Efficient Fuzzy Search in Large Text Collections

HANNAH BAST and MARJAN CELIKIK, Albert Ludwigs University

We consider the problem of fuzzy full-text search in large text collections, that is, full-text search which
is robust against errors both on the side of the query as well as on the side of the documents. Standard
inverted-index techniques work extremely well for ordinary full-text search but fail to achieve interactive
query times (below 100 milliseconds) for fuzzy full-text search even on moderately-sized text collections
(above 10 GBs of text). We present new pre-processing techniques that achieve interactive query times on
large text collections (100 GB of text, served by a single machine). We consider two similarity measures,
one where the query terms match similar terms in the collection (e.g., algorithm matches algoritm or vice
versa) and one where the query terms match terms with a similar prefix in the collection (e.g., alori matches
algorithm). The latter is important when we want to display results instantly after each keystroke (search
as you type). All algorithms have been fully integrated into the CompleteSearch engine.

Categories and Subject Descriptors: H.2.4 [Systems]: Query processing; H.2.4 [Systems]: Textual
databases; H.2.8 [Database Applications]: Scientific databases; H.3.3 [Information Search and Re-
trieval]; H.3.4 [Performance evaluation]: Efficiency and effectiveness

General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Approximate Dictionary Search, Approximate Text Search, Error Toler-
ant Autocomplete, Fuzzy Search, HYB Index, Inverted Index

ACM Reference Format:

Hannah Bast and Marjan Celikik. 2013. Efficient Fuzzy Search in Large Text Collections. ACM Trans. Inf.
Syst. 9, 4, Article 39 (March 2010), 60 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

It is desirable that a search engine be robust against mistakes in the query. For ex-
ample, when a user types fuzy search alorithm, the search engine should also return
documents containing the words fuzzy search algorithm. Web search engines like
Google provide this features by asking back “Did you mean: fuzzy search algorithm?”
or by suggesting this alternative query in a drop-down box. Search results for the alter-
native query are then either displayed proactively, in a separate panel, or by clicking
on a corresponding link.

In many applications, it is equally desirable that the search engine is robust against
mistakes on the side of the searched documents. For example, when searching for
algorithm in a collection of computer science articles, we would also like to find those
articles where that word has been misspelled, for example, as alogorithm or alogritm
or aigorithm. This happens surprisingly often, either due to typos caused by the au-
thor of the paper, or because of OCR errors when scanning the articles from paper.
Web search engines like Google do not provide this feature. The main reason is that

Author’s addresses: H. Bast and M. Celikik, Department for Computer Science, Albert Ludwigs University,
Freiburg, Germany.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2010 ACM 1046-8188/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 H. Bast and M. Celikik

in web search, for a correct(ed) query, we usually have more than enough hits and the
primary problem is to find the best such hits (that is, achieve good precision, especially
among the top-ranked hits) and not so much to find even more hits (that is, increase
the recall). However, in vertical search, like in the just mentioned literature search,
recall is as important as precision and sometimes even more important. For example,
if there are only a dozen of papers about fuzzy search algorithms in our database, we
certainly do not want to miss the one with the misspelling alogorithm in the title.
The straightforward solution to the latter problem (errors on the side of the text
collection, later referred to as the intersection of union lists problem) goes in two steps.

(1) For each query word, compute all similar words from the dictionary of the collec-
tion, that is, the set of words that occur at least once in the text collection;

(2) Replace each query word by a disjunction of all these similar words, for example,
replace the query algorithm by alogorithm OR alogirtm OR aigorithm OR ...

Even with an efficient solution for (1), step (2) is inefficient when done in the
straightforward way because a large number of inverted lists (hundreds or even thou-
sands) have to be read and processed. For example, with the open source engine
Lucene, the fuzzy search query probablistic databases takes roughly 20 seconds on
the September 2010 dump of the English Wikipedia (23GB of XML, which is mostly
the text of the articles).

An additional complication arises when we want to support an instant display of
search results along with every keystroke, as we do in this paper. Then for each query
word (or at least for the query word that is currently being typed) we should find not
only all words that are similar to this query word but also all words that have a prefix
that is similar to that query word. For example, for the query probabi we should also
find documents containing the word probalistic, because its prefix probali is similar
to the prefix probabi of the query word (but not to the whole word probabilistic,
which is a Levenshtein distance of 5 away [Levenshtein 1966]).

Google supports this feature as far as errors on the side of the query are con-
cerned. For example, when typing probali, Google will suggest probability. How-
ever, this feature only works when the typed query is similar (in the prefix sense
explained above) to a query from a (large but necessarily limited) pre-compiled
list of queries. For example, when typing probalistic datab Google will suggest
probabilistic database, because that is one of the pre-compiled queries. But when
typing probalistic dissi, the suggestion is not probabilistic dissimilarity (al-
though a number of research articles indexed by Google contain this phrase in their
title), because this query is not in the pre-compiled list. This snapping to popular /
frequent queries from a pre-compiled list makes a lot of sense for web search, but is
unsatisfactory for many vertical search applications where “expert queries” with small
hit sets are the rule rather than the exception.

1.1. Our contribution

In this article we present new algorithms and index data structures for a fuzzy full-
text search that is (1) robust against errors on the side of the query, (2) robust against
errors on the side of the documents, (3) supports both the word-based and the prefix-
based similarity measure mentioned above, (4) does not rely on a pre-compiled list
of queries, and (5) has interactive query times (below 100 msecs) even on large text
collections (up to 100 GB in size) on a single state-of-the-art machine.

We provide experiments on three datasets of distinctly different kinds and sizes:
the full text of about 30,000 computer science articles from DBLP (about 1GB of text,
with lots of OCR errors), the English Wikipedia (3.7 million articles, 21GB of text of
relatively high quality), and the TREC GOV2 collection (25 million articles, 426GB in

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:3

Hits 1 - 4 of 4 (PageUp A /PageDown W for next/previous hits)

Fast Intersection Algorithms for Sorted Sequences.
beza yates intras Ricardo A. Baeza-Yates, Alejandro Salinger
Algorithms and Applications 2010:45-61
Later, Baeza-Yates' [6] devised a double binary search algorithm that is very fast if the intersection
is trivially empty (O(log n)) and requires less than m + ...

zoomed in on 4 documents

Suggested Queries

baeza yates intersection @ Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences.

baeza yates introduction ©] Ricardo A. Baeza-Yates, Alejandro Salinger

beal oates interaction 1) SPIRE 2005:13-24

[top 3] [all 10] Intersection algorithm for Sorted Sequences. Ricardo Baeza-Yates and Alejandro Salinger. Center

for Web Research. Department of Computer Science ...
Refine by AUTHOR

Ricardo A. Baeza-Yates @ A Fast Set Intersection Algorithm for Sorted Sequences.

Alejandro Salinger @ Ricardo A. Baeza-Yates

Conrado Martinez 1) CPM 2004:400-408

Rafael Casas (1) Ricardo Baeza-Yates ... Abstract. This paper introduces a simple|intersection algorithm for
[top 4] [all 10] two sorted sequences that is fast on average ...

Refine by VENUE
CPM @ On the Average Size of the Intersection of Binary Trees.

SPIRE @ Ricardo A. Baeza-Yates, Rafael Casas, Josep Diaz, Conrado Martinez
SIAM J. Comput. (SIAMCOMP) 21(1):24-32 (1992)

) - 1
Algorithms and Applications @ Ricardo Baeza-Yates ... In this work this analysis is carried out for the computation of the average

SIAM J. Comput. (SIAMCOMP) @ size of thelintersection of two binary trees. The development of this analysis...
[top 4]

Fig. 1: A current version of CompleteSearch doing fuzzy search with one of our new
algorithms on DBLP. The query being typed is beza yates intras (the intended query
is baeza yates intersection). It should be noted that Google currently does not provide
any meaningful suggestion for this query.

total, with around 150GB of text, web-style content). We compare our algorithms to
the straightforward approach mentioned above (disjunction of all similar words), to
the previously best algorithm by Li et al. [2008], to fuzzy search with a current version
of the open-source engine Lucene!, and to a state-of-the-art exact search.

We have fully integrated our algorithms into the CompleteSearch engine [Bast and
Weber 2007], which offers search results and query suggestions as you type. In previ-
ous versions of CompleteSearch, suggestions where only for the query word currently
being typed. We have now extended this to suggestions for whole queries; this is ex-
plained in Section 6.7. All our algorithms can be run in two modes: (A) present the
union of all hits for all fuzzy matches of the query currently being typed; or (B) while
typing, present the hits only for the top-ranked query suggestion, and show the hits
for the other suggestions only when they are clicked on. Figure 1 shows a screenshot
of a current version of CompleteSearch with one of our new algorithms in action; the
mode used here is (B).

2. PROBLEM DEFINITION AND RESULT OVERVIEW

In the following Section 2.1, we bring in a small but important set of necessary ter-
minology that we will use throughout most of the paper. In Section 2.2, we define our
family of problems formally. Finally, Section 2.3 provides an overview of the results for
each problem.

Thttp://lucene.apache.org

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

394 H. Bast and M. Celikik

Table I: Dynamic programming table for the strings algorithm and algro. Only the
gray cells should be considered when computing the prefix Levenshtein distance when
the threshold is 1.

TR WN oM
BN =Y
WN o N
N o b
— DO
PO b DO Lo O R
N DO OTOY e
LW UTO ~J e
AR oo =3 o B
SN NS I RN~

O MU =P

2.1. Preliminaries

Let D = {dij,da,...,d,} be a set of documents and let W = {wy,...,w,} be its dic-
tionary, i.e., the set of all distinct words that appear in D. For the sake of consistent
terminology, we will refer to strings as words. We denote the length-n prefix of a word
w as wln], where win] = w if n > |w|. To denote that w; is a prefix of w,, we will use
w1 =< wy. LD(g, w) will denote the Levenshtein distance [Levenshtein 1966] between a
keyword ¢ and a word w € W and § will denote the distance threshold. If not otherwise
specified, we will assume that ¢ is a function of the keyword length, defined as

1 ifn<5s
d(n):{Q if 5 <n <10
3 otherwise
This is because we would like to allow more error tolerance on long keywords and less

error tolerance on shorter keywords. We define LD separately for words and prefixes
as follows.

Definition 2.1 (Word Levenshtein Distance). Given two words w; and ws, the word
Levenshtein distance (denoted as WLD) is simply the Levenshtein distance between
w1 and w, defined as the minimum number of edit operations (insertions, deletions,
substitutions) required to transform w; into wo.

For example, the word Levenshtein distance between smith and smyth is 1. The word
Levenshtein distance can be computed by a well known dynamic-programming algo-
rithm in O(|wy] - |w2|) time and O(min{|w:|, |w2|}) space. The earliest reference to this
algorithm dates back to Vintsyuk [1968], but has later been rediscovered by various
authors in various areas, including Needleman and Wunsch [1970], Sankoff [1972],
Sellers [1974] and others. Although slow, the dynamic programming algorithm is very
flexible in terms of adapting various distance functions. Moreover, it is easy to gen-
eralize the recurrence to handle substring substitutions [Ukkonen 1983]. There are
number of solutions that improve this algorithm for decreased flexibility. They are
typically based on properties of the dynamic programming matrix, such as traversal of
automata, bit-parallelism and filtering. For a good survey the interested reader should
refer to Navarro et al. [2000].

Definition 2.2 (Prefix Levenshtein Distance). Given a prefix p and a word w, the
prefix Levenshtein distance (denoted as PLD) between p and w is defined as the mini-
mum word Levenshtein distance between p and a prefix of w.

A similar notion of prefix Levenshtein distance (called “extension distance®) has al-
ready been introduced in Chaudhuri and Kaushik [2009]. For example, the prefix Lev-
enshtein distance between algro and algorithmic is 1, because the word Levenshtein

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:5

distance between algro and algo is 1 (and there is no other prefix of smaller word Lev-
enshtein distance to algro). Note that unlike the word Levenshtein distance, the prefix
Levenshtein distance is not commutative. Whenever PLD(p, w) < ¢, we will informally
say that w is a fuzzy completion of p. Figure I illustrates the dynamic programming
matrix for the strings algro and algorithm. The prefix Levenshtein distance simply
corresponds to the minimum value in the last row of the matrix. The dynamic pro-
gramming algorithm for the word Levenshtein distance can be easily adapted to com-
pute the prefix Levenshtein distance in time O(¢ - |w|) as follows: fill only the cells that
are at most ¢ cells away from the main diagonal (those in gray color) and treat all other
cells as if co were stored.

2.2. Problem Definitions

Definition 2.3 (Fuzzy word | autocompletion matching). Given a query ¢, a thresh-
old 4, and a dictionary of words W, the fuzzy word / autocompletion matching problem
is to efficiently find all words w € W, such that LD(¢q,w) < J, where LD is the word /
prefix Levenshtein distance.

We will first present our algorithms for the fuzzy word matching problem and then
show how to extend them to fuzzy autocompletion (prefix) matching. Our algorithms
for the fuzzy word matching problem are presented in Section 4. Efficient fuzzy auto-
completion matching is dealt with in Section 5.

Recall that our fuzzy search involves computing a set of query suggestions for a given
query @ in the absence of any external information like query logs. This makes the
problem significantly more challenging; see Section 6.7 for details. A vital information
that we will make use of for the relevancy of a query suggestion @’ instead, is how
often Q' occurs in our corpus D and in what documents. For the sake of clarity, in this
section we will introduce a simplified version of this information and refer to it as the
co-occurring frequency of Q.

Definition 2.4 (Co-occurring frequency). The co-occurring frequency of an n-tuple
of words @)’ in a set of documents D is the total number of documents d € D that match
Q' exactly. A document d € D matches @’ exactly if all words in @)’ are contained in d.

Besides the co-occurring frequency, we will make use of other measures for the qual-
ity of a given query suggestion. The exact scoring mechanism will be explained in finer
detail in Section 6.7. We are now ready to define our central problem.

Definition 2.5 (Fuzzy keyword-based | autocompletion search).

Given a set of documents D, its dictionary W, a query Q = {q1, ..., ¢} and a thresh-
old §,let @Q; = {w € W | LD(q;,w) < é}fori=1...landlet Q = Q1 X Q2 x ... x Qy,
where LD is the Levenshtein word / prefix distance. The conjunctive fuzzy keyword-
based / autocompletion search problem is to efficiently compute a pair (D', S), where
D={d|de D,1<Vi< l,EIq; € @; such that q; € d} is the set of matching docu-
ments ranked by their relevance to Q, and S C Q is the set of top-k suggestions for
Q, ranked by their co-occurring frequency in D’. The disjunctive fuzzy keyword-based /
autocompletion search problem is to efficiently compute the set of matching documents
D'={d|deD, Elq; € Q; such that q; € d} ranked by their relevance to Q.

If not otherwise stated, by fuzzy search we will implicitly refer to conjunctive fuzzy
search. We will not associate a set S of fuzzy suggestions to D’ for disjunctive fuzzy
search since, in this case, S is not semantically well defined. Our algorithms for fuzzy
keyword-based search and its autocompletion variant are presented in Section 6. We
would like to emphasize that in our definition of fuzzy prefix search, any of the query

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 H. Bast and M. Celikik

words can be specified only partially.? We believe that this approach can save addi-
tional typing effort to the user as shown in the following example.

Example 2.6. Assume we are in fuzzy prefix search mode and the user types
the conjunctive query probab ases. Then we would like an instant display of the
top-ranked documents that contain fuzzy completions of both probab and ases as
well as the best suggestions for the intended full query in a separate box, for
example probabilistic assessment, probability assessment, and probabilistic
association. But not, for example, probabilistic ages, assuming that, although ages
by itself is a frequent word, the whole query leads to only few good hits.

Remark 1: We made a distinction between fuzzy keyword-based search and fuzzy
autocompletion search, since the first problem is easier to solve than the latter, and
some applications may involve only the first problem. The reason for this complexity
difference lies in the number of possible matches. The number of similar completions
of a relatively short prefix is typically orders of magnitude larger than the number of
words similar to a given word (tens of thousands versus a few hundreds on the English
Wikipedia, for prefixes of lengths 4 to 7).

Remark 2: The reader may wonder why, in Definition 2.5, we seek to find the set D’
of all documents matching any query similar to Q. For example, why, for our exam-
ple query probab ases from above, would we want hits for probabilistic assessment
interspersed with hits for the completely unrelated probability ages. An alternative
definition would ask only for those documents matching the top-ranked query sugges-
tion from S. We want to make three remarks here. First, with all the approaches we
tried, the alternative problem is as hard to solve as the problem defined above, be-
cause to compute S we have to at least compute the set of matching documents D’
for Q. Second, the queries from S are often related, like probabilistic assessment
and probability assessment in the example above, and it does make sense to present
combined results for these two. Third, with a proper ranking, the most relevant docu-
ments will be at the top of the list. If these happen to be for different queries from S
this provides some potentially interesting diversity for the user. If these happen to be
all for the same (top-ranked) query, there is no difference between the two definitions
for this query.

2.3. Result Overview

In this work, we present new algorithms for all four problems defined above: fuzzy
word matching, fuzzy prefix matching, fuzzy word search, fuzzy prefix search.

We present two practical algorithms for the fuzzy word matching problem with two
different trade-offs. Our first algorithm is particularly efficient on short words. It is
based on a technique called truncated deletion neighborhoods that allows an algo-
rithm with practical index that retains most of the efficiency of deletion neighborhood-
based algorithms for dictionary search. Our second algorithm is particularly efficient
on longer words. It makes use of a signature based on the longest common substring
between two words. Instead of ¢g-gram indexes, our algorithm is based on permuted
lexicons, providing access to the dictionary via cyclic substrings of arbitrary lengths
that can be computed in constant time. Our algorithms, depending on the threshold
0, improve the previously best algorithms for up to one order of magnitude. These al-
gorithms are explained in Sections 4.1 and 4.2, respectively, and experimental results
are provided in Section 7.2.

2In the existing literature, prefix or look-ahead search is performed only on the last query word.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:7

For the fuzzy prefix matching problem, we extend the aforementioned algorithms
and achieve a significant improvement on short prefixes and an improvement of more
than one order of magnitude on long prefixes for non-incremental search over the pre-
vious best algorithm from Ji et al. [2009]. These algorithms are described in Sections
5.1 and 5.2, respectively. We also provide a simple incremental algorithm that can be
sufficiently fast in practice. This algorithm is explained in Section 5.3. Our experimen-
tal results for these algorithms are provided in Section 7.3.

For both the fuzzy word and fuzzy prefix search problem, we propose two novel data
structures, called fuzzy-word and fuzzy-prefix index (explained in Sections 6.2 and 6.3,
respectively) and a new query processing algorithm (explained in Section 6.4).

Our algorithms improve over our baseline algorithm by a factor of up to 7 when the
index is in memory and by a factor of up to 4 when the index resides on disk. The
experimental results are provided in Sections 7.4 and 7.5, respectively.

We want to stress that we took care to implement our baseline algorithm efficiently
and that it was not easy to beat on larger collections; see Section 6. In fact, as we show
in our experiments, the previous best algorithms for fuzzy prefix search and fuzzy
word search by Ji et al. [2009], lose against our baseline on larger test collections.
The algorithm by Ji et al. [2009] was primarily designed for exact prefix search and
for fuzzy search has a query time complexity linear in the number of similar words /
prefixes. For our baseline this dependency is logarithmic and for our new algorithm
close to constant. See Sections 3.3 and 7.4 for more information.

Finally we propose an algorithm to compute a ranked list of query suggestions. This
algorithm makes use of the result lists from the fuzzy word or prefix search algorithm.
It takes only a small fraction of the total query processing time.

3. RELATED WORK
3.1. Fuzzy Word Matching

There are numerous algorithms in the literature that could be reasonably applied to

solve the fuzzy word matching problem (also known as approximate dictionary search-

ing). In this work we consider offline or indexing algorithms based on Levenshtein

distance that are efficient when the distance threshold is relatively small (e.g., not

larger than 3 errors), when the length of the strings is relatively short (e.g., when the

strings are words) and when their number is large (e.g., more than 5 million words).
Existing methods for fuzzy word matching can be categorized as follows:

— g-gram filtering and pattern partitioning methods [Willett and Angell 1983; Jokinen
and Ukkonen 1991; Navarro 2001; Chaudhuri et al. 2006; Bayardo et al. 2007; Li
et al. 2008; Xiao et al. 2008; Xiao et al. 2008]

— Methods based on neighborhood generation [Mor and Fraenkel 1982; Du and Chang
1994; Myers 1994; Russo et al. 2009]

— Methods based on tries and automata [James and Partridge 1973; Ukkonen 1993;
Baeza-Yates and Gonnet 1999; Schulz and Mihov 2002; Cole et al. 2004; Mihov and
Schulz 2004]

— Methods based on metric spaces [Baeza-yates and Navarro 1998; Chavez et al. 2001,
Shi and Mefford 2005; Figueroa et al. 2006]

A strict taxonomy is often inaccurate since some algorithms combine various ap-
proaches. In the following we provide a short summary for each category. A recent and
extensive survey that addresses almost all aspects of the topic, both experimentally
and theoretically, can be found in Boytsov [2011]. For more details the reader should
refer there.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 H. Bast and M. Celikik

The g-gram filtering approach is by far the most common in the literature. Each
string is represented as a set of ¢g-grams. A g-gram is a substring with a fixed length of ¢
characters. The basic algorithm converts the constraint given by the distance function
into a weaker ¢-gram overlap constraint and finds all potential matches that share
sufficiently many ¢-grams by using a ¢-gram index. The one problem for all of these
approaches is the large number of visited strings (in the worst case all records with at
least one ¢g-gram in common). Therefore, various optimizations and filtering techniques
are employed to minimize the number of visited strings. Typical optimizations include
prefix filtering [Xiao et al. 2008; Xiao et al. 2008; Bayardo et al. 2007] and skipping [Li
et al. 2008]. A good representative (and readily available) algorithm for this category is
DevideSkip from Li et al. [2008], implemented as a part of the Flamingo project on data
cleaning.? The main idea is to skip visiting as many strings as possible while scanning
the ¢-gram lists by exploiting various differences in the lists. The first optimization
exploits the value differences of the string ids by using a heap. The second optimization
exploits the differences among the list sizes such that the candidates in the longest
lists are verified by using a binary search instead of a heap.

Neighborhood generation methods generate all possible strings obtainable by apply-
ing up to J errors and then resort to exact matching of neighborhood members. The
errors could be insertions, deletion or substitutions (full-neighborhood generation) or
deletions only (deletion-neighborhood generation). To our knowledge, this class of al-
gorithms in general is the fastest for our problem setting, however their exponential
space complexity often makes them infeasible in practice. A similar observation has
been done in Boytsov [2011]. A deletion-neighborhood based algorithm is covered in
greater detail in Section 4.1.

A prefix tree or a trie is an ordered tree data structure used to store strings such
that all the descendants of a node have a common prefix of the string associated with
that node. Using a recursive trie traversal is a classical approach to compute the Lev-
enshtein distance of a string against a dictionary of strings. The savings come from
the fact that the distance is calculated simultaneously for all strings sharing a prefix.
Pruning of the traversal takes place whenever the minimum value in the current col-
umn is larger than the threshold. One of the most prominent methods in this category
has been proposed in Mihov and Schulz [2004]. It combines tries with pattern parti-
tioning and neighborhood generation. The main contribution is an algorithm based on
a pair of tries; one built over the dictionary words and another built over the reversed
dictionary words. At query time, the pattern is split into two parts and series of 6 + 1
two-step subqueries are launched. The traversal of the tries is navigated by using a
deterministic Levenshtein automaton. In Boytsov [2011], this algorithm is referred to
as FB-tree.

Metric space approaches exploit the triangle inequality of the distance function to
perform recursive partitioning of the space at index time by using specially selected
elements from the dataset called pivots. The obtained partitioning is usually repre-
sented as a tree. In an earlier work [Celikik and Bast 2009], we have found out that
these approaches are inferior (with respect to time or memory or both) when it comes
to Levenshtein distance in our problem setting. Similarly, the compared metric-space-
based algorithm in Boytsov [2011] is one of the slowest with very low filtering effi-
ciency.

3.2. Fuzzy Prefix Matching

Unlike fuzzy word matching, fuzzy prefix matching arises as a relatively new problem
in the literature. Two similar approaches, both based on a trie data structure, have

Shttp://flamingo.ics.uci.edu/

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:9

been independently proposed in Chaudhuri and Kaushik [2009] and Ji et al. [2009].
The algorithm from Ji et al. [2009] maintains a set of active nodes that represent the
set of nodes corresponding to prefixes within the distance threshold. The set of all
leaf descendants of the active nodes are the answer to the query. At the beginning all
nodes with depth less or equal than the threshold are set as active. The algorithm
is incremental, which means to compute the active nodes for the prefix p;...p, for
n > 0, we first have to compute the active nodes for the prefix p; ...p,_1. The set of
new active nodes is computed from the set of old active nodes by inspecting each child
node and differentiating between two cases: substitution (when p,, is different than
the corresponding character of the child node) and a match (when p,, is equal to the
corresponding character of the child node).

A weakness of this algorithm is the large number of active nodes that have to be vis-
ited. For example, for the initialization of the algorithm alone, we must visit all nodes
with depth less or equal than the threshold. Furthermore, computing the answer set
incrementally is only fast when the user types the query letter by letter. If a relatively
long query (e.g., 7 letters) is given, the algorithm must compute the answer set for
each prefix first. This means that computing the answer set of a long query is more
expensive than computing the answer set of a short query, although long queries have
much smaller answer sets. Another disadvantage is that a traversal of all subtrees
corresponding to active nodes is expensive and requires a significant fraction of the
total time (up to one half according to Ji et al. [2009]).

3.3. Fuzzy Search

There is little work done on efficient fuzzy keyword-based search, let alone fuzzy prefix
search. Ji et al. [2009] proposes an alternative solution to the intersection of union
list problem (explained in more details later on) which is an alternative formulation
of the fuzzy search problem. Recall that the intersection of union list problem is to
compute the intersection of two or more unions of lists. The basic idea in Ji et al.
[2009] is to compute the intersection via so called forward lists. A forward list is the
lexicographically sorted list of all distinct word ids in a document. A union list that
corresponds to an exact prefix is the union of the inverted lists of all words that are
completions of the prefix. Each union list consists of doc ids with a forward list stored
for each doc id. Say we want to intersect two union lists that correspond to two exact
prefixes. Provided that the word ids are assigned in lexicographic order, each prefix
can be regarded as a range of word ids. The result list is computed as follows. First, we
determine the shorter of the two union lists. Second, we determine the word ids (from
the forward lists in the shorter union lists) contained in the word range corresponding
to the longer union lists by performing a binary search in each forward list of the
shorter union lists. A successful binary search means that a word within the word
range corresponding to the longer list is contained in a document from the shorter
list, i.e, the document is in the intersection. Hence, this procedure will result in the
intersection of the two union lists.

If fuzzy prefix search is used, however, the union lists do not correspond to single
word ranges anymore and the same procedure must be applied to each prefix within
the distance threshold. The total number of such prefixes is usually large, rendering
the algorithm expensive for fuzzy search (more details are given in Section 7.4).

3.4. Query Suggestions

In almost all previous work on this topic, query suggestions come from a pre-compiled
list (which itself may be derived from or based on a query log). The focus in these
works is not so much efficiency (which is relatively easy to achieve for pre-compiled
lists, even with billions of items) but on good similarity measures for finding those

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 H. Bast and M. Celikik

queries from the pre-compiled list that match the query typed by the user best. Tech-
niques include vector similarity metrics [Baeza-Yates et al. 2004], query flow graphs
and random walks [Mei et al. 2008; Baraglia et al. 2009; Boldi et al. 2009], landing
pages [Cucerzan and White 2007], click-through data [Cao et al. 2008; Song and He
2010], and cross-lingual information [Gao et al. 2007]. A disadvantage of most of these
approaches is that the suggestions are often unrelated to the actual hits.

Bhatia et al. [2011] propose a probabilistic mechanism for generating query sug-
gestion from the corpus in the absence of query logs. Their suggestions are common
phrases of bounded length from the corpus, and they precompute a special-purpose in-
dex (based on n-grams) to provide these suggestions efficiently. Also, they do not deal
with misspelled queries. In contrast, our suggestions can be arbitrary queries (as long
as they lead to good hit sets), they also work for misspelled queries, and we use the
same index as for our fuzzy search.

Kim et al. [2011] also do away with query logs. Given a query, their method first
retrieves a number of documents for the given query, and from that set constructs al-
ternative queries (that correspond to root-to-leaf paths in a decision tree built over the
set) and ranks them using various query-quality predictors. As the authors themselves
point out, this can be viewed as a kind of pseudo-relevance feedback. Our approach is
similar, except that we use our fuzzy-search index to generate the set of (all matching)
documents, that we restrict our query suggestions to those similar to the typed query,
and, most importantly, that we consider efficiency which was not an issue in Kim et al.
[2011].

Google’s web search offers query suggestions since 2005. Initially, this service ap-
parently? offered exact completions from a pre-compiled list of popular queries. Over
the years, the service was significantly extended. In its current state, it offers fuzzy
suggestions and it seems that the pre-compiled list does no longer only consist of pop-
ular queries, but also frequent or otherwise prominent phrases or combination of such
phrases. The basis is still essentially a pre-compiled list, however. Although this ap-
proach works surprisingly well for a large class of queries, it also has its obvious lim-
itations. The first limitation is that, unlike in web search, query logs are not always
available in domain-specific search environments. The second limitation are expert
queries with relatively narrow hit sets: there are simply too many possible ones to
include them all in a pre-compiled list. For web search, these are of relatively minor
importance, but for vertical search (for example, literature search, intranet search,
email search, desktop search, etc.), a large portion of queries are of this type.®

The query beza yates intre from our example screenshot from Figure 1 is a good
example for this. The intent behind this query is to find papers by Ricardo Baeza-Yates
on set/list intersection, and there are, indeed, a number of high-quality hits for the
query baeza-yates intersection on Google. However, no suggestions are offered for
this query, the apparent reason being that it is not in the pre-compiled list of queries.
And it cannot be; there are simply too many meaningful queries of such narrowness.
In contrast, our approach (applied to a data set containing the mentioned articles)
will indeed offer the suggestion baeza yates intersection. And the reason simply is
that of all the queries similar to beza yates intre this is the one with the most or
highest-scoring hits.

4The methods behind Google’s suggest functionality have not been published so far. However, given our
experience with the service, from using it extensively over the years, and given our experience from our own
research on the topic, we consider the claims made in the paragraph above very likely to be true.

5We say this, in particular, from our experience with running CompleteSearch DBLP for 5 years now, which
gets around 5 million hits every month.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:11

4. EFFICIENT FUZZY WORD MATCHING

This section is about efficient fuzzy word matching, also known as approximate dic-
tionary search. We combine various approaches from the literature to propose two
practical and flexible algorithms (DeleteMatch and PermuteScan) with two different
trade-offs that are suited for a dynamic distance threshold (Section 2). In addition, our
first algorithm is particularly efficient (in time and space) when the words are short.
Our second algorithm is particularly efficient when the words are long or when the
distance threshold is low.

4.1. Algorithm: DeleteMatch

This section is about DeleteMatch, a practical algorithm for fuzzy word matching that
is particularly efficient (in time and space) when the words are short. We first intro-
duce the notion of an n-subsequence of a word w and explain its role as a signature
(Section 4.1.1). In a nutshell, a subsequence of a word w is obtained by applying char-
acter deletions on a set of positions in w. The set of all subsequences of w is known
as the deletion neighborhood of w. We describe a known method based on indexing
the full deletion neighborhood of each word in the dictionary. We show that the re-
sulting algorithm is fast but impractical due to its enormous index (Section 4.1.2). We
then propose a novel indexing method called ¢truncated deletion neighborhoods, which,
when combined with compression, dramatically reduces the space usage of the algo-
rithm. We show that our new method results in an algorithm with a practical index
that retains most of the efficiency for dictionary search (Sections 4.1.3 and 4.1.4).

4.1.1. Deletion Neighborhoods and Subsequences. Given a word w, an n-subsequence of w
for n < |w| is the sequence of characters obtained by deleting any n characters from
w. Let p be a I-tuple of delete positions in w and let s(w, p) be the |p|-subsequence of w
obtained by deleting the characters with positions in p. The following example shows
how two words w; and we with WLD (w7, ws) = 2 share a long common subsequence.

Example 4.1. Let wi=algorythm and wo=algoritm. Observe that
s(wq, (6,8))=s(was, (6))=algortm, i.e., the words match on the subsequences corre-
sponding to the /-tuples of delete positions (6, 8) and (6).

Unlike ¢-grams, n-subsequences retain much of the information of the original
string. In the following we define the n-deletion neighborhood of a word w recursively,
given some 0 < n < |w|.

Definition 4.2. The n-deletion neighborhood U,(w,n) of a word w consists of all k-
subsequences of w, for k =0...n

= Uli‘o Ug (s(w,i),n —1) otherwise

It is intuitive that any two words within a distance threshold ¢ share a long com-
mon subsequence in their j-deletion neighborhoods. The following lemma gives a more
formal statement.

LEMMA 4.3. Given a threshold o, let wy and wy be two words with WLD (w1, w3) < 0.
Then there exist a subsequence s € Ug(wi,6) N Ug(ws, §) with |s| > max{|w |, |we|} — 9.

PROOF. The proof is based on constructing matching i-tuples of delete positions p;
and p, in w; and ws such that s(wi,p;) = s(wsa,p2) by using the sequences of edit
operations that transform w; to ws and ws to w;. A detailed version is given in the
appendix. 0O

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 H. Bast and M. Celikik

Table II: Average number of distance computations per match for different query word
lengths and different thresholds 6 by using the basic DeleteMatch algorithm in Section
4.1.2 on the dictionary of the DBLP collection with around 600K distinct words (the
last three rows show the average number of matches per query length).

4 5 6 7 8 9 10 | 11 | 12 | 13 | 14
0=1 2.2 2.0 1.5 1.3 1.2 12 |12 |12] 12 | 1.2 | 1.2
0=2 3.0 3.6 3.0 24 | 1.8 16 |14 |13 | 12 | 12 | 11
0=3 2.2 3.5 4.2 38 | 33|26 |21]20 |15 |15]| 11
0=1 40 20 12 8 7 6 7 9 9 6 7
0=2 917 395 154 66 31 20 21 17 | 21 | 20 | 12
0=3 | 11,077 | 5479 | 1,986 | 722 | 222 | 100 | 51 | 55 | 42 | 24 | 22

4.1.2. The Mor-Fraenkel Method. Given a dictionary W, a threshold § and a query word
q, Lemma 4.3 immediately gives rise to an algorithm based on indexing subsequences.
What follows is a summary of the Mor-Fraenkel method originally proposed in Mor and
Fraenkel [1982] and Muth and Manber [1996]. The algorithm consists of an indexing
and a searching procedure. The indexing procedure generates the full §-deletion neigh-
borhood of each w € W and stores all possible triples (s, p., ¢,,) for each subsequence s,
where s = s(w, py), Pw 18 an I-tuple of delete positions (I < ¢) and ¢, is an I-tuple that
stores the deleted characters. Each [-tuple is indexed by using s as a key. The original
word w can be recovered by inserting characters from ¢, in s at positions in p,,. The
search procedure consists of generating all triples (s, p,, ¢;) from the deletion neighbor-
hood of ¢. It is not hard to show that the Levenshtein distance between ¢ and a word
w such that 3s € Uy(g,d) N Uy(w, 0) can be efficiently computed as |p,| + |pw| — [pg N Pw|.

The main drawback of this algorithm is its high space complexity. Given that each
deletion-neighborhood entry requires O(m) bytes in average, the space complexity is
equal to

o) <|W| ém (’7)) — O (W] -m*+) (1)

bytes, where m is the average word length. In practice, due to the many and long
signatures, this algorithm has a prohibitive space demand. For example, for natural
language dictionaries the index size is more than 100 times larger than the size of the
dictionary for 6 = 2 [Boytsov 2011].

There are existing methods for succinct representation of full §-deletion dictionaries.
Mihov and Schulz [2004] proposed to represent deletion neighborhoods for § = 1 in the
form of minimal transducers. A transducer 7'(s) for a dictionary W is a deterministic
finite state automaton with an output. A minimal transducer is a transducer with
minimal number of states. In summary, if T'(s) accepts a string s then 7'(s) outputs all
words w € W such that s(w,p) = s for some p. This method has been shown to produce
up to one order of magnitude smaller indexes for § = 1. However, it has not been
verified in practice whether the indexes are smaller for § > 1 [Boytsov 2011]. A similar
method based on an equivalent list dictionary transducer for § = 1 has been proposed
in Belazzougui [2009]. The practicality of this method has been not experimentally
investigated.

4.1.3. Truncated Deletion Neighborhoods. We propose a method that avoids generating
the full deletion neighborhood of each w € W at the price of a slightly increased ver-
ification cost on longer words. In addition, unlike related methods, our method uses
standard data structures that run efficiently on today’s hardware [Belazzougui 2009].

What follows is a variant of the Mor-Fraenkel method. Instead of storing the auxil-
iary data for faster verification, for each indexed subsequence we store only its word id.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:13

The candidate matches are verified by using a fast bit-parallel version of the dynamic
programming algorithm from Myers [1999].6 The index procedure iterates over 1V and
computes the inverted list /(s) of each s € |J,, Ua(w, 6). The inverted list I(s) of s is the
sorted list of the word ids of all w € W with s € Uy(w,¢), indexed by using s as a key.
At query time, the search procedure obtains the inverted list I(s) of each s € Uy(q, 9)
and for every w € I(s) verifies whether WLD(q,w) < 6. The seen words are marked to
avoid duplicates as well as redundant computations.

The above algorithm can be regarded as filtering algorithm. It remains fast in prac-
tice due to the long and discriminative signatures that result in relatively short in-
verted lists. Table IT shows the average number of distance computations per match
for different query lengths. In average it performs between 1 and 3 distance compu-
tations per match overall. Hence, in average, it is not far from the “optimal filtering
algorithm“ that would perform a single distance computation per computed match.

The size of the index consists of two components, the size of the subsequence dic-
tionary and the total size of the inverted lists. The size of the subsequence dictionary
is proportional to the sum of the lengths of all subsequences. Since each inverted list
contains at least one word id, the sizes of these two is usually similar.

Given a fixed k > 0, the k-truncated version of W is the dictionary W obtained by
truncating each word w with |w| > k to its k-prefix. In addition, W* contains all words
w € W with |w| < k. We assume that W is given in lexicographically sorted order.
For each truncated word w[k|, we keep a pointer to the range {w € W | w[k] < w}
by storing the word id of the first word and the number of words in the range. The
following lemma will allow us to index the k-truncated dictionary W* instead of the
full dictionary W.

LEMMA 4.4. Let wy and ws be two words with WLD(wq,ws) < 6 and let w;[k] and
wa k] be their k-prefixes for k < max{|w1], jwz|}. Then 3s € Ug(wi[k], §) NUq(w2[k], §) with
|s| >k — 6.

PROOF. When WLD(w; [k], wz[k]) < J the statement obviously holds true due to
Lemma 4.3. How to find a matching subsequence when WLD (w; [k], w2 [k]) > ¢ is shown
in the appendix. O

The lemma requires truncating ¢ at query time whenever |¢| > k. The inverted
lists now contain prefix ids. Since we index only short strings, the size of the index
does not depend on the long words in W (e.g., outliers) that can have huge deletion
neighborhoods and hence large impact on the index size. The size of the subsequence
dictionary is now smaller for at least a factor of |W|/|W*|- (m/k)°. To reduce its size
further, we will make use of the fact that our dictionary consists mainly of k-prefixes.
The following lemma will allow us to index only subsequences of length k£ — § instead
of the full deletion neighborhoods.

LEMMA 4.5. Let w; and ws be two words with |wi| = |wz| and WLD(wq, ws2) < 4.
Then 3s € Ug(wr,0) N Ug(we,) with |s| = |w1| — § such that the number of deletions in
wy and the number of deletions in w, are equal.

PROOF. According to Lemma 4.3 we already know that 3s € Uy(w1,d) N Ug(wa, d)
with |s| > max{|w;|,|wz|} — §. Let p; be the I-tuple of delete positions in w; and po
be the [-tuple of delete position in w,. Obviously, for each delete position in p; there

6Despite this, the space usage remains prohibitive. For example, on a machine with 30 GB of RAM we could
not index a clean version of the dictionary of a dump of the English Wikipedia with size of about 9 million
distinct words, word length limit of 20 characters and a threshold § = 2.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 H. Bast and M. Celikik

must be a corresponding delete position in ps as otherwise the length of the resulting
subsequences will not be equal. O

It is not hard to see the efficiency of the algorithm is not affected. On the contrary,
many subsequences are not generated and scanning their inverted lists is omitted. If §
is dynamic and depends on |g|, we can index only the subsequences of length k — §(Jw|)
of each k-prefix.

We refer to the resulting set of subsequences as the truncated deletion neighborhood
of W. It should be noted that if W is “prefix dense®, then we could simply index the
truncated deletion neighborhood on the reversed version of the dictionary. The size of
the subsequence dictionary of the truncated deletion neighborhood in practice is very
small, typically a fraction of . This allows us storing it uncompressed in a conven-
tional data structure for fast access such as hash table or a trie. The total size of the
inverted lists is reduced as well since they are significantly less in number and since
ranges of words with a common k-prefix are represented by a single id. They are, how-
ever, significantly longer. To represent them efficiently, we employ the observation that
k-prefixes in close neighborhoods in W* with a subsequence in common have small gap
values when the lists are gap encoded. The following is an example of a gap encoded
inverted list for the subsequence “gffe“ (the corresponding k-prefixes are shown only
for convenience).

100563 1 1 1 1 1 3 2 135
gaffe gaffeo gaffer gaffet gaffey gaffie gaffke gaffne gaiffe

The sizes of the gaps depend on the common prefix lengths. For example, strings
with common prefixes of length k¥ — 1 have gap values of 1. The gaps are efficiently
represented by variable-byte encoding [D’Amore and Mah 1985]. This is a well known
coding scheme that allows fast decoding for a slight loss of compression efficacy com-
pared to bit aligned schemes [Scholer et al. 2002]. For example, decoding 100,000 in-
tegers requires less than a millisecond. Hence, list decompression at query time takes
only a small fraction of the total running time.

The truncation length parameter k allows a trade-off between the index size and the
running time of the algorithm (see Table III). Truncated deletion neighborhoods with
k = 7and § < 3 resulted in an index with size within a factor of 3 from the size of
the dictionary with almost identical average running time. Setting k to 6 resulted in
index with size less than the size of the dictionary at the price of twice higher average
running time.” Instead of using a fixed k, a better strategy in practice is choosing a
larger k£ on longer words and a smaller &k on shorter words. We did not experiment
extensively with this heuristic.

4.1.4. Suffix Filtering. Since the suffixes of the words are ignored, word truncation in-
volves more false positive candidates and hence more distance computations. There-
fore, additional filtering on the suffixes of the candidate matching words is required.

The g-gram overlap (count) filter and the length filter are two standard filters in
the approximate string matching literature. The g-gram overlap filter [Sutinen and
Tarhio 1996] mandates that the number of common (positional) ¢g-grams must be at
least max{|w1|,|wz2|} — g+ 1 — ¢q - 6. The length filter s1mply mandates ||w| — |wa]| < 4.
The challenge is to compute these filters efﬁc1ently in the absence of a g-gram index.
This is because the suffixes are not indexed as it is undesirable to store any additional
data that might increase the space usage of the algorithm. Moreover, we can afford

"This experiment was performed on the English Wikipedia with around 9M words and average word length
of 9.3 characters; for more information see Section 7.2.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:15

Table III: Index size and average running time (given in microseconds) of DeleteMatch
for & = 2 and different truncation lengths (space/time trade-offs) on the dictionary of
the DBLP collection with around 600K distinct words (the average number of matches
was 241 words).

. Running Time Distance Comp.
Prefix Length (k) | Index Size | gre ™ (ithout filter | with filter _ without filter
S 755 MB - 156 us - 785
7 25 MB 185 us 272 us 855 1050
6 10 MB 316 us 661 us 1110 2310
5 6 MB 703 us 2637 us 1800 9747

Table IV: Average running time per query length by indexing full (first row) and trun-
cated deletion neighborhoods (second row).

4 5 6 7 8 9 10 11 12 13
4ms | 3ms | .Ims | .06ms | .04ms | .04ms | .04ms | .05ms | .06 ms | .06 ms
4ms | B3ms | .Ims | .06ms | .07Tms | .07ms | .06 ms | .07ms | .06 ms | .06 ms

only cheap filters since the suffixes are short and larger computational overhead can
outweigh the pruning power.

The effectiveness of the ¢-gram overlap filter in general depends on the value of
g. Similarly as in Gravano et al. [2001], we have determined that ¢ = 2 gives the
highest pruning power when no other filters are employed. Our suffix filtering is based
on the observation that when the g-gram overlap filter is combined with truncated
deletion neighborhoods, there was virtually no difference in the effectiveness of the
filter between ¢ = 1 and ¢ = 2. To provide some evidence, Table V shows the average
number of to-be-verified candidates after applying this filter for ¢ = 1 and ¢ = 2 on the
suffixes of the candidate words.

The g-gram overlap filter for ¢ = 1 is also known as unigram frequency distance. It
is well known that the unigram frequency distance lower bounds the Levenshtein dis-
tance. It can be efficiently computed by using unigram frequency vectors. A unigram
frequency vector of a word w is a vector of size |¥| where F,,[i] contains the number
of occurrences of the character o; € ¥ in w [Kahveci and Singh 2001]. The following
lemma will make use of the fact that the frequency distance has been already “com-
puted” on the k-prefixes of the candidate matching words.

LEMMA 4.6. Assume WLD(q,w) < ¢ and that the k-prefix of w shares a subsequence
of length k — 0 <1 < k with the k-prefix of q. Then the suffixes of w and q that start at
position | + 1 must share at least max{|w|, |q|} — | — § characters in common.

PROOF. Assume that the k-prefixes of w and ¢ are “aligned“ with respect to WLD
(see the proof of Lemma 4.4). Assume also that [< k and that the k-prefixes of ¢ and w
share k — [characters in common with position less than ! + 1. However, this implies
that ¢ and w have equal characters on positions [+ 1...k (although they are counted
twice) and hence the suffixes starting at position [+ 1 will still have max{|w|, |q|} =1 -9
characters in common. The proof when w and ¢ have k-prefixes that are not “aligned”
is similar to that of Lemma 4.4. Namely, a matching substring between ¢ and w might
have a starting position less than % in one of the words and larger than & in the other.
However, both starting positions must be larger than . O

The next lemma will allow us early termination of the computation of the frequency
distance.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 H. Bast and M. Celikik

Table V: Average number of candidates per query when using the length and the g¢-
gram count filter on suffixes for ¢ = 1 and ¢ = 2 (on the dictionary of the DBLP
collection with around 600K distinct words).

Threshold q=2 q=1

0=1 29 33
0=2 894 912
6=3 11,298 11,255

LEMMA 4.7. If WLD(q,w) < 0, then the number of common unigrams between q
and the prefix w(i] of w must be at least i — § for i =6 ... |w|.

PROOF. The proof follows from the observation that if w[i] contains n > § characters
that are not in ¢ then any w[j], j > i will contain the same n characters that are not in
q. O

Note that the same argument can be used to show that the lemma is valid for ¢-
grams of any length.

Let count be the number common characters between ¢ and w computed so far and
let F, be the frequency vector of ¢ and let [be the length of the current matching
subsequence between ¢ and a word w. We combine the above observations in a simple
filter as follows:

(1) Initially compute F, and set count to [;

(2) Fori=1+1...|wl|, increase count by 1 if F,[w[i]] > 0 and decrease F,[w][i]] by 1;

(3) If the current value of count is below ¢ — ¢, terminate the loop and conclude that
WLD(w, q) > 9;

(4) If the final value of count < max{|q|, |w|} — J, conclude that WLD(w, q) > ¢;

(5) Restore Fj to its previous state by increasing Fi,[w[i]] by 1 fori =1+1...j, where j
is the last value of 7 in the loop in step 2.

4.2. Algorithm: PermuteScan

This subsection is about PermuteScan, an indexing method based on sequence filter-
ing that is particularly efficient when the words are long relatively to the distance
threshold or when the distance threshold is 1. Our algorithm combines two signa-
tures: a novel signatures based on the notion of longest common substring shared by
two words, and an already well known partitioning-based signature (Section 4.2.1). We
show that this approach is more efficient than other sequence filtering methods based
on g-grams. We first formulate the problem as an exact substring matching problem
and employ an algorithm based on permuted lexicons that utilizes both signatures
(Section 4.2.2). We then discuss which problem instances are hard for this algorithm
and propose further optimizations to improve its running time (Sections 4.2.3, 4.2.4
and 4.2.5).

4.2.1. The Longest Common Substring as a Signature. The main observation in this section
is that if WLD(wq,ws) < J, then w; and ws must share at least one “long®“ substring.
Note that the substrings to this end are considered cyclic, i.e, a substring at the end of
a word may continue at the beginning of the word. For example, thmalg is a substring
of algorithm. We will refer to the length of this substring as longest-common-substring
signature. It is formally stated as follows

LEMMA 4.8. If WLD(q,w) < 6, then q and w must share a substring of length at
least [max{|q|, |w|}/d] — 1.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:17

Table VI: Differences between the required common substring lengths between a query
¢ and a word w for varying lengths dictated by Property 4.9 (longest common substring)
and Property 4.10 (pattern partitioning). 0 means that both properties require equal
common substring lengths.

lq] 4|56 |7]8[9|10 |11 |12 | 13 | 14 | 15
0o=1|11]2|2[3]|3]|4] 4 5 5 [6 7
0=20]1]0]1]1]|1 1 2 1 2 2 2
0=3/0]0]0]1]0]O0 1 1 0 1 1 1

PRrOOF. Without loss of generality, we can assume that the longer of the two words
have length n and that the shorter word is obtained by performing § deletions over the
longer word. Now we would like to divide the longer word with the 6 deletions into
pieces such that the maximum length of a piece is minimized. This is achieved when
each piece (except possibly the last) has equal length. Hence, the length of the first 6 —1
pieces is equal to [n/d]. But since each of the ¢ deletions destroys a single character
in each piece, the first 6 — 1 corresponding substrings between the two words will have
length equal to [n/6] — 1. O

The following property is a direct consequence of Lemma 4.8

PROPERTY 4.9. If WLD(q,w) < 9§, then q and w must share a substring of length at
least [|q|/0] — 1 (regardless of the length of w).

This property is related to the following well known observation based on partition-
ing the query pattern [Wu and Manber 1992].

PROPERTY 4.10. Let WLD(q,w) < 4, where § is integer. If q is partitioned into 6 + 1
pieces, then at least one of the pieces is an exact substring of w.

In the original proposal ¢ should be split into approximately equal pieces so that
none of the pieces is too short.® One obvious difference to Lemma 4.8 is that for 6 = 1,
Lemma 4.8 requires a common substring of length at least |¢| — 1, whereas Property

4.10 requires a common substring of length at least %. This makes Lemma 4.9 more
effective for § = 1. For many instances Lemma 4.8 requires a longer common substring
because ¢ and w can be considered as cyclic strings. Table VI compares the differences
between the substring lengths for different lengths of ¢. For example, if |¢| = 7 and
0 = 2, then Lemma 4.8 requires a common substring of length at least [%] —-1=3,
while Property 4.9 a common substring of length at least LH%J = 2. However, there are
instances for which both properties require common strings of equal length. For these
instances the longest common substring signature arising from Lemma 4.8 is wasteful
since the common substrings can start at any position. In contrast, the substrings in
Property 4.10 can start only at § + 1 fixed positions in ¢. The former requires checking
more substrings and hence more work.

Therefore, we choose between the two signatures based on each particular instance.
We opt for a simple criteria as follows. If the longest common substring signature
requires a longer common substring between ¢ and w (this is always fulfilled for 6 = 1),
then we use Property 4.9 and otherwise Property 4.10. In practice this resulted in
substantially improved running times compared to using only one signature. Now we
consider the following problem. Given a word w, a fixed dictionary W, and a threshold
0, we would like to efficiently compute all words in W that share a substring with w of

8We have also experimented with approaches for optimal partitioning of ¢ similar to that from Navarro and
Salmela [2009] based on substring frequencies, however, without significant improvements in the efficiency.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 H. Bast and M. Celikik

length larger than some minimum as well as the length of the common substring. We
will refer to this problem as the exact substring dictionary search.

The exact substring dictionary search problem can be solved by using a known
method based on a suffix tree. A suffix tree is a compacted trie that represents all
suffixes of a text. We employ a compacted trie that represents all suffixes of the words
in W, where each leaf node is equipped with a list of word-ids that contain the corre-
sponding suffix. Each path in the tree following a suffix of ¢ corresponds to a common
substring between ¢ and a subset of words in 1. In general terms, the algorithm works
by traversing the tree for each suffix of q. A disadvantage of this method is the size of
the index. For example, the size of a suffix tree in practice is typically about 20 times
the size of the text it represents.

Boytsov [2011] proposes a simpler and more space efficient method for exact match-
ing of short substrings based on length-divided ¢-gram indexes. However, this method
is not suitable for the longest common substring signature where the substrings can
have arbitrary lengths. We employ a method that is a weak version of the suffix tree
method from above based on a permuted lexicon. A permuted lexicon is a simple but
practical data structure that supports efficient substring search in a dictionary of
words [Bratley and Choueka 1982]. It was used in Zobel and Dart [1995] as a heuristic
to find likely approximate matches by invastigating small neighborhoods of words in
the permuted lexicon that correspond to substrings in ¢. We extend this technique to a
full fuzzy matching algorithm by combining it with the longest common substring and
pattern partitioning signatures.

4.2.2. Algorithm Based on Permuted Lexicon. In what follows, we describe the permuted
lexicon data structure in finer detail and describe how to address the exact substring
dictionary matching problem by using a precomputed Icp array.®

Definition 4.11 (Rotation). Consider a word w with index 7 in . A rotation r of w
is the pair (i, j), where j is the shift and denotes the j-th cyclic permutation of w.

When referring to a rotation r, we will consider its string representation, keeping in
mind that r is equipped with a “pointer” to its original word in the dictionary.

Definition 4.12 (Permuted Lexicon). Let W be a dictionary of words. A permuted
lexicon of W (or pl(WV)) is the lexicographically sorted list of the rotations of each w €
w.

Let r;(¢) be the j-th rotation of ¢, where j € {1,...,|q|} if the longest common sub-
string is used as a signature and j € {pi,...,ps+1} if pattern partition is used as
a signatures, where p1,...,psy1 are the set of position of the partitioning of ¢. Let
r} be the i-th rotation in pl(1V) obtained by performing a binary search for r;(qg).
Then all words in W that share a non-empty substring with ¢ starting at position
J, will correspond to a certain neighborhood around r; in pl(W). To compute the length
of the common substrings efficiently, we use the following two observations. First,
lep(ri(q),ri) = lep(r;(q);Tiyr), Where lep(rj(q),7;) is the length of the longest common
prefix between r;(¢) and r; and k£ € {0,1,2...} U {0,—1,—2,...}. Therefore, the length
of the common substring decreases as we go above or below position ¢ in pl(I¥) (an
example is given in Figure 2). Second, the following holds

OBSERVATION 4.13. lep(r;(q), i) = min{lep(r;(q), i), lep(i + &)}

where lcp(i) = lcp(ri,r;,,) is an array of the lcps of the adjacent words in pl(1V) pre-
computed during the initialization of the algorithm. Therefore, we can compute the

91cp stands for longest common prefix.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:19

gorham
goriszi
gorite
gorithimal
gorithm5al
—» gorithma
gorithmal
gorithmeal
gorithsal
goritmal
goriugri
gorje

Fig. 2: Schematic representation of a permuted lexicon. A binary search is performed
for the cyclic substring “gorithma“ (starting at position 2) of the (misspelled) word
“agorithm® (the rotations are given on the left and the original words are given on the
right). The common cyclic substrings are underlined.

leps between 7;(¢) and the next word in the neighborhood (starting from r}) in con-
stant time. All words seen along the way are marked to avoid redundant matches and
computations. The scanning stops when the current substring length is less than the
minimum substring length (Property 4.9) or less than the length of the current match-
ing piece from g (Property 4.10).

The candidate matches that survive the filtering are subject to additional suffix fil-
tering. To apply these filtering efficiently, we make use of the following two observa-
tions. First, a rotation of a word contains the same multiset of characters as the origi-
nal word. Second, since our algorithm computes the maximal matching substrings, the
unigram frequency filter has been already computed on the prefixes of the rotations
and hence it should be computed only on their suffixes. The algorithm is identical to
the suffix filtering algorithm from Section 4.1.4.

Our implementation of the permuted lexicon uses 5 - |w| bytes per word. The first 2
bytes are used to encode the shift and the lcp array, and the last 3 bytes are used to
encode the word id. If the space usage is a concern, one can use a compressed version
of the permuted lexicon from Ferragina and Venturini [2007]. This method is based
on the Burrows-Wheeler transform of concatenated rotations. The Icp array could be
compressed by gap and elias-gamma code.

The speed of this algorithm strongly depends on the length of the current matching
substring, which in turn depends on ¢ and |¢|. Therefore, this algorithm is efficient in
the following cases:

— When ¢ is small relative to |g|. One example for this scenario is when ¢ is dynamic.
Another example comes from the similarity join literature where the records have
average length of more than 100 characters and thresholds that often varies from 1
to 3 errors (for example, see Xiao et al. [2008; Gravano et al. [2001]). If the threshold
is 3, the common substring length must be at least 33 characters long. In a ¢-gram-
based algorithm, this would hypothetically correspond to using ¢ = 33. This is very
restrictive since only few string would share ¢-grams that long.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 H. Bast and M. Celikik

— When the distance threshold is 1 as the common substring length must be at least
|g| — 1 characters long. For example, this is as effective as the basic DeleteMatch
algorithm from the previous section.'”

This algorithm is less efficient when the longest common substring is less than 4
characters since the number of candidate matches becomes large, similarly as in ¢-
gram-based algorithms. However, unlike ¢g-gram-based algorithms, the words sharing
longer substrings are found early and not considered again. In what follows, we include
a number of additional optimizations to our algorithm.

4.2.3. Mismatching Rotations. Given two words w; and ws, a substring s; in w; matches
a substring s, in wy with respect to LD, iff s; is transformed into s, after performing the
sequence of edit operations that transform w; into w,. If two substrings match, then
the difference in their positions must be at most ¢ [Sutinen and Tarhio 1995]. The
above algorithm finds all common substrings between ¢ and words in W longer than
certain length. This includes the substrings that do not match. We can easily skip such
rotations as follows. Given a rotation r, let sh(r) be the shift of r. Let r be the current
query rotation and »’ be the currently investigated rotation. If [sh(r) — sh(r')| > § we
can safely ignore r’ since it is guaranteed that » and ' correspond to substrings in w;
and ws that do not match.

4.2.4. Clustered Errors. For another filter, consider a query ¢ and a word w with
WLD(q,w) = t < §. If ¢ and w have a substring of length max{|q¢|,|w|} — ¢t in com-
mon, then they must share only a single substring. As a result, the errors must have
adjacent positions, i.e., they are “clustered“. However, the opposite is not always valid.
Let r be the current query rotation, let ' be the currently investigated rotation of a
word w and suppose max{|r|, |r'|} —lep(r,r') =t < §. The following example shows that
we cannot immediately conclude that WLD (¢, w) = ¢.

Example 4.14. Consider g=algorithm and w=1gorithma and consider the rotations
in ¢ and w with equal string representation algorithm for both words. Observe that
max{|r|, ||} — lep(r,7") =19 — 9| = 0, however, WLD(q, w) = 2.

Additional caveat exists when ¢ > 3, in which case clustered errors cannot be de-
tected merely based on the substring length as shown in the following example.

Example 4.15. Let g=algorithm and w=xyzgorithm and let § = 3. Observe that ¢
and w share the substring gorithm of length 7 and that |7—10| = 3 < 3. However, if y=1
in w, then ¢ and w would share additional substring, namely 1. Hence, the errors would
not be clustered anymore and WLD(¢, w) = 2 instead of the alleged value 3 (although
max{|r|, |r’'|} — lep(r,r’) remains 7).

In the following, we define the notion of clustered errors more formally.

Definition 4.16. Let w; and ws; be two words with rotations r; and r; such that
max{|r|, |r'|} — lep(r,r’) < 6. The errors in w; (respectively ws) are clustered if w; can
be partitioned into two substrings such that all errors are contained in only one of the
substrings.

Given a rotation r of w, let r[i] = (sh(r) + i) mod |r|. Let w; and w, be two words
with matching rotations r; and r,. We distinguish among 3 cases of clustered errors in
wy and ws:

10This algorithm, however, has a larger constant factor than DeleteMatch.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:21

— The errors are in the beginning of w; and w; (e.g., xxgorithm and ylygorithm). This
case takes place when the common substrings are suffixes of w; and w». It can be de-
tected by verifying whether r[lep(r1,72)] = lep(r1, r2) and ro[lep(ry, 72)] = lep(ry, r2);

— The errors are in the end of w; and w; (e.g., algoritxxx and algorithm). Similarly,
this case takes place when the common substrings are prefixes of w; and w,. It can
be detected by verifying whether r1[0] = 0 and r3[0] = 0;

— The errors are in the middle of w; and ws (e.g., algoxithm and algoyyithm). This
case takes place when neither 1. nor 2. are satisfied and w[0] = wz[0].

LEMMA 4.17. Assume that the errors in q and w are clustered. Assume also that
max{|r|, ||} — lep(r,r") < 0, where r and r' are the matching rotations in q and w
respectively. Then WLD(q,w) < é. If, in addition, max{|r|,|r'|} — lep(r,r') =t < 3, then
WLD(q,w) = t.

PROOF. For the first part of the lemma, assume that ¢ and w are partitioned as
q1 - g2 and w; - wo such that ¢; = wy. Since ¢ can be transformed into w by transform-
ing ¢» into we and |g2| < 6 and |we| < 4, it follows that WLD(g,w) < §. A similar
conclusion can be drawn for the other two partitionings of ¢ and w. There are two
possibilities for the second part of the lemma. If max{|r|, |r'|} — lep(r,7’) = 1, then ob-
viously WLD(¢,w) = 1 because ¢ and w differ in only one character. Assume the two
errors have positions p; < p, that are not consecutive, i.e., 1 + p; < p2. Then ¢ and w
must have a common substring with positions between p; and p,. However, this would
imply that max{|r|, |r’'|} —lep(r,r") > 2. Hence, p; and p» must be consecutive positions.
Consequently, WLD(q,w) =2. O

4.2.5. Early Stopping Heuristic. One way to address the problem of large number of can-
didate words when the longest common substring is short is to employ an early stop-
ping of the scanning of the current neighborhood as follows. If the current substring
length is short (e.g., less than 5 characters), then the scanning of the current neighbor-
hood is terminated if no similar word is found after certain number of distance com-
putations (cut-off parameter). The hope is that the potentially missed similar words
matching the current (short) substring, will match either on a longer or on a less fre-
quent subsequent substring.

Example 4.18. Suppose 6 = 2 and g=believe and assume the algorithm is currently
scanning the words that share a substring starts at position 0 in ¢. Say that the current
substring length is 3 (the longest substring length is 3 as well) and the word w=believe
(with common substring bel) has been missed, although WLD(q,w) < 4. However,
since ¢ and w have the longer substring vebel in common as well, it is more likely that
w will be found later.

The above heuristic results in substantial decrease in the number of words visited
(see Table VII). Moreover, the running times are almost one order of magnitude less
for 6 > 2 when the longest common substring is short. This goes well with the fact that
only a small fraction of the visited words matching a short substring (¢-gram) have
WLD within the threshold. The price paid for using this heuristic is a loss of recall.
To achieve a recall of 95% a proper cut-off parameter must be set. Unfortunately, the
value of the cut-off parameter strongly depends on the size of the dictionary as well
as on its nature. In practice, we use an empirically precomputed values for a range
dictionary sizes.

5. EFFICIENT FUZZY PREFIX MATCHING

In this section we focus on the fuzzy prefix matching problem. The fuzzy prefix match-
ing problem is similar but computationally harder than the fuzzy word matching prob-

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 H. Bast and M. Celikik

Table VII: Average number of words that must be scanned for different longest-
common-substring signature lengths (Lemma 4.8) when the threshold is 2 on the dic-
tionary of the DBLP dataset with 600K words.

Minimum substring | Average number of words | Average number of words
length visited without a heuristic | visited with a heuristic

2 240,023 15,771

3 44,233 8,019

4 18,596 5,376

5 10,052 3,669

6 5,590 2,818

7 3,689 2,261

8 1,529 1,529

lem, which was the subject of the previous section. The reason lies in the typically
much larger result size of an instance of the fuzzy prefix matching problem. For ex-
ample, the number of fuzzy completions for the 4-letter prefix algo on the English
Wikipedia with threshold set to 1 is around 14K, while the number of words similar to
the word algorithm with threshold set to 2 is around 100.

In this section we present two fast and practical off-line algorithms based on the
algorithms presented in the previous section: DeleteMatchPrefix (Section 5.1) and
PermuteScanPrefix (Section 5.2). At the end of the section, we propose a simple in-
cremental algorithm and argue that it is sufficiently fast in practice when the prefix is
longer than 5 characters (Section 5.3).

5.1. Algorithm: DeleteMatchPrefix

In this section, we first show how the fuzzy word matching algorithm from Section
4.1 can be naturally extended to a fuzzy prefix matching algorithm (Section 5.1.1). We
then propose a few optimization techniques that will significantly improve the running
time of our algorithm (Sections 5.1.2 and 5.1.3).

5.1.1. The Basic Algorithm. Recall that Lemma 4.3 from Section 4.1 allowed us to use
the subsequences obtained from the §-deletion neighborhood of a word as signatures
to find the candidate matching words with WLD within §. Moreover, Lemma 4.4 and
Lemma 4.5 allowed us to conceptually truncate each word to its k-prefix and index only
the 0-subsequences of the prefixes instead of the full deletion neighborhood of each
word. It is not hard to see that as a by-product, besides the result set, our algorithm
will find all words that contain prefixes with WLD at most § from ¢, given that |¢| > k.
According to Definition 2.2, these are the words from W with PLD at most ¢ from g,
given that |q| > k.

LEMMA 5.1. Let q be a prefix and w a word with PLD(q, w) < § and let q[k] and w[k]
be their k-prefixes such that k < |q|. Then 3s € Uy(qlk],0) N Ug(wlk], d) with |s| > k — 6.

PROOF. According to the definition of PLD (Definition 2.2), there is a prefix v’ < w
such that WLD (g, w’) < 4. If we ignore for a moment the suffix of w with length |w|—|w,|
and consider ¢ and v’ as words, according to Lemma 4.4, 3s € Uy(q[k],) N Ug(w'[E],)
with |[s| > k—46. O

Example 5.2. Consider a prefix g=algoxx and let § = 2. Consider the word
algorithm. If & = 6, then the 6-prefix algori will match with ¢ on the subsequence
algo. However, if k = 7, then there is no common subsequence between algoxx and the
7-prefix algorit in their 2-deletion neighborhoods.

The latter gives rise to the following algorithm. In addition to the k-prefixes, index all
i-prefixes for i = m, ..., k, where m is the minimum prefix length that we would like to

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:23

Table VIII: Average number of distance computations per match for different query
word lengths when § = 1 by using the DeleteMatchPrefix algorithm with different
filters (on the dictionary of the DBLP collection with around 600K distinct words).
First row: no filters, second row: using the optimization from Lemma 5.3, third tow:
using all filters.

4 5 6 7 8 9 10 | 11 | 12 | 13 14
15 |14 |12 |12 | 21|32 |44 |56 | 70] 9.9 | 135
050504]04| 14|24 | 36|49 |63 92| 126
050504]04]07]08]09)09)]10] 10| 1.0

consider. At query time proceed as in Section 4.1, with the difference that PLD instead
of WLD is used to verify the candidate matches. Observe that Lemma 4.5 ensures no
overlap of signatures of the same word for different prefix lengths. This is because for
each i, only the subsequences of length i — § are generated. For example, suppose 6 = 2
and k£ = 7. We would then have subsequences of length 5 for ¢ = 7, subsequences of
length 4 for i = 6, etc.

5.1.2. Prefix Filtering. Given a prefix ¢ and two words w and w’, suppose it has been
already determined that PLD(q,w) = t < §. It is intuitive that if w and v’ share a
prefix that is long enough, then PLD(g, w’) should be ¢ as well. The following lemma
gives us the simple but efficient means to skip the verification of candidates that share
long prefixes by using only the precomputed list of icps between adjacent words in W.

LEMMA 5.3. Consider two words w, and wy and assume that w; > w,. Let
PLD(q,w1) =t < 9, let lep(w, we) be the length of the longest common prefix between w,
and wy and let | be the last position in wy such that PLD(q,wi[l]) = t. If | < lep(wy, ws),
then PLD(q, wy) = t.

PROOF. Assume that ! < lep(wq,ws). It is obvious that PLD(g, w2) cannot be larger
than t. It is also not hard to see that if | < lcp(wi,w2) and PLD(q,w;) = t then
PLD(q,w2) = t. Let | = lep(wy,ws). Assume that [< |wq|. Recall that the dynamic
programming table has the property that the minimum value in any column is non-
decreasing (this follows directly from the recursion of the Levenshtein distance). Let
dp., be the dynamic programming table for computing the Levenshtein distance be-
tween ¢ and w; and recall that PLD(q,w1) = min{dp, [|q],9]},1 < ¢ < |wy|. Observe
that dp., [|g|,!] has the minimum value in the [-th column since dp., [i,!], i < |q| cor-
responds to the Levenshtein distance between a prefix of ¢ and w[l], which cannot
decrease. Hence, dp.,[|q|,i], ¢ > | cannot decrease. Consequently, PLD(q,wy) = t. If
[= |wy]|, then PLD(gq, w2) < t would require w; < ws, however, this is not possible since
by assumption w; > ws. O

Remark 5.4. If the exact value of WLD(q,w) is not required, then ! above could
be chosen as the first position in w; such that PLD(g,w[i]) = ¢ instead of the last.
The above optimization in this case is more effective since it is more likely that the
condition [< lep(wy, wy) would be satisfied.

Example 5.5. Suppose ¢=tren and consider the words transport, transition,
transformation and transaction (given in lexicographically decreasing order). Ob-
serve that the PLD between tren and transport is 1 and that the conditions from
Lemma 5.3 are satisfied on the next three words. This means that without performing
distance computations, we can safely conclude that the PLD between ¢ and each of
these words is 1 as well.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 H. Bast and M. Celikik

In general, if we have already determined that PLD(q,w;) = ¢t < § for some word
w; by using a distance computation, then we can skip the verification on the words
adjacent to w; in the current inverted list as long as the conditions in Lemma 5.3 are
satisfied. Note that W should be given in lexicographically decreasing order and we
should be able to compute the lcps between a word w; and any adjacent word w;;, for
k > 0 in constant time. This can be done similarly as in Section 4.2 by computing a lcp
array and then using Property 4.13.

5.1.3. Suffix Filtering. As before, word truncation involves generating more false-
positive candidate matches on words longer than k characters since the suffixes of
the candidate words are ignored. Consider a prefix ¢ and a candidate word w such that
|w| > k, sharing a subsequence of length k£ — §. As in Section 4.1.4, by using Lemmas
4.6 and 4.7, we compute the unigram frequency distance between ¢ and w starting at
position [+ 1 and ending at positions |q| in ¢ and min{|w/|, |q| + ¢} in w.

Table VIII shows the average number of distance computations per computed match
with and without using the above optimizations. It can be seen that their effect is
complementary: the optimization from Lemma 5.3 is more effective on short queries
due to the long common prefix relative to ¢, while the character overlap filter is more
effective on longer queries due to the effect on truncation.

5.2. Algorithm: PermuteScanPrefix

In this section, we introduce a corresponding longest common substring signature for
the prefix Levenshtein distance (Section 5.2.1). As before, we formulate the problem as
an exact substring matching problem and present an algorithm for its solution (Sec-
tion 5.2.2). We then propose optimizations to reduce the space usage of the algorithm
(Section 5.2.3).

5.2.1. The Longest Common Substring Signature on Prefixes. The key property from Section
4.2 (given in Lemma 4.8) allowed us to use the length of the longest substring between
two strings as a filter to generate candidate matches. However, the following example
shows that this property cannot be used directly if ¢ is a prefix.

Example 5.6. Consider g=algor and w=alxgorxthmic. Since PLD(q, w) = 1, accord-
ing to Lemma 4.8, ¢ should share a substring of length at least 5 with a prefix of w.
Note that by using a permuted lexicon from Section 4.2, we can only find the common
substrings al and gor between ¢ and w, but not the substring algor shared with the
prefix alxgor of w.

The following related lemma is an equivalent of Lemma 4.8 on prefixes.

LEMMA 5.7. If PLD(q,w) < 6, then there exist a prefix p of w, such that p and q
share a substring of length at least [|q|/d] — 1.

PROOF. The proof is a direct consequence of Lemma 4.8 and Definition 2.2 (prefix
Levenshtein distance). O

Analogously to Section 4.2, given a prefix ¢, a dictionary of words W and a threshold
0, we would like to efficiently find all words in W whose prefix shares a long enough
substring with q.

5.2.2. Index Based on Extended Permuted Lexicon. In the following, we introduce the no-
tions of rotation and permuted lexicon that are analogous to those from Section 4.2.2.

Definition 5.8 (Rotation). A rotation r is a triple (i, j, k) denoting the k-th cyclic per-
mutation of the j-th prefix of the i-th word in W.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:25

Definition 5.9 (Extended Permuted Lexicon). Let W be a dictionary of words. An ex-
tended permuted lexicon of a word dictionary W consists of all rotations of the prefixes
of the words in W, sorted in lexicographic order.

The basic algorithm is similar to that from Section 4.2.2 and it goes in three main
steps:

(1) Given a dictionary of words W and a prefix ¢, perform a binary search for r;(q)
in the extended permuted lexicon of W to find the neighborhood of words with
prefixes that share a substring with ¢ starting at position ;

(2) Scan the neighborhood and verify the candidate matches (use Property 4.13 to
compute the substring lengths in constant time and use Lemma 5.3 to skip the
verification on adjacent candidate matches that share long prefixes);

(3) Stop the scanning when the condition from Lemma 5.7 is not fulfilled.

5.2.3. Compacting the Extended Permuted Lexicon. If constructed in the straightforward
way, the extended permuted lexicon will contain rotations with identical string rep-
resentations multiple times. For example, the words algorithm, algorithms and
algorithmic will generate three rotations with identical string representations for
each prefix of algorithm. We call such rotations equivalent. More specifically, as equiv-
alent we will define all rotations with equal shift and equal string representation.

Assume that W is given in lexicographically sorted order. Each set of words in W
that shares a common prefix of length n will generate identical rotations of length n.
We store each such set of words only once by observing that for every identical rotation
we need to store only the index of the first word and the number of adjacent words
that share the corresponding prefix of length n. To achieve this, we initially construct
a trie over W such that each node in the trie is augmented with the list of word-ids
that share the corresponding prefix. Then we traverse the trie, and for each unique
prefix p we generate all of its rotations.

Recall that word truncation was already used in Section 4.1 to reduce the size of the
index of signatures. We show that the same technique can be used to reduce the size
of the extended permuted lexicon further.

LEMMA 5.10. Let PLD(q,w) < ¢ and let q[k] and w[k] be the k-prefixes of q and
w respectively, for some k > 6. Then w[k] and qlk] share a substring of length at least

[glk]|/0] — 1.

PROOF. Relevant for us are only the truncated characters in ¢ and w that affect
common substrings. The only effect truncating a single character has is shrinking the
affected substrings between ¢ and w. This cannot introduce new errors in the strings
that could potentially generate new (shorter) substrings between ¢ and w. Hence, w[k]
and ¢[k] must share a substring of length at least [|q[k]|/6] — 1. O

As before, word truncation will negatively influence the running time of the algo-
rithm due to the reduced signature length.

5.3. Incremental Fuzzy Prefix Matching

Incremental algorithms are effective when the user types the query letter by letter
and when a sufficiently large prefix of the to-be-completed query word has already
been typed in. This is, first, because the candidate matching words are already dras-
tically reduced, and second, because computing the result set from previous results
is computationally much less expensive than computing the result set from scratch.
Computing the result set incrementally is more expensive when the user has already
a longer part of the query in mind. This is because the algorithm has to compute the
result set for each prefix of the typed query. Furhermore, incremental algorithms are

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 H. Bast and M. Celikik

Table IX: To compute the prefix Levenshtein distance between the word algorithm and
the prefix algro with threshold § = 1 incrementally, only the 3 “previous” cells that are
at most 1 cell away from the main diagonal are required.

e a1l g o r i t h m
0 1

1 0 1
1 0
1

O mU =y
O

ECHS S

o =

not too useful when the underlying corpus is large and the query is too unspecific (e.g.,
shorter than 4 letters) since the result set would be, on the one hand, too large to be
useful, and on the other, too expensive to compute. For example, if W is very large, it
is certainly too expensive to compute all similar completions to a prefix of length 1.

In what follows, we describe a simple yet practical incremental algorithm that can
be sufficiently fast in practice and even competitive to the more sophisticated state-of-
the-art algorithm from Ji et al. [2009] when the prefix is longer than 5 characters.

The main idea of the algorithm is as follows. Consider a query ¢, = p;...p; and
a word w. Consider also the dynamic programming table used to compute the prefix
Levenshtein distance between ¢ and w and recall that only the cells that are at most ¢
cells away from the main diagonal are relevant for the computation. Say PLD(g;, w) has
been already computed and the dynamic programming table has been already filled.
Observe that to compute PLD(g;+1,w) where ¢; < ¢;+1, we only require the 2 -§ + 1
non-empty cells from the last row of the dynamic programming table for w (see Table
IX). Given a fixed dictionary W, a threshold § and a query ¢;, assume that all w € W
with PLD(p;,w) < § have already been computed, and that an array arr(w) of size
2-6+1 has been assigned to each w, where arr(w) contains the last row of the dynamic
programming table for w. Let W; C W be the result set for ¢;. To compute W, ,, for each
w; € W; we update arr(w;) and compute PLD(g;4+1,w;) by using p;+1 and the values
already stored in arr(w;). Observe that if lep(wj, wjt1) < || + 6, then arr(w;y1) =
arr(w;) and therefore no computation is required for w;;,. The latter requires W in
lexicographic order and computation of the Icp values in constant time, similarly as in
Section 5.1.

The running time of the algorithm is O(|W;| - §), where |W;| is the result size for
g;- We have observed empirically that |W;| becomes very small compared to |V | when
|g| > 3 + ¢ and practically constant for |¢| > 7 (see Figure 3).

6. EFFICIENT FUZZY SEARCH

In the previous two sections we have seen how to efficiently find all words similar to
a given query word in a given dictionary. In this section, we will describe how to use
these results to do an actual fuzzy search.

We start by giving an overview of the baseline algorithm and show how our algo-
rithm addresses its deficiencies. In the next two subsections, we present our new in-
dexing data structures called fuzzy word index (Sections 6.2) and fuzzy prefix index
(Section 6.3). We then show how to efficiently solve the fuzzy search problem by using
our fuzzy indexes (Section 6.4 and 6.5). In addition, we show how to compute the result
incrementally from a previous result by using caching (Section 6.6). We finally show
how to efficiently compute S, the set of top-k ranked suggestions for a given query, by
making use of the result lists computed by our fuzzy search algorithm (Section 6.7).

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:27

—&— Threshold=1
—-A-- Threshold = 2
+- Threshold =3

—&— Threshold=1
-4A-- Threshold = 2
+- Threshold = 3

30000
I
I I

Number of similar words

10000
L

0
|

0e+00 2e+05 4e+05 6e+05 8e+05 1le+06

8 10 12 14
Query length Query length

Fig. 3: Average number of matches for different prefix lengths on the dictionaries of
the DBLP collection with 600K words (left) and the Wikipedia collection with 28.5M
words (right) when using prefix Levenshtein distance with thresholds 1, 2 and 3.

6.1. Overview of Baseline and Our Algorithm

Recall that the fuzzy search problem is as follows. Given a query (consisting of one
or more query words), find the list of matching documents D’ containing these query
words or words similar to them, and at the same time find the set of top ranked query
suggestions S. Given a conjuctive query @ = (q1,...,q), recall that Q; = {w € W |
LD(g;, w) < 6}. To compute the list of matching documents D’, the fuzzy word (prefix)
search defined in Section 2 requires computing the following intersection of union lists

|Q1 Q2 |Qul

\ |
Lo, | N Luy, | 00 [U L, (2)
i=1 =1 =1
where L, ; is the inverted list of w; ; € Q;, for j = 1...]|Q;|. Analogously, when Q
is disjunctive, computing D’ requires computing merging of union lists where each
intersection operator in the formula above is replaced by the union (merge) operator.
The intersection of union list can be computed in three steps as follows. First, com-
pute each Q; for i = 1,...,] by using word-Levenshtein distance if in keyword-based
mode or prefix Levenshtein distance if in autocompletion mode. Then compute Lg, for
i=1,...,1 by amulti-way merge of L,,, ;,j = 1,...,|Q;| in time ¢ -|Lg,|-log |Q;|. At the
end, compute Ly, N...N Ly, in time ¢; - 22:1 |Lo,| by a simple linear intersection.!!
We will refer to this algorithm as Baseline. We highlight two problems of Baseline.
First, Baseline is disk-inefficient. When the index resides on disk, reading many lists
involves many disk seek operations.!? This can make the algorithm prohibitive if the
indexed corpus is large and/or the disk is slow. Second, Baseline is in-memory or com-
putationally inefficient. Fully materializing each union list L, is expensive since it

11 Thanks to its perfect locality of access and compact code, linear list intersection in our experiments was
a faster option compared to other asymptotically more efficient intersection algorithms based on binary
searches [Demaine et al. 2000; Baeza-Yates 2004] when the list sizes do not vary extremely.

121In practice, a disk seek is required only for inverted lists of words that are not contiguous in the dictionary.
Note that lexicographic order of inverted lists is not always insured by the index construction algorithm
[Heinz and Zobel 2003].

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:28 H. Bast and M. Celikik

Fig. 4: A fuzzy inverted list of the set of misspellings of the word algorithm. Each
postings is a quadruple consisting of a doc-id (first row), a word id (second row), a
position-id (third row) and a score.

D9000 D9002 D9002 D9002 DI9003 D9004
algorlthm aglorithm alorithm alorithm algoritm algoritms
3 5 9 12 54 4
0.1 0.8 0.8 0.8 0.9 0.2

involves merging a large number of lists with high total volume. In particular, |Q;| is
typically in the order of hundreds for fuzzy word matching and in the order of thou-
sands for fuzzy prefix matching. Moreover, each Ly, is up to an order of magnitude
larger than the corresponding inverted list of ¢;. Hence, for each posting in Ly, we
have to spend ¢; + ¢o - log |Q;] time, where ¢, is relatively large.

Our algorithm tries to avoid materializing the L,, lists all along. Instead, our ap-
proach is based on precomputed partial fuzzy inverted lists so that at query time each
large union list can be represented by a small number of these lists. This addresses
(2) and to some extent, also (1). During query processing, the resulting new instance
of the intersection of union list problem can then be computed more efficiently by first
performing the intersection and then forming the union. This addresses (2).

Here is our query processing algorithm in slightly more detail. Think of a query with
[> 2 keywords and assume that we have already computed the result list R, , for the
first | — 1 keywords. In summary, we compute the final result list as follows. First,
we represent L, by a small number of precomputed fuzzy inverted lists by using a
fuzzy index. This addresses (2) and to some extent, also (1). Second, depending on the
resulting new instance of the intersection of union list problem, we either merge these
lists by making use of the fact that their lengths are highly skewed; or intersect each
of them with the much shorter R, , and compute R, by merging the obtained lists
with total volume much less compared to L.

6.2. Fuzzy Word Index

This section is about the fuzzy word index, a data structure used to represent a union
of a large number of inverted lists as a union of a much smaller number of precom-
puted lists. We will call such a union a cover. We start by giving a short introduction
of the basic idea (Section 6.2.1) and then provide the necessary terminology and defi-
nitions (Section 6.2.2). Based on these definitions, we propose and discuss a scheme to
construct our new data structure (Section 6.2.3). We then show how to compute a good
cover (Section 6.2.4).

6.2.1. Introduction. The basic data structure of a fuzzy index is a fuzzy inverted list.
Compared to an ordinary inverted list, a fuzzy inverted list corresponds not to only one
but to a set of words and it comprises the list of postings for that set of words. Each
word can belong to multiple sets. A posting in a fuzzy inverted list is a document id,
word id, position, score quadruple. In each fuzzy inverted list, the postings are sorted
by document id and position. The fuzzy inverted list obtained by intersection of two (or
more) fuzzy inverted lists, always contains the word ids of the last fuzzy inverted list.
For an example of a fuzzy inverted list see Figure 4. The dictionary of a fuzzy-word
index consists of the set of all distinct words. In addition, each entry in the dictionary
is equipped with pointers to the fuzzy inverted lists to which the corresponding word
belongs.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:29

Given a keyword ¢, we define its fuzzy inverted list L, as the fuzzy inverted list of
the set S; = {w € W | LD(q,w) < 6¢}. At query time, we would like to represent L, as
a union of a small number of precomputed fuzzy inverted lists. The basic idea behind
our index is simple: instead of (contiguously) storing inverted lists of individual words,
we would like to precompute and (contiguously) store the inverted lists of sets of words
s € C C 2. More formally, we would like to compute a set C' with L, C Uscc Ls, where
L, is the fuzzy inverted list of s. We call the set C a clustering of W and the sets s € C
clusters. The set C' is called a cover and it is defined as follows.

Definition 6.1 (Cover). Consider a clustering C of W, an arbitrary keyword ¢ and a
distance threshold ¢. Let S, = {w € W | LD(q,w) < ¢}, let L, be the fuzzy inverted list
of ¢ and let L(C) = UsecLs, where C' € C. An exact cover of ¢ is any set of clusters C,
with L, C L(C). An approximate cover of ¢ does not necessarily contain all of L,. We
will informally say that C' covers S, or that L(C') covers L, interchangeably, depending
on the current context.

6.2.2. Properties of C and C. Ideally, for any keyword ¢ we would like to find a cover
with [C| = 1 and | Usec Ls|/|Ly| = 1. The latter is only possible if C = 2"V, which is
practically infeasible since it requires pre-computing and storing the fuzzy inverted
list of every possible keyword ¢. In the following we define the desired properties of a
cover.

Definition 6.2 (Properties). Given a cover C' € C for a keyword ¢, the recall and
the precision of C' are defined as |S, N C|/|9,] and |L, N L(C)|/|L(C)| respectively.
Furthermore, we define |C| as cover index of C and |L(C)|/|L,| as the processing
overhead associated with C. Finally, the index space overhead of C is defined as
Ov(C) = ew tfw-cw/ > ,ew tfw, Where tf,, is the term frequency or the total number
of occurrences of w in D ané Cyw 18 the number of clusters s € C with w € s.

Given a distance threshold § and a set of documents D with a dictionary W, intu-
itively we would like to compute a clustering C of W with the following properties:

— The average cover index over all distinct queries ¢ € W is upper bounded by a value
as small as possible;

— Each cover must have a given acceptable precision, recall and processing overhead;

— The index overhead of C must be less than a given upper bound.

In the following, we propose an intuitive and efficient clustering algorithm that
achieves average precision, recall and processing overhead close to 1, cover index of
10 or less and a space overhead of about 1.5.

6.2.3. Computing a Clustering of W. Our clustering of W is based on the fact that the
term frequencies in a document corpus follow Zipf’s law, that is, the term frequency
tf,, 1s inversely proportional to the rank of a given word w [Li 1992]. In the following,
it is useful to think of the frequent words as the valid words, and of the infrequent
words as their spelling variants. That is usually the case in practice. However, our
approach does not require this property in order to work correctly.

We make the following two observations. (i) It is natural to consider the valid words
as cluster centroids of their spelling variants. (ii) The number of distinct spelling vari-
ants of a valid word depends on its frequency (more frequent valid words tend to have
more spelling variants). Based on these observations, consider the following simple
clustering algorithm:

(1) Divide the words in W into a set of frequent and a set of infrequent words. We
make this distinction based on a frequency threshold ¢ that is a parameter of the
algorithm;

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:30 H. Bast and M. Celikik

Table X: The ST and SF values (see Definition 6.3) and corresponding percentage of
rare words in the collection for different frequency thresholds ¢ computed for the DBLP
and the Wikipedia collection (Section 7.1)

DBLP WIKIPEDIA
SI | SF | %rare | SI | SF | %rare
t = 250 1.5 | 6.7 6.6% | 6.1 | 229 | 3.9%
t = 500 1.1 5.3 86% | 4.1 18.1 | 5.2%
t=1000 | 0.9 | 4.4 11.3% | 2.7 | 143 | 6.7%
t=2000 | 0.7 | 3.7 15.1% | 1.8 | 11.3 | 8.6%

(2) For each frequent word w € W, compute the set
sw = {w' | tfy <t, WLD(w,w’) <286} U{w” | tfyr >, WLD(w,w") < §}
and include it in C.

Definition 6.3. Given a set of documents D, a distance threshold ¢, and a frequency
threshold ¢, SI is defined as the average number of frequent words with WLD within
0 from a given infrequent word and SF is defined as the average number of frequent
words with WLD within ¢ from a given frequent word.

Table X shows the computed ST and SF values for the DBLP and Wikipedia collec-
tions for different values of the frequency threshold .

_ LEMMA 6.4. The above clustering algorithm achieves average cover index less than
ST and space overhead close to SF.

PROOF. Given a keyword ¢, let S; = {w € W | WLD(q,w) < ¢}. If ¢ is a frequent
word we would require only one cluster to cover S,, namely s,. If ¢ is an infrequent
word (possibly not in W), consider the family of sets {s,}., € C, where WLD(q,w) <
6 and tf,, > t. Let w’ be a given word with WLD(q,w’) < §. If tf,,, > ¢ then v’ is
covered by {s, }.,, by definition. Assume tf,, < ¢t and let w be a word with tf,, > ¢t and
WLD(q,w) < é. Since due to the triangle equality WLD(w, w’) < 2- 4, it must hold that
w’ € s,,. Hence, the family of sets {s,, }., always cover S,. Therefore, in average we will
need less than ST clusters to cover S,. For brevity, the second part of the proof is given
in the appendix. O

Space Overhead vs. Cover Index. Let g be an arbitrary frequent word in D. Obviously,
to cover S, with a single or a small number of clusters, the space overhead Ov(C) must

be close to SF. However, index space overhead that high might not be acceptable in
practice. To reduce the space overhead at the price of a larger cover index, assume
for simplicity that our clusters contain only frequent words. Since the contribution of
a word w to the size of the index is ¢, - tf,,, we limit the number of clusters ¢, > 1
assigned to w based on tf,,. This has the effect of shrinking the clusters in C. In this
regard, it is desirable words with clusters with large), ., ' tobe less affected since
they are more expensive to compute. Alternatively, we could prefer larger clusters for
words that are more likely to appear in a query. Let 1 < ¢/, < ¢, be the new number
of clusters assigned to w. To this end, we assign w to its ¢/, “preferred” clusters or to
its ¢}, clusters with representative words that have highest likelihood to appear in a
query, in case this information is available.

Let ¢ be the average number of clusters assigned to a frequent word. The following
lemma shows that the average cover index over the frequent words is now SF — ¢ + 1.

LEMMA 6.5. Assume that in average, each frequent word w is assigned to c clusters.
Then the average cover index over the frequent words is at most SF — ¢ + 1.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:31

PROOF. Consider the directed graph G = (W}, E') where the set of nodes is the set of
frequent words W; and (w,w’) € E iff v’ is assigned to the cluster s,,. Since each word
is assigned to ¢, clusters, deg’ (w) = ¢,. On the other hand, since |s,,| = deg™ (w) and
the sum of the indegrees is equal to the sum of the outdegrees in G, for the average

cluster size we obtain
1 1
e > sl = Y cw=c
Wil S Wil St
f welWy

Hence, given a frequent word w, if we consider all other words in s, as singleton
clusters, in average we will require at most SF — ¢ + 1 clusters to cover w. O

Remark 6.6. The above upper bound limits the average cover index of all frequent
words. The average cover index on the subset of preferred frequent words is less be-
cause their clusters are larger than the average cluster size c. Note also that this up-
per bound affects only the frequent words (its overall value is not significantly affected
since the frequent words are small in number compared to [IW]).

Precision and Processing Overhead. Given a keyword ¢, let L, be the fuzzy inverted
list of S; and let C be a cover for S,. Observe that due to the Zipf’s law, the volume
in L, mostly comes from the (few) frequent words in S,. Based on this, we define the
following two properties of a cover C.

Definition 6.7 (No-overlap property). A cover C fulfills the no-overlap property, if
each frequent word w € S, is contained in a single cluster s € C.

For another desirable property of C, consider a keyword ¢ and a cluster s, with
WLD(q,w) < 6. For each frequent word w’ € s,, (where WLD(w,w") < §), we would like
WLD(q,w") < 6. We would refer to this property as the transitivity property.

Definition 6.8 (Transitivity property). A cluster s (correspondingly, an inverted list
L) fulfills the transitivity property for a keyword ¢, if for each frequent word w’ € s,
WLD(q,w’) < 6. A cover C fulfills the transitivity property for ¢, if each cluster s € C
fulfills the transitivity property for q.

According to our assumptions, if ¢ is small, then a cover that fulfills the above two
properties is guaranteed to have precision and processing overhead close to 1. In this
context, the frequency threshold ¢ from Table X dictates a trade-off between the cover
index and the precision and processing overhead of C. For example, a very large ¢ will
imply smaller average cover index but also clusters with lower precision and higher
processing overhead.

None of the above two properties are fulfilled in general. To see this, consider an
infrequent keyword ¢ and a cluster s,, with WLD(¢, w) < § and let v’ € s,, be a frequent
word. Due to the triangle inequality, WLD(¢, w’) can be as large as 2 - 6. We address
this as follows. We split each cluster s € C into two separate clusters: a cluster with
frequent and a cluster with infrequent words. A cluster with infrequent words always
satisfies the transitivity property. A cluster s with frequent words may be included in
C only if s C S,. This increases the upper bound of the average cover index over the
infrequent words by a factor of 2.

A non-overlapping clustering of W is a clustering where ¢,, = 1 for each frequent
word w € W. If C is a non-overlapping clustering, then obviously the no-overlap prop-
erty is always fulfilled. In contrast, if C is not non-overlapping, nothing prevents a
cover to contain two different clusters with a frequent word in common. Hence, we
must enforce the no-overlap property by considering only clusters in C that do not

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:32 H. Bast and M. Celikik

Table XI: Average number of similar words, average cover index and space overhead.

DBLP | Wikipedia
Average number of similar words 132 251
Average cover index 5 10
Space overhead 1.4x 1.5x

have a frequent word in common. While this might affect the average cover index, it
does not affect its upper bound.

6.2.4. Computing an Optimal Cover. Given a clustering C and a keyword ¢, a cover for
g that fulfills the transitivity and the no-overlap property and has a minimal cover
index is called optimal. The clustering scheme from the previous section provides a
clustering with an upper bound on the average cover index. However, it does not pro-
vide a guarantee that the computed cover is optimal for a given keyword ¢. This is
because the scheme considers only a restricted set of clusters, namely those with a
representative word w’ with WLD(q, w’) < 4.

Note that to find an optimal cover by exhaustive search would be too expensive,
compared to the total query processing time. This is because each word in S, can belong
to multiple clusters. The number of relevant clusters in practice typically varies from
few hundreds to few thousands. Instead, we employ a greedy heuristic as follows.

We first impose the following rules

— Let I be the set of already covered words from S, and let s be a given cluster with
frequent words. Then s can be included in a cover C'if s C S, — I;

—If s is a cluster with infrequent words, then s can be included in C if it contains at
least K > 2 words from S, that have not been covered before;

— If there is no such cluster, then each word is considered as a singleton cluster.

The problem of computing an optimal cover now reduces to finding a cover with
minimal cover index. This is an optimization problem similar to the set cover problem.
Given a set U and n other sets whose union comprises U/, the set cover problem is to
compute the smallest number of sets whose union contains all elements in /. In our
version of the problem, however, there is a dependency that some pairs of sets cannot
be chosen by the algorithm simultaneously. The set cover problem is NP-complete.
We use the following greedy algorithm that has been shown to achieve a logarithmic
approximation ratio [Lund and Yannakakis 1993].

(1) Compute S, and consider all clusters s € C that contain at least X words from 5;

(2) Pick the cluster s that contains the largest number of uncovered words in S, pre-
ferring smaller clusters in the case of ties, and include s in C;

(3) Take the covered words out of consideration and iterate if S, is not yet covered.

Table XI shows the average cover index and space overhead achieved on two of our
test collections.

6.3. Fuzzy Prefix Index

This subsection is about the fuzzy prefix index, a data structure analogous to the fuzzy
word index from the previous section. We start by giving a short introduction to the
problem (Section 6.3.1) and propose a precomputation algorithm similar to that from
Section 6.2.3. We provide evidence why the same algorithm is less effective when ap-
plied to prefixes (Section 6.3.2). We then propose a different method for pre-computing
fuzzy inverted lists based on prefixes with “don’t care“ characters, that by design fulfill
the transitivity property (Sections 6.3.3 and 6.3.4). As before, at the end of the section
we show how to compute a good cover by using our new index (Sections 6.3.5 and 6.3.6).

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:33

6.3.1. Introduction. The fuzzy prefix index is a data structure that can represent the
fuzzy inverted list L, of a given prefix ¢ as a union of a small number of precomputed
fuzzy inverted lists. The difference to the fuzzy word index is that ¢ is a prefix and that
prefix instead of word Levenshtein distance is used. As before, given an acceptable
index space overhead, the problem is to precompute a set of fuzzy inverted lists so
that at query time, a cover of S, can be computed with favorable precision, recall and
processing overhead (defined as before). However, the problem is more challenging
when dealing with prefixes and prefix Levenshtein distance since the size of S, is very
different for different prefix lengths |q]|.

6.3.2. Clustering Prefixes. We first propose an approach that is analogous to the word
clustering algorithm from the previous section. Given a prefix p of some predefined
length, the term frequency of p is defined as tf,, = Zw)p < tfw, Wwhere w € W. As before,
we set a threshold ¢ for frequent prefixes and for each frequent prefix p compute the

fuzzy inverted lists Upre;, L,y and U, es Lt where

sp ={p" | tf,y > t,PLD(p,p’) <4} and s; ={p' | tf,, <t,PLD(p,p’) < 2.6}

We limit the number of clusters assigned to a frequent prefix p’ to some small value
based on tf,/. An important observation in the clustering algorithm from the previous
section was that most of the words in S, were infrequent. In contrast, S, may now con-
tain many frequent words if ¢ is relatively short for the following reasons. First, many
frequent words with WLD above the threshold will have PLD below the threshold
because they will have equal (or similar) prefixes. Second, many frequent and infre-
quent words have equal prefixes and will be considered as a single (frequent) prefix.
This makes the transitivity problem more serious than before. Let PLD(¢q,p) < § and
sp ={p € Wy | tf,, > t,PLD(p,p') < 6}. If |¢| > |p|, as described above, it is more likely
that 3p’ € s, with PLD(q, p’) > 6. If |¢| < |p|, then too many clusters might be required
to cover S,.

6.3.3. Prefixes with “don’t care” Characters. We simplify the problem by assuming that the
query length |q| is fixed to k characters, where k is small. Instead of words, we speak in
terms of covering the set of k-prefixes in W;,. Later we show how to extend the solution
to the problem from queries of length £ to queries of any length.

To tackle the transitivity problem, we introduce the notion of prefixes with “don’t
care” characters. For example, consider the prefix p=al*o, where the star can match
any single character from the alphabet. If ¢ matches prefix with “don’t care characters®
p up to a prefix, we will write ¢ <. p .The fuzzy inverted list of p is simply the union of
the inverted lists of all words in W that contain a prefix that matches p. For brevity, we
will refer to prefixes with “don’t care” characters as x-prefixes. Our fuzzy prefix index
will be based on indexing *-prefixes. In the following we show how to compute a set of
«-prefixes to cover the set S, for a given prefix ¢ by preserving the transitivity property.

LEMMA 6.9. Given a threshold o, let p be a prefix with 6 “don’t care” characters and
length k and let S, = {w € W | w[k] matches p}. If q is a prefix that matches p, then
Yw € Sp, PLD(q, w) < 4.

PROOF. The ¢ “don’t care“ characters correspond to § substitution errors on fixed
positions for each p’ € S,,. Hence WLD(q, w[k]) <. O

Given a prefix ¢ = p1ps ... pm, obviously the set of prefixes pip} ... p),, where p, = p;
for i # j and p, = * for i = j, where j = 1...n, will cover (at least) the prefixes that
contain a single substitution error relative to p. However, it is not immediately clear
how to deal with prefixes that contain deletion or insertion errors.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:34 H. Bast and M. Celikik

Example 6.10. Consider the prefix algo and the 4 x-prefixes: *1go, axgo, al*o and
algx. Consider the prefix agor (obtained from algorithm by a deletion at position 2).
Observe that this prefix does not match any of the 4 x-prefixes.

This example shows that the above set of x-prefixes is not sufficient to cover all pre-
fixes with PLD within the distance threshold from g. To match prefixes with deletion
and/or insertion errors, we use an extended set of x-prefixes based on the following
lemma

LEMMA 6.11. Given a threshold 6 and a prefix q, let W' be the set of all x-prefixes
with s “don’t care“ characters generated from Wy, where s is an arbitrary but fixed
number from the interval 1...[§/2]. Let W}, in addition to W, contains all x-prefixes
of length k+¢ in which the “don’t care® characters can appear only in the first k positions.
Let C be the set of all prefixes p € W;** with PLD(q,p) < 6. Then Uy cc L, covers L, and
PLD(q,w) < 4, for any w € W such that Ip € C,p =, w (i.e., the transitivity property is
fulfilled).

PROOF. The proof is based on showing that there is a family of *-prefixes in W;*
that covers each type of errors (insertions, deletions and substitutions) as well as their
combinations. A detailed version is given in the appendix. O

Remark 6.12. Note that it is not necessary to limit s to [0/2] as in Lemma 6.11,
however, certain prefixes might then not be covered due to the subtlety explained at
the end of the proof. This can be circumvented if we include the *-prefixes with s’ “don’t
care” characters for a fixed s’ < [§/2], in addition to the existing *-prefixes.

6.3.4. Refinements. So far, a x-prefix p = p;...p, of length k matched all k-prefixes
with equal characters on positions p; # *. We can in fact extend this set further with-
out breaking the transitivity property. Suppose that p matches all k-prefixes p’ with
PLD(p,p’) < 4. The following lemma shows that the transitivity property is still ful-
filled.

LEMMA 6.13. Let p be a *-prefix with s “don’t care characters such that PLD(q,p) <
0. Assume that p’ matches p (i.e., PLD(p,p’) <). Then PLD(q,p’) < 4.

PROOF. Since PLD(q,p) < 4, it must hold that ¢ <. p. Since PLD(p,p’) < § by
assumption and since ¢ <, p, it must hold that PLD(q,p’) <4§. O

It is obvious that the new set of matched k-prefixes is a superset of the old set of
matched prefixes. Let p;,,...,p;,_. be the resulting sequence of k£ — s characters in
p after removing the “don’t care” characters. Because PLD(p,p;, ...pi\._.) < d, p will
in addition match the k-prefixes staring with p;, ...p;,_.. Recall that «-prefixes of the
type pi, . ..pi,_.*° were required to cover the k-prefixes with insertions errors. These
k-prefixes are now covered “for free“ by the x-prefixes that cover substitution errors
(provided they are in W}).

Example 6.14. Assume k = 4 and 6 = 1. Consider the prefix g=atxo (obtained from
the word atom via an insertion error at position 3). According to Lemma 6.11, the word
atom will be covered by the x-prefix ato*. However, since atom will now be assigned to
at*o, which in turn is required to cover substitution errors on position 3, ato* is not
required anymore.

It was already mentioned that when dealing with prefixes of fixed length, a deletion
error in ¢ is always paired with an insertion error. Recall the example with deletion
errors from above, where k = 6, § = 1, g=algoit (obtained from algori by a deletion at
positions 5) and ¢ ¢ W,. Again, the problem is that ¢ is not within distance threshold
from any x-prefix p € W} (e.g., PLD(algoit, algo*i) = 2 > §). Lemma 6.11 addresses

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:35

Table XII: Average cover index and space overhead by using prefixes with “don’t care”
characters to cover the fuzzy inverted list of a prefix without limitation neither on the
space overhead nor on the processing overhead.

DBLP Wikipedia
Avg. cover index | Space overhead | Avg. cover index | Space overhead
f=1 5.7 3.1x 5.6 3.5x
=2 21.1 12.5x 37.5 14.0x

this by including certain *-prefixes from W} ;. An alternative approach that does not
involve an additional set of x-prefixes is to truncate ¢ to k — ¢ characters and consider
the existing prefixes p € W} with WLD(¢[k — 4],p) < ¢ (e.g., WLD(algoi, algo*i) =
1 <). While this saves space, it has the disadvantage of matching certain words
w € W with p <, w and PLD(q,w) > ¢ (e.g., algo*i =<, algorihtm, but PLD(algoit,
algorihtm) = 2 > J).

Space Overhead vs. Cover Index. The space overhead of the fuzzy prefix index is
defined analogously as the space overhead of the fuzzy word index. If the *-prefixes
are regarded as sets of prefixes, the space overhead of the index is mainly determined
by the average number of different x-prefixes containing a given frequent prefix p. The
number of “don’t care“ characters s in Lemma 6.11 provides a trade-off between the
cover index (the total number of -prefixes needed to cover S;) and the space overhead
of the index. x-prefixes with more “don’t care“ characters are able to simultaneously
cover more prefixes with PLD within ¢ from ¢, however, they have longer fuzzy inverted
lists and thus require more space when included in the index.

As before, to limit the size of the index, we assign each frequent prefix p only to a
limited number of x-prefixes. In other words, the fuzzy inverted list of p will not be
necessarily contained in the fuzzy inverted list of each x-prefix that matches p.

6.3.5. Computing an Optimal Cover. Given a keyword ¢, a cover computed according to
Lemma 6.11 is guaranteed to cover S; and simultaneously fulfill the transitivity prop-
erty. However, such a cover is not necessarily optimal. Namely, since many words in
W are covered by multiple «-prefixes, not all p € W;* with PLD(q,p) < ¢ are always
required. Hence, we still have to compute a minimal set of *-prefixes that cover 5,,.

Optimal, is the cover with minimal cover index such that the no-overlap property is
fulfilled. The problem of computing an optimal cover is similar to the set cover problem
discussed in the previous section. Best results in practice were achieved by using a
combination of the two methods discussed so far, that is, *-prefixes were used to cover
the frequent prefixes and the clusters from the beginning of the section to cover the
infrequent prefixes. For both methods we employed a greedy heuristic similar to that
from Section 6.2.4.

Table XIII and Table XIV show the average cover index and space overhead for differ-
ent limits on the number of x-prefixes assigned to the frequent prefixes. As a reference,
Table XII shows the average cover index achieved without imposing a limit neither on
the size of the index nor on the processing overhead of the computed covers.

6.3.6. Computing a Cover for an Arbitrary Keyword Length. If the new keyword is obtained
by adding a letter to the old keyword, in Section 6.4.2 we show how the new query
result can be computed incrementally from the old query result. Hence, computing a
cover for the new keyword is not required. Assume the opposite and recall that our
index contains only *-prefixes of length £. To be able to obtain a cover for a keyword ¢
with length different than & we could index *-prefixes with multiple lengths. However,
this would require too much space. Instead, we opt for an index with short *-prefixes of
fixed length k. To obtain a cover for a keyword ¢ of arbitrary length, we first compute a

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:36

Table XIII: Average cover index for prefixes of length £ = 4 and threshold § = 1 for
different space overheads by limiting the maximum number of prefixes with “don’t

care“ characters per k-prefix.

H. Bast and M. Celikik

DBLP Wikipedia
Limit | Avg. cover index | Space overhead | Avg. cover index | Space overhead
1 9.9 0.7x 18.0 1.1x
2 8.5 1.1x 14.2 1.6x
3 8.0 1.4x 12.9 2.1x
[SS) 7.7 1.7x 12.8 2.8x

Table XIV: Average cover index for prefixes of length ¥ = 6 and threshold 6 = 2 for
different space overheads by limiting the maximum number of prefixes with “don’t
care” characters per k-prefix.

DBLP Wikipedia
Limit | Avg. cover index | Space overhead | Avg. cover index | Space overhead
1 19.2 0.7x 35.9 2.1x
2 18.4 1.0x 314 2.4x
3 17.9 1.2x 29.2 2.7x
o 16.8 2.3x 26.2 5.0x

cover C by using the #-prefixes of length k and then filter C to produce a refined cover
C’ that fulfills the transitivity property. Suppose that L1, ..., L,, are the fuzzy inverted
list of the clusters in C. We hash the word-ids in S, and then compute L] by iterating
through L; and appending the postings with word-ids in S, by performing a hash look-
up. The lists L}, ..., L’ are then the refined cover for q. We note that filtering C takes
time negligible compared to the total query processing time.

6.4. Efficient Intersection of Union Lists

In this section, we show how to efficiently compute the intersection of union lists once
they have been obtained from a fuzzy index. We first make use of the skewed distri-
bution of list lengths by employing a known greedy merging technique (Section 6.4.1).
We then show how the intersection of union lists can be computed more efficiently
depending on the particular problem instance (Section 6.4.2).

Recall that L, is the fuzzy inverted list of the i-th keyword given as a union list
in Equation 2. By using a fuzzy index, each L, is represented by a small number of
precomputed lists. As already mentioned, this has two advantages. First, the union
lists are already partially merged, and, second, fetching the lists from disk requires
less disk I/O. Apart from this, we will show that the intersection of union list problem
can now be computed more efficiently. Let Q be a query with [keywords (sorted in
increasing order by the corresponding union list lengths) and assume that Q) is being
processed from left to right. Let R,, be the result of intersecting the first ¢ union lists
and assume that we have already computed R,, ,. What remains to be computed is

n
RQL—1 N U Lél (3)
j=1

where L7 , j =1...n;is a cover of L.

6.4.1. Merging Lists of Skewed Lengths. The standard way to merge [lists of similar sizes
is to maintaining a priority queue for the frontier elements of the lists. This procedure
is known as multi-way merge. Multi-way merge is optimal as long as the lists have
similar lengths. The following example provides the intuition why.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:37

2.0
1

1.0

x- Zipf, alpha = 1.0
--A-- Zipf, alpha=0.8

- alpha=0.8
-A-- alpha=1.0

Improvement over multi-way merge

—— Uniform —— alpha=1.2

TITITTTITT T T T T T T T T T T T T T

2 80 200 400 600 800 1000 le+02 le+03 le+04 le+05 le+06
Number of lists Length of the longest list

Fig. 5: Left: The K value (defined in Section 6.4.1) for uniform and Zipfian distribution.
Right: Advantage of optimal binary merge over multi-way merge on lists with lengths
exhibiting various Zipfian distributions given as a ratio of their running times.

Example 6.15. Say we would like to merge 1,000 lists with a total of 100,000 ele-
ments using a binary min-heap. Say the first 5 lists contain the smallest 95% of all
elements. Observe that during the merging of these lists, the frontier elements of the
remaining 995 lists will remain idle in the priority queue for 95% of the calls of the
delete-min operation.

If the lists are of widely different lengths, it is intuitive that one could make a better
use of the distribution of list lengths by merging lists of similar lengths first. We make
use of the observation that the length distribution of the fuzzy inverted lists in a cover
is more skewed than the length distribution of the inverted lists of the individual words
covered. Assume for a moment that we restrict ourselves to binary merges. Then any
merging algorithm defines a merge tree, where the leaves correspond to the initial
lists and the root correspond to the final merged list. The depth of each leaf is equal to
the number of merging steps of the corresponding list. The total merging cost is hence
given by 3. d; - l;, where d; is the depth of the leaf corresponding to the ith list and /; is
the length of the ith list. It is well known that the optimal sequence of merges, i.e., the
one that minimizes the cost, is obtained by repeatedly merging the two lists of shortest
lengths. This can be easily seen by resorting to Huffman coding [Huffman 1952] as the
two problems have equivalent definitions. The merge tree is then identical to the code
tree produced by the Huffman algorithm. We will refer to this algorithm as optimal
binary merge.

The running time of optimal binary merge to merge m lists with n elements in total
is proportional to K - n, where K depends on the distribution of list lengths (as well
as on m). For certain distributions, K can be computed exactly. For example, if the
lists have equal lengths, then K = log m, i.e., we obtain the running time of multi-way
merge. This can be seen by observing that the merge tree is a full binary tree. Hence,
in general, K < logm. If the length of the ith longest list is proportional to 1/2¢, then
it is not hard to show that K < 2. Figure 5 (left) compares the empirically computed K
values for the Zipfian and the uniform distribution.

The idea can be generalized by simultaneously merging the next & shortest lists by
using k-way merge. Binary merging, however, gave the best results in practice. This is

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:38 H. Bast and M. Celikik

because the simple and compact algorithm for merging two lists has a much smaller
constant factor in its running time compared to k-way merge. Figure 5 (right) shows
the advantage of optimal binary merging over multi-way merge given as a ratio of their
running times. The distribution of the list lengths was Zipfian. Multi-way merge was
faster in practice when the length of the longest list was relatively small due to the
long tail of the Zipfian distribution. Optimal binary merge in this scenario has a larger
overhead per element since it has to repeatedly merge two very short lists (e.g. lists of
length 1). Multi-way merge, on the other hand, always requires the same amount of
work per element, i.e., a single delete-min operation.

6.4.2. Two Variants for the Intersection of Union Lists. By the law of distributivity, the final
result list R,, can be obtained either by computing the left-hand side of Equation 4 (for
brevity, we will refer to this as variant I of processing) or by computing its right-hand
side (variant 2 of processing):

ny

n
qu—l n U Lf]l = U (qu—l N Lflz) (4)
j=1

Jj=1

It turns out that variant 2 can be computed significantly faster than variant 1 (and
vice-versa), depending on the problem instance. Too see why, let n; be the length of
Ry,_,, 2 be the length of L, ny; the length of L) and M the length of R,,. Regardless
of which variant we compute, the short lists in Lgl, j = 1...n;, are always merged
by using a multi-way merge. Let n] be the number of remaining lists after performing
multi-way merge and let ¢; - (n1 +n2) and cjs - (n1+n2) be the running times to intersect
and merge two lists with lengths n; and n, respectively by using optimal binary merge.
The running time of variant 1 then is

CM-K-n1+C]-(TL1+TL2) (5)
while the running time of variant 2 is
"
CI'Z(nl+n2,i)+0M'k'M (6)
i=1
:cj~n2~n1+01~n2+cM~k~M 7

We opt for linear list intersection unless the length difference of the lists is extreme.
Thanks to its perfect locality of reference and compact code, linear list intersection
is often a faster option in practice compared to other asymptotically more efficient
algorithms based on binary searches [Demaine et al. 2000; Baeza-Yates 2004]. From
Equations 5 and 6, we get that variant 2 is faster than variant 1 as long as

ny <1+ Mg
ny Cr

where K o logn; (see Figure 5, left). First, note that ¢; < cjs. Second, since the union
lists are sorted by their lengths in increasing order and since R, , is obtained by
intersecting R,, , with L,, ,, n; is typically much smaller than n, for [> 2. Since n;
is always small, the above inequality is typically satisfied. Hence, in most of the cases,
only the shortest union list has to be materialized. This results in large advantage
of variant 2 over variant 1 when the difference among the union list sizes is large
(see Figure 6, left). If the inequality is not satisfied, then we resort to variant 1 of
processing.

An alternative way to process the short lists other than multi-way merge is to in-
tersect them with R, , by using intersection based on binary searches. The optimal

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:39

—— Ratio = 2x
--A-- Ratio = 10x
+- Ratio = 50x

Speed-up factor
Speed-up factor
3
Il

4] <>—e—e‘<>—e——eﬁ7_ﬁ\ﬁ N

T T T T T T T T T T T T T T T

3 5 7 9 20 1 2 3 4 5 10
Number of lists in the cover Total list length of the short lists (%)

Fig. 6: Left: Improvement of variant 2 over variant 1 of processing the intersection of
union lists problem for different number of lists and different ratios between the list
sizes (see Section 6.4.2). Right: Advantage of multi-way merge over list intersection
based on binary searchers to process the short lists in a cover.

algorithm based on binary searches runs in time O(n; - log, n2/n1), where n; is the
shorter and n, the longer list. Figure 6 (right) shows the ratio between the average
times to process the short lists by using list intersection based on binary searches and
by using multi-way merge. The total length of the short lists is given as a percentage
of Ry, |

It ghould be noted that the advantage of our approach over Baseline increases with
the number of keywords in Q. To see this, suppose we have queries with | (uniformly
distributed) keywords. Assume that C¢? and C? fori = 1,. .., are costs associated with
processing the i-th keyword for Baseline and our approach respectively. Due to the
linearity of the means, the average advantage over Baseline on [-word queries can be
written as

l b

O
Z;_l Z (8)
>i=1 Cf

This would simply be equal to C?/C¢ (the advantage on one-word queries) if the costs
associated with ¢; are independent of i. This is indeed the case for Baseline since C? is
dominated by the cost of multi-way merge which, by assumption, is independent of i.
For our approach, however, C? decreases with i since it is typically dominated by the
cost to intersect the result list up to the i — 1th keyword (whose length decreases) with
a union list. Hence, (8) increases with /.

6.5. Efficient Merging of Union Lists

It is straightforward how to use a fuzzy index for efficient merging of union lists. Af-
ter representing each union list in partially merged form, the merging of union lists
problem is given by

no

DL@I ullUJL, |u...u CJLzJ}z
j=1 j=1 i=1

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:40 H. Bast and M. Celikik

where Lé},’ j =1...n;is a cover of L,,. The short fuzzy inverted lists are merged by
using multi-way merged and the rest are merged by using optimal binary merge as
done in Section 6.4.1. An additional optimization that could make a better use of the
skewed distribution of list lengths is to consider all union lists at once and merge them
simultaneously, rather than merging them one by one.

6.6. Cache-based Query Processing

If an old query is a prefix of a newly typed query (e.g., when the user types the query
letter by letter), the intersection or merging of union lists can be computed incremen-
tally by using previously cached results in time negligible compared to computing the
result from scratch. Suppose the user has typed a query @, for the first time. The re-
sult list for @, is then computed from scratch and stored in memory. Suppose also that
Q1 is a prefix of a new query Q5. Recall that the query processing is done from left to
right which in turn means that the last computed result list contains the word ids of
the union list of the last keyword. There are three cases to be considered:

(1) The number of keywords in @; and () is equal (the last keyword in); is a prefix of
the last keyword in (Q;), for example, inform and informa. The result of Q) in this
case can be computed merely by filtering the result list for (); by hashing word-ids,
a procedure that has been already described at the end of Section 6.3.6;

(2) Q- includes additional keywords and the last keyword in @; has equal length to the
corresponding keyword in (),, for example, information and information retr.
The result list of @; in this case is simply reused as already computed partial
result and the intersection / merging of union lists is carried out as usual;

(3) @2 includes additional keywords and the last keyword in ; is shorter than the
corresponding keyword in (),, for example, inform and information retr. In this
case the result list of); is initially filtered as in (1) and then reused as in (2).

6.7. Computing Query Suggestions

So far we solved the first (and biggest) part of the problem stated in Definition 2.5:
given a query @, find the documents in D that contain the keywords from Q or words
similar to them. What remains is to interactively compute a ranked list of query sug-
gestions for). In previous work, the query suggestions are typically computed from
pre-compiled lists of queries. As a result, no suggestions are shown for queries that are
not popular. In contrast, our suggestions are computed based on the indexed collection.
More specifically, exactly those queries will be suggested to the user that actually lead
to good hits.

In the following, we first define a score of a query suggestion (Section 6.7.1) and then
propose an algorithm to compute a ranked list of suggestions that takes only a small
fraction of the total query processing time (Section 6.7.2). The algorithm is relatively
straightforward, but to achieve the desired speed, careful algorithm engineering is
required. We then show how to incrementally compute a ranked list of suggestions
when the user types the query letter by letter by using caching (Section 6.7.3).

6.7.1. Score Definition. Given a query @ = (q1, ..., q), let @Q; be the set of words similar
to the ith query word ¢;, and let @ = Q1 x Q2 x ... x Q; be the set of all candidate
suggestions for @), as defined in Definition 2.5. For each suggestion Q' € Q, we define
the following score for Q)" with respect to Q:

score(Q', Q) = H(Q') - sim(Q', Q), 9)

where H(Q') is a measure for the quality of the set of documents exactly matching @,
and sim measures the similarity between @' and Q. These two are important features

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:41

of any reasonable ranking function and formula (9) is the simplest meaningful way to
combine them.

We now define H(Q'). Let D(Q’) be the set of documents exactly matching @Q’, that
is, the set of documents that contain each query word ¢} from Q' = (qi, . .., ¢;). For each
document d € D(Q') we define score(d, Q') as

l
score(d, Q') = Z w(q;,d)
i=1

i.e., the sum of the weights of all occurrences of a ¢} in d. We take H(Q’) to be a weighted
sum of all these score(d, Q’):

H(Q') = Z W(d, Q') - score(d, Q")

deD(Q’)

In the simplest case, the weights W(d, ') in this sum are all one. A more sophisticated
scoring might assign higher weights to the top-ranked documents in D’, the (already
computed) set of documents matching) approximately. Or assign higher weights to
those documents in D(Q’) where the query words from @’ occur in proximity to each
other, and yet higher weights when they occur as a phrase. Our computation described
in the next subsection works for any of the above choices of weights.

The second part of our formula 9 above, sim(Q, Q’), is supposed to measure the sim-
ilarity between Q and)’. A simple definition, based on word Levenshtein distance,
would be

!

1 ,
1—g ;LD(q“qi) (10)

where LD is the word or prefix Levenshtein distance as defined in Section 2.2. Note
that this is 1 if Q = @’ and 0 for totally dissimilar @ and Q’, for example, when
they have no letters in common. For a small number of candidate suggestions, we can
also afford to compute a more sophisticated similarity measure by computing a (more
expensive) generalized Levenshtein distance for each pair (g¢;, ¢;), where certain sub-
string replacement operations are counted with a lower or higher cost. For example,
replacing oo by ue and vice versa might be counted as less than 2 because they sound
so similar. We compute the generalized Levenshtein distance for at most 100 candidate
suggestions, namely those with the largest H(Q’) value.

If we assume that score(d, Q') = 1 for any document d and any suggestion ', then
H(Q') becomes equal to |D(Q")|/|D|, that is, the probability Pr(Q’) of seeing Q' in the
set of all documents D. In this case, Formula 9 can be interpreted as an instance of the
noisy channel model [Brill and Moore 2000], where, by using Bayes’ theorem,

Pr(Q"| Q) < Pr(Q") - Pr(Q | Q) (1D

In (11), the term on the left hand side, Pr(Q’ | @), is the posterior probability that Q’
was intended when @ was typed, which can be interpreted as our score(Q’, Q). The first
term on the right hand side, Pr(Q’), can be taken as the prior probability of @’, that
is, the probability that the user types a query according to a probability distribution
Pr(Q"). The second term on the right hand side, Pr(Q | Q’), is the confusion probability
that the user typed Q when intending ', which can reasonably be assumed to hap-
pen with probability proportional to sim(Q’, Q). Note that there are more sophisticated
models to estimate sim(Q’, @) based on query logs; for example see Li et al. [2006].

6.7.2. Score Computation. Let Q' be a candidate query suggestion from Q. We now show
how to compute H(Q'), as defined above, efficiently. For that, we will manipulate with

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:42 H. Bast and M. Celikik

various kinds of inverted lists produced by our query processing (often called result
lists in the following). For an arbitrary set or list of documents D, and an arbitrary
set or list of words W, let R(D, W) be the inverted list of postings of all occurrences of
words from W in documents from D.

In order to compute H(Q'), we need the scores of all postings of occurrences of a word
from Q' in D(Q’), that is, in all documents that contain an exact match for Q’. That is
we need exactly the scores from the postings in R(D(Q’),Q’). Our query processing as
described in the previous subsections does not directly provide us with R(D(Q'), Q").
Instead, it provides us with R(D(Q),Q:), where D(Q) = Ugeo D(Q) is the list of all
documents containing a fuzzy match of @, and Q); is the set of words similar to the last
query word of Q.

Now assume we had the result lists R(D(Q),Q;) not only for i = [but for all
i = 1,...,1. Then, since D(Q') C D(Q) and ¢, € Q;, a simple filtering of each of
these result lists would give us R(D(Q’),q,), the union of which would be exactly
R(D(Q'), Q). One straightforward way to obtain R(D(Q), Q;) would be to process the
query (Q with the ith query word swapped to the last position, that is, the query
(@1, Gi=1,41, Gix1s- - -, q1—1,qi). However, that would multiply our query time by a
factor of I, the number of query words. Another straightforward way to obtain these
R(D(Q),Q;) would be to compute the intersection of R(D(Q),Q;), the result list we
actually obtain from our query processing, with L,, = R(D(Q;), Q;), the fuzzy inverted
list for the ith query word. However, these L,, can be very long lists, which we actually
avoid to fully materialize for exactly the reason that they can be very long.

We instead consider the result lists of all prefixes of the query Q. Let Q; = @ x
... X @; be the set of candidate suggestions for the query (q1, ..., ¢;), that is, the query
containing only the first ¢ query words from . By the iterative left-to-right nature of
our query processing, while processing the full query @, we actually compute result
lists for each (¢1,...,¢;), that is, we compute R(D(Q;),Q;), for each i = 1,...,l. In the
following, we assume that these intermediate result lists are all stored in memory.
From these, we compute the desired R(D(Q’),Q’)’s and H(Q')’s simultaneously for
each ' € Q as follows

(1) Intersect R(D(Q),Q;) with R(D(Q;),Q;) to obtain R(D(Q),Q;), fori=1,...,1 —1.
Note that the lists R(D(Q;),Q;) contain the same set of documents with different
word occurrences;

(2) Simultaneously traverse all the R(D(Q),Q;), for i = 1,...,l, document by docu-
ment, in an [-way merge fashion. For each current document d at the frontiers of
the lists, collect all postings (containing d). Let Q¢ be the set of words from Q; con-
tained in d. Generate the set of suggestions Q¢ x Q4 x ... x Q, maintaining their
scores H(Q') in a hash-map, and compute the “local“ scores score(Q@’,d) (if H(Q')
should be simply equal to the number of documents that exactly match @Q’, then
set score(Q’,d) =1 and W(d, Q') = 1);

(3) Compute a weight W(Q’, d) based on the score of d in D’. If phrases are preferred,
then multiply W(Q’, d) by a constant larger than one if there are ¢},i = 2...] with
pos(ql)—pos(qi_,) = 1, where pos(q}) is the position of ¢; in d. Multiply the computed
score(Q’, d) by W(Q', d) and update the H(Q')’s.

(4) After the lists R(D(Q),Q;) have been traversed, partially sort the candidate sug-
gestions by their aggregated score and output the top k suggestions, for a given
value of k.

Running Time. Step 2 and 3 are the most expensive steps of the algorithm. To esti-

mate their running time, let N be the total number of documents in D. Let the length
of each fuzzy inverted list L,, be equal to IV - p;, where p; is the fraction of documents

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:43

Table XV: Break-down of the average running time to compute the top-10 query sug-
gestions (Wikipedia).

Step 1 (computing R(D(Q),Q;)) | Step 2, 3 (aggregating scores) | Step 4 (sorting)
10% 89% 1%

from D in L,,. The expected length of the result list R(D(Q),Q;) isthen N - p; - ... - p;.
Let n; be the average number of distinct words in a document with LD within the dis-
tance threshold § from ¢;. The average running time of the above algorithm is then
dominated by O(N - py -...-p; - mq - ... my). For simplicity, assume that each L,, has
the same length, and that each document has equal number of words similar to ¢;. The
running time is then O(N - (p - m)!). Since m is usually small, p - m < 1. As a result,
the running time of the algorithm decreases with the number of keywords [. Table XV
shows a break-down of the total running time in 3 different categories by using queries
with two keywords.

6.7.3. Cache-based Computation of Query Suggestions. When the user adds a letter to the
last query word (without starting a new query word), the computation of the top query
suggestions can be done incrementally in time negligible compared to the time to com-
pute query suggestions from scratch. Let S(Q) be the ranked list of triples (Q}, H(Q)),
sim(Q, @Q%)), where Q) is the ith ranked query suggestion for a query) computed by us-
ing the above algorithm. Suppose that)" is the newly typed query with ¢; < ¢;’, where
¢ and ¢, are the last keywords of @ and Q" respectively. We would like to compute a
ranked list of query suggestions for Q" from the ranked list of query suggestions for
Q. Let g] be the last keyword of a query suggestion Q' € S(Q). If LD(g;’,q;) > 6, then
obviously @’ cannot be a suggestion for " and it is removed from the list. Suppose
LD(g/,q;) < 6. Note that H(Q') depends only on the set of documents matching Q’ ex-
actly (and hence it is independent of the current query). Since S(Q") C S(Q), it suffices
to recompute sim(Q", Q}) for each triple (Q}, H(Q}), sim(Q, Q})) and sort the new list of
triples again with respect to score(Q}, Q").

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:44 H. Bast and M. Celikik

Table XVI: Summary of the test collections used in the experiments.

Collection | Raw size | Documents Occurrences | Dictionary size
DBLP 1.1GB 0.3 millions 0.15 billions | 1.2 millions
Wikipedia | 21 GB 9.3 millions 3.2 billions 29 millions
GOV2 426 GB 25.2 millions | 23.4 billions | 60 millions

7. EXPERIMENTS

In this section, we present the experimental results for all four problems considered in
this work. We start by giving overview of our test collections (Section 7.1) and then
present the experimental results for fuzzy word matching (Section 7.2), fuzzy pre-
fix matching (Section 7.3), fuzzy keyword-based search (Section 7.4) and fuzzy prefix
search (Section 7.5).

We have implemented all our algorithms and evaluated them on various data sets.
All our code is written in C++ and compiled with GCC 4.1.2 with the -O6 flag. The
experiments were performed on a single core. The machine was Intel(R) Xeon(R) model
X5560 @ 2.80GHz CPU with 1 MB cache and 30 GB of RAM using a RAID file system
with sequential read/write rate of up to 500 MiB/s. The operating system was Ubuntu
10.04.2 in 64-bit mode.

7.1. Test Collections
Our experiments were carried out on three test collections of various sizes:

(1) DBLP: a selection of 31,211 computer science articles with a raw size of 1.3 GB;
157 million word occurrences (5,030 occurrences per document in average) and 1.3
million distinct words containing many misspellings and OCR errors;

(2) WIKIPEDIA: a dump of the articles of English Wikipedia with a raw size of
21 GB; 9,326,911 documents; 3.2 billion word occurrences (343 occurrences per
document in average) and a diverse dictionary of 29M distinct words with an
abundance in foreign words (after cleaning out the dictionary for obvious garbage,
its size reduced to around 9M distinct words);

(3) GOV2: the TREC Terabyte collection with a raw size (including html tags) of 426
GB of which 132 GB are text. It contains 25,204,103 documents; 23.4 billion word
occurrences (930 occurrences per document in average) and around 60 million dis-
tinct words (after cleaning out the dictionary for obvious garbage, its size reduced
to around 11M distinct words). The goal was to investigate how well our fuzzy
search scales on a larger collection.

7.2. Fuzzy Word Matching

We tested our algorithms on the word dictionaries of two of our test corpora, namely the
DBLP corpus and the Wikipedia corpus. Both dictionaries were initially cleaned from
obvious garbage. We used three parameters to identify garbage words: the number of
digits in the word, the longest run of a single character and the longest run of non-
vowel characters. As garbage we considered all words for which at least one of the
following applies: (i) the number of digits is larger than one half of the total number
of characters; (ii) the longest run of a single character is longer than 5; (iii) the longest
run of non-vowel character is longer than 5. The size of DBLP’s dictionary resulted in
around 600K words and the size of Wikipedia’s dictionary in around 9M words.

7.2.1. Compared Algorithms. We compared the following algorithms:

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:45

(1) DeleteMatch (Section 4.1), an algorithm based on truncated deletion neighborhoods
combined with unigram frequency filtering. The truncation length parameter (k)
was set to 7 characters;

(2) PermuteScan (Section 4.2), a sequence-filtering algorithm that combines the longest
common substring signature with the pattern partitioning signature with index
based on permuted lexicons. We set a recall of 95%.

(3) DivideSkip (Section 3), a state-of-the-art algorithm based on merging ¢-gram lists
[Li et al. 2008] employing skipping techniques to improve the performance of the
standard algorithm. The ¢-gram length was set to 3 characters for 6 = 1 and 2 char-
acters for § = 2. ¢g-gram based algorithms that employ skipping optimizations to
improve the running time have not been extensively compared with other methods
in the literature. In the original work this algorithm has competitive running times
and outperforms the standard ¢-gram based algorithms. The goal was to compare
this algorithm with out own sequence-filtering algorithm. The inverted lists were
compressed by using variable-byte coding;

(4) msFilter (Section 3), trie-based algorithms that uses an additional trie built over
the reversed strings. It combines tries with pattern partitioning and Levenshtein
automata to control the trie traversal [Mihov and Schulz 2004]. In addition, it
employs deletion neighborhoods based on minimal transducers to improve the per-
formance for § = 1. In the extensive survey of Boytsov [2011], this algorithm (called
FB-trie) is the most efficient of all algorithms with a practical index.!?

(5) PrefixTrie (Section 3) is an algorithm based on traversing a prefix trie, originally
designed for incremental fuzzy word / prefix matching [Ji et al. 2009]. We include
it here for completeness. More details (including space usage) is given in Section
7.3.

7.2.2. Queries. To ensure that the performance of the algorithms is not influenced
significantly by the query generation method, we evaluated the efficiency of our algo-
rithms by generating queries in two different ways.

With our first method we generated 1000 random distinct single-word queries per
test collection. Each word was picked uniformly at random without repetition, i.e., with
probability proportional to its term frequency (stop-words were excluded). We applied
a random number of 0 to 3 errors to the sampled words as follows. To each word we
applied a single error (at a random position) with probability p. To each picked word
longer than 5 characters, we applied an additional error with the same probability. The
same procedure was repeated for words longer than 10 characters. Each type of error
(deletion, insertion, substitution) was applied with equal probability. We set p = 0.3 in
our experiments (note that in general, smaller p results in larger running times for all
algorithms).

With our second method we generated misspellings from the dictionary of the cor-
responding collection. We first picked a frequent word uniformly at random from the
dictionary (without repetition), found all of its misspellings and picked a word uni-
formly at random from this set of words (including the frequent word).

For each query we measured the time to find all similar words in the dictionary
of the corresponding collection by using different distance thresholds. According to
our experiments, the running times of the algorithms were not sensitive to the query
generation method but rather on the total number of matches. All of the algorithms in
general required larger running times on query sets that contained larger proportion
of valid words.

13We tested an implementation provided by the authors of Mihov and Schulz [2004].

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:46 H. Bast and M. Celikik

Table XVII: Index size given as a percentage of the dictionary size (the sizes of the dic-
tionaries of the DBLP and the Wikipedia corpus were 4 MB and 84 MB respectively).

DBLP Wikipedia
DeleteMatch 575% or 200% | 267% or 93%
PermuteScan 500%* 500%
DivideSkip 450% 350%
msFilter 687% 550%

Table XVIII: Average fuzzy word matching running times using (fixed) thresholds of 1
and 2 errors as well as dynamic threshold that depends on the length of the query and
varies from 1 to 3 errors (1 for |¢| < 5, 2 for 6 < |g| < 10, and 3 otherwise).

DBLP
5=1 | 6=2 | b6=3 [b6=1-3
DeleteMatch | 0.01 ms | 0.15 ms 1.6 ms 0.5 ms
PermuteScan | 0.07 ms 6.5 ms 23.0 ms 1.4 ms

DivideSkip 0.4 ms 5.4 ms - 4.4 ms
msFilter 0.07 ms 0.8 ms 11.0 ms -
PrefixTrie 0.4 ms 19.1 ms - 58.3 ms
Wikipedia
d=1 1] =2 | =3 [56=1-3

DeleteMatch 0.04 ms 1.5 ms 20.4 ms 4.0 ms
PermuteScan 0.3 ms 52.0 ms | 424.5 ms 14.1 ms

DivideSkip 114 ms | 87.0 ms - 65.3 ms
msFilter 0.4 ms 3.4 ms 70.6 ms -
PrefixTrie 1.0 ms 54.8 ms - 132.4 ms

7.2.3. Discussion. The results are shown in Table XVIII.1* DeleteMatch was the fastest
algorithm in general, with PermuteScan being a competitive option when § is dynamic
and when 6 = 1 and msFilter being a competitive option when § = 2. PermuteScan
had a small advantage over msFilter for 6 = 1, but it was outperformed by a large
margin for § = 2. On the other hand, msFilter does not support a dynamic thresh-
old and requires the alphabet specified in advance (the implementation that we tested
operated on a basic alphabet consisting of the characters a...z,0...9). The large ad-
vantage of PermuteScan over DivideSkip diminishes for § > 2. PermuteScan did not
perform well for 6 = 3 since the effectiveness of its filters depends heavily on the ratio
between the average word length and J. We note that it would be interesting to see how
PermuteScan performs on strings with lengths much larger compared to §. Figures for
DivideSkip for § = 3 were omitted since the complete result set was not computed by
this algorithm.

Tale XVII shows the index size of each algorithm given as a percentage of the dic-
tionary size. Somewhat surprisingly, DeleteMatch was the most space efficient algo-
rithm. Its index size for § < 3 with & = 6 was below the size of the dictionary at the
price of less than twice higher average running times compared to choosing k = 7.
For PermuteScan we used a simple implementation that does not employ any compres-
sion. A compression method based on Burrows-Wheelers transform from Ferragina
and Venturini [2007] in practice achieves space occupancy well below the dictionary
size. msFilter had the largest index size in practice. A variant of this algorithm im-
plemented in Boytsov [2011] that does not employ deletion neighborhoods for § = 1,
required around 300% of the vocabulary size.

14The results on the GOV2 collection were similar to those on Wikipedia and are omitted.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:47

Table XIX: Index size given as a percentage of the dictionary size (the sizes of the dic-
tionaries of the DBLP and the Wikipedia corpus were 4 MB and 84 MB respectively).

DBLP | Wikipedia
DeleteMatchPrefix 375% 152%
PermuteScanPrefix | 575%* 251%*
PrefixTrie 825%* 728%*

7.3. Fuzzy Prefix Matching

In this section, we evaluate our fuzzy prefix matching algorithms. The algorithms were
tested under the same experimental setup and on the same word dictionaries from the
previous section.

7.3.1. Algorithms Compared. We implemented and compared the following algorithms:

(1) DeleteMatchPrefix (Section 5.1), an algorithm based on the longest common sub-
sequence signature and a combination of filters. The truncation length parameter
(k) was set to 6 characters;

(2) PermuteScanPrefix (Section 5.2), an algorithm based on the longest common sub-
string signature and a combination of filters. The truncation length parameter (k)
was set to 8 characters;

(3) PrefixTrie (Section 3), the incremental algorithm from Ji et al. [2009] based on a
prefix-trie.

7.3.2. Queries. To evaluate the efficiency of our algorithms, we generated 1000 key-
words per test collection as in the previous section, and from each keyword produced
all prefixes starting from length 3. For each query, we measured the running time
to compute and report all similar completions in the dictionary of the corresponding
collection by using both, incremental and non-incremental fuzzy prefix matching.

7.3.3. Discussion. Figure 7 shows the average running times for different pre-
fix lengths and different thresholds on two of our test collections. In summary,
DeleteMatchPrefix was the fastest algorithm, with PermuteScanPrefix occasionally
being a slightly faster option when ¢ = 1. The running time of all algorithms was sub-
stantially larger on short prefixes due to the large number of matches. For example,
when § = 2, the prefix alg matches all words that contain a prefix with at least one
equal character at the same position. An incremental algorithm must compute these
matches regardless of the length of the query. This makes PrefixTrie competitive only
on short prefixes. PermuteScanPrefix, on the other hand, is competitive for § = 1 or
when the prefix is at least 7 characters long. The slight increase in the running time of
our algorithms around prefix lengths 7 and 9 was due to the effect of word truncation.

Figure 8 shows the average running times when the query is typed letter by letter
starting from prefix length 3. In this experiment we used the simple incremental al-
gorithm from Section 5.3 on prefixes longer than 5 characters (and non-incremental
algorithm otherwise) and compared against PrefixTrie. The main observation is that
for short prefixes PrefixTrie was hard to beat by a non-incremental algorithm. Hence,
this algorithm remains the fastest option for incremental prefix matching. However,
the difference diminishes as the query becomes longer than 5 characters, where even
a simple incremental algorithm does well in practice.

Figure XIX shows the index size of each compared algorithm given as a percentage
of the dictionary size. Our implementations of PermuteScanPrefix and PrefixTrie did
not employ compression.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:48

Time (ms)
1.0

2.0 25

15

0.5

0.0

—— DeleteMatch
--A-- PermuteScan
+- PrefixTrie

L L AL S S S

7A>&-~A~A——A»—A\
A

Query length

Time (ms)

80

60

40

20

H. Bast and M. Celikik

N
B —— DeleteMatch
-A-- PermuteScan
+- PrefixTrie
A
+ A

B it Tt SNER o SONUN

\ A P
BB .

Query length

(a) Average running times per prefix length on the dictionary of the DBLP collection for § = 1
(left) and § = 2 (right).

Time (ms)

10

25

20

15

—— DeleteMatch
--A-- PermuteScan
+- PrefixTrie

Query length

Time (ms)

400 600 800

200

—— DeleteMatch
-A-- PermuteScan
+- PrefixTrie

peeem T
i
+ >
+b
i1

\ N
o+ : -
R st S S oA =
Ar»A—-A”K’

Query length

(b) Average running time per prefix length on the dictionary of the Wikipedia collection for 6 = 1
(left) and § = 2 (right).

Fig. 7: Average fuzzy prefix matching running times

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:49

oN
- + —&— Simple 8 1 +
; -+-- PrefixTrie :
o
< 7 QA
[ee]
S IS
m @
S e Sl
E° E -
[[
< o
o g4
N
S w4
24 °
T T T T T T T T T T T T T T
4 6 8 10 12 14 16 4 6 8 10 12 14 16
Query length Query length

(a) Average running times per prefix length on the dictionary of the DBLP collection for § = 1
(left) and § = 2 (right).

t —— Simple . —— Simple
o4 - PrefixTrie {1 - PrefixTrie
o | o
— S
N
T @ T o
E E 5
Q i
E © E
[F o
S
-
< 4
o |
~ 4 0
o o o A
T T T T T T T
4 6 8 10 12 14 16
Query length Query length

(b) Average running time per prefix length on the dictionary of the Wikipedia collection for 6 = 1
(left) and § = 2 (right).

Fig. 8: Average fuzzy prefix matching running times by using an incremental computa-

tion of similar prefixes (when the keyword is being typed letter-by-letter, starting from
length 3).

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:50 H. Bast and M. Celikik

7.4. Fuzzy Word Search

In this section, we evaluate the performance of our fuzzy keyword-based search. The
algorithms were tested by computing the full result lists on a single core, without
employing top-k processing heuristics or other thresholding based heuristics for early
termination.

7.4.1. Algorithms Compared. We evaluated the following algorithms:

(1) The Baseline algorithm given in Section 6.1. Baseline does not require additional
space because employs only an inverted index;

(2) Our proposed method based on a fuzzy word index (Sections 6.2 and 6.4). The index
size overhead was within a factor of 2 on all test collections;

(8) The ForwardList algorithm from Ji et al. [2009] described in Section 3. The index
size overhead was equal to roughly a factor 2 on all test collections. This is because
the forward lists (computed for each document) in total require space equal to that
of an uncompressed inverted index (it is not clear how to effectively compress the
forward lists as compression is not discussed in the original article);

(4) The fuzzy search from the state-of-the-art open-source search engine Lucene (ver-
sion 3.3) which we include as a reference. Similarly as Baseline, Lucene does not
require additional space.

We want to stress that we took special care to implement Baseline and ForwardList ef-
ficiently. In particular, Baseline decided between variant 1 and variant 2 of processing
the intersection of union list depending on the number of lists (see Section 6.4). Also,
we insured that the inverted lists are laid out on disk and processed in lexicographic
order to minimize disk I/O. As for ForwardList, we employed optimizations proposed
by the original authors but also by ourselves. For example, we precomputed the size of
each possible union list corresponding to a prefix in advance so that the shortest union
list is known exactly instead of being guessed by estimating the lengths as proposed
in Ji et al. [2009]. Furthermore, we implemented an alternative version of the original
algorithm based on materializing the shortest union list first and then removing the
documents with forward lists without word ids in the required word ranges. This im-
proved the running time of the original algorithm on fuzzy search for up to a factor of
4 on small collections and up to a factor of 2 on larger collections.

To compute the set of words (prefixes) similar to a given keyword, we integrated
the DeleteMatch algorithm (Section 4.1) with our approach as well as with Baseline
using a dynamic distance threshold. We integrated PrefixTrie with the ForwardList
algorithm and set the distance threshold to 1.

7.4.2. Queries. We experimented on 200 real two-word queries that did not contain
errors. Then we applied from 0 to 3 edits to each keyword as described in Section 7.2.2.
For each query, we measured the time associated with in-memory processing, the time
needed for disk I/O and the time to compute the top-10 query suggestions. We carried
out the experiments on a positional and a non-positional index (whenever possible).

7.4.3. Discussion. Table XX shows the average running time to compute the intersec-
tion of union lists on two-word queries. The time required to decompress the fuzzy
inverted lists (which is not included) required around 40% of the total in-memory run-
ning time on DBLP and around 30% of the total in-memory running time on Wikipedia
and GOV2. Table XXI shows the average query processing time when the index resides
on disk.!® The time required to decompress the fuzzy inverted lists required around 8%

15The ForwardList algorithm is based on in-memory non-positional index.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:51

Table XX: Average running time required for the intersection of union-lists on two-
word queries (the index of ForwardList on the GOV2 collections was too big to fit in
memory).

DBLP Wikipedia GOV2
non-positional | non-positional | positional | non-positional positional
ForwardList 9.4 ms 296 ms - - -
Baseline 9.1 ms 110 ms 316 ms 920 ms | 2,088 ms
Ours 1.6 ms 23 ms 58 ms 136 ms 399 ms

Table XXI: Total average fuzzy keyword-based search query processing times on two-
word queries when the index is on disk.

DBLP Wikipedia GOV2
positional non-positional positional | non-positional positional
Apache Lucene | 1,461 ms - | 28,073 ms - | 52,846 ms
Baseline 61 ms 1,431 ms 2,240 ms 4,597 ms 6,543 ms
Ours 30 ms 219 ms 638 ms 517 ms 1,865 ms

of the total running time on DBLP and below 5% on Wikipedia and GOV2. The follow-
ing is a summary of the results:

— Our algorithm improves Baseline up to factor of 6;

— The advantage of our algorithm increases with the size of the collection and it is
larger when the index resides in memory;

— The most expensive (yet necessary) part of the algorithm when the index resides on
disk is reading and decompressing large volumes of data.

The ForwardList algorithm was fast when the text collection was small or when
exact (prefix) search was employed. When it comes to fuzzy search on comparatively
larger test collections, it turned out that ForwardList is less efficient than our Baseline
algorithm. This is because the set of words similar to a keyword does not corre-
spond to a single word range, a key property utilized by the algorithm. In the worst
case, a binary search must be performed for each word in this set separately. Hence,
ForwardList does not scale logarithmically with respect to the number of similar words
but linearly instead (note that this is more pronounced on fuzzy keyword search than
on fuzzy prefix search). On two-word queries its worst-case running time is propor-
tional to m - N -log, k, where m is the number of distinct similar words, & is the average
number of distinct words per document and N is the total volume of the shorter union
list. In contrast, the running time of Baseline is proportional to 2(N - log,m + N).
Hence, the number of distinct similar words (or different inverted lists) has therefore
only a logarithmic impact.

Table XXI includes Lucene’s average query processing times on fuzzy search queries.
Although we expected running times similar to that of Baseline, Lucene’s performed
substantially worse. One reason for this is the straightforward implementation of fuzzy
word matching in the version that we tested.

Table XXII shows a break-down of the total fuzzy search query processing time in
three categories: in-memory processing, query suggestion and disk I/O. Clearly, the
most expensive part of the query processing was reading large volume of data. This
becomes more severe for longer queries. Hence, any approach that needs to read the
(full) fuzzy inverted list of each keyword would be problematic in practice when the
query is long. Therefore, an important and interesting future research direction is
approach that does not have this requirement (if such an approach exists at all).

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:52 H. Bast and M. Celikik

Table XXII: Break-down of the total fuzzy keyword-based search query processing time
on Wikipedia.

In-Memory Query Processing | Query Suggestion | Disk I/O
22% 10% 68%

7.5. Fuzzy Prefix Search

In this section, we evaluate the performance of our fuzzy prefix search. As before,
each algorithm computed the full result lists, without employing heuristics for early
termination.

7.5.1. Compared Algorithms. We evaluate the same algorithms from the previous sec-
tion. Since Lucene currently does not support fuzzy prefix search, as a reference we
included an exact prefix search realized by using an inverted index.

We constructed a fuzzy prefix index (see Section 6.3) by using *-prefixes of length 4,
with a single “don’t care“ character (¢ = 4 and s = 1 in Lemma 6.11). This allows a
single error in the first 4 characters of a keyword, but has the advantage of a smaller
index (slightly larger than a factor of 2 on all test collections), less irrelevant results as
well as avoiding full re-computation of the query when the last keyword is being typed
letter by letter.

We used the DeleteMatchPrefix algorithm from Section 5.1 to compute the set
of similar completions for our approach and Baseline by using a dynamic distance
threshold; and PrefixTree for ForwardList with distance threshold set to 1.

7.5.2. Queries. We experimented with 200 real two-word queries that did not contain
errors and then applied a random number of errors to each keyword as described in
Section 7.2.2. Then we “typed” the last keyword letter by letter, with a minimal pre-
fix length of 4. For example, the query corrupted politician gives rise to 7 queries:
corrupted poli, corrupted polit, corrupted politi, etc. As before, for each query
we measured the time required for disk and in-memory query processing and the time
to compute the top-10 query suggestions.

7.5.3. Discussion. Table XXIII shows the average running time to compute the inter-
section of union lists on two-word queries and Table XXIV shows the average query
processing times when the index resides on disk. As before, the time required to de-
compress the fuzzy inverted lists required around 40% of the total running time on
DBLP and around 30% of the total running time on Wikipedia and GOV2 when the
index resides in memory; and below 10% of the total running time on DBLP and below
5% of the total running time on Wikipedia and GOV2 when the index resides on disk.
The following summarizes the results:

— Our algorithm outperforms Baseline for up to a factor 7 when the index is in mem-
ory and up to a factor 4 when the index resided on disk (the advantage is larger on
short prefixes). The advantage increased when the number of query words was large
(as predicted at the end of Section 6.4) or when the disk was slow;

— Our algorithm achieves running times similar to those when exact prefix search is
used with an inverted index when the index resides in-memory;

— As before, most expensive part of the algorithm is reading large volumes of data
from disk;

— Computing the result incrementally by using caching reduces the running time dra-
matically.

The ForwardList algorithm performed faster when fuzzy prefix search was employed
compared to fuzzy keyword search, however it remained slow on larger collections for

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:53

Table XXIII: Average time required for the intersection of union lists on two-word
queries (without caching).

DBLP Wikipedia GOV2
non-positional | non-positional | positional | non-positional positional
ForwardList 9.9 ms 460 ms - - -
Baseline 10.7 ms 270 ms 713 ms 1,922 ms | 5,324 ms
Ours 2.0 ms 52 ms 96 ms 272 ms | 1,022 ms
Exact prefix search 3 ms 41 ms 173 ms 251 ms | 1,003 ms

Table XXIV: Total average fuzzy prefix search query processing times on two-word
queries when the index is on disk (without caching).

DBLP Wikipedia GOV2
positional | non-positional positional | non-positional positional
Baseline 62 ms 1,249 ms | 2,206 ms 3,545 ms | 8,750 ms
Ours 28 ms 574 ms 652 ms 1,587 ms | 3,513 ms
Exact prefix search 16 ms 103 ms 309 ms 706 ms | 1,567 ms

Table XXV: Break-down of the total fuzzy prefix search query processing time on
Wikipedia.

Disk I/O
70%

In-Memory Query Processing | Query Suggestion
22% 8%

reasons already elaborated in the previous section. Nevertheless, if the index resides
on disk, an advantage of ForwardList is that only the first (or the shortest) inverted
fuzzy list needs to be fetched from disk. Therefore, this algorithm may benefit when
the query consists of a large number of keywords. It is not clear how to extend this
algorithm to work with a positional index.

The difference in the running times was smaller when the index resides on disk due
to the large amount of volume that both algorithms have to read from disk. Table XXV
shows that this is the most expensive part of the query processing. For example, 130
MB per query were read from disk in average when using fuzzy prefix search on the
GOV2 collection compared to around 37 MB when exact prefix search was used.

Figure 9 shows the average query time per keyword length (considering the length
of the second keyword). Not surprisingly, the high running times come from the short
keywords where the number of hits is larger, but so is the advantage of our algorithm.

Figure 10 contrasts the average query processing time for different keyword lengths
when the intersection is performed with and without caching (see Section 6.6). Obvi-
ously, caching reduces the average running time dramatically since the list intersection
is done incrementally, by using previous results.

Table XXV shows a break-down of the total query processing time in three categories.
The same observation from the previous section applies here too, namely, that the most
expensive part of the query processing, which by far exceeds all other costs, is reading
large volume of data.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:54 H. Bast and M. Celikik

O OURS
BASELINE

Avg. Running Time (ms)

11 12
Prefix Length

Fig. 9: Average query processing times for different prefix lengths (without using
caching) on the Wikipedia collection when the index is in memory.

2000

O WITH CACHE
7 NO CACHE

1000 1500

Avg. Running Time (ms)

500

Prefix Length

Fig. 10: Average query processing times for different prefix lengths with and without
using caching on the Wikipedia collection when the (positional) index is on disk.

8. CONCLUSIONS

We have presented new algorithms for fuzzy word matching and search, with respect
to both ordinary Levenshtein distance and prefix Levenshtein distance. Our approach
allows fuzzy type-ahead search on each and not only on the last query word as in other
approaches. Our algorithms are significantly more efficient and scale to larger collec-
tions compared to previous methods. If the respective indexes reside in memory, the
improvement is up to a factor of 7. In general, the improvement increases with the
number of query words. For large collections, like TREC GOV2, existing methods ei-

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:55

ther yield infeasible index sizes or unacceptably slow query times or both. Our new
methods also permit query suggestions based on the contents of the document collec-
tion instead of on pre-compiled lists, as in most previous work.

One obvious direction for future work would be to further improve the performance
of our algorithms. However, our extensive work on the topic has led us to the conclusion
that (i) fuzzy search on very large text collections is a (surprisingly) hard problem,
and that (ii) the algorithms we have proposed in this paper come close to what can
optimally be achieved when the index resides in memory, at least for the (rather strict)
versions of the problems we considered. On the other hand, when the index resides
on disk, we believe that a promising research direction is an approach that does not
require reading the full fuzzy inverted list for each keyword which is currently the
bottleneck of our algorithm.

An interesting approach that adopts existing top-k techniques for ranked retrieval
(disjunctive queries) by using the fuzzy search from Ji et al. [2009] has been proposed
in Li et al. [2012]. Another direction for further work is to combine our indexes and
algorithms with techniques similar to those proposed in this work.

A practically important extension would be to consider similarity measures beyond
Levenshtein. For example, certain applications call for a generalized edit distance,
with a user-defined error matrix for each pair of letters, or even for arbitrary sub-
strings. For example, an application might consider a “sch” to be very similar to an “s“,
but an “x“ to be very different from a “u“. Note that fuzzy search on UTF-8-encoded
strings (which is quite a hassle implementation-wise, but supported by our code be-
cause of its practical importance) is a special case of generalized edit distance.

Another practically important issue is that certain phrases are sometimes written
as one word, and sometimes as multiple words (e.g. memorystick vs. memory stick).
It seems reasonable to simply not distinguish between such variants. This is easy to
achieve in the absence of spelling mistakes: simply index such phrases under both
the one-word and the separate-words variant. Making this feature error-tolerant is
a challenge though. For example, it is reasonable to demand that a fuzzy search for
memoristick matches an occurrence of memory stik, but that requires either figuring
out the position of the missing space in the query or figuring out in the precomputation
that memory stik is a variant of the common phrase memory stick. Solving either of
these two tasks efficiently is not easy, especially for phrases with more than two words.

APPENDIX
A. PROOFS OMITTED FOR BREVITY

PROOF OF LEMMA 4.3. Since WLD(wy,w3) < 6, there exist a sequence of edit op-
erations (insertions, deletions, substitution) (O, ..., Or) that transforms w; into wy
as well as corresponding sequence of edit operations (01, ..., O%) that transforms w,
to wy. Let pos(O;) be the position of O;. We will construct /-tuples of delete positions
p1 and py in w; and ws in § steps such that s(wq,p1) = s(wq,p2) as follows. If O; is
a substitution, then there exist a corresponding substitution O} on w,. We delete the
character with position pos(O;) from w; and the character with position pos(O}) from
wy and include pos(O1) and pos(O2) to p; and p, respectively. If O; is an insertion, then
there exists the corresponding delete operation O} on w.. We apply O} on w, and ap-
pend pos(O}) to ps. If O; is a deletion, we apply O; on w; and append pos(O;) to p;.
Observe that at each step the distance between the resulting strings must decrease
by 1. Hence, after § steps the resulting strings must be equal. Since at each steps
the length of the strings decreases by at most 1, the final string has length at least
max{|wi |, |lwa|} —6. O

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:56 H. Bast and M. Celikik

PROOF OF LEMMA 4.4. Assume WLD(w; [k], w2[k]) > §. For the sake of clarity we
will assume that all § errors in w; and wy have taken place on positions at most k. An
alignment between w; and w» is defined by partitioning w; and w- into the same num-
ber of possibly empty substrings pip>...p; and s;ss...s; such that p; — s; (or equiv-
alently s; — p;) with cost ¢(p;, s;) (p; and s; cannot be empty in the same time). WLD
computes an alignment between w; and w, with minimal cost. Since Zle c(piysi) <96
for any 1 < j <, WLD(wq[k], wz[k]) > ¢ implies that w;[k] and w.[k] cannot be repre-
sented as p; ...p; and s; ... s; for some i, i.e., p; and s; are not fully contained in w; [k]
and ws k] respectively. Without loss of generality we can assume that p; contains char-
acters that match characters in the suffix of wy. Hence, we can restore the alignment
by removing ¢ < § characters from p; obtaining WLD (w; [k — t], wz[k]) < §. This means
there is a transformation s, — p;, t < i such that p, = ¢ and |s;| = ¢. Let w) be the re-
sulting string after applying s; — p; to wy[k]. We now have WLD (w [k — t], w}) < 6 —t.
According to Lemma 4.3 we can find a matching subsequence between w; [k — ¢] and w}
by applying at most 6 — ¢ deletions. O

PROOF OF LEMMA 6.4 (SECOND PART). Let C be a given clustering and let Ov(C)
be its index space overhead as given in Definition 6.2:

ZwEW tfw * Cw
ZwGW tfw

Observe that due to the Zipf’s law, Ov(C) is mainly determined by the c,’s for which
tf,, > t. Assume that the number of frequent words is f and that the term frequency
of the word with the ith rank w; is given by

Ov(C) =

1

c-1%

tf,, = N -

where ¢ = Zle 1/i* is the normalization factor of the Zipfian distribution and N =
>ir, ¢ tfw. Then we obtain

1
Ov(C) = N Z tfy - Cw

tf?l) Zt

1 f
:N.Z;N

1 -1
R

If we assume that the ¢,,’s are equally distributed, due to linearity of expectation we
obtain

0\»—*

U]
ZZZ [cw;] = E[cw,]

=1
According to Definition 6.3, the latter is approximately equal to SF. O

PRrROOF OF LEMMA 6.11. Assume that each x-prefix contains s “don’t care“ charac-
ters. For each combination of errors in ¢ (deletions, insertions, substitutions) we show
how to find a family of x-prefixes p in W}* with PLD(q,p) < ¢ that cover S; (note that
the “don’t care“ characters do not match any other characters when computing the

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:57

PLD between two prefixes).

(1) insertion errors: for simplicity, assume that 6 = 1 and that ¢ = p;...ps. Observe
that p;...pr—1*¥ € W} covers all prefixes with a single insertion error. Similarly, p =
P1...pk—s*® € W} covers all prefixes with up to s insertion errors. In general, to cover
the prefixes with up to ¢ insertion errors with x-prefixes with s “don’t care“ characters,
we require prefixes of the form p'+® € W, where p’ € {p” € Wj,_, | PLD(q,p") < é}. It
is easy to see that PLD(q, p’+®) < d since PLD(q,p’) < §;

(ii) substitution errors: let {i1,...,is} be a set of position in ¢. Then the x-prefix
p = pi,.-- Dy, Where p’ = xif j € {ji,...,js} and p’ = p; otherwise, covers all pre-
fixes with at least one substitution error on positions {ji,...,js}. In general, to cover
the prefixes with up to ¢ substitution errors we require *-prefixes in W; with “don’t
care“ characters at any set of positions {ji, ..., s} in ¢'5;

(iii) deletion errors: prefixes with up to § deletion errors are covered in a similar way,
however, deletion errors in a prefix of fixed length are paired with additional insertion
errors with characters ahead in the string. Hence, if ¢ contains deletion errors, then
it will not be within the distance threshold from the x-prefixes in W’ anymore. For
example, assume k£ = 6 and § = 1 and suppose g=algoit (obtained from algori by a
deletion at positions 5) and ¢ ¢ Wj. It is not hard to see that ¢ is not within distance
threshold from any «-prefix p € W}:. Deletion errors are instead addressed by using
the x-prefixes from W;* — W of length % + 6. Assume that m < s deletion errors have
taken place on positions {ji,...,jm}. Then the x-prefix p = pi,...,p},,,, where p} = %
ifj € {j1,...,jm} and j < k and p); = p; otherwise, covers all prefixes with m deletion
errors on positions {ji, ..., jm - To cover all prefixes with at most § deletion errors, we
consider x-prefixes with “don’t care“ characters that correspond to any set of positions
{j1,..-,Js}, where j;, < k. It is clear that if p is defined as in (i7) or (iii), then by con-
struction p € W;* and PLD(q,p) < 6;

(iv) combination of errors: for prefixes that contain any combination of deletion and
substitution or insertion and substitution errors, p is constructed analogously. How-
ever, since deletion and insertion errors have an inverse effect in ¢, constructing x*-
prefix p as in (i) and (¢i7) to address a combination of insertion and deletion errors can
result in p that is not within § from ¢. The reason for this is that some of the “don’t care®
characters must overwrite matching characters at the end of p. For example, assume
0 = 2 and let g=alxgoit (¢ contains one insertion and one deletion error). By using (i),
we obtain p=algori* with PLD(q,p) = 3 > §. Assume that there are m; deletion and
mq insertion errors, where m; +my < 6. Observe that since s < [§/2], we can construct
p by considering only max{0,ms — m;} of the my insertion errors and simply ignoring
the rest. Now by using (i) and (ii7) we always obtain p that is within ¢ from ¢. O

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their outstandingly painstaking, competent, and constructive
comments.

REFERENCES

BAEZA-YATES, R. 2004. A fast set intersection algorithm for sorted sequences. Lecture Notes in Computer
Science 3109, 400-408.

BAEZA-YATES, R. AND NAVARRO, G. 1998. Fast approximate string matching in a dictionary. In In Proceed-
ing of the International Symposium on String Processing and Information Retrieval (SPIRE). Springer-
Verlag, Heidelberg, Germany, 14-22.

16Note that in practice we must compute a minimal set of such *-prefixes that cover all prefixes in W (i.e.,
consider only the *-prefixes that contain at least one matching prefix that has not been covered by other
x-prefixes).

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:58 H. Bast and M. Celikik

BAEZA-YATES, R. A. AND GONNET, G. H. 1999. A fast algorithm on average for all-against-all sequence
matching. In Proceedings of the String Processing and Information Retrieval Symposium & Interna-
tional Workshop on Groupware. SPIRE 1999. IEEE Computer Society, Washington, DC, USA, 16—.

BAEZA-YATES, R. A., HURTADO, C. A., AND MENDOZA, M. 2004. Query recommendation using query logs
in search engines. In International Workshop on Clustering Information over the Web (ClustWeb 04
(2004-12-13). Lecture Notes in Computer Science Series, vol. 3268. Springer, Creete, Greece, 588-596.

BARAGLIA, R., CASTILLO, C., DONATO, D., NARDINI, F. M., PEREGO, R., AND SILVESTRI, F. 2009. Ag-
ing effects on query flow graphs for query suggestion. In Proceeding of the 18th ACM conference on
Information and knowledge management (CIKM ’09). ACM, New York, NY, USA, 1947-1950.

BAST, H. AND WEBER, I. 2007. The completesearch engine: Interactive, efficient, and towards ir& db in-
tegration. In Third Conference on Innovative Data Systems Research (CIDR’07). VLDB Endowment,
Asilomar, CA, USA, 88-95.

BAYARDO, R. J., MA, Y., AND SRIKANT, R. 2007. Scaling up all pairs similarity search. In Proceedings of the
16th international conference on World Wide Web (WWW °07). ACM, New York, NY, USA, 131-140.
BELAZZOUGUI, D. 2009. Faster and space-optimal edit distance ”1” dictionary. In Proceedings of the 20th
Annual Symposium on Combinatorial Pattern Matching. CPM ’09. Springer-Verlag, Berlin, Heidelberg,

154-167.

BHATIA, S., MAJUMDAR, D., AND MITRA, P. 2011. Query suggestions in the absence of query logs. In Pro-
ceedings of the 34th international ACM SIGIR conference on Research and development in Information
(SIGIR ’11). ACM, New York, NY, USA, 795-804.

BoLbI, P., BONCHI, F., CASTILLO, C., DONATO, D., AND VIGNA, S. 2009. Query suggestions using query-
flow graphs. In Proceedings of the 2009 workshop on Web Search Click Data (WSCD ’09). ACM, New
York, NY, USA, 56-63.

BoyTsov, L. 2011. Indexing methods for approximate dictionary searching: Comparative analysis. Journal
of Experimental Algorithmics 16,1.1:1.1-1.1:1.91.

BRATLEY, P. AND CHOUEKA, Y. 1982. Processing truncated terms in document retrieval systems. Informa-
tion Processing and Management 18, 5, 257-266.

BRILL, E. AND MOORE, R. C. 2000. An improved error model for noisy channel spelling correction. In Pro-
ceedings of the 38th Annual Meeting on Association for Computational Linguistics (ACL ’00). Association
for Computational Linguistics, Stroudsburg, PA, USA, 286-293.

CAo, H., JIANG, D., PE1, J., HE, Q., L1AO, Z., CHEN, E., AND LI, H. 2008. Context-aware query sugges-
tion by mining click-through and session data. In Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ’08). ACM, New York, NY, USA, 875-883.

CELIKIK, M. AND BAST, H. 2009. Fast error-tolerant search on very large texts. In Symposium of Applied
Computing (SAC °09). ACM, New York, NY, USA, 1724-1731.

CHAUDHURI, S., GANTI, V., AND KAUSHIK, R. 2006. A primitive operator for similarity joins in data clean-
ing. In Proceedings of the 22nd International Conference on Data Engineering (ICDE ’06). IEEE Com-
puter Society, Washington, DC, USA, 5.

CHAUDHURI, S. AND KAUSHIK, R. 2009. Extending autocompletion to tolerate errors. In Proceedings of
the 35th International Conference on Management of Data (SIGMOD °09). ACM, New York, NY, USA,
707-718.

CHAVEZ, E., NAVARRO, G., BAEZA-YATES, R., AND MARROQUIN, J. L. 2001. Searching in metric spaces.
ACM Computational Surveys 33, 3, 273-321.

COLE, R., GOTTLIEB, L.-A., AND LEWENSTEIN, M. 2004. Dictionary matching and indexing with errors
and don’t cares. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
STOC ’04. ACM, New York, NY, USA, 91-100.

CUCERZAN, S. AND WHITE, R. W. 2007. Query suggestion based on user landing pages. In Proceedings of
the 30th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’07). ACM, New York, NY, USA, 875-876.

D’AMORE, R. J. AND MAH, C. P. 1985. One-time complete indexing of text: theory and practice. In Proceed-
ings of the 8th annual international ACM SIGIR conference on Research and development in information
retrieval. SIGIR ’85. ACM, New York, NY, USA, 155-164.

DEMAINE, E. D., LOPEZ-ORTIZ, A., AND MUNRO, J. I. 2000. Adaptive set intersections, unions, and differ-
ences. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms. SODA 00.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 743-752.

Du, M. W. AND CHANG, S. C. 1994. An approach to designing very fast approximate string matching algo-
rithms. IEEE Trans. on Knowl. and Data Eng. 6, 4, 620-633.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Efficient Fuzzy Search in Large Text Collections 39:59

FERRAGINA, P. AND VENTURINI, R. 2007. Compressed permuterm index. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information retrieval. SIGIR ’07.
ACM, New York, NY, USA, 535-542.

FIGUEROA, K., CHAVEZ, E., NAVARRO, G., AND PAREDES, R. 2006. On the least cost for proximity searching
in metric spaces. In Proceedings of the 5th Workshop on Efficient and Experimental Algorithms (WEA
’06). Lecture Notes in Computer Science. Springer, Cala Galdana, Menorca, Spain, 279-290.

GAo, W., N1y, C., NIE, J.-Y., ZHOU, M., Hu, J., WONG, K.-F., AND HON, H.-W. 2007. Cross-lingual query
suggestion using query logs of different languages. In Proceedings of the 30th Annual International
Conference on Research and Development in Information Retrieval (SIGIR ’07). ACM, New York, NY,
USA, 463-470.

GRAVANO, L., IPEIROTIS, P. G., JAGADISH, H. V., KouDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA, D.
2001. Approximate string joins in a database (almost) for free. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 491-500.

HEINZ, S. AND ZOBEL, J. 2003. Efficient single-pass index construction for text databases. Journal of the
American Society for Information Science and Technology 54, 713-729.

HUFFMAN, D. A. 1952. A method for the construction of minimum-redundancy codes. Proceedings of the
Institute of Radio Engineers 40, 9, 1098-1101.

JAMES, E. B. AND PARTRIDGE, D. P. 1973. Adaptive correction of program statements. Communications of
the ACM 16, 1, 27-317.

J1, S., L1, G., L1, C., AND FENG, J. 2009. Efficient interactive fuzzy keyword search. In Proceedings of the
18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY, USA, 371-380.
JOKINEN, P. AND UKKONEN, E. 1991. Two algorithms for approximate string matching in static texts. In In
Proc. 2nd Ann. Symp. on Mathematical Foundations of Computer Science, P. Jokinen and E. Ukkonen,

Eds. Lecture Notes in Computer Science 520, 06, 240—248.

KAHVECI, T. AND SINGH, A. K. 2001. Efficient index structures for string databases. In Proceedings of the
27th International Conference on Very Large Data Bases. VLDB ’01. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 351-360.

KiMm, Y., SEO, J., AND CROFT, W. B. 2011. Automatic boolean query suggestion for professional search. In
Proceedings of the 34th international ACM SIGIR conference on Research and development in Informa-
tion (SIGIR ’11). ACM, New York, NY, USA, 825-834.

LEVENSHTEIN, V. I. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10, 8, 707-710.

L1, C., Lu, J., AND LU, Y. 2008. Efficient merging and filtering algorithms for approximate string searches.
In Proceedings of the 24th International Conference on Data Engineering (ICDE ’08). IEEE Computer
Society, Washington, DC, USA, 257-266.

L1, G., WANG, dJ., LI, C., AND FENG, dJ. 2012. Supporting efficient top-k queries in type-ahead search. In Pro-
ceedings of the 35th international ACM SIGIR conference on Research and development in information
retrieval. SIGIR. ACM, New York, NY, USA, 355-364.

L1, M., ZHANG, Y., ZHU, M., AND ZHOU, M. 2006. Exploring distributional similarity based models for query
spelling correction. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th Annual Meeting of the Association for Computational Linguistics (ACL ’06). Association for
Computational Linguistics, Stroudsburg, PA, USA, 1025-1032.

L1, W. 1992. Random texts exhibit zipf’s-law-like word frequency distribution. IEEE Transactions on Infor-
mation Theory 38, 1842-1845.

LUND, C. AND YANNAKAKIS, M. 1993. On the hardness of approximating minimization problems. In Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of computing (STOC ’93). ACM, New
York, NY, USA, 286-293.

MEI, Q., ZHOU, D., AND CHURCH, K. 2008. Query suggestion using hitting time. In Proceeding of the 17th
ACM conference on Information and knowledge management (CIKM ’08). ACM, New York, NY, USA,
469-478.

MIHOV, S. AND SCHULZ, K. U. 2004. Fast approximate search in large dictionaries. Computational Linguis-
tics 30, 451-477.

MOR, M. AND FRAENKEL, A. S. 1982. A hash code method for detecting and correcting spelling errors.
Communications of the ACM 25, 12, 935-938.

MUTH, R. AND MANBER, U. 1996. Approximate multiple strings search. In Combinatorial Pattern Matching
(CPM °96), D. S. Hirschberg and E. W. Myers, Eds. Lecture Notes in Computer Science Series, vol. 1075.
Springer, Laguna Beach, California, USA, 75-86.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:60 H. Bast and M. Celikik

MYERS, E. W. 1994. A sublinear algorithm for approximate keyword searching. Algorithmica V12, 4, 345—
374.

MYERS, G. 1999. A fast bit-vector algorithm for approximate string matching based on dynamic program-
ming. Journal of the ACM 46, 1-13.

NAVARRO, G. 2001. A guided tour to approximate string matching. ACM Computing Surveys 33, 1, 31-88.

NAVARRO, G., BAEZA-YATES, R., SUTINEN, E., AND TARHIO, J. 2000. Indexing methods for approximate
string matching. IEEE Data Engineering Bulletin 24, 2001.

NAVARRO, G. AND SALMELA, L. 2009. Indexing variable length substrings for exact and approximate
matching. In Proceedings of the 16th International Symposium on String Processing and Information
Retrieval. SPIRE 2009. Springer-Verlag, Berlin, Heidelberg, 214-221.

NEEDLEMAN, S. B. AND WUNSCH, C. D. 1970. A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology 48, 3, 443 — 453.

RUsso, L. M. S., NAVARRO, G., OLIVEIRA, A. L., AND MORALES, P. 2009. Approximate string matching
with compressed indexes. Algorithms 2, 3, 1105-1136.

SANKOFF, D. 1972. Matching sequences under deletion-insertion constraints. Proceedings of the Natural
Academy of Sciences of the U.S.A. 69, 4-6.

SCHOLER, F., WILLIAMS, H. E., YIANNIS, J., AND ZOBEL, J. 2002. Compression of inverted indexes for fast
query evaluation. In Proceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval. SIGIR °02. ACM, New York, NY, USA, 222-229.

ScHULZ, K. U. AND MIHOV, S. 2002. Fast string correction with levenshtein automata. International Jour-
nal on Document Analysis and Recognition 5, 1, 67-85.

SELLERS, P. H. 1974. On the Theory and Computation of Evolutionary Distances. SIAM Journal on Applied
Mathematics 26, 4, 787-793.

SHI, F. AND MEFFORD, C. 2005. A new indexing method for approximate search in text databases. In
Proceedings of the The Fifth International Conference on Computer and Information Technology (CIT
’05). IEEE Computer Society, Washington, DC, USA, 70-76.

SONG, Y. AND HE, L.-W. 2010. Optimal rare query suggestion with implicit user feedback. In Proceedings of
the 19th International Conference on World Wide Web (WWW ’10). ACM, New York, NY, USA, 901-910.

SUTINEN, E. AND TARHIO, J. 1995. On using g-gram locations in approximate string matching. In Proceed-
ings of the Third Annual European Symposium on Algorithms (ESA *95). Springer-Verlag, London, UK,
327-340.

SUTINEN, E. AND TARHIO, J. 1996. Filtration with q-samples in approximate string matching. In Proceed-
ings of the 7th Annual Symposium on Combinatorial Pattern Matching (CPM ’96). Springer-Verlag,
London, UK, 50-63.

UKKONEN, E. 1983. Algorithms for approximate string matching. Information and Control 64, 1-3, 100-118.

UKKONEN, E. 1993. Approximate string-matching over suffix trees. Lecture Notes in Computer Science 684,
228242,

VINTSYUK, T. K. 1968. Speech discrimination by dynamic programming. Cybernetics 4, 1, 52-57. Russian
Kibernetika 4(1):81-88 (1968).

WILLETT, P. AND ANGELL, R. 1983. Automatic spelling correction using a trigram similarity measure.
Information Processing and Management 19, 4, 255-261.

WU, S. AND MANBER, U. 1992. Fast text searching allowing errors. Communications of ACM 35, 10, 83-91.

X1A0, C., WANG, W., AND LIN, X. 2008. Ed-join: an efficient algorithm for similarity joins with edit distance
constraints. Proceedings of The VLDB Endowment 1, 933-944.

X1a0, C., WANG, W., LIN, X., AND YU, J. X. 2008. Efficient similarity joins for near duplicate detection. In
Proceeding of the 17th international conference on World Wide Web (WWW °08). ACM, New York, NY,
USA, 131-140.

ZOBEL, J. AND DART, P. 1995. Finding approximate matches in large lexicons. Software Practice and Expe-
rience 25, 3, 331-345.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

