding box of G.

- Build (octilinear) grid graph on which edge bends in paths are penalized
- 2. For each $v \in V$, find image node V(v) in Γ .
- 3. For $e \in E$, e = (s, t), find image **path** $\mathcal{P}(e)$ through Γ .
- Image paths must start at corresponding image nodes and must be node-disjoint.

Existing Approach

Optimization either globally using integer linear programming (ILP) or an approximate approach (A): greedily route image path through the grid, local search on neighboring node positions for final polish.

Near-optimal drawing typically found in under 1 second.

Example (before local search)

Problems

- Only node degrees ≤ 8 supported
- Only octilinear layouts
- · Inadequate grid graph density
- · Stalling of the approximate approach

see paper this presentation this presentation see paper

Problem: Grid Graph Density Problems

We would like to have adaptive sparse base grids.

Grid Graph Density: Convex Hull Grids

Simple idea: Crop the grid graph to the (padded) convex hull of the input graph nodes.

Quadtree Grids

Idea: Build a quadtree from the input nodes.

Ensure that each cell only contains one input node, but maintain a minimum cell size.

Octilinear Hanan Grids

Idea: Build an octilinear Hanan grid (vertical, horizontal, and diagonal lines through each input node, add nodes at intersection points)

Hanan Iterations

Idea: Take the nodes of the octilinear Hanan grid as input points for another octilinear Hanan grid)

Results - Sparse Grid Sizes

Grid graph size reductions (measured in number of edges) when compared to the full grid

	Convex Hull	Quadtree	OHG-1	OHG-2*
Freiburg	51%	75%	68%	0%
Vienna	57%	81%	74%	0%
Stuttgart	43%	80%	62%	0%
Berlin	45%	83%	67%	0%
Sydney	37%	87%	74%	0%
avg	47%	80%	69%	0%

^{*} After second iteration, all but one OHG were already the full grid.

Results - Sparse Grid Quality Loss

Average additional approximation error of sparse grids

	Convex Hull	Quadtree	OHG-1	OHG-2
ILP	1%	10%	2%	1%
Α	-1%	9%	2%	0%
A+D	3%	40%	8%	0%

Results - Visual Comparison

Results - Sparse Grid Speed Up

Solution time reduction by sparse grids, on average

	Convex Hull	Quadtree	OHG-1	
ILP	-169%	-66%	-136%	
Α	7%	-90%	9%	
A+D	14%	-32%	-13%	

Results - Sparse Grid Speed Up

Solution time reduction by sparse grids, maximum time reduction

	Convex Hull	Quadtree	OHG-1	
ILP	35%	77%	84%	
Α	57%	-1%	34%	
A+D	57%	-2%	40%	

Problem: Layout Flexibility

- Ortholinear maps: Use a classic grid graph (without diagonal edges)
- Hexalinear maps: Use a triangular grid
- Orthoradial maps: Radial grid?

Problem: Node-density decreases with distance to center.

Pseudo-Orthoradial Grids

- Double number of beams each time the radius doubles
- Center at node of highest line degree

Results - Average solution times for different layouts

	Hexalinear Grid		Pseudo	udo Orthorad. Grid		
	ILP	Α	A+D	ILP	Α	A+D
F	3.8 m	138 ms	313 ms	50s	234 ms	283 ms
V	6.5 m	146 ms	654 ms	18.2 m	145 ms	351ms
ST	43.6 m	616 ms	1.3 s	28.7 m	706 ms	1.9 s
В	1.8h	470 ms	1.4 s	8.4h	2.4s	2.5s
SD	23.5 m	1.6 s	2.2s	23.2 m	468 ms	1.7 s
avg.	0.6h	594ms	1.2s	1.9 h	791ms	1.3s

Summary

- Sparse grids are able to reduce the problem instance size with only small effects on optimality, octilinear Hanan grids work best
- This size reduction does not always lead to speedups.
 Often, it takes considerably longer to find a solution.
- Our original method is able to render orthoradial, and hexalinear maps fast (< 2.5s), and in great quality.

Future Work

- · Improve labeling
- Sparse grids for alternative layouts?
- Local enlargement of high-density areas without distorting the rest of the map
- Better assessment of the esthetic quality of the maps, and different target function weights

Thank you!

http://octi.cs.uni-freiburg.de/flexmaps