
The QLever UI
+ its connection to other projects in our group

+ a crash course on some knowledge base basics

Hannah Bast
Algorithms & Data Structures Group
Department of Computer Science
University of Freiburg, Germany

Talk @ AD Group Seminar
Freiburg, October 6, 2020

Overview over this talk

2

Part 1 Knowledge Base Basics 12 slides

Part 2 Connection to other 4 slides
projects in our group

Part 3 The Qlever UI 7 slides*

Lots of examples and demos
Please interrupt me at any time

if something is not clear

* One of these 7 slides has a list of the progress and features added to the
Qlever UI over time, and I will spend quite a bit of time on that slide

Knowledge Base Basics 1/12

3

 Knowledge bases, simple version
– A knowledge base can be represented as a collection

of subject-predicate-object triples, for example:
<Meryl Streep> <is-a> <Person> .
<Meryl Streep> <Gender> <Female> .
<Meryl Streep> <Date of birth> "1949-06-22" .
<Meryl Streep> <Award won> <Oscar Best Actress> .

– Modeling data as triples is the central element of the Resource
Description Framework (RDF) specification; also:
Each part of a triple is an International Resource Identifier (IRI)
An IRI is just like a URI, but allowing more characters (ä, Ж, ず, …)
Objects can also be strings, so-called literals
Literals can have languages and (basic) data types, see later slide

– RDF is not a data format; what we see above is one of several data
formats ("serializations") for RDF data, called N-Triples (NT)

Knowledge Base Basics 2/12

4

 The standard query language is SPARQL
– A simple example query: all winners of an Oscar for Best Actress in

the knowledge base, together with their birth date, youngest first
SELECT ?person ?date_of_birth WHERE {

?person <Award won> <Oscar Best Actress> .
?person <Date of birth> ?date_of_birth .

}
ORDER BY DESC(?date_of_birth)

– Note how the query syntax is similar to the N-Triples input format
Except that each component of a triple can also be a variable

– The result is a table (one column per variable in the SELECT clause)
Each row is simply an assignment to the variables such that all the
triples in the body of the query exist in the knowledge base
NOTE: If in the query above, a person has k birth dates, there would
be k rows in the table for that person, one for each birth date

Knowledge Base Basics 3/12

5

 Important SPARQL features
– List of features used in many typical queries (by example); understand

that in SPARQL each intermediate result is a table
ORDER BY DESC(?year) Order result rows by value of this column
OPTIONAL { … } enclosed triples can but don't have to match
FILTER (?height > 8000) Reduce to rows with specified property
GROUP BY ?x Conflate rows with same value for ?x
{ … } UNION { … } union of two result tables
VALUES { … } create result table with explicit values
{ SELECT … } Subquery within a query (arbitrarily nestable)
BIND (?old AS ?new) Copy result column (or modify with function)
<birth place>|<nationality> Union of two predicates
<birth place>/<contained> Predicate path of length 2
<contained>* Transitive hull (+ = at least once)

Knowledge Base Basics 4/12

6

 Knowledge bases
– Our first knowledge base example was oversimplified in two ways

1. The IRIs were short and not universally unambiguous
The same IRI might mean something different in a different
knowledge base and then we have trouble when we combine them
2. In real knowledge bases, IRIs do not have human-readable names,
but those names are specified via a dedicated predicate
Reason: we want IDs to be stable, but the name of an entity may
change + an entity has a different name in different languages

– In Wikidata, Meryl Streep has the (globally unique and stable) IRI
<http://www.wikidata.org/entity/Q873>
and the names in the various languages are specified as follows
<http://.../Q873> <http://.../rdf-schema#label> "Meryl Streep"@en .
<http://.../Q873> <http://.../rdf-schema#label> "Merila Strīpa"@lv .
<http://.../Q873> <http://.../rdf-schema#label> "Мерил Стрип"@ru .

Knowledge Base Basics 5/12

7

 Knowledge bases
– In Wikidata, the information about Meryl Streep looks as follows

We now use the more compact Turtle (TTL) format, which has features
like IRI prefixes and ; for stating multiple triples for the same subject
@prefix wd: <http://www.wikidata.org/entity>
@prefix wdt: <http://www.wikidata.org/prop/direct/>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
wd:Q873 wdt:P31 wd:Q5 ;

wdt:P21 wd:Q6581072 ;
wdt:P569 "1949-06-22"⌃⌃xsd:dateTime ;
wdt:P166 wd:Q103618 .

wd:Q873 rdfs:label "Meryl Streep"@en .
wd:Q5 rdfs:label "human"@en .
wd:Q6581072 rdfs:label "female"@en .
wd:Q103618 rdfs:label "Academy Award for Best Actress"@en .

Knowledge Base Basics 6/12

8

 Reification, problem
– The RDF idea of casting everything as triples is very elegant

Compare this to a database where we usually have multiple tables
and we need to understand the schema of each table (= what each
column means) to understand what the data means

– But consider this information about Meryl Streep's three Oscars:
1980 Oscar for Best Supporting Actress "Kramer vs. Kramer"
1983 Oscar for Best Actress "Sophie's Choice"
2912 Oscar for Best Actress "The Iron Lady"

– This seems to require an n-ary relation, where n > 2
n = 4 in this case, because each element has four pieces of
information: person, year, award, film

– How can we cast this as triples? (which inherently capture only binary
information, namely between a subject and an object)

Knowledge Base Basics 7/12

9

 Reification, first try
– Consider the following triples (in the simpler N-Triples format again)

<Meryl Streep> <won award> <Oscar Best Supporting Actress> .
<Meryl Streep> <won award> <Oscar Best Actress> .
<Meryl Streep> <won award in year> "1980" .
<Meryl Streep> <won award in year> "1983" .
<Meryl Streep> <won award in year> "2012" .
<Meryl Streep> <won award for film> <Kramer vs. Kramer> .
<Meryl Streep> <won award for film> <Sophie’s Choice> .
<Meryl Streep> <won award for film> <The Iron Lady> .

– Problem: we have now lost information
The triples tell us that Meryl Streep has won awards in the years 1980,
1983, and 2021. They don't us tell which award in which year for what

Knowledge Base Basics 8/12

10

 Reification, Wikidata solution
– For each element of the n-ary relation, introduce an intermediate entity and

connect each component of the element to that node via a normal triple
In Wikidata, these intermediate entities are called statement nodes

– For example, the statement node for Meryl Streep's 2012 Oscar is called
<http://.../statement/Q873-6ad4311a-47f9-8d9b-7c91-d387e71529ac>

– The information about that Oscar is expressed via the following triples
@prefix wd: <http://www.wikidata.org/entity/>
@prefix wds: <http://www.wikidata.org/entity/statement/>
@prefix p: <http://www.wikidata.org/prop/>
@prefix ps: <http://www.wikidata.org/prop/statement/>
@prefix pq: <http://www.wikidata.org/prop/qualifier/>
wd:Q873 p:166 wds:Q873-...-d387e71529ac .
wds:Q873-...-d387e71529ac ps:P166 wd:Q103618 . # award
wds:Q873-...-d387e71529ac pq:P585 "2011-01-01" . # point in time
wds:Q873-...-d387e71529ac pq:P1686 wd:Q269810 . # for work

Knowledge Base Basics 9/12

11

 Reification, predicate variants and names
– With reification, the "same" predicate can appear in different roles
– For example, for the Wikidata property for "award received" we have:

wdt:P166 from an entity directly to its main property
p:P166 from an entity to a statement node
ps:P166 from a statement node to the main property of that statement
pq:P166 from a statement node to an additional property ("qualifier")
… five more variants :o

– Technically, these are completely different predicates; but their common
suffix (P166) indicates that they have something in common; in particular,
they share a common name via a connection to a "meta entity":
wd:P166 rdfs:label "award received"@en .
wd:P166 wikibase:directClaim wdt:P166 .
wd:P166 wikibase:claim p:P166 .
wd:P166 wikibase:statementProperty ps:P166 .
wd:P166 wikibase:qualifier pq:P166 .

Knowledge Base Basics 10/12

12

 Interim conclusion
– RDF, stable IDs, name predicates, reification are very elegant ideas

Indeed, knowledge bases prior to Wikidata did not implement them so
consistently, which really complicated working with them in depth

– But one consequence is that even seemingly simple queries can
becomes quite complex in SPARQL, for example
All Oscars of Meryl Streep (and the films she won them for)
Note that this is not a constructed query, but the kind of query which
people ask on Google (expecting an informative answer)
Let's look at the correct (and simplest) SPARQL query for this on the
next slide

Knowledge Base Basics 11/12

13

 SPARQL query for Meryl Streep's Oscars
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>
PREFIX pq: <http://www.wikidata.org/prop/qualifier/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?film ?award WHERE {

wd:Q873 p:P166 ?s . # to statement node
?s ps:P166 ?award_id . # award
?s pq:P1686 ?film_id . # for work
?award_id wdt:P31 wd:Q19020 . # instance of
?film_id rdfs:label ?film . # name
?award_id rdfs:label ?award . # name
FILTER (LANG(?film) = "en") # only English name
FILTER (LANG(?award) = "en") # only English name

}

Knowledge Base Basics 12/12

14

 Observations
– Let us stop here with the "basics" for this talk, but understand:

1. This is by far not everything: there are yet more subtleties and
challenges when working with knowledge bases
2. These are not design flaws; rather, representing large amounts of
knowledge in a structured way has an inherent complexity

– What about natural language, does it have the same problems?
3. It is indeed the beauty of natural language that it allows to capture
this complexity (and more) in a very flexible way, without strict rules
4. There is a price: natural language is inherently fuzzy; one can make
100% precise statements in natural language, but that takes effort
5. Also, there is no way that one can extract complex information from a
text collection as precisely as from a knowledge base

This is why I strongly believe that both text and knowledge bases are
important, and no amount of AI will change that (in the next 50 years)

Other projects in our group 1/4

15

 Question Answering
– To answer questions from a knowledge base, we need to translate a

natural language query to its "logical form", e.g., a SPARQL query
→ work by Elmar, Niklas, Thomas (Aqqu) + hopefully more of you

– Our work on the QLever UI is relevant for that in two respects
1. To be able to translate a question to a SPARQL query, we need to
understand the challenges and subtleties of SPARQL queries
2. An intelligent and functioning SPARQL autocompletion is actually a
big step towards question answering, for the following reason:

• A good autocompletion allows the construction of a SPARQL query
with minimal user input and little and simple user interaction

• A question can be seen as minimal user input, so all that remains is
to automate the user interaction part

– More generally, understanding the intricacies of knowledge bases and
SPARQL helps to deeper understand natural language processing

Other projects in our group 2/4

16

 Combination with text search
– QLever is unique for its capabilities to search in text combined with a

knowledge base; here are some sub-problems:
Entity Linking: To combine text with a knowledge base, we need to
recognize and disambiguate entity mentions (also co-references like
"he", "she", "it", "the film") in the text → work by Matthias and Natalie
Text extraction from PDF: Much text is available in the form of
PDFs, but it is very hard to extract text (and semantic information like
what is a header) from PDFs; this has nothing to do with the particular
PDF standard, it's an inherent problem → talk by Claudius in November
Error correction: Errors and wrong spacing are a big issue, for any
text produced by humans and also for text extracted from PDFs; if this
is not fixed, we get zero results → work by Markus, Matthias, Mostafa
Note that error correction is not only relevant for text search, but
also for SPARQL queries, question answering, and autocompletion!

Other projects in our group 3/4

17

 Efficiency
– Interacting with a knowledge base is no fun (or infeasible) if it takes

forever to build an index or ask queries
QLever query engine: Fast index construction, basic architecture,
query planning, efficient support of the many SPARQL features
→ work by Björn, Niklas, Florian (Kramer), Johannes
Autocompletion: Suggestions are only fun when they are very fast
→ work by Niklas, Johannes, Theresa

 User Interfaces
– Important to easily interact with the data and understand it, which is

the foundation of much of our other work + as mentioned earlier, an
important step towards question answering
→ work by Florian (Bäurle), Björn, Elmar, Johannes, Daniel (Kemen),
Julian (Bürklin), Simon (Selg), Natalie, Theresa
More about the QLever UI in the third part of this talk

Other projects in our group 4/4

18

 Domain-specific knowledge bases
– Building knowledge bases for each particular domain has its own

challenges, especially when the knowledge bases are huge
Freebase and Clueweb: this was a huge challenge at the time (3.1B
triples, 23.4B words) → work by Elmar and Björn
Wikidata: it took us a year to enable QLever to index the complete
Wikidata (13B triples) in less than a day without using huge amounts of
RAM → work by Niklas and Johannes
OpenStreetMap: ongoing project with its own challenges because of
the huge number of objects and the geometrical data
→ work by Axel and Patrick (our OSM expert)
Publication data / DBLP: our first search engine in 2006 still powers
the DBLP publication search; in the meantime, there is also an RDF
dump of the data → see end of the talk

The QLever UI 1/7

19

 Goal
– Provide interactive suggestions in order to write a SPARQL query with

the desired result as effortlessly and as quickly as possible

 Realization
– When we started this work, we constructed all kinds of auxiliary data

structures to make these suggestions sufficiently fast
– Eventually, we realized that all suggestion queries could be formulated

as SPARQL queries and instead of building special-purpose data
structures, we improved QLever to process the Autocompletion SPARQL
queries efficiently
As a nice side effect, many useful features (that were missing so far)
were added to QLever and many operations were sped up significantly
Two birds with one stone: no need for a separate autocompletion
engine and a better SPARQL engine

The QLever UI 2/7

20

 SPARQL autocompletion via SPARQL 1/3
– For example, assume that we have typed the following incomplete

query and are looking for suggestions for objects (cursor at _)
SELECT … WHERE {

wd:Q873 wdt:P166 A_ # Meryl Streep award won
}

– Then we can get these suggestions via the following SPARQL query
SELECT ?object ?name ?score WHERE {

wd:Q873 wdt:P166 ?object .
?object skos:altLabel|rdfs:label ?name .
?object ⌃schema:about/wikibase:sitelinks ?score .
FILTER REGEX(?name, "^A")

} ORDER BY DESC(?score)

Recall: the | operator takes the union of two predicates; the ^ operator
reverses a predicate; the / operator expresses a "path" via an
intermediate object which we don't care about

The QLever UI 3/7

21

 SPARQL autocompletion via SPARQL 2/3
– Now assume that we have typed the following incomplete query and are

looking for suggestions for predicates (cursor at _)
SELECT … WHERE {

wd:Q873 p:P166 ?s . # Meryl Streep award won
?s _

}
– Then we can get these suggestions via the following SPARQL query

SELECT ?predicate ?name ?score WHERE {
{ SELECT ?predicate (COUNT(?object_tmp) AS ?score) WHERE {

wd:Q873 p:P166 ?s .
?s ?predicate ?object_tmp .

} GROUP BY ?predicate }
?meta_tmp ?connect_tmp ?predicate .
?meta_tmp rdfs:label ?name .

} ORDER BY DESC(?score)

The QLever UI 4/7

22

 SPARQL autocompletion via SPARQL 3/3
– Now assume that we have typed the following incomplete query and are

looking for suggestions for predicates (cursor at _)
SELECT … WHERE {

?x _
}

– Then we can get these suggestions via the following SPARQL query
SELECT ?predicate ?name ?score WHERE {

{ SELECT ?predicate (COUNT(?object_tmp) AS ?score) WHERE {
?x ?predicate ?object_tmp .

} GROUP BY ?predicate }
?meta_tmp ?connect_tmp ?predicate .
?meta_tmp rdfs:label ?name .

} ORDER BY DESC(?score)
The ?x ?predicate ?object_tmp query looks like we have to scan the
whole index, that looks infeasible

The QLever UI 5/7

23

 Challenges and progress over time
– Provide all suggestions via SPARQL example previous slide

– Use names and aliases from the knowledge base example previous slide

– Ranking via information from the knowledge base example previous slide

– Context-sensitive suggestions
– Essential SPARQL features added or made efficient talk on its own
– Efficient support for ql:has-predicate talk on its own
– Caching and memory efficiency and awareness talk on its own
– Sophisticated evaluation benchmarks and suite talk on its own
– Template mechanism for suggestion queries
– Suggestion of reverse predicates
– Timeout with fallback to context-agnostic suggestions inside Qlever UI?
– Automatic addition of name triples and select variables
– Map UI … with recursive clustering for large result sets talk on its own

The QLever UI 6/7

24

 What is still missing?
– Despite all the great progress, for some queries, it is still hard to guess

how certain pieces of information are represented in the knowledge base:
Transitivity: To get all entities of a certain type, we often need
constructs such as wdt:P31/wdt:P279* … e.g.: all cities
It would be great if the UI could automatically realize that such a
predicate path is appropriate or needed … but how?
One-hop connections: Sometimes, finding the predicate to get to the
right statement node can be very unintuitive … e.g.: members Bundestag
It would be great if we could specify the kind of entity we want to reach
and than the UI suggests how to get there … but how?
Clumsy SPARQL constructs: several intuitive notions are very clumsy
to express in SPARQL; in particular, SPARQL queries that require a
GROUP BY are always a pain … e.g.: Bundestag members and their party
Idea: context-sensitive suggestions of whole constructs (not just
components of a triple) for extending a query

The QLever UI 7/7

25

 Let's do some live queries together
– Think of some interesting list or table of information that can be

extracted from Wikidata or OpenStreetMap
With or without relation to a map, as you like

– Then let us try to find the correct SPARQL query using the Qlever UI

	The QLever UI�+ its connection to other projects in our group�+ a crash course on some knowledge base basics
	Overview over this talk
	Knowledge Base Basics 1/12
	Knowledge Base Basics 2/12
	Knowledge Base Basics 3/12
	Knowledge Base Basics 4/12
	Knowledge Base Basics 5/12
	Knowledge Base Basics 6/12
	Knowledge Base Basics 7/12
	Knowledge Base Basics 8/12
	Knowledge Base Basics 9/12
	Knowledge Base Basics 10/12
	Knowledge Base Basics 11/12
	Knowledge Base Basics 12/12
	Other projects in our group 1/4
	Other projects in our group 2/4
	Other projects in our group 3/4
	Other projects in our group 4/4
	The QLever UI 1/7
	The QLever UI 2/7
	The QLever UI 3/7
	The QLever UI 4/7
	The QLever UI 5/7
	The QLever UI 6/7
	The QLever UI 7/7

