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ABSTRACT
Extracting the body text from a PDF document is an important but
surprisingly di�cult task. �e reason is that PDF is a layout-based
format which speci�es the fonts and positions of the individual
characters rather than the semantic units of the text (e.g., words
or paragraphs) and their role in the document (e.g., body text or
caption). �ere is an abundance of extraction tools, but their quality
and the range of their functionality are hard to determine.

In this paper, we show how to construct a high-quality bench-
mark of principally arbitrary size from parallel TeX and PDF data.
We construct such a benchmark of 12,098 scienti�c articles from
arXiv.org and make it publicly available. We establish a set of crite-
ria for a clean and independent assessment of the semantic abilities
of a given extraction tool. We provide an extensive evaluation
of 14 state-of-the-art tools for text extraction from PDF on our
benchmark according to our criteria. We include our own method,
Icecite, which signi�cantly outperforms all other tools, but is still
not perfect. We outline the remaining steps necessary to �nally
make text extraction from PDF a “solved problem”.
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1 INTRODUCTION
PDF continues to be one of the most popular electronic document
formats. Google alone currently indexes over 3 billion PDF docu-
ments, more than for any other document format except HTML.
Unfortunately, PDF is a layout-based format: it speci�es the posi-
tions and fonts of the individual characters, of which the text is
composed; see Figure 1 for an example. Many applications require
instead information about the semantic building blocks of the text
(e.g., the words and the division into paragraphs and sections) and
their semantic roles (e.g, whether a piece of text is part of the body
text or of a footnote or of a caption). �is semantic information is
usually1 not provided as part of the PDF.
1PDF documents can be tagged with semantic information, but such tags are rarely
provided, and almost never on the level needed for typical applications.
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1.1 Kinds of semantic information
In the following, we brie�y describe the kind of semantic informa-
tion that we investigate in this paper.

Word identi�cation. �is is crucial for applications like search:
a word that has not been identi�ed correctly will not be found.
Word identi�cation in a PDF is non-trivial and challenging for a
number of reasons. �e spacing between le�ers can vary from
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� or �, see Figure 1), which are one character in the PDF but
actually translate to multiple characters in the text. Words can also
contain characters with diacritics (like à or ã), which are o�en two
characters in the PDF but translate to a single character in the text.

Word order. Determining the correct reading order of the words
is crucial for re�ow applications, where the text is cast in a di�erent
format (with di�erent font or page sizes). Re�ow is important for
e-book readers or small devices, or when one simply wants or needs
the text in raw text format. Word order can also be important in
search, when proximity information is needed. �e order of the
words within a line are easy to derive from the positions of the
words in the PDF. However, the order between lines is much less
clear. For example, PDFs with a two-column layout of the text o�en
contain the lines in an order interleaving between the two columns.
If text is output in that order — as indeed done by simple extraction
tools — it is, of course, quite unreadable.

Paragraph boundaries. Deriving the beginning and end of a
paragraph is again crucial for re�ow applications or when reading
the text in plain text format.3 �is task is even more challenging
than word identi�cation and word order. Text from the same para-
graph can be interrupted by a formula or a �gure, but still belong
to the same paragraph; for example, this is the case for the para-
graph interrupted by Figure 1 in Figure 1. Similarly, text from the
same paragraph may end at the bo�om of one page or column and
continue on the next page or column. But these same interruptions
can also mark a real break between two paragraphs.

Semantic roles. �e text elements in a PDF play di�erent se-
mantic roles. For the purpose of this paper, we distinguish between
16 roles, including: title, body text, formulas, �gures; a complete
list is given in Section 3.2. For re�ow applications, it is particular
important to distinguish the body text from the rest. For a tar-
geted search application, it might also be useful to know whether a
particular word occurs in the body text or in the caption of a �gure.

1.2 Existing tools
A large number of tools for text extraction from PDF exist. A Google
query for text extraction from PDF provides countless hits with tools
or pages recommending tools for this task. �e variety is confusing
and there does not seem to be a clear winner. Most tools do not
specify for which of the aspects above they are actually useful. All
of the tools do word identi�cation and consider word order (they
wouldn’t be of much use if they didn’t). Only the more sophisticated
tools provide paragraph boundaries and semantic roles.

So far, there has been no rigorous benchmark for this problem
and no comprehensive evaluation of existing systems. �is is sur-
prising, given the practical importance of the problem, but it also
hints at the complexity. Bringing some clarity and order into this
jungle has been the main motivation behind this paper.

1.3 Contributions
�is paper is about an extensive evaluation of existing PDF extrac-
tion tools, and about the non-trivial task of constructing a bench-
mark and developing meaningful criteria for carrying out such an
evaluation. We consider the following as our main contributions.

3For example, a wrong paragraph break o�en breaks a sentence apart.

• We describe how to construct a high-quality benchmark of prin-
cipally arbitrary size from parallel TeX and PDF data (that is, for
each TeX �le, the PDF produced from it). �e main component of
this construction is a special-purpose TeX parser that can identify
the logical text blocks of a document.
• Using this mechanism, we construct a benchmark of 12,098
scienti�c articles from arXiv. �e articles were selected to represent
a variety of topics and creation times (and thus formats) as wide
as possible. �e benchmark and all our code is publicly available
under h�ps://github.com/ckorzen/arxiv-benchmark.
• We establish a set of criteria that allows for a clean assessment of
a given extraction tool with respect to the aspects described in Sec-
tion 1.1. Establishing and measuring these criteria independently
turned out to be a challenging problem; see Section 4.3.
• We provide an extensive evaluation of 14 state-of-the-art tools
for text extraction from PDF on our benchmark according to our
criteria. For each tool, we provide a concise description of its
main mechanism and of its strengths and weaknesses. We include
our own method, Icecite, which signi�cantly outperforms all other
systems, but is still not perfect.
• We discuss the remaining steps necessary to build a fully satis-
factory tool for text extraction from PDF.

2 RELATEDWORK
�ere are some related datasets which are used in various �elds of
document analysis in order to train machine learning models or to
evaluate the quality of obtained results. �e typical use cases are
(1) dividing document pages into columns and blocks, known as
page segmentation, (2) identifying the reading order of blocks in a
page, (3) identifying the semantic roles of blocks, known as block
classi�cation, (4) extracting speci�c blocks, known as metadata
or information extraction, (5) extracting metadata from reference
strings, known as reference extraction.

We distinguish the datasets into three groups, each of them
di�ering in the granularity of the provided data. First, datasets
with metadata only, which usually provide data like titles, authors,
abstracts or citations of a speci�c set of scienti�c articles. Second,
datasets with unstructured full texts, which additionally provide the
full texts of articles, but with no or only li�le semantic markup.
�ird, datasets with structured full texts, which provide the full texts
enriched with semantic markups that identify text blocks with their
semantic roles and their positions in the outline hierarchy.

2.1 Datasets with metadata only
�e DBLP dataset [19] provides bibliographic metadata (title, au-
thor(s), publication year, journal, volume, etc.) of about 3.7 million
computer science articles. �e data are given as records in a single
XML �le, where each record includes the metadata of a single ar-
ticle. Most of the records also include an external link that points
to a PDF of the related article or to a page where the PDF can be
found. �e data are highly accurate because the �nal step in the
data curation pipeline is manual.

�e Cora Information Extraction dataset [22] is split into two
subsets. �e �rst subset includes titles, authors, a�liations and
authors extracted from the headers of 935 computer science articles.
�e second subset includes titles, authors, journals and volumes
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extracted from 500 citation strings. Both subsets were extracted
from PDF �les by several machine learning techniques.

�e UMass Citation Field Extraction Dataset [1] consists of 1,829
manually labeled citation strings which originate from 1,200 articles
from arXiv.org. It gives both coarse-grained labels (like authors, title,
venue, date, etc.) and �ne-grained labels (e.g., booktitle, address,
volume, etc. of a venue) for each citation string.

�e Marmot datasets [14] provide not only bibliographic meta-
data but also (1) tables extracted from 2,000 PDF pages and (2) 9,500
formulas along with their bounding boxes, characters and graphics
extracted from 194 PDF �les using Conditional Random Fields.

Lipinski et al. [20] compiled a dataset consisting of metadata
(title, authors, abstract and publication year) of 1,153 random arti-
cles from arXiv.org. �e dataset was used to evaluate the perfor-
mance of seven PDF extraction tools, with respect to their accura-
cies on extracting the metadata from scienti�c articles.

2.2 Datasets with unstructured full texts
�e CiteSeerX dataset [6] provides full bibliographic metadata and
the full texts of approximately 6 million scienti�c articles, extracted
from PDF �les using Support Vector Machines. �e data are given
as XML �les, where each XML �le belongs to a single scienti�c
article. �ey include speci�c markups in order to distinguish dif-
ferent blocks like titles, abstracts, authors, venues, references, etc.
However, the full texts themselves are given as unstructured con-
tinuous texts and do not allow to distinguish between any blocks
or to identify the outline hierarchy.

2.3 Datasets with structured full texts
�e Grotoap dataset [27] consists of 113 articles taken from the
Directory of Open Access Journals (DOAJ). For each article, it pro-
vides the hierarchical structure of pages, blocks, lines, words and
characters in XML �les. Basically, the data were extracted from
PDF �les using Hidden Markov Models and corrected by human
experts a�erwards in order to get full and reliable data. Obviously,
this approach does not scale to larger collections.

�e follow-up dataset, Grotoap2 [28], consists of 13,210 articles
taken from the Open Access Subset of PubMed Central [30] and
provides the hierarchical structures of scienti�c articles in XML
�les as before. �e data are extracted by a series of supervised and
unsupervised machine learning algorithms, see [29]. Again, the
extraction process is followed by a manual review step, but limited
to a small random sample of articles, in order to identify common
problems and to develop heuristics to correct them.

�e ACL Anthology Reference Corpus [4] provides (1) metadata
like the title, the author(s), the publication venue and the publica-
tion year, (2) the full texts, broken down into hierarchical blocks
and (3) the parsed references of 22,878 articles from the ACL An-
thology4. �e data acquisition is split into two steps. In the �rst
step, characters, words, lines, blocks, etc. are extracted from PDF
�les using an OCR so�ware (Nuance Omnipage). In the second step,
the extracted data are post-processed by the tool ParsCit (which we
will evaluate in Section 4) in order to obtain semantic information.

PubMed Central [30] and BioMed Central [25] are the most exten-
sive datasets in this group. �ey provide full bibliographic metadata,
4h�p://aclweb.org/anthology/

the hierarchical structures of full texts (with sections, headings and
paragraphs), �gures and tables. However, these data are publicly
available only for a small subset of their archived articles. Usually,
the data are either served by the publishers or extracted directly
from the PDF �les, followed by an extensive manual review process
in order to correct any extraction errors. However, the details of the
underlying extraction techniques are neither published nor publicly
accessible. Further, the articles of an archive o�en originate from
a well-de�ned set of publishers and thus exhibit a homogeneous
structure which greatly facilitates the extraction process and the
ability to provide extensive data.

Most of the datasets introduced in Sections 2.2 and 2.3 were
derived directly from PDF �les. Hence, without manual reviewing,
the problems outlined in Section 1.1 are inevitably solved imper-
fectly and are indeed a frequent source of errors. In contrast, TeX
is a markup language that provides semantic information like word
boundaries, paragraph boundaries and semantic roles explicitly.
�us, TeX �les (with the PDFs built from them) are much more
suitable to create high-quality benchmarks. �ose benchmarks are
eligible for applications based not only on TeX-born PDF �les, but
also on all digitally-born PDFs (e.g., created by Microso� Word) and
even on image-based PDFs, as long as they were processed by any
OCR so�ware that identi�ed the characters, their bounding boxes
and their fonts accurately. �e reason is that the listed PDF types
do not show any type speci�c di�erences in the structure of their
logical text blocks.

3 OUR BENCHMARK GENERATION
�is section is about the generation of a PDF extraction benchmark
from TeX �les of scienti�c articles, divided into the following three
steps: (1) parse TeX �les syntactically in order to identify and model
the hierarchies of their TeX elements, see Section 3.1; (2) identify
the logical text blocks (LTBs) from TeX elements using rules, see
Section 3.2; (3) serialize the LTBs to �les, see Section 3.3.

3.1 Parsing TeX �les
TeX5 is a language that allows to build statements using macros.
Given a TeX �le, the goal of this step is to model these statements
by a syntax tree representing the hierarchies of its TeX elements.
For an illustration, see the TeX snippet given in Figure 2 (a). We
want to compute the syntax tree given in Figure 2 (b), representing
the hierarchies of TeX elements a�er the expansion of macro calls.

We proceed in three steps. First, we introduce a grammar that
describes the basic syntax of the TeX language. Second, based on
this grammar, we generate a parser in order to build a syntax tree
that models the hierarchies of the TeX elements before macro calls
were expanded. �ird, we search the syntax tree for macro calls in
order to expand them recursively.

3.1.1 The TeX grammar. In this section, we give a slightly sim-
pli�ed version of our grammar that describes the syntax of the basic
TeX elements, in EBNF notation. In fact, the original grammar is
a bit more extensive to handle (1) several special syntax cases of
widely used plain TeX commands like $, $$ or \def\tex{TeX};

5To be precise, there is a di�erence between plain TeX and LaTeX. However, we use
the term TeX in a generic sense for both types.
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\newcommand{\tex}{TeX}
\section[s1]{Parsing \tex.}
{\it \tex is a language.}

〈doc〉

〈cmd〉
\section

〈opt〉

〈text〉
s1

〈arg〉

〈text〉
Parsing
TeX.

〈group〉

〈cmd〉
\it

〈text〉
TeX is a
language.

(a) (b)
Figure 2: (a) A simple TeX snippet with typical TeX
elements. Boilerplate commands like \documentclass{…}
or \begin{document} were omitted for reasons of brevity.
(b) �e syntax tree that represents the hierarchies of the el-
ements in (a), without the macro de�nition in the �rst line.

(2) any number of whitespaces and newlines within the elements
or (3) the starred variants of commands like \section*{...} or
\begin{figure*}. However, the following grammar does not lack
any signi�cant features and is detailed enough to illustrate the most
important aspects of the TeX language:

(1)〈doc〉 ::= ( 〈element〉 )*
(2)〈element〉 ::= 〈group〉 | 〈cmd〉 | 〈marker〉 | 〈comment〉 | 〈text〉
(3)〈group〉 ::= ’{’ ( 〈element〉 )* ’}’
(4)〈cmd〉 ::= 〈break-cmd〉 | 〈ctrl-cmd〉 | 〈symb-cmd〉
(5)〈break-cmd〉 ::= ( ’\n’ | ’\r\n’ )+
(6)〈ctrl-cmd〉 ::= ’\’ ( 〈le�er〉 )+ ( 〈arg〉 | 〈opt〉 )*
(7)〈symb-cmd〉 ::= ’\’ 〈non-le�er〉 [ 〈arg〉 | 〈opt〉 | 〈le�er〉 ]
(8)〈arg〉 ::= ’{’ ( 〈element〉 )* ’}’
(9)〈opt〉 ::= ’[’ ( 〈element〉 )* ’]’

(10)〈marker〉 ::= ’#’ 〈digit〉
(11)〈comment〉 ::= ’%’ ( 〈element〉 )* 〈break-cmd〉
(12)〈text〉 ::= ( 〈char〉 | 〈whitespace〉 )+
(13)〈char〉 ::= 〈le�er〉 | 〈digit〉 | 〈non-le�er〉
(14)〈whitespace〉 ::= ’ ’ | ’\t’
(15)〈le�er〉 ::= [’A’-’Z’, ’a’-’z’]
(16)〈digit〉 ::= [’0’-’9’]
(17)〈non-le�er〉 ::= [ˆ’A’-’Z’, ’a’-’z’, ’0’-’9’]

�e grammar consists of 17 production rules, where the non-terminal
〈doc〉 is the start symbol and may expand to any number of TeX
elements, see rule (1). A TeX element is either given by a group, a
command, a marker, a comment or a text phrase, see rule (2).

On commands, we distinguish between break commands, control
commands, and symbol commands, see rule (4). A break command
describes any kind of a line break. A control command describes a
command that follows the “regular” command syntax with potential
argument groups and option groups, like \today, \section{...}
or \begin{table}[h]. A symbol command describes a command
that is mainly but not exclusively used to encode a special character,
like \#, \\[10pt], \"a or \"{a}.

Further, a marker is a placeholder for an argument group in a
macro de�nition and a comment is a piece of text which we will
exclude from further processing.

3.1.2 The generation of the TeX parser. Given the grammar in-
troduced above, the next step is to generate a parser that builds the
syntax tree. We use JavaCC, a parser generator that creates LL(k)

parsers from given LL(k) grammars. In general, an LL(k) parser is
a top-down parser that reads input sequences from le� to right in
order to �nd le�most derivations in a grammar, starting at the start
symbol. At any time, an LL(k) parser looks at k lookahead symbols
in the input sequence to decide which production rule to apply,
where k is as large as a production rule can be chosen unambigu-
ously. In our case, k = 2, because for the sequence ’\’ (a backslash)
of length 1 the parser needs to look at one more symbol to decide
which kind of command (〈break-cmd〉, 〈ctrl-cmd〉 or 〈symb-cmd〉)
is denoted by the sequence.

JavaCC allows to associate each production rule with so-called
parser actions, which are in fact Java code snippets that are executed
when the production rule was derived. �ey consume series of
tokens, which can be seen as associations between substrings in the
input sequence and the production rules. We use this mechanism
to construct the syntax tree and a macro dictionary.

In principle, the constructed syntax tree re�ects the hierarchy
given by the grammar introduced above. It is a rooted and ordered
tree, where each node correlates to one of the following production
rules: 〈doc〉, 〈group〉, 〈cmd〉, 〈arg〉, 〈opt〉, 〈marker〉 or 〈text〉. �e
DFS order of nodes correlates to the order of the related elements
in the TeX �le. �e 〈doc〉, 〈group〉, 〈arg〉 and 〈opt〉 nodes may have
any number of child nodes representing the enclosed elements.
〈arg〉 and 〈opt〉 nodes exist only beneath 〈cmd〉 nodes; 〈text〉 and
〈marker〉 nodes do not have any child nodes.

�e macro dictionary is a dictionary that holds all macro de�ni-
tions. Whenever we identify a macro de�nition (like \newcommand
{\tex}{TeX}), we insert it with the macro name (\tex) as the key
and the syntax tree that represents the replacement ({TeX}), called
replacement tree, as the value.

3.1.3 The expansion of macro calls. Given the syntax tree and
the macro dictionary, the last step of the parsing process is to
expand the macro calls in the syntax tree recursively. We traverse
the syntax tree in DFS order to identify macro calls by looking up the
name of each command in the macro dictionary. If a macro call was
found, each marker in the associated replacement tree is replaced
by the related argument group of the macro call. A�erwards, the
subtree in the syntax tree representing the macro call is replaced by
the resulting replacement tree. �is process is done in a recursive
fashion in order to identify and expand nested macro calls.

3.2 Identifying logical text blocks
Given a syntax tree with expanded macro calls, the next step is
to identify the LTBs with one of the following 16 semantic roles:
title, author, a�liation, date, abstract, heading, paragraph of the
body text, formula, �gure, table, caption, listing-item, footnote,
acknowledgements, references and appendix.

Our procedure is rule-based and is sketched in the algorithm be-
low. For the sake of brevity, a Python-like syntax is used. However,
the original code is wri�en in Java. �e procedure accepts a syntax
tree and a dictionary of rules, where each rule de�nes features for
a speci�c TeX command that give details about how to handle the
command on identifying the LTBs. �e output is a list of LTBs,
where each LTB has the a�ributes level (an integer representing its
level in the outline hierarchy, which defaults to 0), text (its textual
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Algorithm: �e procedure of identifying LTBs using rules
Input:
tree A syntax tree.
rules A dictionary of rules.

Output:
List of LTBs (the identi�ed logical text blocks).

1 def identify_blocks(tree, rules):
2 level=0 # The hierarchy level.
3 itr=dfs_iterator(tree) # DFS order.
4 stack=[LTB(level=level)] # The active LTBs.
5 finished=[] # The finished LTBs.
6 for element in itr:
7 if type(element) is Text:
8 stack[-1].text += element.text
9 if type(element) is Command:

10 rule = rules.get(element)
11 if rule is None:
12 element.args = [] # Do not visit args.
13 element.opts = [] # Do not visit opts.
14 continue
15 if rule.hierarchy_level > 0:
16 level = rule.hierarchy_level
17 if rule.starts_ltb > 1:
18 finished.append(stack.pop())
19 if rule.starts_ltb > 0:
20 stack.push(LTB(level=level))
21 if rule.semantic_role is not None:
22 stack[-1].role = rule.semantic_role
23 if rule.text_phrase is not None:
24 stack[-1].text += rule.text_phrase
25 if rule.end_command is not None:
26 itr.skip_to(rule.end_command)
27 for i in len(element.args):
28 if i not in rule.args_to_visit:
29 element.args[i] = None
30 if rule.ends_ltb:
31 finished.append(stack.pop())
32 # Remove remaining blocks from stack.
33 while len(stack) > 0:
34 finished.append(stack.pop())
35 return finished

content, which defaults to the empty string) and role (its semantic
role, which defaults to “body text”).

�e basic idea is to traverse the syntax tree in DFS order (see
line 3) and to have a stack of active LTBs, initialized with a sin-
gle, empty LTB (see line 4) and a list of �nished LTBs (see line 5).
On visiting a node, one or more of the following actions may be
triggered, depending on the type of the related TeX element:

(A1) Push a new LTB to the stack.
(A2) Append a text phrase to the topmost LTB in the stack.
(A3) Set the semantic role of the topmost LTB in the stack.
(A4) Set the hierarchy level for LTBs to be created subsequently.
(A5) Pop the topmost LTB and add it to list of �nished blocks.
(A6) Skip to a given node in the syntax tree.

In case of a text, action (A2) is triggered, see line 8. In case of a
command, the triggered action(s) depend on the related rule, see
lines 9-31. Details about the rules are given in Section 3.2.1. If there

is no such rule for a command, the complete subtree de�ned by
the command is ignored (the arguments and options are removed,
such that they are not visited by the iterator, see lines 11-14). In
case of a group, option or argument, no special action is triggered
and the algorithm continues with the next node in DFS order. Once
the traversal of the tree is completed, all remaining LTBs in the
stack are popped and are added to the list of �nished LTBs, see
lines 33-34. Finally, the list of �nished LTBs is returned, see line 35.

3.2.1 The rules. �e rules are given as a dictionary of Rule
objects, where each Rule gives the following seven features for a
referred command:
Hierarchy level (hierarchy_level): A digit between 1 and 5. It
denotes the level of the section in the outline hierarchy, in case of
the command de�nes a section heading. A higher value means a
deeper level. Triggers action (A4) if a value is given, see lines 15-16.
Starts new LTB? (starts_ltb): A digit; either 1 or 2, where 1 means:
�e command introduces a new LTB (and (A1) is triggered, see lines
19-20); 2 means: �e command ends the LTB and introduces a new
one (and (A5) and (A1) are triggered, see lines 17-20).
Semantic role (semantic_role): �e semantic role that is induced
by the command. If set, action (A3) is triggered, see lines 21-22.
Text phrase (text_phrase): A text phrase to append to the current
LTB. It is used (1) to de�ne the text phrase that is in fact encoded
by the command (e.g., a special character); or (2) to de�ne a place-
holder for an LTB for which (a) it is unclear from the TeX �le how
it is visualized in the PDF �le (like a citation produced by e.g. the
command \cite{...}) or (b) there are no standardized ways to
serialize it to plain text properly, which is the case for tables, �g-
ures and formulas. Placeholders are ignored in the evaluation, see
Section 4.3.2 for details. If set, (A2) is triggered (lines 23-24).
End command (end_command): �e command that denotes the
end of the TeX environment (e.g., \end{table}), in case of the
command introduces one (e.g., \begin{table}). �is property
is needed to skip to the end of the environment, in case of the
environment should be replaced by a text phrase, see lines 25-26.
Arguments to visit (args_to_visit): List of indices of argument
groups to examine. �is feature is used to decide whether an ar-
gument of a command is relevant to the identi�cation of LTBs
or not. For example, the argument {Introduction} in the com-
mand \section{Introduction} is relevant, because it contains
textual content of an LTB. In contrast, the argument {5pt} in the
command \vspace{5pt} is not relevant, as it does not a�ect any
properties of an LTB. All arguments, which are not covered by this
list, are ignored (are cleared, see lines 27-29).
Ends current LTB? (ends_ltb): A boolean that indicates whether
the command ends the current LTB. Triggers action (A5) if the
value is set to true, see lines 30-31.
Overall, our dictionary contains about 1200 rules. Figure 3 gives an
excerpt with the values of four concrete Rule objects. �e complete
rules are given at h�ps://github.com/ckorzen/arxiv-benchmark.

3.3 Serializing logical text blocks
Given the list of identi�ed LTBs, the last step is to serialize them to
�les, optionally �ltered by given semantic roles. Our benchmark
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rules[”\section”] = Rule (
starts ltb = 2,
semantic role = ”heading”,
hierarchy level = 1,
ends ltb = true,
args to visit = [0],

)

rules[”\footnote”] = Rule (
starts ltb = 1,
semantic role = ”footnote”,
ends ltb = true,
args to visit = [0],

)

rules[”\n\n”] = Rule (
starts ltb = 2,
ends ltb = true,

)

rules[”\%”] = Rule (
text = %,

)

Figure 3: �e initialization and indexing of four concrete Rule objects for the commands \section, \footnote, \n\n and \%.
Each rule is indexed by the name of the referred command and gives features on how to handle the command. For example,
the feature starts ltb in the rule for command \n\n is 2 (denoting that the command ends the previous LTB and starts a
new one), because in TeX �les, paragraphs are separated by blank lines and we want to identify each paragraph as a single
LTB. For more details about the meaning of the individual features, see Section 3.2.1.

generator provides the following output formats: plain text, XML
and JSON. In case of plain text, the textual contents of the selected
LTBs are joined in a �at way, separated by blank lines and keeping
their order in the TeX �le. In case of XML or JSON, the texts of the
LTBs are enriched with descriptive markups, giving their semantic
roles and re�ecting their order in the TeX �le and their outline
hierarchies.

3.4 Common pitfalls
In this section, we describe two TeX-speci�c pitfalls, which can
lead to a faulty ground truth if not considered appropriately.

First, there may be some LTBs, which are present in the PDF
�le but not directly deducible from the TeX �le – either because (1)
they are not de�ned in the TeX �le but in some supplementary sty-
or cls-�les of included packages or (2) they are only de�ned at
compile time, e.g. because of conditional macros consisting of \if
and \else commands. Related examples are page headers, page
footers, page numbers or section numberings. All of them won’t
be extracted by our benchmark generator.

Second, authors occasionally misuse or ignore convenient TeX
commands. A common example is the “hard coding” of section
headers (e.g., the use of {\large \bf Introduction} instead
of \section{Introduction}) or citations (e.g., ’[2]’ instead of
\cite{foo}). Our rule-based approach is not �exible enough to
handle those cases. It means that, for example, sections like ref-
erences or appendices may be identi�ed as part of the body text
mistakenly.

3.5 Usage
As seen in Section 3.3, our benchmark generator provides built-in
options in order to produce various kinds of benchmarks, with
individual compositions of LTBs and various output formats. �us,
it is applicable to a wide variety of other applications or evaluations
related to document analysis and metadata extraction. �e code
of our benchmark generator is publicly available and can be found
under the link given above. �ere you will �nd detailed instructions
and examples on how to use and how to customize the generator
to personal needs.

4 EVALUATION OF CURRENT TOOLS
In this section, we evaluate and compare 14 state-of-the-art tools
for text extraction from PDF �les. In Section 4.1, we introduce

the evaluated tools, each with a concise description of its main
mechanism, strengths and weaknesses. In Section 4.2, we describe
our benchmark, which was constructed using the method described
in Section 3. In Section 4.3, we describe our evaluation methods, in
particular, the criteria we use to assess and compare the semantic
abilities of the tools. Section 4.4 provides the evaluation results.

4.1 �e PDF extraction tools
We have evaluated the following 14 tools. An overview and com-
parison of their feature sets is given in Table 1.
pd�otext [12] is probably the most familiar PDF extraction tool. It
converts any PDF �les to plain text �les rapidly, but does not make
any e�ort to identify paragraph boundaries or semantic roles or
only the body text.
pd�ohtml [18] converts a given PDF �le to XML or HTML, broken
down into text lines. It does not identify paragraphs or semantic
roles, extracts characters with diacritics as two characters and does
not merge hyphenated words.
pd�oxml [11] converts a given PDF �le to XML, broken down into
”blocks” (which do not correlate to paragraphs), text lines and words.
Ligatures, diacritics and hyphenated words are not handled.
PdfBox [2] is a widespread PDF library by Apache that is able to
convert a given PDF �le to plain text. It does not identify paragraph
boundaries or semantic roles, but handles ligatures and characters
with diacritics. Hyphenated words are not merged.
pdf2xml [26] uses Apache Tika (which uses PdfBox under the hood)
and pd�otext to extract text from a given PDF �le. In a postpro-
cessing step, the tool combines the result of both tools in order to
improve the identi�cation of word boundaries.
ParsCit [15] does not actually extract text from a PDF �le but pro-
cesses the results of third-party tools (like pd�otext) to extract the
body text and parse reference strings. Its abilities therefore depend
on the utilized third-party tool. In our evaluation, we use pd�otext.
LA-PdfText [5] is a tool that focuses on PDF �les of scienti�c articles
and extracts LTBs based on (user-de�ned) rules, which must be
de�ned for each di�erent article layout [23]. However, there are
some default rules, which we use in the evaluation.
PdfMiner [24] is a tool that is able to analyze the structure of a given
PDF �le and converts it to plain text, XML or HTML, broken down
into paragraphs, lines and characters. Ligatures, characters with
diacritics and hyphenated words are not handled properly.
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System PA OR RO LI DI HY FORMAT

pd�otext [12] – X1 – X X X txt

pd�ohtml [18] – X – X – – xml, html

pd�oxml [11] – X – – – – xml

PdfBox [2] – X – X X – txt

pdf2xml [26] X X1 – X – X xml, html

ParsCit [15] –2 –2 X –2 –2 –2 xml

LA-PdfText [5] – X1 X3 X – – txt

PdfMiner [24] X X1 – – – – txt, xml, html

pdfXtk [13] – X – X – – xml, html

pdf-extract [31] – X1 – X – – xml

pdfx [7] – X X X X X xml

PDFExtract [3] X X X X X X xml

Grobid [21] – X X X X X xml

Icecite [17] X X X X X X txt, xml, json

Table 1: Overview of the features of 14 PDF extraction tools,
broken down into: PA: identi�cation of paragraph bound-
aries; OR: identi�cation of the reading order; RO: identi�ca-
tion of semantic roles; LI: translation of ligatures; DI: extrac-
tion of characters with diacritics as single characters; HY:
merging of hyphenated words. If a feature is fully provided
by a tool, it is denoted by a ”X”. A number next to an en-
try points to one of the following constraints: (1) lines from
di�erent text columns are mixed sometimes; (2) depends on
the used 3rd-party tool; (3) depends on the used rules. �e
last column FORMAT gives the available output format(s).

pdfXtk [13] is built upon PdfBox and converts a given PDF �le to
XML or HTML, broken down into ”blocks” (which do not corre-
late to paragraphs), lines, words and characters. Characters with
diacritics and hyphenated words are not handled properly.
pdf-extract [31] converts PDF �les to XML, broken down into ”re-
gions” (which do not correlate to paragraphs) and text lines. Its
only semantic ability is to distinguish reference sections from non-
reference sections and to split them into individual references.
pdfx [7] is a rule-based tool that analyzes fonts and layout speci�cs
in order to construct a geometrical model of a PDF �le and to
identify the title, sections, tables, etc. from it [8]. �e sections are
broken down into ”regions”, which do not correlate to paragraphs.
PDFExtract [3] is one of the most powerful tools. It converts PDFs
of scienti�c articles to XML and is able to identify the semantic
roles title, abstract, headings and paragraphs. It handles ligatures,
characters with diacritics, and hyphenated words.
Grobid [21] is another powerful tool that breaks down PDFs into
several LTBs, like title, abstract, sections (but not paragraphs),
etc. using Conditional Random Fields. Further it is able to handle
ligatures, characters with diacritics, and hyphenated words.
Icecite [17] is our own tool, which extracts LTBs from scienti�c
articles, with a focus on paragraphs of the body text. In principle,
it is based on a rule-based approach that analyzes the distances,
positions and fonts of characters, words and text lines. Another

focus is the precise extraction of words, including an accurate
handling of ligatures, diacritics and hyphenated words.

�ere are some other related tools, which were not included in the
evaluation, because (1) they are commercial tools (like JPedal6 or
PDFlib TET7); (2) their methods and feature sets are very similar
to an already included tool (e.g. iText8, which is similar to PdfBox);
or (3) they are described in a scienti�c article, but there are no
executables provided [10] or they are not available anymore [16].

4.2 �e Benchmark
Our benchmark consists of 12,098 scienti�c articles, taken from
arXiv.org [9], a digital library that hosts about 1.2 million scienti�c
articles (on topics like physics, mathematics, computer science,
biology, �nance and statistics), indexed by month, beginning from
August 1991. For most of them, arXiv provides both, a PDF �le and
the related TeX source �le(s).

From each month, we selected 1% of the articles randomly, result-
ing in 12,098 articles. �is sample yields a good variety of topics,
creation times and thus formats of the articles from arXiv9. We also
tried larger sample sizes, but experienced only minimal variances
in our evaluation results (± 0.5%).

For each article, the benchmark contains a ground truth �le and
the related PDF �le. Each ground truth �le was generated via the
benchmark generator described in Section 3 and contains the title,
the section headings and the body text paragraphs of a particular
article in plain text format. �e PDF �les we use are not those
provided by arXiv, due to occasional (contentual) mismatches with
the corresponding TeX �les, but we regenerated them from the
provided TeX �les.

4.3 Evaluation methods
For each tool, the PDF �les of the benchmark were processed in
batches. We have chosen reasonable input parameters in order to
get output �les that re�ect, as much as possible, the structure of
the ground truth �les. �e exact parameters for each tool can be
found under h�ps://github.com/ckorzen/arxiv-benchmark.

For the tools with XML output, we translated the output to plain
text by identifying the relevant text parts. If semantic roles were
provided, we only selected those parts that are also present in the
ground truth �les. If texts were broken down into any kind of
blocks (like paragraphs, columns, or sections), we have separated
them by blank lines (like in the ground truth �les).

�e main purpose of the evaluation was to assess each tool by
comparing its output �les with the ground truth �les using a set
of easily interpretable and independent criteria. �is was harder
than expected, especially the “independent” part. In the following,
we �rst de�ne our evaluation criteria and then explain how we
compute them (which turned out be non-trivial).

4.3.1 Establishing the evaluation criteria. We are looking for
easily interpretable and independent criteria that assess the quality
of an output �le with respect to four aspects: (1) paragraph bound-
aries, (2) distinction of body text and non-body text, (3) reading
6h�p://www.idrsolutions.com/jpedal
7h�p://www.pd�ib.com/products/tet
8h�p://www.itextpdf.com/
9h�ps://arxiv.org/help/stats/2016 by area/index/
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order, and (4) word boundaries. Independence here means that it
should be possible, in principle, to perform well for any subset of
criteria but poorly for the others. We eventually came up with three
groups of criteria, that measure the di�erences between an output
�le and the related ground truth �le.
• Newline di�erences capture the quality of the detection of
paragraph boundaries and are broken down into:
– NL+: the number of spurious newlines in the output �le.
– NL−: the number of missing newlines in the output �le.
• Paragraph di�erences capture the quality of the distinction
between body and non-body text and of the reading order. �ey
are broken down into:
– P +: the number of spurious paragraphs in the output �le.
– P −: the number of missing paragraphs in the output �le.
– P ↑↓ : the number of rearranged paragraphs in the output �le.
• Word di�erences capture the quality of the recognition of
individual words and their boundaries and are broken down into:
– W +: the number of spurious words in the output �le.
– W −: the number of missing words in the output �le.
– W ∼: the number of misspelled words in the output �le.

�ese criteria are indeed easily interpretable and independent. For
example, a tool can perform well with respect to W ∼, if it handles
ligatures and hyphenated words properly; but poorly with respect
to NL+ and NL−, if it does not identify any paragraph boundaries.

4.3.2 Measuring the evaluation criteria. �e evaluation criteria
introduced above are easily interpretable, but measuring them is
non-trivial. In particular, for a given output �leO and ground truth
�le G, there are multiple ways to assign values to these criteria.
An example for this is given in Figures 4 and 5. We address this
problem by computing an assignment that minimizes

Z = (NL++ NL−) + (W ++W −+W ∼) + c · (P++ P−+ P↑↓ ),

where c ≥ 1 is a (constant) penalty score, introduced to increase the
weight for paragraph di�erences compared to newline- and word
di�erences. In the evaluation, we use c = 5.

In the following, we describe our heuristic algorithm doc-di�,
that �nds, in most cases, an optimal assignment to the evaluation
criteria with minimal Z . Let wO resp. wG be the list of words per
paragraph in O resp. G , transformed to lower case and without any
punctuation marks. For Figure 4, wO is given by [[text, extraction,
pdf ], [a, benchmark, and], [evaluation, for]] andwG is given by [[a,
benchmark, and, evaluation, for, text, extraction, from, pdf ]], where
each list at index i contains the words of paragraph i .

�e approach of doc-di� is to compare wO and wG wordwise
and to classify the di�erences into the following type of phrases:
• Common phrase (= [word1, …, wordi ]): a sequence of i con-
secutive words which are common to wO and wG .
• Di�ering phrase (∼ [word1, …, wordj ], [word1, …, wordk ]): a
sequence of j spurious words, which occur in wO but not in wG ;
and of k missing words, which occur in wG but not in wO .
• Rearrangedphrase (↑↓ [word1, …, wordm], [word1, …, wordn]):
a sequence ofm words inwO and n words inwG , which are (almost)
equal (m ≈ n), but their positions in wO and wG do not correlate.

�e phrases are computed in two rounds. In the �rst round, the
common and di�ering phrases are computed by an algorithm called

output �le O ground truth �le G
Text Extraction PDF.
<BLANKLINE>

A Benchmark and
<BLANKLINE>

Evaluation for

A Benchmark and
Evaluation for Text
Extraction from PDF.

Figure 4: An excerpt of an output �le O with three para-
graphs and the related ground truth �leGwith a single para-
graph.

Assignment 1:
P +: 3 , P −: 1

Assignment 2:
P +: 1 , NL+: 1 ,W − 4

Assignment 3:
P ↑↓ : 1 , NL+: 2 ,W −: 1

Text Extraction PDF.
<BLANKLINE>

A Benchmark and
<BLANKLINE>

Evaluation for

A Benchmark and
Evaluation for Text
Extraction from PDF.

Text Extraction PDF.
<BLANKLINE>

A Benchmark and
<BLANKLINE>

Evaluation for Text
Extraction from PDF.

<BLANKLINE>

A Benchmark and
<BLANKLINE>

Evaluation for
<BLANKLINE>

Text Extraction from
PDF.

Figure 5: �ree di�erent assignments to the evaluation cri-
teria from Section 4.3.1 in order to assess O against G from
Figure 4, with related visualizations.

word-di�, which works similar to the Unix di� command, but based
on words instead of lines. �e phrases are computed per paragraph
and know the related paragraph numbers inwO andwG . For the ex-
ample above, word-di� computes the phrasesp1: (∼ [text, extraction,
pdf ], []); p2: (= [a, benchmark, and]); p3: (= [evaluation, for]) and
p4: (∼ [], [text, extraction, from, pdf ]).

In the second round, the rearranged phrases are computed by
an algorithm called rearr-di�, which is a local alignment algorithm
and works similar to the Smith-Waterman algorithm, but based on
words instead of characters. In principle, rearr-di� looks at the dif-
fering phrases, identi�es similar word regions between spurious and
missing words, wraps them into rearranged phrases and associates
the rearranged phrases with the related di�ering phrases. For the
phrases p1,…, p4 in the example above, rearr-di� identi�es a simi-
lar word region between the spurious words of phrase p1 and the
missing words of phrase p4 and creates the rearranged phrase p5:
(↑↓ [text, extraction, pdf ], [text, extraction, from, pdf ]). Initially, all
computed rearranged phrases are seen as preliminary phrases and
could be refused while assigning values to the evaluation criteria,
see below.

Given the phrases, the next step is to assign concrete values
to the evaluation criteria. Doc-di� proceeds again in two rounds,
in which each phrase pi is seen as a standalone unit with indi-
vidual evaluation criteria W +i , W −i , W ∼i , P +i , etc. (called phrase
criteria) and an individual score Zi that scores the phrase criteria
equivalently to Z .

In the �rst round, doc-di� examines the rearranged and dif-
fering phrases in order to assign the values for word- and para-
graph di�erences. For each phrase pi , doc-di� simulates various
type-dependent evaluation scenarios, where each scenario Sj is
again given by individual evaluation criteria W +

Sj , W
−
Sj , W

∼
Sj , P

+
Sj , etc.
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(called scenario criteria) and a score ZSj that scores the scenario cri-
teria equivalently to the score Z . In case pi is a rearranged phrase,
the scenarios are:
S1: P ↑↓= 1; plus the di�erences resulting from doc-di� (w pi

O , w pi
G )

S2: P += 1 (ifm > 0); P −= 1 (if n > 0).
S3: W ∼=min(m,n); W +=m −min(m,n); W −= n −min(m,n)
where w pi

O resp. w pi
G is the list of related words in pi from wO

resp. wG , m = |w pi
O | and n = |w pi

G |. To clarify, scenario S1 de�nes
the evaluation criteria that would result when pi would indeed
be rearranged, S2 the criteria that would result when pi would be
assessed only by paragraph di�erences, and S3 the criteria that
would result when pi would be assessed only by word di�erences.
If S1 is the scenario with the minimal score, pi will be accepted as
rearranged phrase and the related scenario criteria will be added to
the phrase criteria of pi . Otherwise, pi is refused. For example, for
phrase p5, the scenario criteria of S1 are: P ↑↓= 1, W −= 1; and of
S2: P += 1, P −= 1 and of S3: W ∼= 3, W += 0, W −= 1. �e related
evaluation scores are given by ZS1 = c + 1; ZS2 = 2c and ZS3 = 4.
�us, p5 is accepted as a rearranged phrase only if c ≤ 3. Otherwise,
p5 is refused.

In case pi is a di�ering phrase, the simulated scenarios are S2
and S3, where m resp. n is given by the number of spurious resp.
missing words in pi which are not a member of an accepted rear-
ranged phrase. �ere is a special scenario S4, where none of the
evaluation criteria are a�ected, if the spurious words consist of at
least one placeholder (see Section 3.2.1 for details about the concept
of placeholders). �e criteria of the scenario with the minimal score
ZSi are added to the phrase criteria of pi . In case of a tie, the crite-
ria of the scenario which comes �rst in the introduced order are
chosen. For p1 in the example above, the scenario criteria depend
on whether p5 is accepted or not. If p5 is accepted, there are no
scenario criteria given, because m = 0 and n = 0. If p5 is refused,
m = 3 and n = 0 and the criteria of S2 are: P += 1, P −= 0 and of S3:
W ∼= 0; W += 3, W −= 0. �e related scenario scores are given by
ZS2 = c and ZS3 = 3, meaning that the scenario criteria of S2 are
added to the phrase criteria if c ≤ 3 and of S3 otherwise.

In the second round, doc-di� iterates over the phrases in order
to assign the values for the newline di�erences. For each phrase pi ,
doc-di� analyzes the paragraph numbers of pi and pi−1 in order to
identify paragraph breaks in wO and wG . If there is a paragraph
break in wO but not in wG , an NL+ is added to the phrase criteria
of pi . Analogously, if there is a paragraph break in wG but not in
wO , an NL− is added. For the example above, a NL+ is added to the
phrase criteria of p3, because there is a paragraph break between
p2 and p3 in wO , but not in wG .

At the end, the �nal assignment results from the union of all
computed phrase criteria. For example, if c ≤ 3, the �nal assign-
ment would be: P ↑↓= 1, NL+= 2; W −= 1 (which corresponds to
assignment 3 in Figure 5) and W += 3, W −= 4, NL+= 2 if c > 3.

4.4 Evaluation results
Table 2 gives an overview of the evaluation results for each of the
evaluated PDF extraction tools, broken down by the evaluation
criteria computed by the doc-di� algorithm explained above.

For most of the tools, either NL+, NL− or both are pre�y high.
Low values in both criteria are only achieved by those tools, which

indeed identify paragraph boundaries, in particular Icecite. �e com-
paratively largeNL− value for PDFExtract is caused by the fact that it
does not consider isolated formulas as single paragraphs. PdfMiner
has problems with identifying the correct paragraph boundaries if
paragraphs were split by page breaks, column breaks or LTBs like
�gures, tables or captions.

�e same is true for the criteria P + and P −: low values in both
criteria are only achieved by the more sophisticated tools, which
are able to identify the semantic roles of LTBs (like Parscit, pdfx,
PDFExtract, Grobid and Icecite). In particular, tools like pd�otext
and PdfBox show low P − values, but high P + values, because they
extract full texts without considering semantic roles. �e large P −

value of LA-PdfText is due to the fact that we used the default rules
(see Section 4.1), which resulted in a lot of missing LTBs.

In principle, all tools are able to identify the correct reading order
of words. However, some tools have problems with two-column
articles, as illustrated by the large values in the P ↑↓ criteria for
pdf2xml and pdf-extract.

In the criteria W + and W −, pdf-extract has problems with the
correct extraction of subscripts and superscripts. In many cases,
the tool extracted them as separate text lines, as they did not share
the same baseline with the belonging text line. Finally, the value for
W ∼ is large for those tools, which do not translate ligatures into
multiple characters and/or do not extract characters with diacritics
as single characters and/or merge hyphenated words (like pd�oxml,
PdfMiner or pdf-extract).

Only Icecite yields satisfactory results in all criteria (close to the
optimum among the evaluated tools). However, Icecite is work in
progress and not perfect yet either:
• Our rule-based approach on identifying LTBs, which is not �ex-
ible enough to handle each single anomaly in the structures of
scienti�c articles properly.
• Characters (in particular ligatures and special characters) which
are printed in so called Type-3 fonts, where the characters are in
fact not of textual nature but are drawn into the PDF and therefore
are not identi�able as text.
• Compound words with mandatory hyphens (like sugar-free)
which seem to be hyphenated words because they are split at the
mandatory hyphen across two text lines. In most cases, Icecite
handles them as normal hyphenated words and removes the hyphen
mistakenly (merges sugar-free to sugarfree).

�e second and third issues are well known problems, which
were also observed in most other tools. In particular, the second is
a general issue of PDF, which needs more sophisticated methods to
solve (OCR-based or learning-based).

5 CONCLUSION
We have presented an evaluation on the semantic abilities of 14
PDF extraction tools, based on a high-quality benchmark, which
we have constructed from parallel TeX and PDF data. We found
that our own PDF extraction tool, Icecite, signi�cantly outperforms
other tools with respect to (1) paragraph boundaries, (2) body text
paragraphs, (3) reading order, and (4) word boundaries. However,
it is still not perfect due to the limits of its rule-based approach.
We are con�dent that a learning-based approach can �x the open
problems.
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System Features NL+ NL− P + P − P ↑↓ W + W − W ∼ ERR T�

pd�otext [12] – O – L D H 14 (16%) 44 (53%) 60 (29%) 2.3 (0.6%) 1.4 (1.9%) 24 (0.7%) 2.4 (0.1%) 41 (1.2%) 2 0.3

pd�ohtml [18] – O – L – – 3.6 (4.3%) 70 (84%) 9.2 (31%) 4.2 (3.2%) 0.1 (0.1%) 16 (0.5%) 1.6 (0.0%) 95 (2.9%) 0 2.2

pd�oxml [11] – O – – – – 33 (40%) 20 (25%) 80 (31%) 1.8 (0.5%) 0.1 (0.1%) 21 (0.6%) 1.6 (0.0%) 154 (4.7%) 1 0.7

PdfBox [2] – O – L D – 3.0 (3.6%) 70 (85%) 7.6 (27%) 0.9 (0.2%) 0.0 (0.1%) 17 (0.5%) 1.5 (0.0%) 53 (1.6%) 2 8.8

pdf2xml [26] P O – L – H 33 (40%) 39 (48%) 44 (21%) 40 (30%) 7.8 (9.5%) 8.6 (0.3%) 3.6 (0.1%) 34 (0.9%) 1444 37

ParsCit [15] – – R – – – 15 (18%) 39 (47%) 10 (10%) 14 (6.4%) 1.3 (1.8%) 16 (0.5%) 2.3 (0.1%) 37 (1.1%) 1 6.8

LA-PdfText [5] – O R L – – 5.5 (6.4%) 23 (28%) 4.8 (3.1%) 52 (73%) 2.9 (5.9%) 5.7 (0.1%) 6.1 (0.1%) 26 (0.6%) 324 24

PdfMiner [24] P O – – – – 32 (38%) 18 (21%) 84 (30%) 3.6 (1.0%) 1.4 (2.1%) 34 (1.0%) 2.6 (0.1%) 110 (3.3%) 23 16

pdfXtk [13] – O – L – – 7.9 (9.7%) 68 (84%) 12 (29%) 4.5 (3.5%) 0.1 (0.1%) 59 (1.8%) 6.1 (0.2%) 95 (3.0%) 739 22

pdf-extract [31] – O – L – – 95 (114%) 53 (64%) 99 (32%) 8.4 (3.1%) 4.1 (7.7%) 74 (2.1%) 41 (1.2%) 149 (4.2%) 72 34

pdfx [7] – O R L D H 6.6 (8.8%) 32 (42%) 9.4 (9.6%) 19 (27%) 0.3 (0.4%) 35 (1.1%) 2.2 (0.1%) 55 (1.7%) 812 70

PDFExtract [3] P O R L D H 9.5 (11%) 33 (40%) 28 (21%) 22 (25%) 0.8 (0.9%) 12 (0.4%) 2.8 (0.1%) 61 (1.8%) 176 46

Grobid [21] – O R L D H 9.5 (11%) 30 (36%) 7.5 (6.7%) 11 (15%) 0.0 (0.0%) 14 (0.4%) 1.6 (0.0%) 63 (1.9%) 29 42

Icecite [17] P O R L D H 3.4 (4.0%) 10 (13%) 6.2 (4.2%) 7.7 (5.5%) 0.1 (0.1%) 10 (0.3%) 1.7 (0.1%) 21 (0.6%) 34 41

Table 2: Summary of the evaluation results of 14 PDF extraction tools. �e second column gives a summary of Table 1, for
convenience. �e evaluation results are given in columns 3-10, broken down into the criteria NL+: the number of spurious
newlines; NL−: the number of missing newlines; P +: the number of spurious paragraphs; P −: the number of missing para-
graphs; P ↑↓ : the number of reordered paragraphs; W +: the number of spurious words; W −: the number of missing words;
W ∼: the number of misspelled words. For each criterion, its absolute value and a percentage is given, which is computed as
follows: for NL+ and NL−, it is the absolute value divided by the number of newlines in the ground truth; for the other criteria,
it is the number of a�ected words relative to the number of words in the ground truth �les. �e best values in each criteria
are printed in blue and bold, the two worst values in red. �e column ERR gives the aggregated number of PDF �les where (a)
the extraction process resulted in an error or (b) the runtime of the extraction process exceeded the timeout of �ve minutes.
�e column T� gives the average time needed to process a single PDF �le, in seconds.

REFERENCES
[1] S. Anzaroot and A. McCallum. A New Dataset for Fine-Grained Citation Field

Extraction. In ICML Workshop (PEER), 2013.
[2] Apache. PdfBox. h�ps://pd�ox.apache.org/, 2017.
[3] Ø. R. Berg. PDFExtract. h�ps://github.com/oyvindberg/PDFExtract/, 2011.
[4] S. Bird, R. Dale, B. J. Dorr, B. R. Gibson, M. T. Joseph, M. Kan, D. Lee, B. Powley,

D. R. Radev, and Y. F. Tan. �e ACL Anthology Reference Corpus: A Reference
Dataset for Bibliographic Research in Computational Linguistics. In LREC, 2008.

[5] G. Burns. LA-PdfText. h�ps://github.com/GullyAPCBurns/lapd�ext, 2013.
[6] C. Caragea, J. Wu, A. M. Ciobanu, K. Williams, J. P. F. Ramı́rez, H. Chen, Z. Wu,

and C. L. Giles. CiteSeerX : A Scholarly Big Dataset. In ECIR, 2014.
[7] A. Constantin, S. Pe�ifer, and A. Voronkov. pdfx. h�p://pdfx.cs.man.ac.uk/, 2011.
[8] A. Constantin, S. Pe�ifer, and A. Voronkov. PDFX: Fully-automated PDF-to-XML

Conversion of Scienti�c Literature. In DocEng, 2013.
[9] Cornell University. arXiv.org e-Print archive. h�ps://arxiv.org/, 2017.

[10] N. V. Cuong, M. K. Chandrasekaran, M. Kan, and W. S. Lee. Scholarly Document
Information Extraction using Extensible Features for E�cient Higher Order
Semi-CRFs. In JCDL, 2015.

[11] H. Dejean and E. Giguet. pd�oxml. h�ps://sourceforge.net/projects/pdf2xml/,
2016.

[12] FooLabs. Xpdf: A PDF Viewer for X. h�p://www.foolabs.com/xpdf, 2014.
[13] T. Hassan. pdfXtk. h�ps://github.com/tamirhassan/pdfxtk, 2013.
[14] Institute of Computer Science and Technology of Peking University. Marmot

Datasets. h�p://www.icst.pku.edu.cn/cpdp/data/marmot data.htm, 2016.
[15] M.-Y. Kan. ParsCit. h�ps://github.com/knmnyn/ParsCit, 2016.
[16] S. Klamp�, M. Granitzer, K. Jack, and R. Kern. Unsupervised Document Structure

Analysis of Digital Scienti�c Articles. JCDL, 2014.

[17] C. Korzen. Icecite. h�ps://github.com/ckorzen/icecite, 2017.
[18] M. Kruk. pd�ohtml. h�ps://sourceforge.net/projects/pd�ohtml/, 2013.
[19] M. Ley. DBLP - Some Lessons Learned. PVLDB, 2009.
[20] M. Lipinski, K. Yao, C. Breitinger, J. Beel, and B. Gipp. Evaluation of Header

Metadata Extraction Approaches and Tools for Scienti�c PDF Documents. In
JCDL, 2013.

[21] P. Lopez. Grobid. h�ps://github.com/kermi�2/grobid, 2017.
[22] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the Construction

of Internet Portals with Machine Learning. Inf. Retr., 2000.
[23] C. Ramakrishnan, A. Patnia, E. H. Hovy, and G. A. P. C. Burns. Layout-Aware

Text Extraction from Full-Text PDF of Scienti�c Articles. Source Code for Biology
and Medicine, 2012.

[24] Y. Shinyama. PdfMiner. h�ps://github.com/euske/pdfminer, 2016.
[25] Springer Nature. BioMed Central. h�ps://www.biomedcentral.com/, 2017.
[26] J. Tiedemann. pdf2xml. h�ps://bitbucket.org/tiedemann/pdf2xml/, 2016.
[27] D. Tkaczyk, A. Czeczko, K. Rusek, L. Bolikowski, and R. Bogacewicz. GROTOAP:

Ground Truth for Open Access Publications. In JCDL, 2012.
[28] D. Tkaczyk, P. Szostek, and L. Bolikowski. GROTOAP2 - �e Methodology of

Creating a Large Ground Truth Dataset of Scienti�c Articles. D-Lib Magazine,
2014.

[29] D. Tkaczyk, P. Szostek, P. J. Dendek, M. Fedoryszak, and L. Bolikowski. CERMINE
- Automatic Extraction of Metadata and References from Scienti�c Literature. In
DAS, 2014.

[30] U.S. National Institutes of Health’s National Library of Medicine. PubMed Central.
h�ps://www.ncbi.nlm.nih.gov/pmc/, 2017.

[31] K. J. Ward. pdf-extract. h�ps://github.com/CrossRef/pdfextract/, 2015.

10

https://pdfbox.apache.org/
https://github.com/oyvindberg/PDFExtract/
https://github.com/GullyAPCBurns/lapdftext
http://pdfx.cs.man.ac.uk/
https://arxiv.org/
https://sourceforge.net/projects/pdf2xml/
http://www.foolabs.com/xpdf
https://github.com/tamirhassan/pdfxtk
http://www.icst.pku.edu.cn/cpdp/data/marmot_data.htm
https://github.com/knmnyn/ParsCit
https://github.com/ckorzen/icecite
https://sourceforge.net/projects/pdftohtml/
https://github.com/kermitt2/grobid
https://github.com/euske/pdfminer
https://www.biomedcentral.com/
https://bitbucket.org/tiedemann/pdf2xml/
https://www.ncbi.nlm.nih.gov/pmc/
https://github.com/CrossRef/pdfextract/

	Abstract
	1 Introduction
	1.1 Kinds of semantic information
	1.2 Existing tools
	1.3 Contributions

	2 Related Work
	2.1 Datasets with metadata only
	2.2 Datasets with unstructured full texts
	2.3 Datasets with structured full texts

	3 Our Benchmark Generation
	3.1 Parsing TeX files
	3.2 Identifying logical text blocks
	3.3 Serializing logical text blocks
	3.4 Common pitfalls
	3.5 Usage

	4 Evaluation of current tools
	4.1 The PDF extraction tools
	4.2 The Benchmark
	4.3 Evaluation methods
	4.4 Evaluation results

	5 Conclusion
	References

