ForestMaps: A Computational Model and
Visualization for Forest Utilization

Hannah Bast, Jonas Sternisko, and Sabine Storandt

Department of Computer Science, University of Freiburg (Germany)
{bast,sternis,storandt } @Qinformatik.uni-freiburg.de

Abstract. We seek to compute utilization information for public spaces,
in particular forests: which parts are used by how many people. Our
contribution is threefold. First, we present a sound model for computing
this information from publicly available data such as road maps and
population counts. Second, we present efficient algorithms for computing
the desired utilization information according to this model. Third, we
provide an experimental evaluation with respect to both efficiency and
quality, as well as an interactive web application, that visualizes our
result as a heat-map layer on top of OpenStreetMap data. The link to our
web application can be found under http://forestmaps.informatik.
uni-freiburg.de.

1 Introduction

Recreation is an important part of human life. Most people spent a significant
fraction of their recreation time in public spaces such as forest, parks, or zoos.
For the authorities of these public spaces, it is important to have utilization
statistics about which parts of these spaces have been visited or are going to be
visited by how many people.

Such utilization statistics are useful for a number of purposes. For example,
for the prioritization of maintenance works. Or for selecting proper locations for
new construction works (e.g. a look-out or an inn) or facilities (e.g. litter bins).
Forests, in particular, are also used for purposes other than recreation, most
notably for logging and preservation. Here past and projected visitor information
helps to find a meaningful assignment of the various parts of the forest to the
various purposes. Indeed, the original motivation for this paper was a request
from the German forest authorities for computing such usage statistics for exactly
the named reasons.

Our problem could be easily solved if we could track the movements of each
visitor in the area of interest. But for a large number of visitors this is practically
infeasible, and it would also be a major privacy issue. Instead, our approach is to
come up with a computational model for how many people move through an area
of interest on which paths. The input for this model should be publicly available
data. Once computed, we visualize our usage statistics as a heat map, overlaid
on top of a standard map.

ie Map population
data to vertices in
the street graph.

Extract population data 27
for cities/counties
(Wikipedia, GeoNames). 58

@ & | ? @

Extract Compute forest Compute travel times Determine popularity
entry points. from all vertices in of entry points.
the street graph to
close-by entry points.

forest areas
— forest paths

waters

places of interest
street data
from OpenStreetMap.
L 1 /

Identify probable
roundtours and tours
through the forest.

FOREST UTILISATION
HEAT MAP

Fig. 1. Overview of the complete pipeline for our utilization distribution generator on
the example of public forest areas.

1.1 Contribution

The contribution of this paper is threefold. First, we present a new model for
utilization statistics of (paths in) public spaces based on publicly available data
such as road maps and census data. We also show how to incorporate additional
information like survey data (e.g. the mean time spent in the forest) or points
of interests (e.g. look-outs or inns). Second, we developed and implemented
a pipeline of efficient algorithms that uses this input data to compute the
desired utilization statistics. Third, we provide an experimental evaluation on
various data sets with respect to both efficiency and quality, as well as an
interactive web application that is freely available. In particular, we created
a web site which provides zoomable heat maps for all our data sets. The link,
the details behind the heat map realization, as well as all our data sets and

code (thus enabling full reproducibility of our results) can be found here: http:
//forestmaps.informatik.uni-freiburg.de.

Throughout the paper, we will consider forest areas as a representative for
public spaces. Forest areas are particularly hard to deal with, in particular harder
than parks or zoos, for a number of reasons. First, forest areas have a large number
of potential entry points, and it becomes part of our problem to determine these.
Second, access to forest areas is usually unrestricted and there are no ticket
booths or similar facilities, which could provide historical data on how many
people entered at that particular entry point. Third, forest areas are often large,
which entails a very large number of possible paths and round-tours. Since we
want our algorithms to be efficient, we cannot simply enumerate these paths, but
have to resort to more sophisticated solutions.

The mains steps of our pipeline are as follows. A schematic illustration is
provided in Figure 1 above.

(1) Given a road map and the boundaries of the forest areas, compute the set of
forest entry points efficiently.

(2) Given the population number of a whole area, compute a sound estimate of
the distribution of inhabitants inside that area.

(3) For each forest entry point, use the road map and the result of (2) to estimate
the number of people that are likely to use that entry point.

(4) Extract a representative set of routes and round-tours within the forest areas
and estimate their relative attractiveness.

(5) Combine the information from (3) and (4) to estimate which parts of the
forest areas are utilized to which extent.

(6) Visualize the utilization information from (5) in an intuitive and interactive
manner in a web application.

We describe each of these steps in details in the following. Steps (1)-(3) are
explained in Section 2. In Section 3, we propose two approaches for route and
round-tour extraction as required in step (4), and show how step (5) can be
accomplished on that basis. In Section 4, we explain how additional information
like points of interest and survey data can be incorporated. Although this
information is not crucial for our pipeline, it can enrich the model if available. In
Section 5, we provide the setup and results of our experimental evaluation on
three data sets, namely the road maps and forest areas of Germany, Austria, and
Switzerland. In our evaluation, we consider both efficiency and quality. For our
largest data set, the whole of Germany, our pipeline can be completed in about
two hours. To estimate the quality, we compare our utilization information with
GPS traces extracted from OpenStreetMap.

1.2 Related Work

From an algorithmic point of view, we are facing two main challenges. (1) Map-
ping population data given for an area to individual locations inside that area.
(2) Computing a set of meaningful paths in the forest and their attractiveness.

Challenge (1) has been addressed in [1]. Here, aerial photographs are used
as a basis to detect buildings in an area, and to extract building features like
a building’s footprint and its height. Given these characteristics, together with
a pre-defined classification of buildings, the number of residents per block is
computed. This approach is refined further by additionally considering city
maps that distinguish between industrial and residential areas. This leads to a
sophisticated multi-step algorithm that achieves very high accuracy. For over
90% of all buildings, the number of inhabitants is estimated correctly within a
tolerance of 1 person for houses and 5 persons for apartments. The drawback
of this approach is that it requires very sophisticated input data (in particular,
high-resolution aerial images), which is not available for many areas. Also, this
input data is large and complex and very time-consuming to compute with. In
comparison, our approach is much simpler and uses widely available data like
road maps and census information for whole countries. Thus we cannot, of course,
estimate the number of residents for individual buildings. But we achieve good
accuracy for estimating population distribution within sub-areas, see Section 2.4.
And this is all we need for our purpose here: more fine-grained information would
not help us to compute better utilization statistics.

Concerning challenge (2), several approaches to determine “nice” routes inside
a given area have been developed. In [2], the problem of finding good jogging
routes is investigated. It is first shown that an exact version of the problem is
NP-complete. Then several simple and fast heuristics are proposed, which return
useful routes in practice. These heuristics take as input a road map, attractiveness
estimates for sub-areas, and a desired route length. In [3], a similar problem is
addressed, namely tour suggestions for outdoor activities. The input there is a
maximal tour length together with a tolerance value. The algorithm is based on
spatial filtering and the computation of concatenations of shortest paths.

In both [2] and [3], the goal is to find few good routes or round-tours, or even
just a single one. In contrast, for our problem we need to compute a comprehensive
set of meaningful tours, from which we can then estimate the desired utilization
statistics of the whole area. Previous work that comes slightly closer to this task
is the computation of alternative routes in street networks. In [4], for example,
the via-node approach is introduced. Here, all shortest paths from a given start
s to a given target ¢t via a third node v are computed, for every node v in the
graph. Then a representative subset of paths is selected via criteria such as route
length and spatial properties. We adapt the basic idea of this approach and turn
it into a wia-edge approach. We employ this approach to determine the degree of
utilization of an edge inside the forest.

2 Computation of Entry Points and Their Popularity

In this section, we describe how to compute entry points and their popularity
based solely on freely available data from OpenStreetMap. We already remarked
above that for areas which require an entry fee, like amusement parks or zoos, this
information about entry points is usually available. Entry points are then equal

to ticket booth positions and their popularity can be measured by the number of
tickets sold. For freely accessible grounds like forests such data usually does not
exist, and we need to estimate it by different means. To determine potential entry
points, we compute the boundary polygon of an area and intersect it with the
given path network. To determine the popularity of an entry point, we consider
the population distribution in the surrounding area and the reachability of each
entry point. Both of these are non-trivial procedures, and are described in more
detail at the end of the section.

2.1 Extracting Street Networks and Forest Areas from
OpenStreetMap

We evaluate our algorithms on data from OpenStreetMap (OSM). This project
provides geographical information for nodes (in particular: latitude and longitude),
polygonal paths (so called “ways”, referencing previously defined nodes) and
compositions thereof (“relations”, referencing sets of nodes, ways or relations). The
OSM data is provided in XML format. Each entity can have several attached tags,
which are tuples of the form key:value. We parse all nodes, ways, and relations from
the relevant OSM files and translate relations and ways to sequences of coordinates.
We then build the road network from ways with a highway:* tag. We generate
the forest areas from entities with tags landuse:forest and natural:wood. Polygons
with tag boundary:administrative are retrieved as boundaries of municipalities.
Furthermore, we select nodes whose tags match certain combinations of tags as
points of interest (POIs). For example, places with the tags man_made:tower
and tourism:viewpoint are considered as POI. Note that our algorithms are
independent of the particular data format and can also be applied when the data
is given in other common GIS formats like ESRI shape files.

2.2 Computing Forest Entry Points (FEPs)

[SO

*-.;'i‘—/f’\@@;é/j ol A /&‘ \/\f

Fig. 2. Detail of a street network combined with forest areas (green). Red nodes
highlight forest entry points. They are outside the forests, but have an adjacent edge
that crosses a forest boundary.

The pre-processing of our input data, described above, provides us with the
network of all paths, as well as polygons that bound the forest areas. We then find
all edges from this network that intersect one of these polygons. The intersection

points are then our forest entry points (FEPs). Both the path network and
the polygons consist of line segments. Our computation therefore reduces to
computing the intersection between pairs of line segments. This can be done
easily in constant time per pair. However, the naive approach of intersecting each
path segment with each polygon segment would take “quadratic” time (number
of path segments times number of polygon segments). This could be reduced by
simple pruning techniques, for example, considering only path segments that lie
in the bounding box of a forest area. But even then the computational effort
would be too large. Also, forest areas extracted from OSM sometimes overlap,
and the described pruning only works for disjoint areas. Identifying and merging
overlapping forest areas first is again time-consuming.

We speed up this computation as follows. Instead of searching for intersections
of line segments, we check for each node of the network if it falls inside a forest
polygon or not. Using this classification, we iterate over all nodes in the graph
and check for nodes outside the forest if they have an adjacent edge towards a
node inside the forest. Such edges determine forest entry points. For the sake
of simplicity, we do not add a new node for the crossing of the path with the
forest boundary but instead use the last node on a path that is still outside of
the forest. See Figure 2 for a classification example. To handle the large numbers
of nodes for which the membership test has to be done, we rasterize the polygon
to a bit array of sufficiently fine resolution (we used a precision of 10 x 10 meters
per bit in our experiments). Consider this as image, where the forest areas are
painted in white and the remaining parts in black. The membership test for a
node is then reduced to a constant-time lookup of the value of the pixels at that
node’s coordinates. For our largest data set (Germany), we can thus compute
all forest entry points in a fraction of the time needed for the whole pipeline (3
minutes of about 2 hours); see Table 3 in Section 5.

2.3 Incorporating Population Data

The next question is now many people are likely to use each of these FEPs. To
answer that question, we need to know the population distribution in the sur-
rounding area. Population numbers are widely available for larger administrative
units (states, cities, villages), for example from the Wikipedia info boxes! or from
GeoNames?. Using such data for our purposes entails two main challenges.

First, we need to know the boundary of the area to which a particular
population pertains. Both kinds of data are available, but usually from different
sources. Getting the proper assignment is non-trivial, because of different data
schemas and variations in naming and spelling. We solve this problem by using
an approximate match on a carefully selected set of name tags.

Second, we need more fine-grained information than just the population of a
whole village. Specifically, we need an estimate of the number of people that live
near each line segment from the given path network. We here make the following
assumption, which we later validate in our experiments in Section 5.3.

! nttp://de.wikipedia.org/wiki/Saarland
? http://wuw.geonames . org/2842635/saarland . html

Assumption 1 The population number in an area is strongly correlated to the
accumulated length of local streets in this area. In other words: the population
density and the density of local streets coincide.

The intuition behind this assumption is that every house is typically close to
some street, while the length of a street provides a good upper bound on the
number of houses there and the density of houses does not vary too much in
typical residential areas.

\

Fig. 3. Left: a small artificial example of a street Voronoi diagram. There is one distinct
color for each vertex, and all the parts of edges belonging to the Voronoi cell of that
vertex are drawn in that color. Right: a real-world population distribution based on
such a street Voronoi diagram, where larger circles indicate higher population numbers.

We make use of this assumption as follows. For every street vertex, we compute
the sum of the lengths of the street segments for which this vertex is the closest
one. This is simply half of the sum of the lengths of all adjacent edges. From a
geometric point of view, this amounts to computing a Voronoi diagram for all
vertices and sum up the street lengths inside the respective Voronoi cells. For
one-way segments we map the whole length to the tail node of that segment (since
all residents must leave via that node). An example is given in Figure 3, left side.
The running time of this approach is linear in the size of the vertices and edges
in the street graph. It hence scales well to large networks. Dividing the computed
sum of lengths for every vertex by the total sum of all edge lengths, we obtain
percentage values. Multiplying these with the total population of the whole area
results in an individual population estimation for each vertex. This is illustrated
in Figure 3, right side. Types of streets, which are normally unpopulated, such
as motorways, are simply excluded from the described procedure.

With the procedure as described so far, there is still some imbalance due to
different building density along streets in different areas. For example, multi-story
buildings with a large number of people are more likely in a city center, whereas
houses in remote areas tend to be more sparse and to have less inhabitants. In
an extreme case, like an industrial zone, there might be streets but no actual
inhabitants at all. We alleviate this imbalance by identifying (large) clusters
with a high density of living streets, typically metropolitan areas, using a simple
grid-based approach. Inside of such clusters, we increase the percentage values
by multiplying the above-mentioned lengths of segment sums by a constant
weight factor, specified below. To identify such clusters, we again use a grid-based
approach. We choose 1000 x 1000 cells. We say that a grid cell is dense, if the
sum of the lengths of the contained streets is 25% or more above the average
(taken over all grid cells that contain at least one street). We use a weight factor
of 3 for such grid cells. We found this to be a typical ratio when comparing
population count divided by total street length in city vs. rural areas. Moreover,
we say that a grid cell is super dense, if the sum of the lengths of the contained
streets is 50% or more above the average. We use a weight factor of 6 for such
grid cells. This simple approach requires only constant time per edge and grid
cell. In combination with the street Voronoi diagram, this gives us a very efficient
tool for population estimation.

2.4 Computing Popularity Values for Entry Points

The closer someone lives to a certain FEP, the higher the probability that this
person will use this FEP for visiting the forest. If several FEPs are nearby, the
likelihood for usage is distributed among them. To compute for every street
vertex v € V the set of suitable FEPs, we could execute Dijkstra’s algorithm
from each such vertex. For a more realistic model, we restrict the travel time
to 30 minutes. For each FEP f contained in the Dijkstra search tree, we then
compute the usage probability as

B d(v, f)
Zf/ 2 d(v, f)<30min d(’l), f/) ’

where d denotes the travel time between the given node and FEP. The popularity
value of each FEP f is then computed as), pop(v) - u(v, f), where pop(v) is the
population for v computed as described in the previous section.

But as stated above, this straightforward approach to computing these pop-
ularity values would be to run a Dijkstra from each street vertex v. Even with
a bounded radius of 30 minutes, the computation time would be several days
for a data set like Germany. What comes to our rescue here is that the number
of FEPs is about two orders of magnitude smaller than the number of all nodes
in the street network. We therefore run a Dijkstra computation (bounded to a
radius of 30 minutes) on the backward graph from each FEP. That way, each
street vertex can (and will) occur in a number of Dijkstra results, typically on
the order of hundreds. Explicitly storing all the values that contribute to the

u(v,f):1

u(v, f) from above would hence consume many times more space than needed
for storing the actual network.

To avoid this, we discretize the d(v, f) distances into buckets with a resolution
of 5 minutes. That way, we need to store only a few counts for each vertex.
Namely, the number of FEPs reachable in less than 5 minutes, the number of
FEPs reachable between 5 and 10 minutes, and so on.

It then remains to distribute the populations pop(v) over the FEPs. This is
easily done with another backwards Dijkstra from each FEP.

Figure 4 illustrates the backwards approach by a small example.

Fig. 4. Backwards approach for four forest entry points (red) and three travel time
buckets (indicated by the circular areas with the color ranging from orange to yellow).
The upper image shows the result of the first round of backward Dijkstras. For each
street vertex (black), we obtain the number of FEPs in each bucket. The lower image
shows the result of the second rounds of backward Dijkstras. The counters from above
are converted to usage likelihood values. See for example the resulting tuple (0,0.6,0.4)
generated from the counters (0,1, 1). Here, we have one FEP reachable between 5 and
10 minutes, and another one between 10 and 15 minutes. Summing up the average
travel time for these buckets, we get 7.5 + 12.5 = 20 minutes. The likelihood for the
FEP in the 5-10 bucket is then 1 — (7.5/20) = 0.625 ~ 0.6. The likelihood for the
other FEP equals the remaining probability of 0.375 ~ 0.4. These values are then used
as coefficients to map population values (blue) to FEPs. The resulting values are the
popularity counts for each FEP (red).

3 Computing the Utilization Distribution

The utilization distribution that we want to compute depends on two main
factors: the popularity of entry points and the attractiveness of paths through
the public space. We have shown how to compute the popularity of entry points
in the previous section. In this section, we show how to compute a comprehensive
set of paths and round-tours and their relative attractiveness. We consider two
approaches: flooding (Section 3.1) and via-edge (Section 3.2). Both approaches
allow to combine entry point popularity with tour attractiveness values in order
to estimate the desired utilization distribution better.

3.1 The Flooding Approach

The goal of this section is to assign to each edge in the forest an attractiveness
value that reflects how likely this edge is included in a tour. A naive approach is
to run a Dijkstra search from every FEP considering only the forest subgraph
of the street network. Then for every edge (v, w) explored by this search, its
attractiveness gets increased by the fraction of the popularity of the FEP f and
the distance from f to w. Think of this technique as “flooding” the entry point’s
popularity along shortest paths into the nearby forest. Consequently, a higher
FEP popularity contributes to a higher attractiveness of the edges in its range.
Conversely, the further away an edge is from the entry points to the forest, the
lower is its attractiveness. This approach is simple and efficient. However, it
has the disadvantage that it might leave some edges with an attractiveness of
zero, because they are not part of any shortest path (Figure 5). But it is not
uncommon that people walk along non-shortest paths during leisure activity. As
a remedy, we could compute the k£ shortest paths to each inner vertex, either
forbidding loops [5] or allowing them [6]. Another way would be to define several
edge metrics (length, niceness, quietness, ...) if such information is available, and
then search for optimal paths for several linear combinations of these metrics.
Both of these approaches would generate multiple paths between a FEP and a
node inside a forest, but still there is no guarantee that each edge of a path is
considered at least once. Moreover, this simple approach only models round-tours
reasonably, whereas hiking from one FEP to another is not included. We therefore
propose, in the following subsection, an alternative approach that captures tours
through the forest as well.

3.2 The Via-Edge Approach

In the via-edge approach, we iterate over the forest edges one by one to calcu-
late their respective attractiveness. Specifically, for each edge (v, w), we run a
backwards Dijkstra from v and a forwards Dijkstra from w. This provides us
with a set of paths of the type FEP; —* v — w —* FEPs (where, of course,
FEP; = FEPs, is possible). Now for every such path we increase the attractiveness
value of the edge (v, w) by the minimum of the popularity values of FEP;, FEP,
multiplied with the shortest path distance between FEP; and FEP,, divided

23m

20m

Fig. 5. The upper path is three meters longer than the lower one, so any Dijkstra-based
point-to-point search will not include the upper path in a solution. Still, this path
section might be used in a hike.

by the total path length (which can be extracted from the labels created in the
two Dijkstra runs and the length of the edge). For round-tours (FEP; = FEP3)
the attractiveness increase would be zero, hence this case is handled like in the
flooding approach. So the attractiveness increases with the popularity of the
entry points, and the smaller the difference between the via-edge path and the
shortest path the higher the attractiveness. That way, we consider all tours via a
certain edge and we generate meaningful attractiveness values for all edges in
the forest.

4 Incorporation of Additional Information

4.1 Survey Data on User Preferences

The two main behavioral factors that influence utilization intensities in forests are:
first, the travel time to get to the forest, and second, the amount of time spend
in the forest. If these two factors are captured by survey data, we can incorporate
them into our pipeline and thereby increase the accuracy of our model. Table
1 shows the results of a survey on recreational behavior from a German forest
authority® as published in [7]. We observe that most people prefer forest entries
in the vicinity of their residences (about 80% take < 15 minutes to get to the
forest). The time spent in the woods has a peak between 30 minutes and one
hour, and the distribution has a positive skew towards longer sojourns. We can
plug in these observations as follows: for the computation of FEP popularity
values, we use travel time buckets in the backwards approach as provided by
the survey. After the backwards Dijkstra runs from the FEPs, we distribute the
population values of each street vertex according to the percentage values given
in Table 1 (if for a bucket no FEP is available, we add the percentage to the
previous bucket). As an example, assume that from a vertex v we can reach one
FEP f4 in less than 5 minutes and two FEPs fp and fo between 10 and 15
minutes. We conclude that 63% of the population of v use f4, and 18.5% use
fB and fe respectively. To incorporate the duration of stay times we use the
percentage values of the second column of Table 1 to weight tours detected by
our algorithms (flooding or via-edge). Thus, edges used in tours with a length
favored by more people receive higher attractiveness values.

3 http://www.fva-bw.de/

Table 1. Survey data about forest visits according to [7].

travel time to the forest [time spent in the forest ‘
up to 5 min 38% | up to 30 min 25%
6 to 10 min 25% | 31 to 60 min 42%
11 to 15 min 16% | 61 to 90 min 11%
16 to 30 min 18% | 91 to 120 min 15%
longer than 30 min 3% | longer than 120 min 7%

4.2 Points of Interest (POIs)

Of course, the presence of attractors like an inn, look-outs or a lake in the
forest, vivaria in the zoo or sunbathing lawns in parks, affects the likeliness of
tours passing in the vicinity and thus the edge attractiveness. If such POIs are
available, an easy way to incorporate them would be to assign a “niceness” value
to each edge which increases with the proximity to an attractor. Then every
tour created by our via-edge approach described above gets weighted with the
respective niceness value of the edge. Unfortunately, this approach covers only
tours visiting a single sight with our via-edge approach. But popular routes often
pass multiple POIs, and this is not properly modeled by this approach. One
remedy would be to compute the shortest paths via all permutations and subsets
of attractors. But this would be too time-consuming as the number of possible
tours grows exponentially in the number of POIs. So instead, we compute shortest
paths between all pairs of attractors and increase the niceness of edges on these
paths accordingly, which can be accomplished in polynomial time. In this way
customer flows concentrates on paths between attractors and the utilization
intensity increases on such sections.

5 Experimental Results

In this section, we evaluate our algorithms on real-world data with respect to
both efficiency and quality. All our algorithms are implemented in C++, except
for the raster-based FEP extraction described in Section 2.2, which is written in
Java. As we see in Table 3 below, the running time of this component is only a
small fraction of the total running time. All our experiments were performed on
a single core of an Intel i5-3360M CPU with 2.80 GHz and 16 GB RAM.

5.1 Data

We extracted street networks and forest boundary polygons from OpenStreetMap
(OSM) for three countries: Germany, Austria, and Switzerland.* Note that for
all of these countries the available data for street networks and forest areas can
be considered as almost complete. Surely, the magnitude of nodes, edges and

* Retrieved from http://download.geofabrik.de on November 26, 2013.

forest areas resembles reality. To get evidence for the scalability of our approach,
we also performed some of our experiments on two states within Germany, one
large (Baden-Wiirttemberg) and one small (Saarland). Population statistics were
looked up manually in Wikipedia. The main characteristics of our data sets are
summarized in Table 2.

Table 2. Our five data sets (ordered by graph size) and their main characteristics.

Graph OSM extract Wikipedia extract

nodes edges forest areas population
Saarland 535,595 1,149,654 2,165 994,000
Switzerland 6,562,482 12,314,060 39,087 7,997,000
Baden-Wiirttemberg 7,156,371 15,460,922 26,507 10,598,000
Austria 13,473,037 23,469,568 66,498 8,462,000
Germany 47,839,447 93,811,864 394,522 81,890,000

5.2 Running Times

We measured the running time for each step of our pipeline, excluding the data
extraction from OSM. The resulting times along with the total running time can
be found in Table 3.

Table 3. Running times for the main steps of our pipeline in seconds. The numbers for
the “edge attractiveness” column are for our (more sophisticated) via-edge approach.

Graph Runtime (in seconds)
population FEP FEP edge total
mapping |extraction | popularity | attractiveness

Saarland 0.01 1.92 63.53 40.65 2min
Switzerland 0.38 11.95 51.20 211.34 5min
Baden-Wiirttemberg 0.43 20.78 584.65 1223.43 31min
Austria 0.79 24.15 56.78 912.55 17min
Germany 2.86 181.25 512.29 6958.33 135min

We observe that the fraction of time spent on the population mapping is
negligible. It is just a few seconds even for our largest data set (Germany). This
is easy to understand, since the computation of the (street) Voronoi diagram
requires only a single sweep over all edges. The fraction of time spent on the
FEP extraction is also relative small. This is due to the efficient rasterization
approach described in Section 2.3. The resulting number of FEPs per input can
be found in Table 4. This number influences the runtime of the subsequent steps,
especially the popularity value computation which requires two runs of Dijkstra
for each FEP. We observe that the number of FEPs for Austria, Switzerland and

Baden-Wiirttemberg are very similar, despite their widely different number of
forest areas. This is because the number of FEPs is influenced by both forest
area size and street network density.

Table 4. Number of forest entry points for our test graphs.

lGraph [number of forest entry points (FEPs) ‘
Saarland 12,157
Switzerland 124,374
Baden-Wiirttemberg 139,468
Austria 198,241
Germany 971,517

The two remaining steps, the computation of the FEP popularity values
(Section 2.4) and of the forest path attractiveness values (Section 3), are the
most time-consuming of our whole pipeline. This is because both steps require a
large number of Dijkstra computations. Note that the numbers reported in Table
3 for the last step are for the more sophisticated via-edge approach, described in
Section 3.2. The more simplistic flooding approach is about 40 times faster.

We also observe that the total running time for Baden-Wiirttemberg (BW) is
slightly larger than for Austria, despite the smaller street graph for BW. This
is because the forest areas in BW are larger and more compact and with many
more paths inside.

5.3 Quality of the Estimated Population Distribution

In Section 2.3, we described how to distribute the population given for a district
over the individual nodes of the contained street network. We evaluated the quality
of our approach as follows. We do not have access to the positions of individual
buildings and the number of people inhabiting them. We instead manually
researched the population for some lower administrative districts contained in
our data sets. For each such district, we compared this number to the sum of
populations we computed for all nodes of the contained street network. Table 5
provides the result of this comparison for the German state of Saarland and its
six major sub-districts.

The average deviation is only about 10%, with a maximum deviation of 21%
for one sub-district. This is surprisingly good, given our simple approach. We
repeated the same experiment on the whole of Germany (81.9 million inhabitants)
and chose 20 districts randomly with population ranging between 3.4 million
(“Berlin”) and 56,312 (“Wittmund”). On average, we over- or underestimated
the population in a district by 28%, while never being away more than a factor
of 2 from the correct result.

Table 5. Accuracy of our estimated population for the six sub-districts of the German
federal state Saarland. A denotes the relative deviation of our result compared to the
ground truth in percent.

Saarland Population Number
actual estimated A p
1 Merzig-Wadern [103,520 96,903 —7% B g
2 Neunkirchen | 134,099 118,628 | —12% QK
3 Saarbriicken 326,638 315,866 —3% wo
4 Saarlouis 196,611 175,705 | —11%
5 Saarpfalz-Kreis | 144,291 157,316 | +9% ~
6 St. Wendel 89,128 107,452 |+21% Bilag

5.4 Quality of Our Estimated Utilization Distribution

Evaluating the quality of our final result (which parts of the given forest areas
are used by how many people) is difficult, because there is no such empirical data
available. Indeed, the lack of availability of such data is the main motivation for
this work, see Section 1.

However, large numbers of GPS traces from people contributing to Open-
StreetMap are publicly available®. Specifically, we used packages containing about
17,000 traces for Switzerland, 22,000 for Austria and more than 200,000 for Ger-
many. Clearly these traces are susceptible to all kinds of bias and cannot be
considered as a “ground truth”. However, we found it quite safe to assume that
highly frequented paths indeed correlate with prominent numbers of GPS traces.
We hence proceed as follows. We provide two comparisons, one visual and one
quantitative.

For the wvisual comparison, we produce comparable heat maps for the GPS
data and the utilization intensities computed by our two approaches (flooding
and via-edge). For the GPS data, we intersect the GPS traces with our extracted
forest polygons and overlaid the traces, each with a low transparency. We then
map the aggregated transparency values to the same color range used in the
heat maps for our two approaches. For a fair comparison, the color values were
normalized for each of the three maps individually. To avoid distortions by high
intensities from a few outliers, the top 2% of intensities all get assigned to the
most intense color from our color scheme (the reddest red in our pictures). The
remaining intensities are mapped linearly to the remaining color range (from red
over orange and yellow to no color).

Figure 6 shows these three heat maps for Baden-Wiirttemberg. A number of
interesting observations can be made.

(1) For both of our approaches, the hot spots are in similar locations as for the
GPS data.

® http://www.openstreetmap.org/traces and http://goo.gl/wczD8H

Fig. 6. Comparison of heat maps for the GPS data (middle), our simple flooding
approach (left), and the more sophisticated via-edge approach (right). The intensities
range from yellow over orange to red. The more red the more intense. Forest areas with
no paths or no data are green. A detailed discussion is provided in the text below.

(2) The flooding approach tends to produce larger hot spots. This is an undesired
artifact of the approach, arising from not considering tours through the forest,
but only proximity of forest edges to FEPs.

(3) The via-edge approach tends to produce more pronounced hot spots, very
similar to those from the GPS data. The via-edge approach also singles out
specific paths and edges, differentiating attractiveness values much better
than the flooding approach between several forest walks in the same area.

(4) Many of the smaller hot spots from the GPS data (e.g. those in the lower
right part of the map) can be found in the heat map of the via-edge approach,
but not in the heat map of the flooding approach. Especially in small forest
areas, people tend to walk through the forest instead of making a round tour.
Only the via-edge approach models this behavior satisfactorily.

(5) The coverage of the GPS data is very limited, the coverage of both of our
approaches is very good.

(6) In the lower left part, parallel to the border, we see an intense forest usage
indicated by the OSM traces, but only a small to medium intensity according
to our models. This is at least partly a border effect, because the cut-off at
the state boundary leads to smaller population values in the surrounding
areas of forest entry points near this boundary.

Figure 7 shows an enlarged version of the heat map for Baden-Wiirttemberg, as
produced with the via-edge approach. Figures 8 and 9 show the respective heat
maps for Austria and Switzerland. For Austria and Switzerland, we observe a large
fraction of yellow areas, because there are far from populated areas. And again,
border effects might play a role in some areas, as seen for Baden-Wiirttemberg
before. Furthermore, many forest areas in Austria and Switzerland are tourist
spots. If corresponding tourist use data were available, it would make sense to
include it into our model.

Fig. 7. Heat map for Baden-Wiirttemberg, as produced with our via-edge approach.

For our quantitative comparison, we extracted the top-50 hot spots for the
OSM trace map and for the heat maps computed by our two approaches. To
extract the top hot spots, we laid a grid over the map and summed up the heat
map intensities in each grid cell. For each of the three maps, we then extracted
the 50 grid cells with the highest value. We then counted which percentage of the
top 50 grid cells from the OSM trace map are also in the top 50 grid cells in our
two approaches. The result is reported in Table 6. As in the visual comparison,
also the quantitative results show a clear advantage of the via-edge approach over
the simple flooding approach. However, this advantage is smaller than one might
expect from the visual comparison, in particular Figure 6. This is because the

Fig. 8. Heat map for Austria, as produced with our via-edge approach.

grid discretization and the top-50 approach over-emphasizes the (easy) top hot
spots and blurs the subtle differences between flooding and via-edge discussed
above.

Table 6. Quality analysis of our two edge attractiveness models using a set of traces
extracted from OSM as ground truth. Hot spot detection is evaluated against this
baseline, the values are given in percent.

Graph Edge Coverage Hot Spot Detection

OSM flooding via-edge |flooding via-edge
Saarland 37 99 100 27 38
Switzerland 28 97 100 20 24
Baden-Wiirttemberg 29 95 100 22 31
Austria 22 93 100 18 23
Germany 26 91 100 17 24

6 Conclusions and Future Work

We have designed, implemented, and evaluated a pipeline of algorithms for
estimating the utilization distribution of public spaces, in particular forests. We
used only simple and publicly available map data as input. Our approach predicts
not only the utilization distribution in an area but also the utilization on the
fine-grained level of paths. We have also provided a visualization of our results
in an interactive web application, along with all data sets and code needed for
reproducibility. For future work, it would be most interesting to get hold of a

Fig. 9. Heat map for Switzerland, as produced with our via-edge approach.

more comprehensive ground truth (e.g. usage statistics from traces or polls), and
use these for a more thorough quality comparison and to fine-tune our model
and our algorithms.

References

1. Ural, S., Hussain, E., Shan, J.: Building population mapping with aerial imagery and
GIS data. International Journal of Applied Earth Observation and Geoinformation
13(6) (2011) 841-852

2. Gemsa, A., Pajor, T., Wagner, D., Ziindorf, T.: Efficient Computation of Jogging
Routes. In: Experimental Algorithms. Springer (2013) 272-283

3. Maervoet, J., Brackman, P., Verbeeck, K., De Causmaecker, P., Berghe, G.V.: Tour
suggestion for outdoor activities. In: Web and Wireless Geographical Information
Systems. Springer (2013) 54-63

4. Luxen, D.; Schieferdecker, D.: Candidate sets for alternative routes in road networks.
In: Experimental Algorithms. Springer (2012) 260-270

5. Yen, J.Y.: Finding the k shortest loopless paths in a network. management Science
17(11) (1971) 712-716

6. Eppstein, D.: Finding the k shortest paths. SIAM Journal on computing 28(2)
(1998) 652-673

7. Ensinger, K., Wurster, M., Selter, A., Jenne, M., Bethmann, S., Botsch, K.: ”Ein-
tauchen in eine andere Welt” - Untersuchungen ”uber Erholungskonzepte und
Erholungsprozesse im Wald. German Journal of Forest Research 184(3) (2013)
70-83

