Decision Support in Emergency Medical Systems:
New Strategies for Dynamic Ambulance Allocation

Niklas Meinzer and Sabine Storandt
Albert-Ludwigs-Univeristit Freiburg
Institut fiir Informatik
79110 Freiburg, Germany
storandt @informatik.uni-freiburg.de

Abstract

Most countries have implemented some form of Emergency
Medical Services (EMS) in order to help people with ur-
gent medical needs. Typically a number of ambulances serve
a specific geographic region. Since the number of ambu-
lances is limited and emergency calls need to be responded
to quickly by nature, EMSs have to be thoroughly managed
and coordinated, which is conventionally done by operators
in special call centres. In this paper, we model this task and
compare different strategies which could be employed by a
completely automatic ambulance fleet management system or
used as decision support tool for operators. We show that
continuous optimization of ambulance distribution over the
region and dynamic reassignment of ambulances to incoming
requests can benefit both the patients and economically the
provider of the EMS.

Introduction

Emergency Medical Services (EMS) are a key component of
the modern civilization which ensure that people with urgent
medical needs quickly receive help. Transporting a patient
to a hospital or medical center using ambulances is always
a key part in the system. As the number of ambulances in a
certain area (e.g. a city) is limited, the ambulance fleet needs
to be carefully managed. This is usually done by specially
trained operators in emergency dispatch centres. These op-
erators have to decide which vehicle they want to send to a
specific emergency, determine the destination hospital and
possibly re-distribute the remaining ambulances. The en-
vironment in which they operate is characterized by a high
degree of uncertainty, as little can be known about future
emergency requests at any given time. The main purpose of
an EMS system is to provide help in medical emergencies
and save as many lives as possible. This leads us to the fol-
lowing optimization problem:

We are given a street graph G(V, E) augmented with travel
costs ¢ : E — RY, a set of hospitals H C V (with
|H| = h), and an ambulance fleet of size k. Moreover there
is a stream of patient requests arriving in an online fashion.
Every request is specified by the patient location v € V,
the call time a € R and the deadline b € R, which deter-
mines the latest point in time at which the patient must arrive

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at a hospital in order to be saved. So a patient is considered
as rescued if an ambulance at position w € V is assigned
fo the request at time t > a and t + c¢(w,v) + c(v, H*) < b
with H* € H being the target hospital. We refer to the to-
tal number of requests as r. The goal is to distribute the k
ambulances and assign them to incoming requests such that
the number of served requests is as close to r as possible. To
reflect the dynamics of real-world EMS even better, we also
allow redeployment of free ambulances at any time.

However the operation of an EMS system is also very cost
intensive and being a part of traditionally tightly budgeted
healthcare systems, economical aspects must also be taken
into account. So in the remainder of the paper we will in-
troduce several strategies to carefully position ambulances
in their service range and to determine sensible mappings of
ambulances to patient requests. In our experimental evalua-
tion we will compare those strategies primarily in terms of
the number of patients saved, but we will also analyze the
strategies under an economical point of view.

Related Work Ambulance allocation is related to the
broad range of dynamic vehicle routing problems where a
fleet of vehicles needs to fulfil certain tasks on a graph, as
e.g. Dial-A-Ride-Problems (Pillac et al. 2013) or the coor-
dination of a fleet of delivery vehicles (Azi, Gendreau, and
Potvin 2012). But strategies for those problems are often
focused on maximizing the profit of the system and not the
number of served customers. Typical approaches dealing
with highly dynamic EMS models are based on maximiz-
ing some fitness function of the system as e.g. described
in (Restrepo, Henderson, and Topaloglu 2009) for static
ambulance allocation. To capture also redeployment of
ambulances, simulation-based models and algorithms were
proven to be useful. In (Yue, Marla, and Krishnan 2012)
a very efficient approach for the dynamic ambulance allo-
cation problem was introduced, which uses simulation as
a subroutine. As quality indicator a penalty function was
designed, which considers service time and number of re-
quests. But simulation-based algorithms require very pre-
cise modelling as well as a huge amount of historical data.
In contrast, for our approach no a priori knowledge is neces-
sary. Instead we present event-driven algorithms embedded
in a framework which can be easily extended and adapted
for varying scenarios.

Contribution In this paper we present strategies to man-
age an ambulance fleet and examine their performance in
different scenarios. We created an event based simulator
to test the strategies in simulated environments and discuss
several measures by which to evaluate the outcome. These
strategies could eventually be implemented in a supervised
automated form or as assistance systems to human opera-
tors. To visualize the results and to observe the simulation
we created a graphical user interface (GUI) using a combi-
nation of traditional GUI programming and web tools.

Computing Upper Bounds

The considered problem of ambulance allocation is NP-
hard, as it can be interpreted as a variant of scheduling, see
(Gary and Johnson 1979). So we will seek to come up with
good heuristics to maximize the number of saved patients in
an efficient manner. Unfortunately, it might not be possible
to rescue all patients, even when using an optimal strategy.
This might distort the quality evaluation (saving only 80%
of the patients might sound bad, but if we could only res-
cue 82% with the available resources, the respective strategy
would be practical). Therefore we develop now easily com-
putable upper bounds on the number of patients which we
later use in our evaluation.

—
—
—_—
—_—
—
—
—
—

[r—
—
—_—

Figure 1: Instance example (left), black boxes indicate call
time and deadline, red lines correspond to travel times.
Matching duty zones (right) in blue/green. Green zones are
the optimal offline solution for £ = 1. Vertical lines indicate
conflicts for k = 2 (so > 3 duty zones are intersected).

The idea is to start with the trivial upper bound U = r (all
patients can be saved) and then identify points in time where
too many intervals (aka requests) have to be served at once.
For that we first compute the ’duty zone’ for each dynamic
interval [a, a +w] N [b—w, b], i.e. the interval it overlaps in-
dependently of the (valid) start point of its execution (which
might be empty). We then search for points in time where
more than k duty zones overlap. As at most k of the respec-
tive intervals can be processed, the upper bound decreases
by the overhead. To make sure that no interval is incorpo-
rated in more than one upper bound decrease (which would
be invalid), we remove contributing duty zones from the set.
After sweeping over all duty zones we receive our upper
bound as U plus the number of dynamic intervals without
a duty zone. As the set of duty zones also provides us with
a non-dynamic instance, we additionally compute the opti-
mal solution for a single ambulance on the duty zone set,
which can be done in poly-time (Snoeyink and Hill 2005).
This number multiplied with k& plus the number of intervals
without a duty zone is then a valid upper bound U’ as well.
Hence our final upper bound is U* = min(U, U”). In Figure
1 both upper bounding techniques are illustrated.

Allocation and Redeployment Strategies

In our general model we assume that all ambulances are con-
trolled by a single agent, which at any point in time knows
about the exact position of each ambulance and whether or
not they are occupied by a patient or not. Agents are notified
about new requests, ambulances becoming free and ambu-
lances asking which hospital to take a patient to. They then
need to issue orders according to their strategies. In addition
to theses reactive actions, agents have the possibility to take
pre-emptive measures, like redistribution of ambulances, in
order to be better prepared for future requests.

Greedy Agents The greedy strategy is to always send the
closest ambulance to a new request. Once the patient is in
the ambulance it will be sent to the nearest hospital and from
there back to its base (or to a new request). The greedy strat-
egy does not involve any preparation such as redistribution
of ambulances. The ambulances are simply left in their bases
until needed. This makes it very sensitive to the placement
of the ambulance bases and hospitals. If there is only one
hospital on the edge of the map, response times can be ex-
pected to be higher compared to a centred base.

Figure 2: Refinement for k-medoid: Without (left) some
nodes on the right hand side of the river are added to the red
cluster, although because of the lack of bridges in this area
they are closer to the green medoid on the street graph. With
the refinement (right) they are added to the green cluster.

k-Medoid Assignment In order to overcome the weak-
nesses of the greedy strategy, we design k-medoid agents.
The main idea is that in areas with dense emergency calls,
it might be beneficial for the ambulances to be already en-
route and not necessarily be stationed at hospitals. So we try
to minimize the average distance of each possible request
origin (i.e. each node in the graph) to the nearest ambu-
lance and thus the response time to the next request. So we
want to solve the k-medoid problem with £ being the actual
number of available ambulances and the metric being the
shortest path distance in the graph. Classically the optimal
positions are determined by a round-based algorithm called
Partitioning around Medoids (PAM). It starts with a random
positioning and tries then to improve the medoids by swap-
ping. For large input graphs PAM is very time-consuming as
in each round a lot of configurations have to be checked. To
accelerate the approach, we propose the following heuris-
tic: In all but the last round we do not use shortest path
distance in the graph as metric to find the best k-medoids,
but simply euclidean distance. This spares us a lot of Dijk-
stra computations. Only in the last round — after according
to euclidean distances the optimal positions are found — we
perform one assignment steps with actual shortest path dis-
tances (see Figure 2 for an exemplary illustration).

@ Figure 3: Consider requests from
c B and A shortly after each other.
A non-reassigning agent sends
the ambulance at C' to B and the
— one at D to A (max. response
B time of 7). If C is re-assigned to
(p) A and D then sent to B, the max.
~ response time is 5.

Voronoi-based Allocation The k-medoid strategy can po-
sition ambulances on all nodes in the graph. In practise, po-
sitioning at any point throughout the roadmap is probably
not going to be accepted by the ambulance personnel and
makes no sense if requests are sparse. To cope with this
we use a Voronoi-based strategy. Here free ambulances are
only positioned at hospitals or bases. For this we divide the
graph into cells resulting in a Voronoi-diagram with the hos-
pitals as seeds. Each node is assigned to the cell belonging
to the closest hospital using the actual distance on the road
network. Each resulting cell C C V gets assigned a size
value S(C) = IVl/jvec|. Like in the k-medoid strategy, each
time the number of free ambulances changes, they are re-
distributed. Here, for each cell C, ||free(A4)| - S(C)] am-
bulances are sent to the seed of C'. The remaining free am-
bulances are iteratively assigned to the cell with the fewest
ambulances using cell size as a tiebreaker. Voronoi repre-
sents a compromise between Greedy and k-medoid. It is
more practical since ambulances are only idle in hospitals or
ambulance bases and Voronoi involves less driving around
than k-medoid, since if an ambulance stays in the same cell,
it does not have to move at all. Like Greedy, Voronoi’s per-
formance is not completely independent from the setting, as
positions of hospitals and ambulance bases are predefined. It
is however more flexible since hospitals can be used as bases
and the initial distribution of ambulances can be changed.
Although it is computationally more complex than Greedy,
the precomputation and computation during redeployment is
less expensive than in k-medoid.

Redeployment Usually in EMS an ambulance is never re-
assigned to a different patient while it is en-route. This be-
haviour can lead to bad response times in case of disadvanta-
geous request streams (see Figure 3). We therefore propose
a redeployment scheme that can be incorporated in all our
presented strategies: Any time the number of open requests
(i.e. requests where no ambulance has arrived) or the num-
ber of free ambulances increases, for example once a new
requests comes in, we re-evaluate the assignment of ambu-
lances to requests. We define the set of available ambulances
as the free ambulances plus the ones already responding to
arequest. We then try to find an assignment of the available
ambulances to the open requests, which minimizes the total
distance of ambulances to requests. To solve this problem
we use an implementation of Kuhn-Munkres assignment al-
gorithm (also called Hungarian method (Kuhn 1955)).

Experimental Results

We performed our experiments on a laptop with a 2.4 GHz
Intel i5 processor (using only one core) and 8§ GByte of

RAM. The calculations needed for a single event on graphs
with hundreds of thousands of nodes stayed well below a
second and are thus suited for real world use. For the road
network in our simulation we used Open Street Map data '.
To evaluate the performance of our strategies, we used an
event-driven simulator. The agents can be plugged into the
simulator, get notified on certain events and issue orders to
the ambulances. Moreover we implemented a GUI to visu-
alize the current state of the system (see Figure 4).

"3
E "’Iﬁ\\

&

Freiburger

4, Munster
T =, Museum fur.

=/ Neue Kunst

ee |3 Gui Basier Strafe
Al df“’da;'f,‘(, Ba

Figure 4: Visualization of the current position and routes of
the ambulances (blue markers). Red markers represent hos-
pitals, green markers ambulance bases. Ambulances on red
paths respond to a patient request (yellow marker). Ambu-
lances on a blue path are taking a patient to a hospital and
ambulances on a black path are currently redeploying.

Evaluation of Allocation Strategies

To compare the performance of our different strategies we
measure three different values: most importantly, the roral
number of saved patients, then the average response time,
i.e. the time it took for an ambulance to arrive at a patient
after the call came in, and the total distance driven summed
over all ambulances. We designed two scenarios with dif-
ferent underlying street graphs and EMS infrastructure and
tested our strategies under them.

Scenario 1 First we benchmarked our strategies in a real
world example. We use the street graph of Freiburg, a city
with about 200,000 inhabitants. The street graph contains
25,000 nodes. The hospitals, ambulance bases and ambu-
lances used in the simulation correspond to those actually
present in Freiburg: There are four hospitals and two am-
bulance bases with five ambulances overall. The hospitals
are distributed throughout the city and both ambulance bases
are rather close to the city. We simulated a time between re-
quests range from 60s to 180s with 100 patients per run. The
results of this benchmark show the following:

Patients saved: With low request frequencies all strategies
perform equally bad and are only able to save 50% or less
of the patients. With increasing intervals K-Medoids has a
slight advantage over the other approaches, saving about two
to three patients more on average.

'www.openstreetmap.org

600

— Greedy

— K-medoid |
— Voronoi

500

400+

300

Avg. response time (seconds)

60 80 100 120 140 160 180
Expected time between requests (seconds)

Figure 5: The average response time in scenario 1.
1100 T T

— Greedy
1000+ — K-medoid
— \Voronoi

900

800+

7001

Total distance driven (kilometers)

60 80 100 120 140 160 180
Expected time between requests (seconds)

Figure 6: The average overall distance driven in scenario 1.

Response time and time to hospital (see Figure 5): K-
medoids is also slightly better in those categories: With in-
creasing request intervals it responds about 30 to 40 seconds
faster to requests than the other two approaches.

Total distance driven(see Figure 6): This measure shows the
costs involved in the k-medoids strategy. The constant re-
deployment of ambulances results in almost double the total
distance of Greedy with higher request intervals. With lower
request frequencies the difference is less significant, because
here ambulances have to abort redistribution moves more of-
ten and go to the next patient. Voronoi is only slightly worse
than Greedy, since often only a few ambulances move during
a redeployment.

Scenario 2 For the second scenario we use the street graph
of the Rhine-Neckar metropolitan region. A dense city clus-
ter with approximately 2.5 million inhabitants. The region
consist of the three cities Ludwigshafen, Mannheim and
Heidelberg and surrounding municipalities. The street net-
works exhibits about 230,000 nodes. We again distributed
hospitals relatively evenly on the map, but restricted the am-
bulance bases to one half of the map. This is to simulate a
scenario where half of the ambulance fleet is not operational
due to fire or flood in a base or not reachable due to com-
munications outage. While the hospitals are still functional
in all areas, ambulances now have to travel longer distances
half of the times. The results are the following:

Patients saved: This measure shows a clear advantage of the
two redeployment strategies over Greedy. For all tested re-
quest interval values k-medoids is able to save about five to
ten patients more than Greedy. Voronoi ranks in the middle
with two to five patients more than Greedy.

Response time and time to hospital: The ranking from the
first measure is confirmed in response time and to hospital
time. Here k-medoids performes best, followed by Voronoi
and with a greater gap Greedy. With large request intervals
k-medoids responds about 2.5 minutes and Voronoi about
two minutes faster than Greedy.

Total distance driven: As in scenario 1, ambulances man-
aged by k-medoids travel by far the greatest overall distance.
However while the total distance driven by k-medoids was
almost double the total distance of Greedy in scenario one,
it is only 1.4 times Greedys distance in scenario 2. Since
Greedy always sends the ambulances back to the western
part of the map when they are idle, they have to travel long
distances and thus Greedy is even outperformed by Voronoi.

Reassignment Adding the possibility to reassign ambu-
lances we could drastically improve the performance of all
strategies. For example for low intervals between requests
the average response time for k-medoid is three minutes
shorter with reassignment. Also the number of saved pa-
tients improves (up to 30%) for Greedy as well as k-medoid
if we perform Munkres algorithm to assign free ambulances.
It allowed us to save almost all patients possible according
to our upper bound.

Conclusions and Future Work

In this paper we investigated problems related to Emergency
Medical Services (EMS) management. We introduced
two new ambulance distribution schemes, k-Medoid and
Voronoi-based, which outperform the conventional greedy
approach in several scenarios as shown in our experiments.
Surprisingly, if we allow ambulances on the way to a patient
to be reassigned, we can improve the overall service qual-
ity significantly. Future work includes the enhancement of
our strategies with other redeployment algorithms and the
incorporation of detailed emergency plans for larger acci-
dents (which e.g. are likely to occur on certain highways).

References
Azi, N.; Gendreau, M.; and Potvin, J.-Y. 2012. A dynamic
vehicle routing problem with multiple delivery routes. An-
nals of Operations Research 199(1):103-112.
Gary, M. R., and Johnson, D. S. 1979. Computers and in-
tractability: A guide to the theory of np-completeness.
Kuhn, H. W. 1955. The hungarian method for the assign-
ment problem. Naval research logistics quarterly 2:83-97.
Pillac, V.; Gendreau, M.; Guret, C.; and Medaglia, A. L.
2013. A review of dynamic vehicle routing problems. Eu-
ropean Journal of Operational Research 225(1):1 — 11.
Restrepo, M.; Henderson, S. G.; and Topaloglu, H. 2009.
Erlang loss models for the static deployment of ambulances.
Health care management science 12(1):67-79.
Snoeyink, J., and Hill, U. C. 2005. Maximum independent
set for intervals by divide-prune-and-conquer. In CCCG,
264-265.
Yue, Y.; Marla, L.; and Krishnan, R. 2012. An efficient
simulation-based approach to ambulance fleet allocation and
dynamic redeployment. In AAAL

