The VLDB Journal
DOI 10.1007/s00778-015-0392-3

@ CrossMark

SPECIAL ISSUE PAPER

On k-Path Covers and their applications

Stefan Funke! - André Nusser! - Sabine Storandt?

Received: 5 December 2014 / Revised: 20 April 2015 / Accepted: 20 June 2015

© Springer-Verlag Berlin Heidelberg 2015

Abstract Foradirected graph G with vertex set V, we call a
subset C C V ak-(All-)Path Cover if C contains a node from
any simple path in G consisting of k nodes. This paper con-
siders the problem of constructing small k-Path Covers in the
context of road networks with millions of nodes and edges. In
many application scenarios, the set C and its induced overlay
graph constitute a very compact synopsis of G, which is the
basis for the currently fastest data structure for personalized
shortest path queries, visually pleasing overlays of subsam-
pled paths, and efficient reporting, retrieval and aggregation
of associated data in spatial network databases. Apart from
a theoretic investigation of the problem, we provide efficient
algorithms that produce very small k-Path Covers for large
real-world road networks (with a posteriori guarantees via
instance-based lower bounds). We also apply our algorithms
to other (social, collaboration, web, etc.) networks and can
improve in several instances upon previous approaches.

Keywords Path cover - Graph compression -
VC-dimension - Pruning algorithm - Personalized route
planning - Spatial network database

B Sabine Storandt
storandt@cs.uni-freiburg.de

Stefan Funke
funke @fmi.uni-stuttgart.de

André Nusser

nusser @fmi.uni-stuttgart.de

Universitat Stuttgart, FMI, Universitétsstr. 38,
70569 Stuttgart, Germany

Universitit Freiburg, Georges-Kohler-Allee 51,
79110 Freiburg im Breisgau, Germany

Published online: 14 July 2015

1 Introduction

The massive acquisition of geospatial data in the course of
collaborative projects like OpenStreetMap (OSM)! or by
companies like Google or TomTom has led to a dramatic
growth of data to be handled in spatial network databases
(SNDB). For example, the OSM ’world graph’ at the begin-
ning of 2007 contained >30 million nodes, whereas in 2013
this number has grown to more than two billion nodes. A limit
to this growth is nowhere to be seen due to the demand for
a more and more accurate and detailed representation of our
environment. SNDBs manage geographic entities located in
anunderlying road network supporting efficient data retrieval
operations, in particular taking into account connectivity
properties of the road network. Google/Bing/ Yahoo Maps
are all incarnations of SNDBs. Let us look at a few applica-
tions for SNDBs which can benefit from small k-Path Covers.
Application 1—facility location If one wants to place certain
facilities in a road network, like gas stations or traffic signs,
the goal is to cover every path of a certain length (so vehicles
do not run out of fuel, or people do not get lost). As placing
facilities generates costs, one aims at finding a placement
which minimizes the number of necessary facilities. This
problem has a one-to-one correspondence to k-Path Cover,
with k capturing the notion of the path length and the resulting
cover C C V defining the facility positions. See Fig. 1 for
an example.

Application 2—data aggregation Assume we have computed
or decided on some (not necessarily shortest or quickest)
route 7 for a weekend trip and are interested in shopping
or refueling opportunities along the route. If we had a data
structure D which can retrieve for any node v € V in the
network nearby points of interest like shopping malls or gas

1 http://www.openstreetmap.org.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0392-3&domain=pdf
http://www.openstreetmap.org

S. Funke et al.

R e e
A 72 \ a 7 78\ '
P \ s s

)\ ™~ {’\ \ NS
- X /\n". [L ‘/<\)‘§v XL 7\\5\\ \ <,>R\ 1\{\/ T
L AU OANA
P NN ~ B
N ;’\‘ \‘k\g‘ J:)\\\\
\ ~
gy
A e =
e
PR
N \ T—

Fig. 1 Valid set of facility locations (red boxes) to cover the graph
using k =9

b4

Fig. 2 Route with nearby gas stations and forest areas. Red nodes indi-
cate a subsampling resulting from a global cover computation. Querying
only the red points instead of all points to identify gas stations or path
sections through the forest is much faster, but still sufficiently accurate

stations, we could query D with every node on 7 to get the
desired answer. With 7 possibly consisting of hundreds or
thousands of nodes, it might be more efficient (but sufficiently
accurate) to query D with only every k-thnodeon (e.g..k =
10). Still, this requires having constructed D for all nodes of
the network. An elegant solution approach is to identify a
small subset C C V such that for any path consisting of k
nodes, at least one node is contained in C—and construct
D for C only. Now for any given path 7, we can query at
least every k-th node using D. Similarly, if the goal is to
acquire statistics along paths (like e.g., the percentage of
forest/desert coverage along routes throughout the USA), itis
more efficient to aggregate that data at the nodes determined
by C in terms of both space requirement and running time
for a single query. See Fig. 2 for a visualization.

Application 3—map simplification In another scenario, a
web portal dealing with scenic hiking trips sends several
suggested hiking routes to the clients for visualization in a
browser. In particular in a zoomed out view, it is a waste of
bandwidth to transmit every single node of each route across
the internet; subsampling the paths, e.g., every k-th node,
is the preferred method. If routes overlap, though, the cho-
sen subsampling for the routes should be consistent to avoid
visual artefacts. Again, if we could determine a subsample
C of V which guarantees that in any route at least every k-
th node is present, a more pleasing visual appearance can

@ Springer

Fig. 3 Small hiking map. In the upper image, the dashed red and green
line indicate two hiking routes (s — ¢ and s — 1) simplified greedily
using k = 6. While s’ — ¢ is a subroute of s — ¢, the two simplified
routes do not resemble each other at all. The circled nodes are a feasible
global cover for k = 6, resulting in a nice simplification of the map pre-
sented in the lower image, also allowing for consistent downsampling

be achieved when rendering an overlay of the subsampled
routes; see Fig. 3.

Application 4—personalized route planning Next-generation
route planners allow for personalized route planning queries
where each user has an individual profile depending on his
personal preferences and driving styles. For example, the
typical driving speed varies (speeder or slow driver), people
like to trade gas price against travel time, and different vehi-
cles exhibit different turn costs. So a query might consist not
only of source and destination but also of a set of parame-
ters which determine under which metric the optimal path
in the road network is to be computed. If we construct an
overlay graph on a small subsample C of V where C hits any
k-path in the road network, we have a metric-independent
compressed graph at hand. For any kind of input parameters
specified by a user, we can compute the respective edge costs
in this graph on demand and find the optimal path by a search
in the overlay graph considerably faster than a search in the
original graph.

We want to emphasize that for all these applications, it is
crucial that the Path Cover C hits any path consisting of k
nodes, not only shortest or quickest paths under some fixed
metric.

In general, computing a compact graph synopsis is of
interest not only in the context of SNDBs but for many appli-
cation domains where large-scale networks occur, e.g., social
and collaboration networks or web graphs.

1.1 Related work

Tao et al. in [18] considered the problem of computing a k-
Shortest-Path Cover, that is, a set of nodes C C V such that

On k-Path Covers and their applications

C contains at least one node from every shortest path (under
some fixed metric) consisting of k nodes. More concretely,
they could, for example, construct a set C which was only
15 % of the size of V for k = 16 and the US road network.
As one application example, they showed how to use such a
small C to accelerate shortest path queries (for a fixed met-
ric) via the overlay graph induced by C (and in combination
with additional speedup techniques like reach [13]). We want
to note, though, that the achievable query times have mean-
while been superseded by current speedup techniques like
transit nodes [3], contraction hierarchies (CH) [12] or hub
labels [2] which answer queries faster by several orders of
magnitude. A fundamental restriction of all these techniques
(including [18]) is that they all rely on fixed edge weights for
the preprocessing stage. If edge weights change (e.g., for a
different user profile), the preprocessing has to be revised or
even redone from scratch again, making all these approaches
unsuitable for the use case where every query comes with a
different user profile.

In [6] a three-phase approach was introduced to allow
for customizable route planning (CRP). The first phase is a
metric-independent graph preprocessing purely based on the
topology of the graph. In the second phase, a specific metric
is considered and the graph is customized accordingly. In the
third phase, queries can be answered efficiently for the met-
ric specified in the second phase. In fact, for their benchmark
graph of Western Europe (around 18 million vertices), query
times below 1 ms could be achieved. But as soon as the metric
changes, phase two has to be redone. For the CRP framework,
the metric customization takes several CPU core seconds (on
a rather powerful machine). While this is fine for simulating
traffic-dependent edge costs or when customizing for a spe-
cific single user, several seconds is too slow when every query
demands its own metric (in fact running plain Dijkstra might
then be faster). More recently, the CRP approach has been
refined such that customization can be performed on graph-
ics hardware [7]. Now customization times of a fraction of a
second can be achieved—but only via heavy (CPU or GPU)
parallelism. On a single CPU core, customization time is still
more in the order of an ordinary Dijkstra run.

The focus of our work is the highly dynamic scenario
where every single query comes with an individual metric.
We also employ a metric-independent preprocessing first,
but then merge the second and third phase such that met-
ric changes due to different input parameters can be dealt
with on query time. In [11] the authors adapt the CH pre-
processing technique to the case where each edge e in the
network has r associated costs ci(e), ca(e),...,cr(e). A
query consists of source, destination and nonnegative multi-
pliers o1, @2, .. ., a,; the data structure returns the shortest
paths under edge costs c(e) = ajci(e) + arca(e) + - +
a,cr(e). Experimental results proved the technique to yield
high speedups for r = 2 and 3. Still, the speedup for r = 3

was already considerably lower than for r = 2, as with each
additional metric the hierarchy of optimal paths (which is
crucial for the approach) subsides. Moreover, it was shown
that considering metrics which are orthogonal to each other
(like low travel time and preferring quiet roads at the same
time) is disadvantageous. For a larger number (e.g.,r > 4) of
dissimilar costs, this approach reaches its limits, especially
as the preprocessing gets then very complicated, and the pre-
processing time grows exponentially in r.

In [17] the problem of constructing a gate graph was intro-
duced, which is closely related to the k-Shortest-Path Cover
problem discussed in [18]. A gate graph is based on the selec-
tion of a subset of vertices (the so called minimum gate vertex
set, or MGS for short) of the original graph, which fulfills
the following property: For every pair of vertices v, w in
the original graph, there exists a sequence of gate vertices
g1, 82, - - ., & such that the path from v to w over these gate
vertices yields a minimal hop distance between v and w; and
neither two consecutive gate vertices, nor v and g1 or g and
w are more than € hops apart for given parameter € € N. Then
gate vertices with a hop distance of at most € are connected
with direct edges (augmented with suitable weights) to form
the gate graph. The main application discussed in the paper
is the simplification of undirected and unweighted graphs.
In fact, a k-Shortest-Path Cover with k = ¢ — 1 solves the
gate vertex problem as already observed in [17]. Neverthe-
less, a new algorithm to find a concise gate vertex set was
introduced which is based on reducing the problem to an
instance of the Set Cover problem. It was shown that smaller
gate vertex sets were achieved on social networks with the
new algorithm compared to the method proposed in [18]. But
the set cover-based approach is limited to rather small val-
ues of € (evaluations up to € = 6 in the paper) and small
networks due to the high time and space consumption of the
used algorithms. Among applications for which their algo-
rithms apply, the authors of [17] refer to the analysis social
networks, collaboration networks and web graph excerpts.
Several benchmark results for such nonroad network type
instances are given in their paper.

1.2 Our results
The main contributions of our paper are the following:

— We generalize the work of [18] by considering all paths
in the network instead of only shortest paths and devise
efficient algorithms to compute small k-Path Covers. The
resulting covers are even smaller than the covers reported
in [18] but with the much stronger property of covering
all k-paths instead of only shortest k-paths.

— As a by-product, we devise an algorithm that constructs
considerably smaller sets C with the same property (cov-
ering shortest k-paths) as the ones derived in [18]; for

@ Springer

S. Funke et al.

example, for the US road network and k = 16, we can
find a set C which is only 5.8 % the size of | V| (compared
to 15 % reported in [18]).

— More on the theoretic side, we show that the problem of
covering all k-Shortest-Paths can be approximated within
alogarithmic factor of the optimal solution by using e-net
theory and proving a new result on the VC-dimension of
directed shortest path systems.

— As a concrete application for our k-Path Covers, we
devise the to our knowledge to-date fastest scheme to
answer personalized route planning queries.

Apart from a more detailed exposition of the above, in this
extended version of the original paper [10], we present sev-
eral new results in the context of k-Path Covers:

We investigate (theoretic) lower bounds on the complex-
ity and approximation quality of our approach.

For the k-Shortest-Path Cover problem, we develop
an acceleration technique for our algorithm based on
estimating upper bounds for shortest path distances.
This new technique reduces the cover computation time
significantly—especially for large values of k.

We discuss in detail how to construct overlay graphs
induced by k-Path Covers. For Shortest-Path Cover over-
lay graphs, we present a method which outperforms
previous approaches (as developed in [18]) in both run-
ning time and solution quality.

We investigate the performance of our algorithms on sev-
eral nonroad network type problem instances, in particu-
lar social networks, collaboration networks and excerpts
from the web graph. These networks differ significantly
from road networks in terms of maximum/average node
degree and diameter. We empirically prove that our algo-
rithms perform well also in these settings and are able to
tackle much large instances than considered in previous
work.

— Furthermore, we added new experiments concerning
nested cover construction and graph/path compression.
We also refined our results on personalized route planning
and considered more difficult instances (larger k-value
for the biggest network) for this application than before.

1.3 Outline

After providing formal definitions in Sect. 2, we review in
Sect. 3 theoretic results on the complexity of the k-Path Cover
problem, and the k-Shortest-Path Cover problem, respec-
tively. As k-Path Cover is APX-hard [4] and k-Shortest-Path
Cover turns out to be APX-hard as well, we investigate
approximation algorithms based on low VC-dimension of the
underlying set system. In Sect. 4 we develop practical algo-
rithms to construct k-All-Path Covers and k-Shortest-Path

@ Springer

Covers as well as instance-based lower bounds. In Sect. 5
we investigate the efficient construction of the overlay graph
induced by a Path Cover, which is important for several appli-
cations mentioned in the introduction. In fact, we need the
overlay graph as an ingredient for personalized route plan-
ning. In Sect. 6 we describe in very detail how to preprocess
the road network in order to enable real-time query answering
for this application. We conclude with an experimental study
described in Sect. 7, showing the practicability of our devel-
oped algorithms and in particular looking at the use case of
personalized route planning. We also investigate the applica-
bility of our algorithms for other network types besides road
networks.

2 Formal definitions

To formalize our cover problems, we introduce the follow-
ing notations: The input is a simple directed graph G(V, E)
(simple means G contains no self-loops and no multi-edges).
Therefore, a path w in G can be uniquely represented
as the list of its traversed vertices or edges. We will use
both representations depending on what is more convenient.
Throughout this paper, when using the term ’path’ we always
refer to simple paths, that is, no vertex appears more than
once. Furthermore, we define the length |7 | of a path & to
be the number of nodes it contains including the source and
target vertex.

Our focus lies on determining a small subset of nodes such
that all paths contained in G are subsampled sufficiently by
those nodes. The density of the sampling can be chosen in
an application-dependent manner via the input parameter k.

Definition 1 (Minimum k-(All-)Path Cover) Given a
(directed) graph G(V, E) and k € N, select a minimum
subset of vertices C € V such that for every simple path
T =vq,...,V in G we have C N # @. We will refer to
this problem as k-APC.

Of course, a cover for all paths also yields a feasible cover
if we are only interested in subsampling shortest paths under
a specific metric. Nevertheless, the problem of covering only
shortest paths allows for specializations of the algorithms for
the general case, which leads to even more compact cover
sets C. Hence, we also define the cover problem for shortest
paths.

Definition 2 (Minimum k-Shortest-Path Cover) Given a
weighted (directed) graph G(V, E,¢),c : E — RS‘ being
the weights, and k € N, select a minimum subset of vertices
C C V such that for every shortest (according to ¢) path
T =vq,..., 0 in G we have C N # (). We will refer to
this problem in the following as k-SPC.

On k-Path Covers and their applications

Note that in contrast to [18] our definition for k-SPC
requires covering all shortest paths, which appears harder
if several shortest paths between some pairs of nodes exist.

Our main application—the efficient computation of per-
sonalized shortest path queries—will take advantage of the
fact that a k-APC can also be seen as a k-SPC for all possible
metrics. More concretely, we are given » edge cost functions
€1,€24...,¢ + E — R(J{ and each query specifies—apart
from source and target nodes s, € V—which costs are
important and to what extent (which can be realized by choos-
ing weighting factors wi, wa, ..., w, € Rg). The goal is
then to find the path m from s to ¢, which minimizes the
aggregated weighted costs >, .. >, w; - ¢i(e). To allow
for efficient answering of such queries, we will first com-
pute a concise k-APC C C V in a preprocessing phase and
then evaluate edge costs between nodes in C at query time
according to the query weights.

3 Theoretic analysis

In this section, we give a brief overview of complexity results
for k-APC and k-SPC and show that k-SPC is hard to approx-
imate better than a factor of 2 in the general case. Then we
derive alog |O PT |- approximation for k-SPC based on VC-
dimension analysis.

3.1 NP-hardness and approximation

In [17], the MGS problem was also analyzed theoretically.
Here, the authors proved NP-hardness for a generalized prob-
lem version, namely, in terms of our setting, a variant, where
only a prespecified subcollection of shortest paths of length k
has to be hit. However, the complexity of hitting all shortest
paths of length k remains unclear there, as hitting all paths
is a special case of hitting a subcollection—and therefore
might be easier to solve than the generalized version. A thor-
ough theoretic analysis of k-APC was conducted in [4]. Via
reduction from the VertexCover problem, the authors proved
APX-hardness of k-APC (subsuming NP-hardness). In par-
ticular, they showed that for k > 2 an approximation better
than 1.3606 in polynomial time demands P=NP. We remark
that if the unique game conjecture [15] holds, their results
even imply APX-hardness within a factor better than 2 (see
[16]). Furthermore we would like to point out that this APX-
hardness result carries over to k-SPC as discussed in more
detail in the following Lemma.

Lemma 1 k-SPC is hard to approximate better than a factor
of 2 if the unique game conjecture holds.

Proof In a VertexCover instance, one is given a graph
G(V, E) and the goal is to find a subset C < V of min-
imum size, such that at least one endpoint of every edge is

contained in C. To reduce the problem to k-SPC, we construct
a graph G'(V’, E’) with the following properties (similar to
the approach in [4]):

— V/ contains whole V and E’ contains whole E.

— For every vertex in V, an auxiliary path gets attached to it
which contains | (k — 1)/2] vertices. These vertices and
edges are added to V/ and E’.

— All edges in E’ are augmented with costs of 1.

The transformation clearly demands only polynomial time.
A VertexCover C in G is a k-SPC C’ = C in G/, as the
longest path without a node in C contains at most 1 + | (k —
1)/2] vertices and the term is smaller than k for any k > 1.
For a k-SPC C’in G’, we first snap vertices in V/\ V to the
closest vertex in V according to the hop distance, providing
us with a new set C for which we can guarantee |C| < |C’|.
If this set C is not a VertexCover in G, there has to be some
edge {v, w} € E and neither v, w nor one of the auxiliary
paths attached to those vertices have a nonempty intersec-
tion with C. Let v" and w’ be the vertices on those auxiliary
paths with the largest distance to v and w, respectively, then
v,...,v,w,..., w is the unique shortest path from v’ to
w’. As this path contains 2| (k — 1)/2] + 2 > k vertices, C
has to contain at least one of its vertices to be a valid k-SPC.
This contradicts the fact that {v, w} is not hit by C. Hence,
every edge is hit by C, and C is a valid VertexCover in G.
Considering both directions, we conclude that the solution
sizes |C| and |C’| have to be equal. Therefore, we can solve
the VertexCover problem via reduction to the k-SPC problem
in a solution size preserving manner. Hence, all hardness
results for VertexCover transfer to k-SPC, which in particular
means that k-SPC is inapproximable with a factor better than
2 if the unique game conjecture holds. O

So approximation algorithms with a guarantee better than
a factor of 2 seem to be out of reach for both k-APC and
k-SPC. But as observed in [4] for the k-APC problem, there
exists an algorithm that guarantees a k-approximation based
on converting the problem to an instance of HittingSet (as
defined for the sake of notation in the following).

Definition 3 (HittingSet) Given a set system (U, S) with U
being a universe of elements and S a collection of subsets
S; € U. Find a minimum set U* C U such that VS; € S :
SiNU* # 0, i.e., every setin S is hit by U*.

Infact, a primal-dual algorithm exists (the so called pricing
method), which provides a k-approximation for HittingSet if
all S; have a size < k. In our setting, we interpret every
path of length & as set of its contained vertices to construct
the HittingSet instance. This construction also works for k-
SPC when restricted to shortest paths. So for k-APC and

@ Springer

S. Funke et al.

k-SPC every set has exactly k elements, immediately imply-
ing a valid k-approximation. Of course, the reduction to
a HittingSet instance also provides us with a Inn 4+ (1)
approximation via the standard greedy algorithm (with n =
|V| denoting the number of nodes in the network). This
approximation guarantee might be tighter in case of large
k.

3.2 VC-dimension of directed shortest paths

To obtain an upper bound for the size of a k-SPC, the theory
of e-nets was applied in [18]. An e-net for a set system (U, §)
is a HittingSet for all elements in S which satisfy |S;| > €|U|
forsomee € (0, 1). Asshownin [18], an e-net withe€ = k/nis
a k-SPC for the set system where U equals the set V of nodes
in G and S the set of all shortest paths. Applying the e-net
theorem [14], we can find a k-SPC of size O(d (7/k) log(n/k))
with d being the Vapnik—Chervonenkis(VC) dimension of
the set system [19].

Definition 4 (VC-Dimension) The VC-dimension d of a set
system (U, S) is defined as the size of the largest subset
U’ C U that can be shattered. Here, a subset U’ is called
shattered if for any subset A C U’, there exists B € S with
U NB=A.

So in case S consists of a set of paths, the VC-dimension
describes an exclusive upper bound on how often two paths
can intersect in a noncontiguous manner. Obviously, if short-
est paths are ambiguous in G, the VC-dimension depends on
the length of the paths. But as already shown in [17], for every
G there exists a system of unique shortest paths that can be
investigated. The same effect can be achieved by symbolic
perturbation of the edge weights. For undirected shortest
paths, it was proven in [1] (in the context of analyzing short-
est path speedup techniques) and [18] that the VC-dimension
is at most 2. Hence, we can find a k-SPC containing no more
than O(#/k log(n/k)) elements. It was remarked in [18] that
the result is valid for general graphs, also including directed
graphs. This is not true, as the example in Fig. 4 shows. There
a directed path of three nodes indeed can be shattered dis-
proving 2 as an upper bound.?

But as dealing with directed edges is naturally required
when considering street graphs (one-way streets, round-
abouts, asymmetric edge weights), the VC-dimension for
this case is clearly of interest. We will prove in Theorem 1
that the VC-dimension for unique directed shortest path sys-
tems (UDSPS) is 3, and therefore we can also derive k-SPC
solutions with at most O(n/klog(#/k)) vertices for directed
graphs.

2 Meanwhile an erratum was published by the authors of [18]
which can be found here: http://www.cse.cuhk.edu.hk/~taoyt/paper/
sigmod11-skip-erratum.

@ Springer

a b c

N

Fig. 4 Consider the shortest path node set w(a,c) = {a,b,c}.
As mw(a,a) = {a},n(b,b) = {b},7w(c,c) = {c},m(a,b) =
{a,b}, w(b,c) = {b,c} and w(c, a) = {c, a}, every subset of {a, b, c}
can be created by intersection with another shortest path in this graph, so
the VC-dimension of the system of shortest paths (which are all unique)
in this example is 3

Theorem 1 (VC-Dimension of UDSPS) A system of unique
directed shortest paths has VC-dimension at most 3.

Proof We prove that an arbitrary set of four nodes U’ =
{v1, v2, v3, v4} cannot be shattered. If there exists no short-
est path containing all the nodes in U’ this is trivially true. So
from now on let = be a directed shortest path that contains
all these nodes, w.l.o.g. in the order implied by their indices.
Consider now the sets Ay = {vy, v4}, A2 = {v2, v4} and
A3z = {vy, v2, va} and assume they can be realized by paths
q1, 42, q3 € S, meaning that A; = U’ N g;. Because g; does
not contain v3 and v and shortest paths are unique, it follows
that vy is visited before vy in g1, 1.e.,q; = ---vg---V]---.
With a similar argument on g, we getgo = +--vg -V - - .
For A3 observe that for all possible orders of its elements in
gz—except for the order vy, v4, v1—the shortest path from
the first to the last node is already known and not consistent
with the respective g3, as they contain different nodes inbe-
tween. For the remaining order, it holds that a path from v,
to vy over v4 must contain v3, which again is not consistent
with the induced g3. Hence, there exists no g3 and U’ cannot
be shattered. O

Remark 1 As already explained in [1], output-sensitive
upper bounds can be derived from VC-dimension analysis,
e.g., the algorithm presented in [5] yields a solution of size
O(d|OPT|log(d|OPT])). Plugging in our value of d = 3
for UDSPS, we end up with an approximation factor of
O(log|OPT)).

4 Constructing k-Path Covers in practice

In this section, we will develop approaches for efficient cover
set construction in practice, first discussing the general case
of k-Path Covers but then also considering the special case
of k-Shortest-Path Covers.

A naive approach that immediately comes to mind is to
enumerate for each vertex v € V all paths with k nodes
that start in v and store them. Then any (heuristic) Set-
Cover/HittingSet algorithm, e.g., the greedy approach, could
be used to construct a feasible cover C. Unfortunately, this is
not practical for large input graphs, as the exploration time
as well as the space consumption of O(|V [¥) for extracting

http://www.cse.cuhk.edu.hk/~taoyf/paper/sigmod11-skip-erratum
http://www.cse.cuhk.edu.hk/~taoyf/paper/sigmod11-skip-erratum

On k-Path Covers and their applications

and storing all k-node paths is prohibitive. Therefore, we
will devise a more sophisticated approach, which allows for
a considerably more efficient computation of a feasible cover
C.

4.1 The Pruning algorithm

We follow a Pruning approach with the following high-level
idea: Starting with all the nodes in the cover, i.e., C =V, we
consider the nodes one by one, always deciding for a node v
whether it is necessary to keep itin C to maintain the covering
property. To decide whether a node v can be pruned from C,
we essentially have to make sure that there exists no k-node
path over v which does not contain any other node from the
current cover C. So we basically have to explore all outgoing
and incoming paths of v until reaching other nodes from C.
If the combination of such (disjoint) outgoing and incoming
paths yields a concatenated path of length k, we have to keep
vin C.

A high-level view on this procedure is given in
Algorithm 1.

Algorithm 1 Procedure to decide whether node v is necessary
for k-APC-cover.

nodeNecessary(v,k)
construct the set P, of all outgoing paths from v not containing any
node in C — {v}
if 37 € P, with || = k then
return true
end if
for all 7 € P, do
search for the longest incoming path into v
not containing nodes in (C U) — {v}
if such path of length k — || 4 1 exists then
return true
end if
end for
return false

To decide whether a node v can be pruned, the procedure
is called with nodeNecessary(v,k). It returns true if a k-node
path exists which is only covered by v (that is, v cannot
be pruned) or false if no such path exists (that is, v can be
pruned). The procedure uses two subroutines, enumerating
all incoming and outgoing paths not containing a specific set
of nodes—these subroutines can be easily implemented very
similar to depth-first search (but with potentially exponen-
tial running time in k). More precisely, if Ni(v) denotes the
number of nodes in V which are on some k-path originating
in v, then a very rough bound on the runtime can be given by
(’)(Nk(v)zk), as there are at most

(Nk(v))
k—1

B

& Do

k/4 diamonds

k/4 diamonds

Fig. 5 To decide whether v has to be kept, £2(2¥/2) paths have to be
considered

many outgoing/incoming paths with <k nodes. If the max-
imum degree of a node is bounded by A then it holds
Ni(v) < A,

While the two subroutines in Algorithm 1 are naturally
implemented in a recursive fashion (like depth-first search),
our implementation is stack based which is much faster in
practice due to the avoidance of the overhead of stack frame
(de)allocation during the recursive calls.

Note thatitis not difficult to come up with simple instances
where this routine takes time exponential in k. Consider the
problem instance in Fig. 5, where the left- and right-most
(red) nodes as well as v are part of the current cover for some
value k. v is k/2 hops away from each of the red nodes.
To be sure that after the removal of v from the cover, there
is no uncovered k-node path, our algorithm enumerates all
uncovered incoming as well as outgoing paths (of which there
are §2(2%/*) each), resulting in a running time of 9(2"/2).
And this is not even the worst-case instance.

Still, in practice, this algorithm is pretty efficient for
road networks, even though they sometimes exhibit similar
patterns like the one in Fig. 5 (think of Manhattan-type struc-
tures). The reason for that is first that during the construction
of the set P, as well as the search for an incoming path the
algorithm will only explore paths of length at most k since
by assumption C was a valid cover before consideration of
node v. More importantly, at the very beginning, when C is
almost the whole vertex set, the two path enumeration steps
abort almost immediately (because all uncovered paths are
very short). This is the main reason for the Pruning approach
to be surprisingly fast in practice.

Theorem 2 The Pruning algorithm produces a feasible and
minimal k-Path Cover C.

Proof The Pruning algorithm only discards a node v from C
if all paths of k nodes containing v are covered by C — {v}.
Therefore, throughout the algorithm, we always maintain a
feasible k-APC C. So especially after termination the result-
ing set, C has to cover all k-paths. For minimality, consider
the moment when v is regarded but not pruned from C. In
this case, there was a path & which contains v as the only
node from the current C. Hence, any node present in the
final cover C has a witness path 7 which certifies its neces-
sity for the cover (see Fig. 6 for an illustration). Therefore, no
node can be removed from the final C without invalidating

@ Springer

S. Funke et al.

7

Fig. 6 A k-APC for k = 4 produced with the Pruning algorithm (red
nodes). For each node in the cover, a witness path (green) is marked,
which contains only this node from the cover. Hence, no node in the
final cover can be removed without destroying the cover property

the solution. Hence, C has to be minimal in a set theoretic
sense. O

Of course, minimality of C does not imply that it is also
minimum, i.e., of minimal cardinality among all possible
covers. Observe that the order in which nodes are considered
during the course of the algorithm highly influences the solu-
tion quality (but not feasibility or minimality). For example,
by intuition, high-degree nodes cover more paths than low-
degree nodes; hence, the latter should be pruned out first. We
will provide an experimental study measuring the influence
of different node order schemes for pruning toward the end
of the paper.

4.2 Lower bounds

Unfortunately, there are no meaningful theoretic lower
bounds we can compare our result to for quality analysis
(as e.g., in a star graph, a single node yields a valid cover, but
the solution size might be arbitrarily large). Nevertheless, for
a given problem instance, we can derive valid lower bounds
for practical purposes by greedily choosing disjoint k-node
paths. Obviously a set of pairwise nonintersecting k-node
paths requires an extra node in C for each element in this set,
so the size of any such set yields a valid lower bound for the
size of C. In Fig. 7 a small illustration for the lower bounding
technique is provided.

To construct such a set I of nonintersecting or independent
k-paths, we invoke our path enumeration algorithm as used
in Algorithm 1. For every node, we store a flag indicating
whether it is already part of some path in / or not. So initially
all flags are set false as I = (). Then we consider the nodes
in V one by one in some arbitrary order. For each node,
we enumerate the k-paths containing it until we detect one
that does not contain any node with a true flag (if such a
path exists). Then this path is added to / and the flags of all
contained nodes are set to true. As this procedure assures that

@ Springer

/

e

Fig. 7 Lower-bound construction for the graph in Fig. 6. The circled
paths are disjoint and therefore prove a lower bound of seven on the size
of a feasible cover for this instance. By choosing the disjoint paths more
carefully, one could also prove a lower bound of ten which matches the
size of the already found k-APC. Note that in general such a matching
lower bound might not exist

no node is contained in more than one path in 7, the final set
I is guaranteed to contain only nonintersecting paths.

4.3 Malicious problem instances

For the considered real-world problem instances, our
experiments in Sect. 7 show (via the instance-based lower
bounds) that our algorithm produces results pretty close to
the optimum when pruning is performed with a good order-
ing like by increasing node degree. So a natural question
is whether one can theoretically prove (a priori and not a
posteriori via the instance-based lower bounds) good approx-
imation guarantees—our theoretic findings do not rule out
the existence of a let us say 6-approximation algorithm for
k-APC. Unfortunately this is not possible for our algorithm
as we will see in the following. We show that our Pruning
approach where nodes are considered in order of increasing
degree (one of the best orderings in practice; see Table 3) can
produce almost arbitrarily bad results. Consider the graph in
Fig. 8, which is a central node (vop) with d = 7 ’arms’
attached to it each of which consists of 11 nodes and the
last node of each arm has additionally 7 other nodes attached
to it. So the distance from vop to v; is 11 hops each, and
clearly, C = {vop} is the optimum k-Path Cover for k = 22.
When pruning in order of increasing degree, first all nodes
except vopy and vy, ... v7 are pruned away. But then, since
Vopt has only degree 7, whereas the v; all have degree 8, vop is
pruned away resulting in a cover C = {vy, ..., v7}. It should
be clear that one can modify this example to yield an arbi-
trarily large solution of our algorithm, whereas the optimum
will always be of size 1. Note that the degree of these *bad’
instances becomes pretty high, so when restricting the max-
imum degree of the graph, some guarantee for our algorithm
might be within reach. Similar bad examples can be found
for the other node orderings.

On k-Path Covers and their applications

Fig. 8 Instance (k = 22) where
our algorithm with ‘increasing
degree’ ordering yields solution
of size 7 compared to the
optimum solution of size 1

(%1

4.4 Nested k-Path Covers

Reconsider our application of transmitting and visualizing
hiking routes. Depending on the zoom-level in which we
want to render the hiking map, we might require different
values of k. So in fact we like to have a sequence of covers
Ci,...,C,forky < ky < --- < k, to allow for r zoom-
levels. Note that in this visualization context, it is crucial to
demand C; 2 Cj41, because otherwise the refinement of a
path when zooming-in might lead to a completely different
path representation, which would make it hard for a user to
recognize substructures and orient himself. To extract such
a sequence of nested k-Path Covers, we first compute the
cover C for k; conventionally with our Pruning algorithm.
When, for k> we do not initialize the Pruning algorithm with
Cy = V but Cp = C instead. Therefore, we make sure that
the resulting cover C, (after pruning superfluous nodes) is a
subset of C;. Correctness follows from the fact that obviously
avalid cover C for some value k is always also a feasible cover
for all values k¥’ > k. Proceeding like this up to k,—always
taking the last computed cover as initialization for the next
pruning round—we retrieve the desired sequence of nested
covers.

4.5 Special case: k-Shortest-Path Cover

The problem of covering all k-node shortest paths for a spe-
cific metric was first tackled in [18]. The authors proposed
a greedy augmentation algorithm which they call Adaptive
Sampling. The idea is to start with an empty cover C = {J
and then consider the nodes in V one by one, adding a node
v to C iff at the moment of consideration there exists a so far
uncovered k-node shortest path starting in v. Unfortunately,
this approach does not guarantee minimality (in a set theo-
retic sense) of the resulting cover since a node v added to C
at some point of the algorithm might become redundant later
on due to nodes subsequently added to C.

We reimplemented their approach for evaluation, but made
some small modifications which improve the quality and the
runtime slightly. Even using this improved version of Adap-
tive Sampling, we observed that metric-independent k-Path
Covers constructed with our Pruning algorithm were smaller
in size than the k-SPC by Adaptive Sampling on the same

Vopt U2

graph (even though in the k-SPC setting much fewer paths
have to be hit).

4.5.1 Quick Pruning

To improve further, we adapted the Pruning algorithm to the
k-SPC setting. Like for the general case we start with C = V
and try to prune nodes ensuring that their removal does not
lead to any uncovered k-node shortest path.

To decide if there exists an uncovered k-node shortest path
containing v, we proceed as follows:

1. temporarily remove v from C

2. grow a shortest path tree Tr(v) by running Dijkstra’s
algorithm until all unsettled but labeled nodes contain a
node from C on their current path from v

3. in the reversed graph’® G~! grow a shortest path tree
Tg (v) from v until all unsettled but labeled nodes contain
a node from C on their current path from v

4. if Tr(v) contains a k p-node path not containing any node
from C and T (v) a kg-node path not containing any node
from C and kg + kg — 1 > k, add v back to C otherwise
prune it.

We call this algorithm Quick Pruning because it runs very
fast in practice. The theoretic runtime can be bounded by
O(Ni (v)?) where N (v) denotes again the number of nodes
in V that lie on a k-path originating in v. As there are at most
Ni(v)? edges between those nodes, a single Dijkstra runs
costs O(N(v) log Nx(v) + Nx(v)?) € O(Ni(v)?) which
determines the runtime.

But in contrast to our general Pruning algorithm for k-
APC, we cannot guarantee minimality with this approach (the
same holds for Adaptive Sampling). The reason for possibly
keeping some unnecessary nodes in C is that the concatena-
tion of two shortest paths (one from T, one from Tf) not
necessarily needs to be a shortest path itself. So the k-node
path we take as a witness for the necessity of v might not be
a shortest path and therefore does not have to be covered by
our C. In fact, we can fix this by running a slightly modified
Pruning algorithm.

3 G~ has the same vertex set as G but all edges reversed.

@ Springer

S. Funke et al.

4.5.2 Pruning for k-SPC

For every node in the backward search tree Tg, we run a for-
ward search and check if there are uncovered k-node shortest
paths over v. More formally it can be described like this:

1. temporarily remove v from C

2. inthe reversed graph G~ ! grow a shortest path tree T (v)
from v until all unsettled but labeled nodes contain a node
from C on their current path from v

3. foreverynode w in Tg (v) grow a shortest path tree Tr (w)
in G until all unsettled but labeled nodes contain a node
from C on their current path from w

4. if for some w there is a k-node path over v in Tr (w) not
containing a node from C, v has to be added back into
C, otherwise it can be pruned

While this Pruning approach again guarantees set minimality
of the output cover, it triggers a lot more Dijkstra computa-
tions. Theoretically, the runtime increases from O(Nx(v)?)
for Quick Pruning to O(Ni (v)*).

4.5.3 Upper bounding technique

The following observation can save some of the tree con-
structions in the Pruning algorithm: Let u1, uz, ... u; be the
neighbors of a node w on shortest paths from w to v (if the
shortest path is unique then j = 1). For x € V, let U(x) be
an upper bound on the number of nodes of a shortest path
free from nodes of C starting in x. If U(u;) < [for all u;,
U(w) < [+1.Hence, we can examine nodes in Tg in increas-
ing hop distance from v. Initially U (x) = oo, Vx € Tg. For
anode w to be examined U (w) := max,, U (u;) + 1 for all
its neighbors u; on shortest paths to v. If U (w) < k the con-
struction of Tr(w) can be skipped, otherwise we compute
Tr(w) and set U (w) accordingly. This exploration strategy
saves many Dijkstra computations as we will see in the exper-
imental section.

Still, even when applying the upper bounding technique,
we expect the runtime to be worse than for Quick Pruning—
but the quality to be superior. So it depends on the application
context which approach to use.

4.5.4 Dealing with ambiguous shortest paths

According to our definition of k-SPC, we aim at covering all
shortest paths, not only one shortest path for each pair s, ¢
of vertices. We now provide the details which we left out in
the above description for the sake of a clearer presentation.
The basic idea is to temporarily make shortest paths already
covered by the current C infinitesimally more expensive such
that uncovered shortest paths are always exhibited. To that
end, consider slightly modified edge costs ¢’ : E — Rg

@ Springer

where for an edge ¢ = (v, w) withv € C orw € C we
define ¢’(e) = c(e) + € for some arbitrarily small € > 0,
otherwise ¢’(e¢) = c(e). Growing a shortest path tree from s
under this edge cost function ¢’ until all nodes have a node
from C on their shortest path from s ensures that if there
exists a shortest path from s to v not containing any node
from C, its nodes will be part of the shortest path tree grown
from s. Now consider the directed acyclic graph D induced
by the nodes of the shortest path tree and all edges e = (v, w)
with d(v) 4+c(e) = d(w) [here d(.) denotes the shortest path
distance from s with respect to c]. Every path in D from s to
some node v corresponds to a shortest path from s to v not
containing any nodes from C and vice versa. The maximum-
hop path among these can easily be determined for all nodes
in D in O(|D]) time.

We want to emphasize, though, that this is only necessary
if we really insist on hitting all shortest paths. It is very easy
to enforce uniqueness of shortest paths by techniques like
symbolic perturbation. In practice, the ambiguity of shortest
paths hardly affects the size of the covers in road networks.

5 Overlay graph construction

For some applications (as map simplification or routing), we
not only are interested in the set of nodes C which form the k-
SPC or k-APC but care for constructing the induced overlay
graph Go(C, Ep) as well. So for every v € C, we have
to insert edges to all of its k-Cover neighbors. Here, a node
w € C is a neighbor of v, if there exists a (shortest) path
between them which does not contain further nodes from C.

In [18] an overlay graph construction algorithm was
described for dealing with a k-SPC. We will first briefly
review this approach and point out several possible improve-
ments. Then we describe a simple and efficient algorithm to
construct the induced overlay graph for a k-APC.

5.1 k-SPC Overlays

To extract the set of overlay edges E ¢, a two-step procedure
was proposed in [18]: First, for every node v € C the k-hop
shortest path tree Ty (v) is computed. Then all paths rooted in
v in Ti (v) get traversed up to the point where a node w € C
is passed, and then the edge {v, w} is added to E¢. This
approach has some drawbacks:

— As already stated in the original paper, superfluous edges
are likely to be added, increasing the final graph size and
query times later on. The reason is that there might exist
shorter paths with a larger hop distance to nodes in 7y (v);
hence, the contained nodes might not actually be in the
neighborhood of v (see Fig. 9 for an example).

On k-Path Covers and their applications

1 1 1 1 1

<
(N

S
Lo
<

Fig. 9 Neighborhood extraction for k = 3: The 3-hop shortest path tree
T5(v) is printed in bold, circled nodes are part of the k-SPC. Here, the
edges (v, x) and (v, y) would be added, while only (v, x) is necessary

— The method requires always the computation of the com-
plete k-hop shortest path tree for every node, but the
neighbors might be considerably closer.

In the following, we present approaches that compute the
exact set of edges E for a given k-SPC efficiently in prac-
tice.

5.1.1 Neighborhood extracting Dijkstra

To use Dijkstra efficiently for computing the set of neighbors
of anode v, we need to stop its execution as soon as all neigh-
bors of v are settled. That point is certainly reached when all
nodes still in the priority queue contain at least one node from
C on their tentative path from v. So our Dijkstra’s search
radius never exceeds the distance of the furthest neighbor. In
particular in the case where all neighbors are close by, this
improves the runtime compared to the approach presented in
[18] significantly. Also no superfluous edges are inserted.

5.1.2 CH-based neighborhoods

The construction of an overlay graph for given k-SPC C
could also be interpreted as removing all nodes V\C from
the graph while preserving the distances between the remain-
ing ones. This captures essentially the idea of the shortest
path speedup technique contraction hierarchies [12] (CH).
Here, in a preprocessing phase nodes are removed from the
graph (contracted) one by one. To maintain the shortest path
distances between all so far not contracted nodes, so called
shortcut edges (a.k.a. shortcuts) are added whenever neces-
sary. A shortcut edge (u, w) is required if at the moment of
contraction of a node v the path u, v, w is a shortest path.
So a Dijkstra computation reveals which shortcuts to add for
every pair of adjacent nodes of v in the actual graph. After all
nodes are contracted, the original graph G is augmented with
all shortcut edges created during the contraction phase. In the
resulting graph, many long shortest path sections are spanned
by single shortcuts. A variant of Dijkstra’s algorithm is able
to take advantage of these shortcuts, yielding a significantly
smaller search space than the conventional Dijkstra (without
CH) for the same s-f-query.

In many applications, the contraction process is not fully
completed (as maybe this would result in too many shortcuts
in the final graph); see, e.g., [8]. The set of uncontracted

nodes is then called the core of the graph. At the moment the
contraction process stops, the actual graph consists of the core
nodes and all edges between them necessary to guarantee the
same pairwise shortest path distances as in the original graph.
This is exactly what we want to achieve when constructing
the overlay graph. Hence, declaring C the set of core nodes
and applying the CH construction to our graph results in the
correct induced overlay. The advantage of this method is that
itonly requires the use of the conventional Dijkstra algorithm
without any adaptions.

If we use a nested construction for C, CH-based overlay
graph construction exhibits another advantage. In particular,
we can compute the overlay graph for all intermediate covers
C1, Ca,...,C, = C in a single contraction phase. For this
purpose, we first contract all nodes that are in none of the
covers. This results in an overlay graph for C;. Next we
contract all nodes in the actual graph that are exclusively
contained in Cp. As all remaining nodes in the graph must
form C,, we now have an overlay graph for this cover. We
proceed always contracting nodes that only appear in the
next cover, until we finished creating the overlay graph for
C. Besides being economical to construct all these overlay
graphs at once, also the zoom-in operation (i.e., refinement of
paths) can be made more efficient with this approach. During
the CH construction, we store for every shortcut edge the
IDs of the two (shortcut or original) edges it directly bridges
(in the explanation above, the edge (u#, w) would point to
(u,v) and (v, w)). So if we want to refine a shortcut, we
can just 'unpack’ it by replacing the shortcut with the two
edges it spans. This can be continued recursively, allowing to
zoom in to any desired level of detail without the need to run
an additional local Dijkstra computation as in the approach
described in [18].

5.2 k-APC Overlays

Constructing the overlay graph for a k-APC is somewhat
easier as for k-SPC, as we do not have to take care of the
shortest path characteristic. We present a simple breadth first
search (BFS)-based approach, and subsequently also a way
for constructing nested overlay graphs efficiently.

5.2.1 Neighborhood extracting BFS

To construct G o for a given k-APC, we proceed as follows:
We run breadth first search on G from each node v € C.
Every time a node w which is in C — {v} is extracted from
the queue, we add the respective edge (v, w) to Eo, but do
not relax outgoing edges of w. So we never explore paths that
are already hit by C. Therefore, our algorithm terminates as
soon as all paths end with nodes in C (which due to the
characteristic of C being a k-APC happens after at most all

@ Springer

S. Funke et al.

nodes which are k — 1 nodes away were visited; but possibly
much earlier).

5.2.2 Customizable CH-based neighborhoods

Very recently, a new variant of CH was introduced [9] which
inserts shortcuts not on the basis of some predefined edge
metric, but purely based on the topology of the graph. So
when contracting a node v, shortcuts between all pairs of
direct neighbors of v are inserted. The advantage of this
approach is that the constructed CH-graph can be coated
with an arbitrary metric afterward and optimal query answer-
ing can still be guaranteed. This allows to switch the metric
on demand without having to recompute the CH-graph from
scratch. As the metric can be chosen individually, this kind of
CH is also called a customizable CH. We can take advantage
of this CH construction scheme when dealing with nested
covers in a very similar way than described for k-SPC. Again,
we always iteratively contract away all nodes besides the ones
in the cover C;. As all shortcuts between the remaining nodes
in the core were inserted during the contraction process, we
have a valid overlay graph for C; at hand.

6 Application: personalized route planning

As mentioned in the introduction, we consider k-APC a basis
for speeding up fully personalized route planning queries.
As input we are given a road network G(V, E) and a set
of cost functions ¢y, ¢a, ...c, with¢; : E — Rg. A query
consists of source node s, destination node ¢ and weights
wi, wy, ..., w, with w; € R(')" and expects as a result a path
7 minimizing the weighted cost >_,. >/, w; - ¢i(e). The
straightforward baseline strategy to answer such a query is
to run Dijkstra’s algorithm and each time an edge is consid-
ered in the course of the algorithm, compute its respective
weighted cost according to the w; values provided with the
query.

Apart from [11], which is only practicable for a small num-
ber of metrics (r < 3) because the preprocessing becomes too
complicated and time-intensive otherwise, we are not aware
of any speedup scheme for such type of queries. The cus-
tomizable route planning approach in [6] allows for updates
of the underlying graph metric, but an update takes several
CPU core seconds on fast machine and hence is only worth
if several queries with exactly the same weights are to be
answered. Our approach allows for the specification of dif-
ferent weights w; with every single query. In the following,
we describe the details of the preprocessing phase as well as
the query answering algorithm.

In the preprocessing phase, we compute auxiliary infor-
mation to augment the original graph such that subsequent
fully personalized route planning queries can be answered

@ Springer

Fig. 10 4-Path Cover (red) and induced overlay graph (blue)

(2,7)
(15) (8,1). (5,3)

(3,0) (2,2)

(8.15) (g6 (10,2)

Fig. 11 Example graph with two metrics (» = 2). Cover nodes are
colored red, the overlay graph consisting of a single edge is blue. As
there are three different simple paths from one cover node to the other,
the overlay edge between them gets assigned three labels. The overlay
labels stem from summing up the original labels along the respective
paths

more quickly. This phase consists of the following three
steps:

— Compute a k-APC C.

— Construct the overlay graph Go(C, Ep) with respect
to G(V, E) and C as described in the last section. An
illustration can be found in Fig. 10.

— Assign to each edge a set of cost vectors. In fact, an
edge (v, w) € Ep gets assigned as many cost vectors as
there are simple paths between v and w in G which do
not contain further nodes from C. The r values of a cost
vector arise from component-wise addition of the cost
values of the edges of the respective path. See Fig. 11 for
an illustration.

In the query answering phase, every user specifies s, ¢ and
w = wi, ..., w, according to his preferences. As source and
target do not have to be nodes in the k-APC C, we have to
take care of connecting them to the overlay graph at first.
This results in the following routine for query answering:

— Start a Dijkstra (using edge cost functions ¢y, .. ., ¢, and
weights wy, ..., w, according to the query) in G(V, E)
from s € V stopping as soon as all nodes in the priority
queue have the shortest paths from s containing at least

On k-Path Covers and their applications

one node from C. If this search has already settled ¢,
we are done. Otherwise, we obtain a set of access nodes
A(s) C C as well as their shortest path distances d (s, ay)
for all a; € A(s). We know that the shortest path from s
to ¢ has to pass through one of the nodes in A(s).

— Do the same from the target ¢, but on the reverse graph
G~ this yields a set of access nodes A(¢) C C as well
as shortest path distances d(a;, t) for all a;, € A(t). The
shortest path from s to ¢ has to pass through one of the
nodes from A(t).

— In the overlay graph G (C, Eo) fill the priority queue
with the nodes a; € A(s) (initialized with the respective
distances d (s, ay) and let Dijkstra run until all nodes in
A(t) have been settled. During edge relaxation, all cost
vectors assigned to the edge have to be considered, and
the weights w; specified in the query determine which
cost vector leads to the smallest edge cost. After the Dijk-
stra run finished, we have found shortest path distances
d(s, a;) from s to all nodes a; € A(t). The desired short-
est path distance (and the path itself) is determined by the
access node a; € A(t) minimizing d(s, a;) + d(a;, t).

7 Experimental evaluation
7.1 Environment and data sets

Our C++ implementations were compiled using gcc 4.6.3
and benchmarked on a 3.2GHz intel i15-3470 with 16 GB
RAM. As primary benchmark data, we used road networks
extracted from the OpenStreetMap (OSM) project as well as
the DIMACS road network graphs* that are freely available
and which were also used in [18]. Edge costs (in the single
metric case) were set to travel times. Most experiments were
conducted on the largest graphs GER and USA; see Table 1
for an overview of the characteristics of the used graphs. The
values of duve, dmax and #q;; denote the average degree, the
maximum degree and the time a random one to all run of
Dijkstra’s algorithm takes on average, respectively.

For a comparison with the experimental results on the
MGS problem reported in [17], we extracted the same bench-
marks used there from the Stanford Large Network Dataset
Collection® and some additional (bigger) networks. The
network types include social networks (Wiki-Vote, LiveJour-
nall), collaboration networks (CA-GrQc, CA-HepTh), peer-
to-peer networks (P2P**), product networks (Amazon0601),
web networks (web-Google) and community networks (com-
1j). An overview of the characteristics of the used data sets is
provided in Table 2.

4 http://www.dis.uniromal.it/challenge9/download.shtml.
3 http://snap.stanford.edu/data/.

Table 1 Features of the benchmark graphs based on real-world road
networks (M = 10°)

Name #Nodes #Edges dave dmax 1gij (ms)
DIM
CAL 1.89M 4.65M 2.46 8 139
USA 23.95M 58.33M 243 9 3142
OSM
BW 2.23M 4.64M 2.04 7 396
GER 17.73M 36.06M 2.03 8 3823

Table2 Features of social and related networks used for benchmarking.
The upper part of the table contains the networks also used in [17]. ‘D’
indicates the graph diameter

Name #Nodes #Edges dayg dmax D
CA-GrQc 5242 28,980 11.06 81 17
CA-HepTh 9877 51,971 10.52 65 17
Wiki-Vote 7115 103,689 29.15 893

P2PG08 6301 20,777 6.59 48

P2PG09 8114 26,013 6.41 61 10
P2PG30 36,682 88,328 4.82 54 10
P2PG31 62,586 147,892 4.72 78 11
Amazon0601 0.40M 3.39M 16.79 10 21
web-Google 0.88M 5.11M 11.65 456 21
com-lj 3.99M 34.68M 17.34 14,703 17
LiveJournall 4.84M 68.99M 28.46 20,293 16

7.2 Constructing k-APCs

Let us start with the Pruning approach for constructing sets
C covering all paths consisting of k nodes: In Table 3, we
first examine how different node orders affect the quality
and the running time of the cover construction. We con-
sidered the two largest networks GER and USA; fixing
k = 16, we evaluated node orders both decreasing (-dec)
and increasing (-inc) according to their node ID (id-) as
given by the original graph file, number of incoming plus
outgoing edges (oi-), the order in which the recursive calls
of a depth-first-search visit the nodes (dfs-), the order in
which the recursive calls of a depth-first-search are com-
pleted on the nodes (comp-) and finally simply random
order (rand). Intuitively it makes sense to prune away low-
degree nodes first, and indeed pruning in increasing degree
order (o1 -inc) leads to much smaller cover sizes compared
to oi-dec. The orders df s-dec and comp-inc tend to
prune out nodes in dead-ends first which seems favorable to
dfs-inc and comp-dec. For the lower bounds, the differ-
ences are not very pronounced, so throughout the following
benchmarks, we use the comp-inc order for both cover
construction and lower bounds. Note that our instance-based

@ Springer

http://www.dis.uniroma1.it/challenge9/download.shtml
http://snap.stanford.edu/data/

S. Funke et al.

Table 3 k-APC: Influence of

different node orders on cover Order Lower bound Cover
zize ellrgd lower bounds for Size Time (s) IC| IC|/IV| (%) Time (s)
GER id-inc 681,242 10 1,302,559 7.35 35
id-dec 628,533 12 1,992,315 11.20 48
oi-inc 708,417 11 1,368,034 7.72 39
oi-dec 622,685 13 2,072,841 11.70 56
rand 659,958 21 1,740,967 9.82 73
dfs-inc 735,199 10 1,913,269 10.80 64
dfs-dec 727,341 10 1,201,654 6.78 47
comp-inc 735,746 10 1,209,215 6.82 46
comp-dec 736,775 10 1,877,547 10.60 62
USA id-inc 720,221 9 3,232,581 13.50 98
id-dec 739,922 10 2,951,161 12.30 79
oi-inc 764,760 12 2,504,626 10.50 61
oi-dec 685,110 13 4,191,685 17.50 224
rand 716,058 28 3,112,202 13.00 134
dfs-inc 755,352 11 3,674,978 15.30 137
dfs-dec 752,906 11 2,351,124 9.82 110
comp-inc 759,961 11 2,351,124 9.82 111
comp-dec 755,338 11 3,704,711 15.50 151

Bold values indicate the (smallest) cover sizes for GER and USA respectively (among all different node

orderings that were tested)

lower bounds prove that our constructed covers are pretty
close to optimal (at most a factor 1.7 larger for GER, a bit
worse with a factor of 3.2 for USA)—in fact, they could be
even closer to the optimum since the lower bound is probably
not really tight. The construction times for the lower bounds
are almost negligible.

In Table 4, we examine the cover construction for vary-
ing values of k. As to be expected, for growing k the cover
construction time increases rapidly; nevertheless, it is some-
what astonishing that it is feasible to construct covers for k
values as large as k = 32. Also note that while the lower
bounds of the GER and USA graphs are very similar, the
cover sizes (and the respective construction times) are con-
siderably worse for the USA graph—one reason might be the
presence of many grid-like substructures in the USA road
network. Nevertheless, the approximation ratio guaranteed
by our instance-based lower bounds never exceeded 2.2 (for
GER) and 5.0 (for USA); the actual optimum might also be
much closer to our constructed covers than to our rather naive
lower bound.

7.3 Special case: constructing k-SPCs

For comparison with the results in [18], we implemented a
variant of their Adaptive Sampling approach and our two
pruning strategies for the k-SPC case. The respective results
can be found in Table 5.

@ Springer

The outcomes of our implementation of the Adaptive Sam-
pling approach are pretty close to their reported performances
(even slightly better in terms of quality of the solution): for
the USA instance and k = 16 our implementation of Adap-
tive Sampling constructed a cover of size 3,295,812 which
is about 14 % of the total number of nodes in the graph ([18]
reported around 15 % for this very instance). Our Pruning
approach on the other hand produced for the same instance
and k-value a cover of size only 5.8 % of the total number of
nodes. For all choices of k the Pruning approach consistently
outperformed Adaptive Sampling by a considerable margin
in terms of quality.

Concerning running time, we described an upper bound-
ing technique to save Dijkstra computations. In Fig. 12,
we collected data implying how effective this technique
is; exemplary for the BW road network and node order
comp-inc. While for small values of k, the gain of the
upper bounding technique is almost nonexistent, for larger
k reduction in Dijkstra computations is directly reflected in
the running times. Already for & = 40 the upper bounding
technique leads to more than 4 times faster running times;
this gap is expected to increase with growing k. Therefore,
in all our experiments, we employed this upper bounding
technique.

Running times of Pruning are slightly above the ones for
Adaptive Sampling, though, yet our Quick Pruning variant
(which does not guarantee minimality) was always much

On k-Path Covers and their applications

Table 4 k-APC:

Approximation ratios (apx) and G k Lower bound |C| Percent (%) Time (s) apx
construction times for comp-inc g 2 8,560,543 8,863,443 50.00 17 1.04
order and varying values of k.
‘Percent’ describes the fraction 4 3,969,092 4,513,217 2550 21 1.14
of nodes in V that are contained 8 1,739,476 2,308,934 13.00 29 1.33
in the cover C 16 735,746 1,209,215 6.82 47 1.64
32 306,009 666,829 3.76 119 2.18
USA 2 10,906,996 11,910,322 49.70 15 1.09
4,631,511 6,676,239 27.90 22 1.44
8 1,854,605 3,776,360 15.80 38 2.04
16 759,961 2,351,124 9.82 110 3.09
32 321,853 1,603,267 6.69 15,100 4.98
g:rlr)ll;li)gka;:cfl)l?rui(i):;p:nndsct)ge()f G k Lower bound Adaptive Sampling Quick Pruning Pruning
Quick Pruning variant on the |C| Time (s) IC| Time (s) |C| Time (s)
USA and GER graph for
varying values of k USA 8 1,750,150 5,483,792 172 4,563,885 76 3,067,632 175
16 618,755 3,295,812 615 2,449,744 179 1,392,803 782
32 200,774 1,890,620 2700 1,256,871 513 584,904 4970
40 136,592 1,564,624 4401 1,004,268 772 431,686 9520
GER 8 1,637,613 3,659,568 92 3,294,225 42 2,184,986 76
16 654,679 2,142,327 248 1,710,510 89 1,028,696 222
32 246,459 1,259,841 783 826,636 210 463,064 856
40 177,619 1,065,534 1179 648,508 322 355,062 1360
48 135,545 925,359 1584 530,949 433 285,780 2050
56 107,687 825,694 2214 447,816 546 237,479 2900

faster than Adaptive Sampling but still better in terms of
quality of the solution. So it outperforms Adaptive Sampling
in all aspects.

In general—for a given time budget—+k-SPC can be com-
puted for larger values of k, in comparison with k-APC,
which does not come as a real surprise since at some point
considering all possible paths of some length starts exhibiting
exponential blowup.

It is worth emphasizing that e.g., for k = 16 our pruning-
based k-APC covers which guarantee covering all k-paths
have smaller cardinality than the Adaptive Sampling-based
k-SPC covers (like [18]) which only cover shortest k-paths
in spite of the much stronger coverage property (in the USA
instance: 2,351,124 vs. 3,295,812 nodes).

In Fig. 13 we compare the k-APC and k-SPC results for
GER and growing values of k. Not too surprisingly, for very
small k, a k-APC is not much larger than a k-SPC, since
there are simply no that many potential nonshortest paths. For
growing k, though, the number of nonshortest paths naturally
grows faster than the number of shortest paths; hence, the gap
between an k-APC and k-SPC increases.

In addition, we analyzed the hop distances between neigh-
boring nodes for AS and Pruning, exemplary for USA with
k = 16. The average hop distance between two cover nodes

for AS is 6.45, for Pruning 8.04. Even more significant is the
distribution of hop distances among all neighbors as depicted
in Fig. 14. For AS we observe that a large number of neigh-
boring nodes are only a few hops apart. Indeed, the maximum
is at 1, and the curve decreases almost monotonously with
growing hop distance. This is a direct consequence of the
redundancy of nodes in an AS cover. However, for Pruning,
the curve looks quite different: The peak is at 8§ and—as there
is also the median—a significant number of neighbor pairs
has a larger hop distance.

We get a very similar result when studying k-Shortest-Path
queries. Here, given a source and a target vertex s, t € V, we
want to compute the subsampled representation of a shortest
path from s to . These numbers indicate the compression
of shortest paths using the k-SPC approach. In Fig. 15 the
distribution of hop distances between two consecutive nodes
on such k-paths is depicted (again for the USA graph and
k = 16) using a set of randomly chosen s, ¢ pairs. In com-
parison with Fig. 14, we notice for both distributions (AS and
Pruning) a small rise for kK = 16 in the path evaluation. This
could result from many important streets (like highways)—
which are very likely to be part of a shortest path for random
source and target—consisting of long chains of nodes with
degree 2. For such chains, the local optimal cover consists of

@ Springer

S. Funke et al.

600
NoUp
Up cozooos
500 |- .
()]
€ 400 - }
(6]
[0}
w
c 300 | .
[0}
£
£ 200 |
E
100 F
0 e S
8

Fig. 12 k-SPC-cover: Effect of upper bounding technique on the run-
ning time (order: comp-inc)

1e+07 2500
¥ APC time
— SPC time
2 i APC lower bound -+« #:- 2000
3 (8 SPC lower bound @ =
S % APC cover size 8
2 E; SPC cover size s
3 1500
3 3
Q 1e+06 | <
5 1000 2
g €
£ 2
g 500
[
3o

Fig. 13 k-SPC- versus k-APC-cover on the GER graph

3000 T T T T T T T T T T T T T T
Adapative Sampling E—

2500

2000

1500

1000

500 __

number of neighbors (in thousands)

0 Tl
012345678 91011121314151617
hop distance

Fig. 14 Distribution of hop distances between neighbored nodes in the
USA overlay graph for k = 16

nodes being k apart. If the actual cover comes close to this
sampling, the relatively high frequency of path sections with
a hop distance of 16 in the plot seems natural.

@ Springer

16 i T T T T T T T T T T T T T T T
Adapative Sampling ——

12 .

10 | . .

% of paths
oo
T

-
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

012345678 9101
hop distance

s
-
n
-
w
-
N
-
[6)]
-
»
-
J

Fig. 15 Distribution of hop distances between nodes of C for 1000
random shortest paths on the USA overlay graph for k = 16

Table 6 Ratio of edges on a subsampled path compared to all edges in
the respective original path in percent. Values are averaged over 1000
random queries

k 2 (%) 4 (%) 8 (%) 16 (%) 32 (%)
AS 67 42 26 18 12
Pruning 56 33 20 12 8
Lower Bound 50 25 12 6 3

The resulting number of edges in the subsampled repre-
sentation of a path compared to the number of edges in the
original graph can be found in Table 6 for varying values of
k. A natural lower bound for the number of edges on such
a path is the number of original edges divided by k (other-
wise, the underlying cover would not be a valid k-SPC). If
we compare AS and Pruning, we see that Pruning results in
edge values much closer to the lower bound than AS, and
especially for small £ Pruning is near-optimal.

7.4 Nested/hierarchical construction

Constructing C for given k hierarchically, i.e., picking a sub-
set of a cover for a smaller parameter k', promises a runtime
improvement due to smaller search radii in the initial explo-
ration phase and fewer nodes to consider later on. On the
other hand, it is not clear that a subset of a prior cover can be
a close-to-optimal cover for k. These observations are also
reflected in our experiments. We constructed the k-SPC and
the k-APC hierarchically for the USA graph and compared
the runtime and the quality to the direct construction; see
Table 7.

We observe that the runtime decreases significantly with
the hierarchical approach (especially for larger values of k).
We pay for this efficiency with slightly increased cover set
sizes. Still a maximum of 8.1 % more nodes in the k-SPC

On k-Path Covers and their applications

Table7 Hierarchical construction of cover sets for the USA graph. Per-
centages denote increase/decrease compared to the computation time
and cover set size when using the Pruning algorithm for each value of
k individually

k 2(%) 4(%) 8 (%) 16 (%) 32(%)
k-SPC
Atime 40 694 —6321 —6031 —83.97
A size +0 +0.04 +8.10 +7.2 +1.58
k-APC
Atime 40 1741 —4950 —63.89 —84.99
A size +0 +3.30 +8.40 +8.12 +6.00

(8.4 % in the k-APC) for k = 8 compared to the result of
the conventional Pruning approach is tolerable; and as with
increasing k this deviation shrinks, we consider hierarchical
cover retrieval a useful speedup technique.

7.5 Overlay graph computation

We described three different methods to compute the overlay
graph upon a k-SPC: the tree-based (TB) approach from [18],
the Dijkstra-based (DB) approach and the CH-based (CHB)
approach. We compared these three approaches in terms of
run time and edge ratio (i.e., number of created edges divided
by the number of original edges in G, abbreviated ER) on the
example of the USA graph, with the input cover derived from
the Pruning method. The respective results are summarized
in Table 8.

We observe that for small k the TB algorithm is the fastest,
while for larger £ it is clearly outperformed by our Dijkstra-
based approach. For DB we see only a linear grow of the
runtime with increasing k; hence, DB seems applicable for
even larger values of k than the ones considered here. For
CHB, the runtimes are not really comparable to the other
approaches, as here the input sets were constructed hierar-
chically and are therefore larger. Moreover, CHB constructs
the overlay graph not only for the respective k-value in the
row, but also for all smaller ones listed in the table. For small
values of k, the summed runtime of computing all these over-

Table 8 Overlay graph construction with three different approaches
(TB tree based, DB Dijkstra based, CHB Contraction Hierarchy based)
for the USA graph. ER denotes the edge ratio, timings are given in
seconds

k TB DB CHB
Time ER Time ER Time ER
2 18 66.08 22 64.74 52 64.74
22 45.33 37 44.14 100 46.57
8 33 29.44 46 28.51 163 31.16
16 185 18.45 82 17.71 253 18.61
32 6742 10.21 143 9.95 366 9.56

Table 9 Edge ratios for k-SPC-based overlay graphs created with DB
along with the time for £ = 32 (in seconds), which upper bounds the
time for all smaller values of k

k 2 4 8 16 32 Time
BW 54.77 31.58 18.29 10.35 5.57 8
GER 55.12 31.91 18.37 10.39 5.69 86
CAL 66.94 46.84 30.60 19.06 10.50 13
USA 64.74 44.14 28.51 17.70 9.95 143

lay graphs individually with DB is still below the runtime for
CHB (note that the runtimes for DB in Table 8 are on other
inputs, not the hierarchical ones necessary for CHB). Only for
k > 32, we observed an improved runtime with CHB. But
remember that CHB overlay graph construction allows for
more efficient zoom-in operations in a straightforward way.

In terms of quality, the TB and the DB approach differ
only slightly and the effect decreases with growing k. This is
mostly due to our cover sets C are so tight that the addition of
superfluous edges in the TB approach is inhibited to a great
extent.

We also collected the edge ratios for all our test graphs
resulting from the DB approach in Table 9. In coherence
with the smaller covers, the OSM graphs also exhibit much
smaller edge ratios than the DIMACS graphs.

Note thatitis crucial on which sets such an overlay graph is
constructed. As described above, the Pruning method results
in much smaller cover sets than Adaptive Sampling. We
observed that these much smaller covers also yield signif-
icantly smaller edge sets in the overlay graph (independently
of the construction method for the overlay). In [18], the edge
ratio for k = 4 was 61 % (while ours is about 50 %), for
k = 8 they reported 47 % (compared to >38 % by us) and
for k = 16 they got 38 % (only about 20 % in our evalua-
tion). So the total compression of the USA graph choosing
k = 16 is 0.17 with our methods (i.e., 17 % of nodes and
edges combined remain), while only 0.31 in [18].

7.6 Personalized route planning

Our scheme for answering personalized route planning
queries uses the overlay graph induced by a concise k-APC.
The efficiency of our approach is based on the fact that the
search in the overlay graph G o (C, E) turns out to be much
faster than on the original graph G(V, E) and the initial
(local) searches for A(s) and A(r) take negligible time.

In the following, we present detailed experiments regard-
ing the preprocessing and the query answering phase.

7.6.1 Personalized route planning: preprocessing

Let us first experimentally examine the cost and structure of
the overlay graph Go(C, Ep).

@ Springer

S. Funke et al.

Table 10 Personalized route planning/preprocessing. Structure and construction of the overlay graph

k |C| Edges Cost vectors Time (s)
Total Avg. degree Max degree Total Average/edge Max/edge overlay

GER
4 4,513,217 11,968,468 2.65 16 12,525,519 1.05 9 42.1
8 2,308,934 7,628,636 3.30 25 9,117,057 1.20 35 36.8
12 1,573,537 6,101,729 3.88 28 8,740,617 1.43 106 39.4
16 1,209,215 5,321,096 4.40 32 9,504,005 1.79 408 45.2
20 990,560 4,848,058 4.89 43 11,441,398 2.36 6477 55.6
24 845,905 4,532,018 5.36 40 15,050,313 3.32 7652 76.0
28 743,694 4,308,376 5.79 38 22,100,074 5.13 48,470 119.2
32 666,329 4,143,342 6.21 40 32,057,249 7.74 67,537 183.3
36 607,151 4,014,888 6.61 46 64,058,939 15.96 608,762 395.6
40 559,502 3,911,824 6.99 47 137,496,018 35.15 1,746,242 950.2
44 520,237 3,829,285 7.36 54 396,197,570 103.47 7,741,250 3208.6

In Table 10, we see the characteristics of the overlay
graphs constructed for our largest OSM benchmark graph
of Germany and different values of k. The overlay graph
construction itself is independent of the chosen metrics. The
number of cost vectors per overlay edge (v, w) withv, w € C
coincides with the number of simple paths between v and
w which do not contain further nodes from C. The vectors
themselves are then the result of component-wise summation
of the cost vectors assigned to the original edges. Since this
preprocessing only has to be performed if the combinator-
ial structure of the road network changes (addition/deletion
of nodes or edges), the respective running time is not that
important. Nevertheless, we see that even large graphs like
GER can easily be preprocessed within a few minutes for
moderate values of k. For too large values of k, the number
of cost vectors explodes, though.

7.6.2 Personalized route planning: query processing

To realize personalized route planning queries, we have to
coat the overlay graph with actual cost vectors. We consid-
ered the 8 metrics described in Table 11.

For query evaluation, we generated 100 random queries,
i.e., random source and target vertex and random weights
wi, wa, ..., ws, and compared the performance of our
speedup scheme for different values of k with a standard
Dijkstra run. Apart from the measured query times, we also
look more closely at the time spent in the search for the access
nodes A(s) and A(?) as well as the search in the overlay graph.
See Table 12 for the results.

We first observe that the searches for the access node sets
A(s) and A () in the original graph only take negligible time,
and the search in the overlay graph clearly dominates the
overall query time. The achieved speedup first quickly grows

@ Springer

Table 11 Metrics used for our personalized route planning queries

Metric Explanation

Travel time Based on road categories

Eucl. dist Simple euclidean distance

Height difference Absolute value of height difference
Energy Energy consumption

Edge type OSM-edge type as a number
Speed Maxspeed based on OSM tags
Rand A random value

Unit 1 For each edge

with increasing k, but improves only slightly above k = 20.
One should bear in mind, though, that the overlay graph gets
very dense for large k (see Table 10), so in terms of memory
efficiency, it is not reasonable to choose k larger than 30
on our benchmark data. While we do not present respective
measurements here, we want to note that different choices of
the weight values wy, . .., wg hardly made any difference in
the running times, neither did different metrics (in contrast
to [11] where depending on the choice of the metrics, the
speedup was reduced). In any case, for moderate values of
k like k = 24 our scheme accelerates personalized route
planning queries by one order of magnitude without incurring
too much of a space overhead (for k = 24, the overlay graph
is less than half the size of the original road network, queries
are answered more than 13 times faster).

Very interesting in this context is how the running times
and the speedups behave when adding more metrics. There
are quite a few possible use cases for a large number of met-
rics. For example, one might induce a fine-grained partition
of the roads of the network and then perform queries where

On k-Path Covers and their applications

Table 12 Personalized route

. . . k Dijkstra Search local Search overlay Search total Speedup
planning queries on GER using (ms) (ms) (ms) (ms)
the 8 metrics described in Table
11. A query consists of a 8 3282 0.01 481 481 6.82
randomly chosen source—target
pairs and random weights 12 3282 0.02 356 356 9.21
wi, ..., wg. Measurements are 16 3282 0.03 295 295 11.1
averaged over 100 queries The 20 3282 0.04 265 265 12.4
speedup describes the factor
between the total search time of 2 3282 0.04 249 249 13.1
our approach and the Dijkstra 28 3282 0.06 248 248 13.2

baseline

Table 13 Search times when increasing the number of metrics (random
weights). BW graph, k = 20. Average of 100 random queries, speedup
compared to plain Dijkstra

No. of Dijkstra Total search Speedup

metrics (ms) (ms)

2 338 27 12.5
352 29 12.1

8 377 35 10.8

16 419 41 10.2

32 521 55 9.5

64 654 80 8.2

certain classes of roads are disabled. This can be achieved by
creating a metric for each road class which bears cost oo for
the edges of the respective road class, O for the others. In a
query, one can then disable a certain road class by choosing
a multiplier of 1 for the respective metric. Another inter-
esting scenario exists, which makes sense for rather short,
e.g., commuter route planning queries. Here one can simu-
late time-dependent edge costs (longer travel times during
rush hour) by associating different travel times on the edges
for each hour of the day as a separate metric each. Again by
choosing appropriate multipliers, one can perform the query
on the respective road network at that time of the day. (Of
course this only makes sense for rather short queries since
we cannot express dynamic changes of edge costs over time
in one route.)

In Table 13, we measured the behavior for a growing num-
ber of metrics for the smaller BW graph (we used k=20
which resulted in a cover of about 5 % the size of the original
node set—computable in >205).

It turns out that even for quite a large number of metrics,
the speedup compared to plain Dijkstra still is considerable
and almost one order of magnitude. The absolute query time,
of course, increases with growing number of metrics due to
the more expensive evaluation of edge costs, but that is true
for both the Dijkstra baseline and our approach.

7.7 Other network instances

Finally, we evaluate how our Pruning algorithm performs
on social (and related) networks which differ significantly

from road networks in terms of connectivity characteristics
(much higher average and maximum node degree, smaller
diameter).

We first compare our results for the k-SPC construction on
the benchmark data set used in [17]. The cover sizes when
applying adaptive sampling (AS)[18], the Set Cover-based
approach (SC) [17] and Pruning are collected in Table 14
(the results for AS and SC are taken from [17]). We make
the following observations: Pruning outperforms Adaptive
Sampling on every considered instance, but for small &, the
effect is less pronounced. SC produces better results than
pruning on the CA-GrQc, CA-HepTh and Wiki-Vote net-
work. On the other hand, pruning is superior to SC on all
peer-to-peer network instances which might coincide with
the smaller average degree in those networks compared to
the other three ones. Also, pruning is much faster than SC. In
[17] runtimes of several hours are reported already fore = 5.
With those high run times, the applicability of SC is limited
to small values of k and small networks. We could compute
all results in Table 14 within 5 per instance using Pruning.

To show that the Pruning approach is capable of dealing
with even larger instances, we performed additional experi-
ments on another benchmark set. Table 15 summarizes the
results for computing k-APC and k-SPC in such networks.

The k-APC construction is remarkably fast. Even on these
large networks (up to about 70 million edges), covers for
k = 5 and k = 10 can be computed in >2min. Also the
compression is good. While the LiveJournall network orig-
inally contains over 4.8 million nodes, the cover for k = 5
contains > 1.5 million nodes. But investigating the result for
k = 10, we observe that the compression factor does not
increase much. As the diameter of this network is 16, choos-
ing k even larger makes little sense. Both the Amazon and
Google networks exhibit a diameter of 21. Here, k = 10
leads to significantly smaller covers than k = 5. For all con-
sidered instances, the computed cover solutions were never
more than a factor of 6 away from the lower bound.

Considering only shortest paths (see the lower half
of Table 15), the compression naturally improves for all
instances. But the runtime increases significantly, as espe-
cially for k = 10 large portions of the network have to

@ Springer

S. Funke et al.

Table 14 Comparison of Adaptive Sampling (AS), the Set Cover-based
approach (SC) and Pruning on a variety of networks. The e-value refers
to the notation used in [17]

k=2(=3)

AS SC Pruning
CA-GrQc 2836 896 2773
CA-HepTh 5131 2208 4989
Wiki-Vote 2564 1598 2292
P2PG08 2359 2340 2256
P2PG09 2930 2904 2865
P2PG30 9688 9627 9309
P2PG31 16,493 16,394 15,745

k=5(e=06)

AS SC Pruning
CA-GrQc 908 500 656
CA-HepTh 2134 1157 1629
Wiki-Vote 2964 571 749
P2PG08 2043 1095 861
P2PG09 2256 1530 1201
P2PG30 8914 6845 3922
P2PG31 14,895 11,738 6429

Bold values indicate the best (minimal) solution among the three tested
approaches (AS, SC, Pruning) per instance

Table 15 Experimental results for applying Pruning to large product,
web, community and social networks. Timings are provided in seconds
(s) or hours (h). For k-SPC, we used Pruning with minimality guarantee
on Amazon0601 and web-Google, and Quick Pruning on com-1j

k-APC k=5 k=10

|C| Time (s) |C] Time (s)
Amazon0601 185,588 <1 142,801 20
web-Google 201,437 2 106,396 71
com-j 1,058,952 8 715,303 13
LiveJournall 1,395,008 12 1,142,169 63
k-SPC k=5 k=10

|C| Time |C| Time (h)
Amazon0601 143,107 50s 82,708 1.6
web-Google 79,552 53s 21,984 3.3
com-lj 872,118 55h 552,323 22.2

be investigated in the Dijkstra runs. For the LiveJournall
networks, computation times exceeded 24 hours and are
therefore not reported. Still, using Quick Pruning, it is pos-
sible to compute a k-SPC on a social network with about 4
million nodes and 34 million edges (com-1j) in a few hours—
an instance clearly intractable for the SC approach. Also note
that pruning is an anytime algorithm. So we can just fix a

@ Springer

time budget, stop the pruning process after this time budget
exceeded, and have a valid solution at hand. Of course, the
larger the time budget, the better the solution quality expect-
edly gets.

8 Conclusions

We introduced the k-All-Path Cover optimization problem
with the goal of computing compact yet faithful synopses of
the vertex set of road networks. Our proposed Pruning algo-
rithm provides close-to-optimal results in practice and was
experimentally proven to be very efficient on large graphs.
For the special subcase of covering all k-node shortest paths
as proposed by Tao et al. [18], we considerably improved
their results in terms of running time and solution quality.
But even for covering all paths consisting of £ nodes, we
could construct surprisingly small cover sets in reasonable
time for moderate values of k.

On that basis, we developed a completely new framework
for answering personalized route planning queries, where the
user provides not only source and target but also weights for
a given set of metrics. Our solution is based on a metric-
independent overlay graph constructed upon our cover set in
a preprocessing phase. While other route planners require a
relatively expensive customization phase to adapt to person-
alized metrics, our approach allows to incorporate them in
the overlay graph on the fly. This leads to a speedup of an
order of magnitude compared to Dijkstra’s algorithm. While
this already allows for real-time query answering, a natural
direction for future research is to aim for query times in the
order of milliseconds as achievable for fixed metric shortest
path queries. We want to emphasize that our speedup tech-
nique is somewhat orthogonal to speedup techniques like A*
and may be well combined with them. This might be a good
starting point to achieve query times in the milliseconds range
even for personalized route queries.

References

1. Abraham, I, Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.:
VC-dimension and shortest path algorithms. In: International Col-
loquium on Automata, Languages, and Programming (ICALP), pp.
690-699. Springer, Berlin (2011)

2. Abraham, 1., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-
based labeling algorithm for shortest paths in road networks. In:
Symposium on Experimental Algorithms (SEA), pp. 230-241.
Springer, Berlin (2011)

3. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road
networks using transit nodes. Science 316(5824), 566 (2007)

4. Bresar, B., Kardos, F.,, Katreni¢, J., Semanisin, G.: Minimum k-path
vertex cover. Discrete Appl. Math. 159(12), 1189-1195 (2011)

5. Bronnimann, H., Goodrich, M.T.: Almost optimal set covers in
finite VC-dimension. Discrete Comput. Geom. 14(1), 463479
(1995)

On k-Path Covers and their applications

6.

11.

12.

13.

Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.F.: Customiz-
able route planning. In: Symposium on Experimental Algorithms
(SEA), pp. 376-387. Springer, Berlin (2011)

Delling, D., Kobitzsch, M., Werneck, R.: Customizing driving
directions with GPUs. In: Euro-Par Parallel Processing, vol. 8632,
pp. 728-739. Springer, Berlin (2014)

Dibbelt, J., Pajor, T., Wagner, D.: User-constrained multi-modal
route planning. Networks 6, 10 (2012)

Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hier-
archies. arXiv preprint arXiv:1402.0402 (2014)

Funke, S., Nusser, A., Storandt, S.: On k-path covers and their
applications. PVLDB 7(10), 893-902 (2014). http://www.vldb.
org/pvldb/vol7/p893-funke.pdf

Funke, S., Storandt, S.: Polynomial-time construction of contrac-
tion hierarchies for multi-criteria objectives. In: Sanders, P., Nor-
bert, Z. (eds) Algorithm Engineering and Experiments (ALENEX),
pp- 41-54. SIAM (2013)

Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing
in large road networks using contraction hierarchies. Transp. Sci.
46(3), 388-404 (2012)

Gutman, R.J.: Reach-based routing: a new approach to shortest path
algorithms optimized for road networks. In: Lars, A., Giuseppe,
FI., Robert, S. (eds) Algorithm Engineering and Experiments
(ALENEX), pp. 100-111 (2004)

14.

15.

16.

17.

18.

19.

Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. In:
Symposium on Computational Geometry (SCG), pp. 61-71. ACM
(1986)

Khot, S.: On the power of unique 2-prover 1-round games. In: Pro-
ceedings of the Thiry-fourth Annual ACM Symposium on Theory
of Computing. STOC 02, pp. 767-775. ACM, New York, NY
(2002)

Khot, S., Regev, O.: Vertex cover might be hard to approximate to
within 2- €. J. Comput. Syst. Sci. 74(3), 335-349 (2008)

Ruan, N., Jin, R., Huang, Y.: Distance preserving graph simpli-
fication. In: Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pp. 1200-1205. IEEE (2011)

Tao, Y., Sheng, C., Pei, J.: On k-skip shortest paths. In: ACM
SIGMOD International Conference on Management of Data, pp.
421-432. ACM (2011)

Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of
relative frequencies of events to their probabilities. Theory Probab.
Appl. 16(2), 264-280 (1971)

@ Springer

http://arxiv.org/abs/1402.0402
http://www.vldb.org/pvldb/vol7/p893-funke.pdf
http://www.vldb.org/pvldb/vol7/p893-funke.pdf

	On k-Path Covers and their applications
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our results
	1.3 Outline

	2 Formal definitions
	3 Theoretic analysis
	3.1 NP-hardness and approximation
	3.2 VC-dimension of directed shortest paths

	4 Constructing k-Path Covers in practice
	4.1 The Pruning algorithm
	4.2 Lower bounds
	4.3 Malicious problem instances
	4.4 Nested k-Path Covers
	4.5 Special case: k-Shortest-Path Cover
	4.5.1 Quick Pruning
	4.5.2 Pruning for k-SPC
	4.5.3 Upper bounding technique
	4.5.4 Dealing with ambiguous shortest paths

	5 Overlay graph construction
	5.1 k-SPC Overlays
	5.1.1 Neighborhood extracting Dijkstra
	5.1.2 CH-based neighborhoods

	5.2 k-APC Overlays
	5.2.1 Neighborhood extracting BFS
	5.2.2 Customizable CH-based neighborhoods

	6 Application: personalized route planning
	7 Experimental evaluation
	7.1 Environment and data sets
	7.2 Constructing k-APCs
	7.3 Special case: constructing k-SPCs
	7.4 Nested/hierarchical construction
	7.5 Overlay graph computation
	7.6 Personalized route planning
	7.6.1 Personalized route planning: preprocessing
	7.6.2 Personalized route planning: query processing

	7.7 Other network instances

	8 Conclusions
	References

