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ABSTRACT

We consider the problem of indexing the complete OpenStreetMap
planet data set (> 500GB of raw data) to support complex queries
involving both text search as well as context-aware spatial relations.
This requires (a) formalization of spatial relations like north of’,
’between’, ‘near’ depending on the context, and (b) the development
of suitable data representations to integrate textual and spatial
information for efficient query performance.
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1 INTRODUCTION AND RELATED WORK

Directional relations are frequently used to select data in spatial
databases (SDB) and are fundamental to spatial data queries, analy-
sis and reasoning [1, 6]. They are not only used widely in geographic
information systems, but also in areas like artificial intelligence
[8], computer vision [9], and multimedia [12]. Consequently there
has been a significant amount of effort to determine directional
relations automatically.

A commonly used indicator for the directional relation between
two regions is the direction between their centroids [11], possibly
snapped to one of the 8 cardinal directions. As an advantage, this
indicator is symmetric and once the centroids are (pre)computed,
efficient to evaluate for a pair of regions. Yet, sometimes asymmetric
answers make more sense, which the popular direction-relation
matrix model [5] allows for. It subdivides the space around the
bounding box of the reference region into nine direction tiles and
classifies other regions according to the cell of the subdivision they
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lie in. [3] introduce a splitting line model to decide on the relation
of two geometric entities. The goal of all these approaches is to
compute a directional indicator between two given regions, whereas
for our concrete application of a SDB we want to determine regions
fulfilling a certain directional relation. Moreover we also need to
derive the extent of a region for the matches, not only a direction.

[10] and [7] propose non-trivial spatial queries and respective
implementations in the context of a SDB system. In [10] nearest
neighbors and range search primitives, amongst others, are imple-
mented both for Euclidean and network connectivity constraints.
For example, for the nearest neighbor primitive, they employ geo-
metric search structures and a network traversal to collect matching
results. [7] on the other hand design rather complex surrounder
queries with the main application domain being in location based
services. The reported experiments are of rather small scale (a data-
base of a few thousand elements). While these approaches yield
exact nearest neighbors or report exactly all entities in a given
range, we want to emphasize that they are hardly feasible for large
data-sets. Queries like “All McDonald’s branches world-wide which
do not have a Burger King branch within 2km radius” would have
to be executed on each McDonald’s branch world-wide (more than
30,000).

Our contribution

This work is based on the freely-available OpenStreetMap (OSM)
data set. In [2] we have proposed an efficient framework to access
all entities of the OSM planet data set with their implicit and explicit
informations, supporting substring search on the key-value tags
as well as all common set operations like intersection, union, or
difference. This work builds upon this framework, extending it
to allow for the efficient support of adaptive spatial relations. We
provide actual semantics of spatial relations based on context and
their implementation in our framework. Experiments as well as a
web-based demonstrator on www.oscar-web.de show the efficiency
of our approach even on a planet scale with hundreds of millions
of elements.

2 OSM CELL ARRANGEMENTS

The key concept behind OSCAR is a so-called cell arrangement of
OSM regions. Consider a set of simple polygons #, each correspond-
ing to an OSM region. Each single polygon P € P divides the plane
into two regions, the interior of the polygon and the exterior. The set
% naturally induces a subdivision of the plane into cells, we call this
the cell arrangement A = A(P) of P. All points within a single cell
¢ € A have the property that they behave identically with respect
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Figure 1: Left: Cell arrangement — Points in the gray cell 11
have the property of being contained in the brown, purple,
orange, and red region, but not in the others. Right: Corre-
sponding inclusion-DAG.

to containment in the set of polygons, in particular inheriting the
same information associated with the respective OSM regions.

The efficiency of OSCAR is based on the fact that the number
of cells in our cell arrangement (A is considerably smaller than the
total number of items. The basic idea for our query data structure
is then as follows:

(1) create cell arrangement A induced by OSM regions

(2) associate with each cell ¢ € A all tags of OSM regions
containing ¢

(3) build search structure on ’tagged’ cells and individually
tagged nodes

So for a single query string such as Stuttgart our data structure re-
turns all cells which have an associated tag with substring ’Stuttgart’
as well as all individual nodes whose tag set contains the substring
"Stuttgart’. If several search terms are specified as part of a complex
search query, the set operations take place at the cell level as long
as possible. Only at the very end, a conversion to items takes place.
The inclusion-relation of the regions creating the cell arrange-
ment induces a natural clustering which we use for presenting the
result and calculation of candidate regions and items. See Figure 1,
left, for a cell arrangement with 12 cells induced by 8 regions. In
Figure 1, right, we see the induced Directed Acyclic Graph — we call
it Inclusion-DAG. There is a directed edge (v, w) from a cell/region
node v to a region node w in the DAG, if and only if the cell/region
v is fully contained in the region w and there exists no other region
w’ C w in which it is fully contained. For a cell the set of regions it
is contained in can be easily determined via breadth- or depth-first
search in the inclusion-DAG starting from the respective node.

Refining the OSCAR Cell Complex

For implementations of Adaptive Spatial Relations, it is desirable to
have a cell arrangement with well-shaped cells. This is typically not
given for the cell arrangement induced by the OSM regions, e.g.,
many cells have very irregular shapes. Hence we perform a refine-
ment step to make cells of the arrangement look nice, both in terms
of shape, topology, and complexity. We first compute a Constrained
Delaunay Triangulation (CDT)[4] of the original arrangement. Keep-
ing these triangles as cells would increase the complexity of the
search structure too much, so in a second step we merge triangles
to form larger, yet simple and nice cells. See Figure 2 for a schematic
of the refinement process. While the refinement process increases
the complexity of the arrangement, the blow-up is still limited and
allows for the easy implementation of adaptive spatial relations.
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Figure 2: Schematic of the refinement process. Left: Original
Cell Arrangement. Center: Constrained Delaunay Triangu-
lation thereof. Right: After merging of triangles.

3 ADAPTIVE SPATIAL RELATIONS VIA A
REFINED CELL COMPLEX (OSCAR-RCC)

In the following we define adaptive spatial relations through poly-
gons of interest. Inspecting all items within such a polygon is par-
ticularly costly. Yet, the cell-centered representation and processing
in OSCAR strongly suggests also a cell-based implementation of
adaptive spatial relations. In particular larger regions of interest
will benefit considerably from cell-based processing.

For generality let us assume a given decomposition of the map
into tiles/cells and a data structure 9 which for a given query Q:

e computes all tiles containing a match for Q
e for a given tile C known to contain matches for Q, outputs
all matches

Note that depending on the implementation of D, computing the
set of tiles containing at least one match might be much cheaper
than outputting all matches. OSCAR provides such a tiling, but the
following scheme applies to any cell- or tile-based representation.

For some query Q (e.g., searching for the string Burger King)
the assumed data structure D can compute all tiles containing at
least one match, and for each tile also output the actual matches, if
necessary (at higher cost).

Neighborhood. The probably most natural spatial relation is about
proximity, but there are considerable differences in terms of seman-
tics depending on the objects referenced. The extent of the reference
object (the Eiffel Tower or the city of Paris) typically also determines
the extent of the region of interest. To keep things simple, we com-
pute a minimum enclosing rectangle for the reference object and let
d be the extent of the smaller dimension (breadth or width). Then
we define as neighborhood of a reference object all locations which
have distance at most max(d, 500m) to the reference object. We use
the maximum of d and 500m to also define neighborhoods of 0- or
1-dimensional entities (e.g., a mailbox is typically not considered to
have any real ’extent’).

A simple cell-based approximation of the neighborhood seman-
tics as defined before distinguishes between two cases. If the extent
of the reference object is small, we simply define as relevant neigh-
borhood the cell containing the reference object and neighboring
cells within the desired distance. This often leads to a larger region
of interest than intended, but a precise pruning with respect to
distance can be part of a post-processing step. For larger reference
objects, we use the occupied cells to estimate the extent and then
determine the respective cells.

Cardinal Directions. A user issuing a query like “hotels north
of the Empire State Building” probably expects accommodations
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Figure 3: Relations Nearby/SpatialJoin, NorthOf, Between
and AlongPath.

within a distance of 500m north of the Empire State Building. For
larger entities, a larger region is of interest — “hotels north of Paris”
probably refers to a region up to a distance of 20km north of Paris.

We formalize this as follows: For 0-dimensional reference objects
a simple triangle in the cardinal direction is used. As we cannot in-
fer the size of the region of interest from the extent of the reference
object and use a triangle of height 500m. If additional context infor-
mation is available, the size of this triangle can easily be adjusted.

For 1-dimensional reference objects, we first determine the north-
ernmost point of the polygonal line as well as the midpoint of the
bounding box. We then construct a temporary point with latitude of
the northernmost point and longitude of the center of the bounding
box. We then pass this point to the cardinal direction function to
create an intermediate triangle. Finally, the region of interest is the
convex hull of this triangle together with the polygonal line.

For 2-dimensional reference objects we first create a bounding
box and an isosceles trapezoid of twice the height of the bounding
box, the base is equal to the horizontal axis of symmetry of the
bounding box and a parallel opposing side of double that length.

We can compute the result of a query “hotels north of Paris” based
on cells by first determining the cells/tiles that are (fully or partially)
covered by the city limits of Paris (via a search for “Paris”). We then
approximate the extent of Paris by inspection of the respective tiles
(computationally inexpensive, as there are only few tiles). Using
this approximate extent we mark tiles north of these tiles, see Figure
3, for a schematic illustration.

Betweenness. As for cardinal directions, the region referred to
by a ’between’ relation depends on the reference regions and in
particular their distance apart.

To compute polygons bounding the region of interest for the
betweenness relation we again distinguish between the dimen-
sion of the reference objects. If we need the region between two
0-dimensional reference objects, we construct a diamond shape
with two opposing corners being the two reference objects and a
width of half the distance between the two reference objects. In all
other cases we construct the convex hull of the bounding boxes of
both reference objects. We use the area of the convex hull without
the bounding boxes as region of interest, as well the part of the
bounding boxes that is formed by connecting the convex hull edges
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between the bounding boxes to the next nodes of the reference ob-
ject on the bounding box border in the respective direction (which
must be well-defined).

We can use this polygon to simply mark all cells between the
reference objects, see Figure 3.

Path Corridors. When looking for ’hotels along the route from
Stuttgart to Berlin’ one typically refers to a much smaller area than
in "hotels between Stuttgart and Berlin’. So given a (precomputed)
path we define as the area of interest as all locations with distance
of at most 1 kilometer from the route. In our implementation we
simply mark all cells traversed by the route, see Figure 3.

We want to note, though, that for all discussed relations other
toolboxes than the ones described here (or with different parameter
choices) could be plugged in our framework as well.

Spatial Joins. A considerably more complex query arises in the
following scenario: Assume we are looking for residential areas
where both kindergarten and school are nearby. Querying for
“kindergarten with school within 500m” should yield all kindergarten
for which there exists a school not too far away. The neighbor-
hoods of such kindergartens then presumably constitute desirable
residential areas. The challenge here is that there are more than
300k tagged kindergartens in the OSM data set.

How could we use our query structure D together with the
tiling to efficiently compute the result set? We first search for school
resulting in a set of tiles containing schools and mark neighbor-
ing tiles depending on our notion of ‘nearby’. Then we search for
kindergarten but only outputting the respective matches in tiles
that were marked previously.

Some queries have much higher nesting depths, e.g., “supermar-
kets which have an ATM, a pharmacy, and a car repair shop nearby”.

4 EXPERIMENTAL EVALUATION

In the following we present some benchmarks to outline the per-
formance of OSCAR. The hardware specifications of the test envi-
ronments together with information about the data set as well as
an overview of resource usage of the pre-processing stage and the
impact of the cell refinement processes are listed in Table 1.

We have picked a number of representative queries with in-
creasing complexity and analyzed their query processing. Figure
4 lists the queries, their sizes and computation time. It also shows
the impact of loading data from disk which usually increases the
query time by a factor of 10. The cell time is the time it takes to
do all the set operations. The subgraph time is the time needed
to compute the subgraph of the region hierarchy. The former is
of course higher for queries with many and large set operations
- the latter takes longer for results with many different regions.
This is especially true for all single query terms since these just
do a look-up in our text search data structure. Queries 1,2,13 and
14 mostly select single items and as a consequence the number
of cells does not differ very much from the number of items. The
creation of the subgraph of the Inclusion-DAG does of course take
longer since the items are scattered around the world. Queries 3,7
and 9 select a mixture of items and cells with paris selecting many
full-match cells of Paris. Query 4 has large intermediate results
with a small result mostly reduced to items in Paris. Query 5 adds
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Data set statistics Cell size ‘ Hardware statistics Pre-processing ressource usage
# Items 500M Avg. unrefined 353 Query Preprocessing db ts
# Cells 2.78M Avg. refined 189 CPU | 2xIntel E5-2630v2 2 x Intel E5-2650v4 Time [h:m] 15:14 34:17
Database 64.5GB Max unrefined ~ 2.13M RAM 384 GiB 768 GiB Ram [GiB] 17.8GB  39.8 GB
Text search ~ 33.4 GB Max refined 578k Disk 2 SSD raid0 3 HDD raid0 Load avg. [%] 1516 298
Index 40.4GB

Table 1: From left to right: Information about the dataset with all tags stored, prefix search for tags, substring search for
important tags. Impact of the cell refinement. Statistics of our test environments. Resource usage to compute the data base
(db) and the text search (ts) with 32 GiB allocated for out-of-memory algorithms.

the :north-of operation to query 4 returning some full-match cells
in Paris. Adding @tourism:attraction to query 5 further reduces
the number of items while not increasing the computation much
more since the former query mostly consists of full-match cells.
Queries 10 and 11 use the region query to query for Munich and
Germany. The results of these are fed to the between operator to
get the rather large region between Munich and Frankfurt/Main.
This operation takes quite some time which is mostly due to the not
yet fully optimized polygon-query. Finally, query 15 uses the cell
dilation operator turning partial-matched cells into fully-matched
cells and intersecting these with another set of partial-match cells.
Moverover, the query times can be improved by using multiple
threads and our implementation in fact parallelizes the execution
of the set operations. Consider for example the query @highway
@building @amenity where each operand selects a large amount of
partial-match cells. Computing the set operations should in theory
scale linearly in the number of processors with a speed-up of 1,
however, in practice we get an efficiency ratio of 0.5 to 0.7:

Threads [1] 1 2 4 8 12 16
Time [ms] | 2165 1450 830 470 330 290
Efficiency 1 0.74 0.65 0.58 0.55 0.47

5 CONCLUSIONS

In this paper we have shown that it is possible to develop efficient
data representations and algorithms that allow for complex string
search with spatial relation queries even for massive data sets like
OSM planet. The key ingredient for efficiency is the cell-centered
processing within the data structure with well-shaped cells that
facilitate the implementation of adaptive spatial relations. Our web-
based demonstrator can answer queries on a global scale which
even involve adaptive spatial relations not available in common
search engines like Google/Bing Maps. Future work includes the
handling of dynamic update of the underlying data set as well as
more parallelization to reduce the time for precomputation.
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