
DOI: 10.1007/s002240010013

Theory Comput. Systems33, 489–563 (2000) Theory of
Computing

Systems
© 2000 Springer-Verlag

New York Inc.

On Scheduling Parallel Tasks at Twilight∗

H. Bast

Max-Planck-Institut f¨ur Informatik,
66123 Saarbr¨ucken, Germany
hannah@mpi-sb.mpg.de

Abstract. We consider the problem of processing a given number of tasks on a
given number of processors as quickly as possible when only vague information
about the processing time of a task is available before it is completed. Whenever a
processor is idle, it can be assigned, at the price of a certain overhead, a portion,
called a chunk, of the unassigned tasks. The goal is to minimize the makespan, that
is, the time that passes until all the tasks are completed. The difficulty then is to
find the optimal tradeoff between the processors’ load balance, which is favoured
by having small, and therefore many, chunks, and the total scheduling overhead,
which is lower when there are fewer chunks. This scheduling problem has been
the subject of intensive research in the past, and a large variety of heuristics have
been proposed. Its mathematical analysis, however, turned out to be difficult even
for simplistic models of the vague-information issue, and little theoretical work has
been presented to date. In this work we present a novel theoretical model that covers
a multitude of natural vague-information scenarios, and for which we can prove
general upper and lower bounds on the achievable makespan. From this we derive
optimal bounds and algorithms for a whole variety of specific scenarios, including the
modelling of task processing times as independent, identically distributed random
variables, which guided the design of most of the previously existing heuristics.
Unlike traditional approaches, our model neither ignores a priori knowledge of
the input (the processing times) nor does it restrict the distribution of the input, but
instead works with the concepts of an a priori estimate of the processing times, which
is implicit in every algorithm, and a measure for the deviation of this estimate from
the actual processing times, which is not known until all the tasks are completed.

∗ This research was supported in part by a Graduiertenkolleg graduate fellowship of the Deutsche For-
schungsgemeinschaft (DFG), and in part by ESPRIT LTR Project No. 20244 - ALCOM-IT.

490 H. Bast

1. Introduction

Most information is vague, that is, incomplete and possibly imprecise, but modelling
this concept in a rigorous yet practically useful way is very difficult. Indeed, virtually all
theoretical studies of computational problems proceed from one of the three following
simplifying assumptions: the relevant information is completely known a priori, it is
completely unknown a priori, or its distribution is in some way restricted. In this article
we study a multiprocessor scheduling scenario where none of these simplifications leads
to satisfactory results, and for which, correspondingly, hardly any theoretical work exists.
On the other hand, we will see that this scenario has a very practical background, and
that many heuristics have been devised in the past; all of these, however, lack a solid
theoretical underpinning. We address this deficit by providing, for the first time for such
a vague-information setting, a precise yet general mathematical model, together with a
comprehensive theoretical analysis.

The following subsection will guide the reader through the vast scheduling literature,
and step by step familiarize him or her with the various aspects and subtleties of our
scheduling scenario. Impatient readers, who want to know about this scenario and about
our results right away, should consider jumping to Section 1.2 now. Very impatient
readers, who are looking for a more formal and complete description of our setting, might
even want to jump to Section 2, which technically does not rely on the Introduction.

1.1. Motivation and Background

One of the challenges in exploiting the power of parallel computers is to map, orschedule,
the parallelism contained in a program onto a set of processors such that these processors
are utilized as effectively as possible. Since the bulk of the running time of a program
is spent in its repetitive parts, and these are typically coded as loops, one of the key
issues in this context is effectiveloop scheduling, that is, determining which iteration of
a loop should be executed on which processor at which time. Of special interest here are
so-calledparallel loops, whose iterations may be executed in any order, hence also con-
currently with each other. Parallel loops are prevalent especially in scientific and numeric
code, and there exists an abundance of techniques and tools for detecting when iterations
are independent as well as for transforming suitable loops to establish that property [35].

In general, processors need to synchronize after the parallel execution of a loop in
order to ensure that all iterations are completed before the execution of the next program
statement is begun. The goal of effective loop scheduling is therefore to minimize the
completion time of the last iteration, a quantity known as thelengthor makespanof the
schedule. We also remark that a parallel loop might be executed a large number of times
(as part of an outer serial loop), in which case even small deviations in the makespan can
accumulate as considerable amounts of running time; achieving an optimal or close-to-
optimal makespan is therefore of utmost importance.

Problems that involve the scheduling of certain tasks on parallel machines or pro-
cessors have been the subject of very intensive theoretical research. In the remainder of
this subsection, we give an overview over the various lines of this research and discuss
their applicability to problems like parallel-loop scheduling. This will naturally lead to
our abstract problem formulation, given in Section 1.2.

On Scheduling Parallel Tasks at Twilight 491

1.1.1. Static Scheduling. When the processing times of the tasks are known in advance,
optimal schedules can be computedstatically, that is, before the actual computation starts.
We assume thatpreemptionsare not allowed, meaning that once a task is scheduled on a
processor, it must be run to completion on that processor. This is a realistic assumption
for fine-grained applications like parallel-loop scheduling, where the processing time of
a single task (an iteration) is small compared with the overall execution time. We observe
that nonpreemptive static scheduling with minimal makespan is tantamount to distribut-
ing the tasks on the processors so as to achieve an optimalload balance, that is, processor
finishing times which differ as little as possible from each other. The exact version of
this problem is easily seen to be NP-complete even when the number of processors is
restricted to two [3], [8]. For many practical applications, however, sufficiently accurate
approximations do equally well. Given for instance the above-mentioned property of
relatively small task processing times, it would clearly be satisfactory if the finishing
times of the processors differed by no more than a single task’s processing time. This,
however, can be easily achieved by a linear-time algorithm, which divides the total work
into blocks or chunks of consecutive iterations, one chunk for each processor. In the
context of loop scheduling, the optimal such scheme is known asblock schedulingor
static chunking.

What complicates the application of static scheduling schemes in practice is that
in order to know the processing times of the tasks in advance, we must find a way to
predict them. This is difficult because certain low-level details of the actual process that
determines processing times are practically impossible to foresee. For example, while
a compiler might be able to figure out which variables a program will manipulate at a
particular point, it usually cannot predict with certainty where in the memory hierarchy
(cache, etc.) a particular memory access will take place. In so-calledregularapplications,
the outcomes of such low-level events follow a well-predictable pattern. In that case,
static scheduling coupled with some kind of performance prediction is the method of
choice. A specific scheme that addresses this issue for the particular case of a parallel
loop repeated within a serial loop was presented by Bull [2]. We here consider so-called
irregular applications, where the processing times vary widely and in an unpredictable
manner. Given the complex interplay of several processors working in concert, this is
clearly a realistic assumption in the context of parallel computing in general, and, as
various experimental studies have shown, for loop scheduling in particular [15], [4],
[16]. Under such circumstances, static scheduling schemes are clearly inappropriate, as
they cannot avoid that some processors finish long before others, thus wasting their time
for the rest of the computation.

1.1.2. Dynamic Scheduling. In appreciation of the problems pointed out above, much
attention in scheduling theory has been devoted to the study of what today are called
online problems, where parts or all of the relevant information are not available to an
algorithm beforehand. A basic method for the setting where nothing is known about the
processing time of a task until it is completed is as follows. The tasks are queued in an
arbitrary order, and at runtime, whenever a processor becomes idle, the task at the head
of the queue is removed and scheduled to that processor. Unlike for static schemes, a task
here does not know a priori on which processor it will be processed, which is referred

492 H. Bast

to asdynamicscheduling. We remark that for scheduling the iterations of a parallel loop
on a shared-memory machine, this scheme can be implemented without a (notoriously
inefficient) central scheduling unit: via a shared memory variable the processors can
instead “schedule themselves” the tasks from the queue whenever they become idle
[32], [23], [33]. In the context of parallel computing, the described method is therefore
referred to asself-scheduling.

In a sense, self-scheduling is an efficient scheduling scheme. First, by construction
it produces a schedule in which the finishing times of the processors differ by at most
the processing time of a single task—a result that we have deemed satisfactory above.
Second, self-scheduling is provably optimal with respect to the so-calledcompetitive
ratio, defined as the maximum factor (over all possible inputs) by which the solution
deviates from the optimal so-called offline solution, which could have been produced if
all the relevant information had been available beforehand. This optimality result is a
combination of the upper bound implied by Graham’s analysis [9] and a lower bound
proven by Shmoys et al. [31].

As it turns out, however, self-scheduling sometimes performs quite poorly in prac-
tice, and at times even worse than simple static schemes. The reason is that each schedul-
ing decision that is postponed to runtime is associated with a certainoverheadwhich
addsto the parallel execution time. Examples for possible sources of such overhead are
synchronization, employed to handle concurrent requests to a common task pool (for
example, the queue above),communication, needed to retrieve data required for pro-
cessing a task, and, of course,computation, necessary to make the scheduling decision
itself. Especially in the case of fine-grained applications, such as a typical parallel loop,
this overhead may account for a significant portion of the total running time, so great
care has to be taken so as not to outweigh the gains of an improved load balance. In fact,
this outweighing is likely to happen for the described self-scheduling algorithm, which,
scheduling one iteration at a time, achieves its near-optimal balance of processor loads
at the price of a maximal number of scheduling operations. In this sense, self-scheduling
is just the extreme opposite to static scheduling, which minimizes overheads at the risk
of a large load imbalance. To achieve better tradeoffs between the load imbalance and
the scheduling overhead, we must therefore considerhybrid schemes which schedule
not all, but several tasks at a time.

In the literature, such hybrid scheduling schemes have hardly been investigated.
One obvious reason for this is the implicit assumption that the overhead entailed by
a dynamic scheduling operation (which is always there) be negligible compared with
the processing time of a single task. A subtler point is that in the scenario where noth-
ing is known about the processing times in advance, self-scheduling comes out as an
optimal algorithm with respect to the competitive ratio, even when incorporating over-
heads into the analysis. This should not be too surprising since when the processing
times can be arbitrary, then, intuitively speaking, no advantage lies in scheduling several
tasks at a time (a single task might take an equally long time). A meaningful analy-
sis of hybrid scheduling schemes that considers the tradeoff between load imbalance
and scheduling overhead must hence be based on some notion of abounded irregu-
larity of the task processing times, by which it would be implied that a larger number
of tasks indeed tends to have a larger total processing time than a smaller number of
tasks.

On Scheduling Parallel Tasks at Twilight 493

1.1.3. Stochastic Scheduling. The traditional approach to make such a notion of a
bounded irregularity precise isaverage-caseanalysis. In the context of scheduling prob-
lems, an average-case analysis will assume that the processing times behave randomly
according to some probability distribution, certain properties of which are provided as
part of the input; in the operations-research community, this setting is better known
under the heading ofstochastic scheduling[28]. Unfortunately, average-case analysis
is usually much harder than worst-case analysis, and quickly becomes intractable when
dealing with dynamic problems. Indeed, compared with the abundance of results built on
worst-case analysis, theoretical analyses of scheduling problems with random processing
times are few and typically concerned with only the most basic settings. When it comes
to considering both random processing timesandscheduling overheads, only a single,
specialized result, due to Kruskal and Weiss [18], seems to be known. We describe this
result next, and come back to average-case analysis in Section 1.2.

The object of the investigations by Kruskal and Weiss was the simplefixed-size
chunkingheuristic, which instead of scheduling only one task at a time, schedules
so-calledchunksof a fixed number of tasks at a time. Kruskal and Weiss modelled
task processing times, as well as the per-chunk overheads, as independent, identi-
cally distributed (and sufficiently well behaved) random variables. In a sense, their
result was promising: they showed that the chunk size can be chosen such that the
expected makespan is within a factor of 1+ ε of the optimum, whereε → 0 as the
number of tasks goes to infinity. However, this result has a number of weaknesses,
and the authors themselves explained that it should be viewed as “a lower bound
for real machines”. First, their analysis was asymptotic, so that it remained unclear
when ε would actually become small. Second, the assumption of independent, iden-
tically distributed task processing times leads to chunk processing times that are very
sharply concentrated around their mean—indeed, for this setting even the aforemen-
tioned naive static chunking strategy gives reasonable results. It was left entirely open
what would happen for more realistic, less well-behaved processing times. Third, even
within this limited setting, fixed-size chunking is not the asymptotically optimal schedul-
ing scheme. Fourth, a suitable—not to mention optimal—chunk size is very hard to
determine, and no intuitive default setting exists. The bottom line is that, roughly speak-
ing, fixed-size chunking is a useful but “quick-and-dirty” heuristic. Indeed, Kruskal and
Weiss already noted that an optimal scheme should rather have “the chunk size de-
crease as the scheduling process evolves”. This is in fact quite natural, since smaller
chunks are required only towards the end, in order to achieve balanced finishing times,
whereas earlier chunks should be larger in order to help keep the scheduling overhead
small.

1.1.4. Decreasing-Size Heuristics. Following the work by Kruskal and Weiss, a multi-
tude of heuristics for scheduling tasks in chunks of decreasing sizes have been presented,
among others by Polychronopoulos and Kuck [29], Tzen and Ni [34], Flynn et al. [7],
Lucco [22], Liu et al. [21], and Hagerup [13]. A survey of most of these can be found
in the comparative experimental study of Hagerup [13] or in [1]. We only mention here
that most of these heuristics were actually implemented, and at least two of them, the
guided self-schedulingof Polychronopoulos and Kuck [29] and a variant of thefactoring
strategy due to Flynn et al. [7] have been embodied in a variety of serious (that is, not

494 H. Bast

specially created) applications. On top of these basic strategies, numerous more complex
schemes were constructed, addressing other important practical issues such as affinity
and data locality [24], [5], [15], [25], self-adaptiveness [6], [36], distributed memory
[30], [19], [20], and heterogeneous, time-shared environments [17], [26]. For our pur-
poses here, one should note that for all of these, a clever heuristic for partitioning the
tasks into chunks is an essential component.

It is conspicious that not even the most basic decreasing-size schemes are supported
by any rigorous analysis. This is unsatisfactory in several respects. First, and most ob-
viously, there is the risk of a poor performance even under circumstances that conform
well to the underlying model. As is shown in [1], this is indeed the case for several of
the named schemes. Second, experiments are in general hardly suitable to assess the
appropriateness of the complexity of a scheme relative to its performance. So, for ex-
ample, the FAC scheme of Flynn et al. [7] was designed on the basis of a very intricate
heuristic but tends to perform rather poorly compared with its “quick-and-dirty” variant
FAC2, which does away with all the intricacy. Similarly, Hagerup [13] honestly judged
his BOLD scheme by saying that “considerations that are at least as logical lead to dif-
ferent variants of BOLD that just happen not to perform as well”. A third issue is that
many of the previous schemes are controlled by one or more parameters, whose tuning
has a great impact on the performance. Concrete guidance for setting these parameters
properly was often not given.

1.2. Our Work

We summarize the various elements that constitute our scheduling scenario. We are given
n tasks, the processing time of each of which is not known until it is completed, to be
scheduled in an arbitrary order onp processors, initially idle. Whenever a processor is
idle, it may be scheduled an arbitrary portion, called achunk, of the so far unscheduled
tasks, at the price of a certain overhead per chunk. Here, as well as later, we work with the
assumption of a fixed overheadh. As is shown in Section 3, this (of course unrealistic)
restriction is not for technical necessity but rather for convenience, to simplify our
presentation. Our goal is to minimize the makespan of the schedule, which we will see to
be tantamount to minimizing the sum of the idle times of processors finishing early plus
the sum of all overheads, a quantity called thewasted timeof the schedule. Using this
objective, achieving near-optimal makespan corresponds to achieving a wasted time that
is negligible compared with the total processing time of the tasks (on which a scheduling
algorithm has no influence). It should be noted that when considering wasted times, small
constant-factor changes are not very significant: for instance, wasted times amounting to
1% and 5% of the total processing time correspond to a makespan that is off the optimum
by a factor of 1.01 and 1.05, respectively.

1.2.1. A Generic Approach. As we have learned from Section 1.1, a meaningful anal-
ysis of the tradeoff between load imbalance and scheduling overhead, and hence of the
wasted time, must consider some notion of a bounded irregularity of the task process-
ing times. This is of course a fairly vague concept, which can be concretized in many
ways. One example is what we call theindependent-tasks setting, which underlies the

On Scheduling Parallel Tasks at Twilight 495

theoretical investigations of Kruskal and Weiss [18] as well as most existing heuristic
schemes; here the task processing times are independent, identically distributed random
variables. Note that this is a particularly well-behaved setting, since the independence
assumption implies a very sharp concentration of chunk processing times. Hagerup [13]
also considered a special instance of what we call thecoupled-taskssetting, where task
processing times are again identically distributed random variables; however, tasks are
now divided arbitrarily into groups, and independence only holds between pairs of tasks
from different groups, while the processing times of all tasks in the same group are equal
with probability one. This models, for example, an image processing application, where,
naturally, processing costs vary from region to region rather than from pixel to pixel.
Yet another model of bounded irregularity is that in which thresholdsTmin andTmax are
known such that each task processing time is guaranteed to lie within [Tmin, Tmax]. We
call this thebounded-tasks setting, instances of which were previously also considered
by Liu et al. [21].

While it is certainly instructive to study any of these particular settings, it would
of course be more desirable to have a meta-model that comprises all of the approaches
named above. Results for such a model would provide more comprehensive insight into
how exactly the issue of vagueness of information affects scheduling efficiency. More-
over, each of the settings described above hinges on the fact that the input distribution
is restricted, so that it is not clear whether results could be extrapolated to distributions
that deviate (maybe only slightly) from the imposed requirements. More convincing
performance bounds should do away with such restrictions, and instead have the prop-
erty that they degrade gracefully as inputs become less well-behaved. A third concern,
particular to stochastic modellings in general, is that a probability distribution is always
in danger of overspecifying the modelled behaviour, by having to assign a probabili-
tiy to each and every event. So, for example, no probability distribution function can
express that some task takes somewhere between 10 and 20 milliseconds—which is
certainly an informative statement by itself—without also having to commit to some
average time, or to specify how likely it is that less than 15 milliseconds suffice. As
a result, probabilistic assumptions may—and usually do—add an artifical regularity
to the studied problem, which it did not possess originally. Algorithms and analyses
that, perhaps even unknowingly, exploit this structure are hence of somewhat limited
use.

A year’s (or two) contemplation over the desires expressed above leads us to the
following two concepts: avariance estimator, which models what an algorithm implicitly
assumes on the processing times, and adeviation, which measures the deviation of the
actual processing times from their estimated behaviour and is not known until all the tasks
are completed. The variance estimator is specified by two functionsα, β: R+ → R+,
with the meaning that [α(w), β(w)] is anestimated rangeof typical processing times
for chunks of sizew. The deviation will be defined as a nonnegative real quantityε that
measures the average distance of an actual chunk processing time to its respective range
[α(w), β(w)]. Naturally,ε will be zero if the processing times of all chunks are within
the estimated ranges, and the more the processing times deviate from these ranges, the
larger the value ofε will be. This approach is described and explained in great detail in
Section 2.

496 H. Bast

Table 1. The optimal wasted time compared with that of fixed-size chunking, static
chunking, and self-scheduling for a variety of estimated ranges, whereH = h+ ε and
N = n/p. The entries are exact up to a constant factor, provided thatN is sufficiently

large compared withH .

[w −√w,w +√w] [w/2,2w] [w/2, w logw] [w/2, w2]

OPT H · log logN H · log N H · log2 N H ·
√

N

FIX
√

H · N
√

H · N
√

H · N log N (H · N)2/3

SC H +
√

N H + N H + N · log N H + N2

SS H · N H · N H · N H · N

1.2.2. Theoretical Results. Our main result quantifies for each setting of the parameters
n, p, h, α, β, andε, in a closed formula OPT(n, p, h, α, β, ε), the optimal wasted time
that can be achieved for schedulingn tasks onp processors with overheadh, when
the average deviation of the processing time of a chunk with respect to[α, β] is at
mostε. To establish this result, we present a single generic algorithm, thebalancing
strategy, establish upper bounds on its wasted time, and subsequently prove that no other
algorithm can do better. This powerful result is in sharp contrast with aforementioned
previous work that, even for the particular independent-tasks setting, could not provide
any nontrivial performance bounds. Our formula for OPT is extremely sexy, namely,

(h+ ε) · γ ∗(n/p),

whereγ ∗(n/p) = min{ i : γ (i)(n/p) ≤ 0}, andγ is approximately id−α ◦β−1, that is,
γ (x) ≈ x−α(β−1(x)). Unfortunately, the underlying intuition cannot be easily conveyed
in a few lines; indeed, the whole of Section 2.3 is dedicated to this task. Instead we
provide Table 1 as an appetizer. It states the order of magnitude of OPT(n, p, h, α, β, ε)
for a number of selected ranges [α(w), β(w)]. For the sake of comparison, the last
three rows provide the corresponding performance of an optimal fixed-size scheme, and
of the aforementioned static-chunking and self-scheduling schemes, respectively. The
previously existing decreasing-size schemes are missing from the table because all of
them were designed for the special independent-tasks setting, so that they do not easily
adapt to more irregular scheduling problems.

Equipped with the magic formula for OPT, it becomes easy to prove upper bounds
for a whole variety of input models. So, for instance, for the independent-tasks setting
we can show that the expected deviation of a chunk with respect to [w − σ√lnw ·
w1/2, w + σ√p+ lnw · w1/2] is on the order of the standard deviationσ of a single
task’s processing time. This correspondence, which will be established by a careful ap-
proximation of the convergence rate of the central limit theorem, immediately implies
an upper bound ofO((h+ σ) · log log(n/p)) on theexpectedwasted time achievable in
the independent-tasks setting; as will also be shown, no algorithm can do significantly
better than this. Similary, the (much more poorly behaved) coupled-tasks setting cor-
responds to ranges [w, pw2] and ε ≤ σ 2, which implies anO((h+ σ 2) · √n) upper
bound on the expected wasted time. This can be improved in special cases, for example
to O(h · logn · log(n/p)), when the chunk processing times have exponentially small
tails. For the bounded-tasks setting, finally, the formula for OPT immediately implies an
upper and lower bound of2(h · log(n/p)).

On Scheduling Parallel Tasks at Twilight 497

1.2.3. Practical Significance. Apart from yielding tight performance bounds for a
whole variety of concrete settings, our analysis also provides valuable insights on how
to design practical schemes for scheduling tasks on parallel processors.

For example, we will see that by underestimating the irregularity, that is, by choosing
too narrow estimated ranges, the average deviationεmay grow as large asn/p, resulting
in disastrous performance. On the other hand, the first row of Table 1 gives an indication
that even a considerable widening of the estimated ranges has a much less dramatic
effect. This suggests that overestimating the irregularity is always preferable to risking
large deviations. Since large variances call for smaller chunks, it follows that in case of
doubt a chunk size should be chosen too small rather than too large—a guideline that
was not adequately followed in many previous papers.

Further, it turns out that for small to moderate degrees of irregularity, in particular
for the independent-tasks and the bounded-tasks setting, very simple scheduling schemes
suffice to achieve a wasted time that is logarithmic inn/p, which should be good enough
for all practical purposes. This insight was missing from most previous work, where
much more complicated strategies did not achieve a significantly better performance
(see also [1]). We show that in order to achieve sublogarithmic wasted times, a strategy
must consider the processing times of already completed chunks, which inevitably leads
to more complicated algorithms (and implementations).

Another practically relevant outcome of our analysis is that the decreasing of chunk
sizes should stop at some minimal chunk size that should ideally be a small constant
factor times the scheduling overhead. In fact, actual implementations of dynamic loop
scheduling schemes have been applying this principle for a long time, but so far no
theoretical explanation could be given. In previous works, only Lucco [22] and Liu et
al. [21] took this issue into account.

1.2.4. Beyond Scheduling. We would finally like to highlight two contributions of this
work that we expect to be of interest beyond the particular problem studied.

One such contribution is our idea of modelling the issue of vague information
in computational problems by anestimate, which models the implicit assumptions an
algorithm makes on the input, together with adeviation, which is not known until after the
problem has been solved. This approach is an alternative to the traditional probabilistic
approach, where the quantities in question are modelled as random variables. In the
context of this work, the deterministic approach turns out to be simpler, more direct,
closer to reality, and more general than its probabilistic counterpart. As a matter of fact,
the deterministic approach was our key to solving a problem that in previous work, using
probabilistic arguments, appeared to be mathematically intractable. We would expect
a similar approach to yield new results and insights also for other problems involving
quantities that vary in an unpredictable but somehow limited manner.

A second contribution that we expect to be of more general interest is ourmaster
theorem for the∗ operator. For a functionγ : R → R, the ∗ operator “counts” the
number of iterations ofγ required to get from somex to somey; formally, γ ∗(x, y) =
min{ i ∈ N: γ (i)(x) ≤ y }. Just as in our work, deriving closed formulas forγ ∗(x, y)
for a given functionγ frequently occurs as a subtask in the analysis of all kinds of
algorithms, where it is typically solved in some ad hoc manner. Our master theorem,

498 H. Bast

stated and proven in Section 4.1, provides a surprising approximation ofγ ∗(x, y) in
terms of the integral

∫
dz/(z− γ (z)).

1.3. Overview

The remainder of this article is organized as follows. The next section sets the framework
for our theoretical investigations. In particular, we make precise the concepts of our
generic approach and carefully explain the intuition behind them. Following that, Section
3 is dedicated to the proof of our generic upper bound, which we formulate in what we
call our Main Theorem. We first state the theorem, give a few explanations, and then
proceed to the (quite involved) proof. In the course of the proof, our newbalancing
strategy is described and explained. Section 4 is devoted to specific bounds for our
scheduling problem. We show how to instantiate our Main Theorem for a variety of
settings, including the aforementioned bounded-tasks, independent-tasks, and coupled-
tasks setting. Apart from yielding specific results, this section also provides valuable
intuition on the functional relation described by the magic OPT formula. In particular,
this section presents ourmaster theorem for the∗ operator. Section 5, finally, is concerned
with various lower bounds. We first show that no algorithm can do significantly better than
what is stated in our Main Theorem, and then extend this result to randomly distributed
processing times.

2. Framework

This section sets the formal framework for our scheduling scenario. In Section 2.1 we first
recapitulate the scenario and introduce some basic terminology. Section 2.2 provides the
definitions laying the ground work for our generic analyis. Section 2.3 serves to clarify
the intuition behind our formalization.

2.1. Basic Setting and Definitions

Given aren tasks, ordered in a queue, to be processed onp processors, initially idle.
Whenever a processor is idle, it may remove an arbitrary number of tasks, called achunk,
from the head of the queue. The processor is then working for a period of time, which
consists of theoverheadand theprocessing timeof the chunk, where the latter is just
the sum of the processing times of the contained tasks. For the sake of clarity, all our
results are stated for a fixed overheadh per chunk; as we will see in Section 3, however,
these results can be easily extended to variable overheads. Since the processing time of
a chunk is not known in advance, at any time all that is known about a scheduled chunk
is whether it is completed or not. Once a chunk has been assigned to a processor it may
not be preempted, but has to be run to completion on that processor.

A scheduling algorithmis a (deterministic) algorithm that determines how many
tasks an idle processor removes from the queue at which time. We say that a chunk
is scheduled(synonymously:assigned, allocated) by an algorithm, and we refer to the
number of tasks in a chunk as thesizeof that chunk. According to the above description,
for determining a chunk size an algorithm may employ knowledge of the processing
times of already completed chunks. If it ignores this information, the partitioning of the

On Scheduling Parallel Tasks at Twilight 499

Fig. 1. A scheduleS on four processors and some associated quantities.

tasks into chunks will be independent of the task processing times; the algorithm is then
said to havefixed partition.

Given n tasks andp processors, a scheduling algorithm produces aschedule, de-
fined as the partitioning of the tasks into chunks together with a mapping that deter-
mines for each chunk the time when it is scheduled, its completion time, its over-
head, and the (index of the) processor to which it is assigned. For our analysis, it is
convenient to understand a chunk as a collection of tasksplus its image under the
mapping of the schedule of which it is a part. In view of this convention, we of-
ten denote schedules by a collection of chunks, and, in particular, writeC ∈ S to
denote that chunkC belongs to the partitioning of scheduleS. The following defini-
tion names the characteristic properties of a schedule, which Figure 1 illustrates by an
example.

Definition. For a scheduleS on p processors and with overheadh per chunk, denote
by ck the number of chunks assigned to thekth processor, byTk their total processing
time, and bytfin

k the finishing time of the last such chunk, fork = 1, . . . , p. Then
define

chunks(S) =∑p
k=1ck,

makespan(S) = max{tfin
1 , . . . , t

fin
p },

imbalance(S) =∑p
k=1(makespan(S)− tfin

k),

idle(S) =∑p
k=1(makespan(S)− Tk − h · ck),

waste(S) = (h · chunks(S)+ idle(S)) /p.

The last two quantities are referred to as theidle timeandwasted time, respectively, ofS.

From the definition above, or more easily from Figure 1, it is straightforward to
deduce thatp times the makespan of a schedule is justp times its wasted time plus the
total processing time of all tasks. A scheduling algorithm has no influence on the latter,

500 H. Bast

so in order to achieve a schedule with near-optimal makespan, it must take care to incur
as little wasted time as possible.

2.2. Modelling Processing Time Irregularity

We now provide the basic ingredients for our generic cake, as tasted in the Introduction:
thevariance estimator, which represents an algorithm’s a priori estimate of chunk pro-
cessing times, thedeviation, which measures the deviation of the actual processing times
from these estimates, and theprogress rate, which specifies for a particular estimate the
optimal “pace” of the scheduling process. We first give a precise definition for each
of these terms, and afterwards provide extensive intuition in the form of a simplified
analysis. In the following definition, as well as later in the paper, id is used to denote the
identity functionx 7→ x.

Definition. For continuous and strictly increasing functionsα, β: R+ → R+ such
that, for some constantA ≥ 1, id/A ≤ α ≤ id ≤ β on R+, and such thatβ − α is
increasing, the function

[α, β] : w 7→ [α(w), β(w)]

is called avariance estimator. The functionβ−α is referred to as thewidthof [α, β], and
we say that[α, β] hassublinear, linear, orsuperlinearwidth if, forw→∞, the quotient
(β(w)− α(w))/w tends to zero, to a positive constant, or to infinity, respectively.

We briefly comment on the finer points of this first definition. As described in
the Introduction, the intended meaning of[α(w), β(w)] is that it estimates the range
of processing times for chunks of sizew. The fact thatα andβ are defined over the
positive reals instead of over the positive integers is merely a technicality, which will
be convenient later, in the analysis. The conditionα ≤ id ≤ β reflects the concept
of a similarity between task processing times, which we found to be a prerequisite to a
meaningful analysis. Note that our definition relates to a time scale, where the processing
time of a single task is “around” 1. The condition id/A ≤ α, finally, is essential to ensure
that a variance estimator represents meaningful information, because assuming bounds
on the processing times from above but none from below amounts to an almost complete
online setting. If, for example, all chunks assigned after the very first one had (close to)
zero processing time, then the wasted time of the schedule would be proportional to the
processing time of that first, and typically large, chunk.

Definition. Let [α, β] be a variance estimator. Then we define, for a chunkC of size
w with processing timeT that is part of a schedule onp processors,

earlyα(C) = max{0, α(w)− T},
lateβ(C) = max{0, T − β(w)},
devα,β(C) = earlyα(C)+ (p− 1) · lateβ(C),

On Scheduling Parallel Tasks at Twilight 501

called theearliness, lateness, anddeviation, respectively, ofC with respect to[α, β].
From that we define, for a scheduleS on p processors,

sum-earlyα(S) =
∑
C∈S

earlyα(C),

sum-lateβ(S) =
∑
C∈S

lateβ(C),

max-lateβ(S) = max
C∈S

lateβ(C),

and

av-devα,β(S) = (sum-earlyα(S)+ (p− 1) · sum-lateβ(S))/chunks(S),
am-devα,β(S) = (sum-earlyα(S)+ (p− 1) ·max-lateβ(S))/chunks(S).

The latter quantities are referred to as theaverage deviationandamortized deviation,
respectively, ofS with respect to[α, β].

We briefly explain why we have defined two measures for the deviation of a schedule.
First observe that both of them are zero if and only if the processing times of all chunks
are within the estimated ranges according to[α, β]. Also, in both definitions, finishing
the processing of a chunk earlier or later than estimated is weighted differently, the
intuitive reason being that the earliness of a chunk merely affects the processor working
on it, while all processors may have to wait for a chunk that finishes late; this becomes
clearer in Section 2.3. The two measures differ in that the average deviation accounts
for the lateness ofeverychunk, while only the chunk with maximal lateness contributes
to the amortized deviation. In particular, we always have

am-devα,β(S) ≤ av-devα,β(S),

and the two measures are equal if and only if all the lateness of the schedule is concentrated
on one chunk. Our main result will be expressed in terms of the average deviation,
which is easier to handle, while some of our more specific results, dealt with later in
the paper, call for the more precise (and actually more natural) amortized-deviation
measure. Note that the definition of the deviation of a chunk is consistent with those
of the deviation of a schedule, in the sense that for an arbitrary chunkC, devα,β(C) =
av-devα,β({C}) = am-devα,β({C}), where{C} denotes the (sub)schedule consisting only
of the chunkC.

In the definition of the progress rate, given next, the◦ operator denotes the compo-
sition of two functionsf andg, that is, f ◦ g: x 7→ f (g(x)). The inverse of a function
f : R+ → R+ that is strictly increasing and unbounded (but not necessarily surjec-
tive), is defined asf −1: y 7→ inf{ x ≥ 0 : f (x) ≥ y }. If f is a bijection, this is just the
usual inverse off . If f is a bijection betweenR+ and(y0,∞), for somey0 > 0, then
f −1(y) = 0, for y ≤ y0. The◦ as well as the−1 notation is used extensively throughout
the paper.

502 H. Bast

Fig. 2. The imbalance of the initial chunks is at mostp · (β(w)− α(w)).

Definition. For an arbitrary variance estimator[α, β] and for arbitraryM > 0, the
progress rateassociated with[α, β] andM is defined as

γM = max
{
0, id−max{M, (id+ δ)−1}} ,

whereδ = α−1 ◦ (β − α).

It will become clear in the following section that this complicated function has in
fact a very natural interpretation in the context of our scheduling problem.

2.3. Intuitive Analysis

As promised, we next provide intuition for the above definitions, by investigating, under
extremely simplifying (and formally inadmissable) assumptions, the properties of an
optimal scheduling process. Let[α, β] be a variance estimator, letp be the number of
processors, and let us first proceed under the assumption that the deviation is zero. We
begin by considering the firstp chunks to be scheduled; since they are all scheduled
at the same time, it seems natural to have them of a common sizew. Doing this, the
imbalance of the (partial) schedule constituted by thesep chunks is certainly at most
(p− 1) · (β(w)− α(w)); this is illustrated in Figure 2.

Now, for the sake of simplicity, we assume thatα is a linear function, that is,
α = id/A, for someA ≥ 1. To be able to “catch up” with the processor finishing last,
and thus to achieve an even processor utilization, each other processor must process at
least A · (β(w)− α(w)) more tasks. Since, in view of the scheduling overhead, it is
desirable that we schedule as few chunks as possible,w should be chosen maximal with
respect to this constraint. This suggests a value forw that guarantees that whenp · w
tasks are assigned,(p− 1) · A · (β(w)− α(w)) ≈ p · A · (β(w)− α(w)) tasks will be
left. Writing δ for A ◦ (β − α) = α−1 ◦ (β − α), like in the definition of progress rate
above,w should hence satisfy

p · w + p · δ(w) = n,

wheren is the total number of tasks. Under the assumption that id+ δ is a bijection of
R+ (which it indeed is if limw→0 β(w) = 0) this equation has a unique solution

w = (id+ δ)−1(n/p).

Unfortunately, matters become really complicated after the firstp chunks since from
then on the assignment of chunks will most likely occur in a completely asynchronous

On Scheduling Parallel Tasks at Twilight 503

Fig. 3. w = min
{

W/p,max{wmin, (id+ δ)−1(W/p)}
}

.

manner. However, for the purpose of our providing intuition here, we assume that,
throughout the scheduling process, chunks are scheduled inroundsof p chunks of a
common size each, determined according to the rule formulated above. However, we
consider that, as our true analysis will show, an optimal algorithm should not assign
chunks smaller than a certainminimal chunk sizewmin. Taking this into account, the
common chunk size for a round should be chosen as

w = min
{
W/p,max{wmin, (id+ δ)−1(W/p)}} ,

where W is the number of tasks unassigned before the first chunk of that round is
scheduled. Here the minimum ensures that for the very last chunk we do not assign more
tasks than are actually left. An illustration of this formula is given in Figure 3.

We measure the progress of an algorithm by the number of unassigned tasks divided
by p. Then a round ofp chunks, with common size determined according to the above
formula, reduces this quantity from someW/p to(

W − p ·min
{
W/p,max{wmin, (id+ δ)−1(W/p)}}) /p.

According to the definition of progress rate, this is justγwmin
(W/p). Note that, in Figure 3,

γwmin
(W/p) is just the width of the dark grey rectangle(s). Clearly, the largerδ is, the

closerγwmin
is to the identity function, which corresponds to a (literally) small progress

made by a single round. Table 2 gives a feeling for how the progress rate is related toδ,
where, for simplicity, it is assumed thatwmin = 1.

It is now easy to see why it is natural to express bounds on the wasted time in terms of
the progress rate. To this end, consider the following illustration of a scheduling process
evolving in rounds as described above:

n/p −→ γwmin
(n/p) −→ γ (2)

wmin
(n/p) −→ · · · −→ 0.

Table 2. Examples of variance estimators and their associated
progress rate.

[α(w), β(w)] δ(x) (id+ δ)−1(x) γ1(x)

[w,w +√w]
√

x ≈ x −√x ≈ √x
[w,2w] x x/2 x/2

[w,w · logw] ≈ x logx ≈ x/ logx ≈ x − x/ logx
[w,w2] ≈ w2 ≈ √x ≈ x −√x

504 H. Bast

The number of rounds in this process can be concisely expressed asγ ∗
wmin
(n/p), where

for an arbitrary functionf : R→ R, f ∗ is defined as

f ∗(x) = min{i ∈ N: f (i)(x) ≤ 0}.
Denoting our schedule byS, we hence have

chunks(S) = p · γ ∗
wmin
(n/p).

Note that for the variance estimators from Table 2, the functionγ ∗1 is approximately
log log, log, log2, and

√
, respectively.

For a bound on the wasted time, it remains to investigate the idle time ofS, which,
provided that waiting between two chunks never occurs (as is the case for most, though
not all, of the algorithms studied in this article), is equal to the imbalance ofS. We again
simplify matters here, making the seemingly natural assumption that the last chunks to
finish are also those which were scheduled last. Then, still in the absence of deviations,
the imbalance ofS is certainly bounded byp·(h+ β(wmin)). Now also taking deviations
into account, we assume, again for simplicity, that only the very last chunk, we call it
C1, is late, while the last chunks of the other processors, we call themC2, . . . , Cp, are
all early. In this seemingly worst case the deviations increase the imbalance by exactly
(p− 1) · lateβ(C1)+ earlyα(C2)+ · · · + earlyα(Cp). According to the definition given in
the previous section, this quantity is just sum-earlyα(S)+ (p− 1) ·max-lateβ(S), and
we obtain

imbalance(S) ≤ p · h+ p · β(wmin)+ sum-earlyα(S)+ (p− 1) ·max-lateβ(S).
Writing ε for the average deviation ofS, which in the considered case is equal to the
amortized deviation, we may conclude that

waste(S) = (h · chunks(S)+ imbalance(S))/p

= O
(
(h+ ε) · γ ∗

wmin
(n/p)+ β(wmin)

)
.

This is exactly the bound we prove in the next section.

3. Generic Upper Bound

This section is devoted to the proof of our Main Theorem, which, using the formal-
ism introduced in the previous section, provides a generic upper bound that covers a
wide spectrum of possible irregularities in the task’s processing times. We first state the
theorem, and then make a few remarks.

Main Theorem. Let task processing times be arbitrary, let the overhead be h≥ 1,and
let [α, β] be a variance estimator such that bothid/α andmin{β/id,2} are decreasing
functions. Then for allwmin ∈ N, wmin ≥ h, there exists an algorithm that for all
n, p ∈ N, given n tasks and p processors, produces a scheduleS with

waste(S) = O
(
(h+ ε) · γ ∗

wmin
(n/p)+ β(wmin)

)
,

whereε = av-devα,β(S) andγwmin
is the progress rate associated with[α, β] andwmin.

On Scheduling Parallel Tasks at Twilight 505

We first remark that the conditions imposed onα andβ are a technicality which stems
from our proofs. For the theorem above, we chose a convenient formulation, while the
actual weaker requirements are detailed in Theorems 3.2 and 3.3. All variance estimators
considered in this paper have these (for a variance estimator natural) properties.

In Section 5 we prove a lower bound showing that no algorithm can do better than
what is stated in the theorem above. This lower bound implies that the above bound is
optimal forwmin = dα−1(h + ε)e. To verify this, letδ = α−1 ◦ (β − α) and observe
that for all x ≤ (id + δ)(wmin), (id + δ)−1(x) ≤ wmin, so that owing toβ ≤ id + δ,
γ ∗
wmin
(β(wmin)) is justdβ(wmin)/wmine. This implies that forn/p ≥ β(wmin),

(h+ ε) · γ ∗
wmin
(n/p) ≥ (h+ ε) · (β(wmin)/wmin)

= ((h+ ε)/dα−1(h+ ε)e) · β(wmin) = Ä(β(wmin)).

Forwmin = dα−1(h+ε)e—and hence actually for allwmin in the order ofα−1(h+ε)—the
bound from the above theorem therefore becomes

waste(S) = O ((h+ ε) · γ ∗dα-1(h+ε)e(n/p)
)
,

which exactly matches the lower bound stated in Theorem 5.1. Note, however, that a
scheduling algorithm does not knowε in advance, which is why we formulated the above
theorem for generalwmin.

At this point, we also comment on the role of the overhead in our scheduling problem.
In the above theorem, as well as for all the other results stated in this paper, the per-chunk
overhead is assumed to be a fixed constanth. As is clear from our problem definition,
however, for bounds on the makespan it is irrelevant which part of the total time consumed
by a chunk is overhead and which is processing times of the tasks. As a consequence,
all our results therefore continue to hold for arbitrary overheads, with the meaning ofh
re-interpreted as theaverageoverhead incurred for a chunk, that is, the total overhead
divided by the number of chunks. This will become clearer in the forthcoming analysis.

A final remark is concerned with the somewhat peculiar role ofε in the bound
above, which is not, as one might expect, a property of the set of tasks alone, but of
the schedule produced by some algorithm on these tasks. In particular, for one and the
same input different algorithms might incur different values ofε. It should be clear that
this anomaly is not an artefact of our modelling but that it is inherent in a scheduling
scenario involving vague information. Since our algorithms cannot find out in advance
which tasks are going to take a long time and which a short time, one algorithm might,
by chance, group together tasks with high and low processing times in the same chunk,
while another algorithm might schedule all long tasks in one chunk and all short tasks
in another chunk. Obviously, the second algorithm will then incur a larger deviation
than the first. As we will see in the following section though, this effect disappears when
considering concrete settings that make somehow “symmetric” assumptions on the task’s
processing times.

The remainder of this section is organized as follows. Section 3.1 first establishes a
number of abstract properties of the∗ operator, which will be used on various occasions
in the analysis. In Section 3.2 we then consider the class of fixed-partition scheduling
algorithms, and show that they can achieve the above stated bound for all variance es-
timators of at least linear width. Following that, Section 3.3 provides a description of

506 H. Bast

the generic balancing (BAL) strategy, parameterized by[α, β], together with a complete
analysis. The final section, Section 3.4, is dedicated to a variant of BAL, named BAL ′,
whose analysis will establish the Main Theorem stated above. The reason that we inves-
tigate both schemes is that BAL is more natural and simpler than BAL ′, and also more
efficient for small to moderate deviations, while for very large deviations only BAL ′ is
asymptotically optimal.

3.1. Properties of the Star Operator

While most of the properties expressed in the lemmas below are quite obvious and
easy to prove, it took an exceptional effort from us (we could not resist mentioning it)
to establish Lemma 3.5 in its current form. Translated to our scheduling context, the
simple but somewhat amazing message of this lemma is that increasing the width of a
variance estimator by a constant factor increases the wasted-time bound stated in the
Main Theorem by at most the same factor. To avoid any misunderstandings, we first
restate our definition of the∗ operator.

Definition. For an arbitrary functionγ : R→ R, we define

γ ∗: x 7→ min{i ∈ N: γ (i)(x) ≤ 0}.

Remark. Throughout the paper, we apply the∗ operator only to functions such that
the value assigned above is finite for allx.

Lemma 3.1. Letγ, γ̃ : R→ R such thatγ is increasing.Thenγ ≤ γ̃ impliesγ ∗ ≤ γ̃ ∗.

Proof. It suffices to check that, by a simple induction,

γ (i)(x) = γ (γ (i−1)(x)) ≤ γ (γ̃ (i−1)(x)) ≤ γ̃ (γ̃ (i−1)(x)) = γ̃ (i)(x),

for all i ∈ N and for allx.

Lemma 3.2. Letγ : R→ R be increasing. Then for all x, y > 0, and for all i ∈ N0,

γ (i)(x) ≥ y ⇒ γ ∗(x)− γ ∗(y) ≥ i .

Proof. Fori ′ = γ ∗(y) > 0,γ (i
′−1)(y) > 0, hence by the assumption ony, and because

γ is increasing,γ (i
′−1+i)(x) ≥ γ (i ′−1)(y) > 0. This in turn implies thatγ ∗(x) > i ′−1+i

and thusγ ∗(x) ≥ i ′ + i .

Lemma 3.3. Letγ : R→ R with γ ≤ id−M , for some M> 0. Then for all x, y ≥ 0
with x ≥ y,

γ ∗(x)− γ ∗(y) ≤ d(x − y)/Me.

On Scheduling Parallel Tasks at Twilight 507

Proof. Let i be the smallest nonnegative integer with the property thatγ (i)(x) ≤ y.
Thenγ ∗(x)− γ ∗(y) ≤ i , and because each application ofγ decreases its argument by
at leastM , i ≤ d(x − y)/Me.

Lemma 3.4. For increasingδ: R+ → R+ and for arbitrary M > 0, the function
id−max{M, (id+ δ)−1} is well-defined and increasing.

Proof. Since id+ δ is strictly increasing and unbounded, the well-definedness follows
by our definition of the inverse given in Section 2.2. For a proof of the monotonicity
property, assume that forx, y ≥ 0, x − (id+ δ)−1(x) < y− (id+ δ)−1(y). Then with
x′ = (id+ δ)−1(x) andy′ = (id+ δ)−1(y), we haveδ(x′) = x − x′ < y− y′ = δ(y′)
and hence, becauseδ is increasing,x′ < y′, so that alsox = x′ +δ(x′) < y′ +δ(y′) = y.
This proves that id−(id+δ)−1 is increasing, which continues to hold when the minimum
with id− M is formed.

Lemma 3.5. For increasing continuousδ: R+ → R+ and for arbitrary M > 0 and
K ∈ N, let γ = id −max{M, (id + δ)−1} and γ̃ = id −max{M, (id + K δ)−1}. Then,
for all x > 0,

γ̃ ∗(x) ≤ K · γ ∗(x).

Proof. The key to the proof is showing that for allx > 0,

γ̃ (K)(K x) ≤ K · γ (x)

(we mention that the simpler statementγ̃ (K)(x) ≤ γ (x), which would also imply the
lemma, is wrong). For that, definew = max{M, (id + δ)−1(x)} as the portion thatγ
subtracts from an arbitrary fixed argumentx > 0. In casew = M , we very simply have
γ (x) = x − M , so thatγ̃ (K)(K x) ≤ K · x − K · M = K · γ (x). Otherwise, we have
x = w + δ(w) and thusδ(w) = x − w = γ (x), and for ally ≥ 0 it holds that

y ≥ w + K δ(w) ⇐⇒ (id+ K δ)−1(y) ≥ w,

that is,γ̃ subtracts at leastw from any argument≥ w + K δ(w). SinceK x = Kw +
K δ(w), we conclude that̃γ (K−1)(K x) ≤ w + K δ(w), and in the same way,̃γ (w +
K δ(w)) ≤ K δ(w). By the previous lemma,γ is increasing, so that

γ̃ (K)(K x) = γ̃ (γ̃ (K−1)(K x)) ≤ γ̃ (w + K δ(w)) ≤ K δ(w) = K · γ (x),

as claimed above. Iterative application of this statement yields that for alli ∈ N0,

γ̃ (Ki)(K x) ≤ K · γ (i)(x),

508 H. Bast

so that fori = γ ∗(x), we have

γ̃ (Ki)(x) ≤ γ̃ (Ki)(K x) ≤ K · γ (i)(x) ≤ 0,

which, by the definition of the star operator, proves thatγ̃ ∗(x) ≤ Ki = K · γ ∗(x).

Lemma 3.6. For increasing continuousδ: R+ → R+ and for arbitrary M > 0, let
γ = id−max{M, (id+δ)−1}, and forδ̃ = max{M, δ}, let γ̃ = id−max{M, (id+ δ̃)−1}.
Then, for all x > 0, γ ∗(x) = γ̃ ∗(x).

Proof. The proof is by induction onγ ∗(x), making use of the equivalenceγ ∗(x) =
1 ⇐⇒ 0 < x ≤ M ⇐⇒ γ̃ ∗(x) = 1 several times; in particular, it immediately
settles the base case. Forγ ∗(x) = 2, we must have 0< γ (x) ≤ M . Sinceγ̃ ≥ γ and
max{M, γ } = max{M, γ̃ }, this implies 0< γ̃ (x) ≤ M , which in turn proves̃γ ∗(x) = 2.
Forγ ∗(x) > 2, finally, letw = (id+ δ)−1(x), and verify thatδ(w) = γ (x) > M . Then
δ(w) = δ̃(w) and hencex = w + δ(w) = w + δ̃(w), which impliesγ (x) = γ̃ (x), and
it follows by way of induction that

γ ∗(x) = γ ∗(γ (x))+ 1= γ̃ ∗(γ (x))+ 1= γ̃ ∗(γ̃ (x))+ 1= γ̃ ∗(x).

3.2. Fixed-Partition Scheduling

In this section we explore the power of fixed-partition scheduling algorithms, that is,
algorithms whose division of the tasks into chunks does not depend on the tasks’ pro-
cessing times. One should note here that of the numerous known heuristics, which we
mentioned in the Introduction, all but the most recent one [13] are of the fixed-partition
type. For our purposes, it is useful to think of a particular fixed-partition algorithm as be-
ing specified by a function%: R+ → N such that, whenW tasks are unassigned, the size
of the next chunk scheduled is min{W, %(W/p)}. Note that the minimum withW is just
to ensure that the chunk size is never greater than the total number of remaining tasks. In
the following we denote an algorithm defined in this way by FP(%). Note that, naturally,
FP(%) never inserts waiting time before scheduling a chunk to an idle processor.

We next observe that it is natural for a fixed-partition algorithm to have%(x) ≤ x
unlessx is small. This is because when all processors request at roughly the same time—
as they indeed do in the beginning—all of them should be assigned a chunk of about the
same size. Given that%(x) ≤ x, a scheduling operation by FP(%) cannot decrease the
number of unassigned tasks by more than a factor of 1− 1/p, wherep is the number
of processors, andp successive scheduling operations therefore cannot decrease it by
more than a factor of(1−1/p)p ≥ 1

4. A reasonable fixed-partition algorithm is therefore
bound to have a number of scheduling operations that are logarithmic inn/p, the number
of tasks per processor.

However, variance estimators of sublinear width have a progress rateγ with γ (x)/
x = o(1), in which case the bound claimed in the Main Theorem becomes sublogarithmic
in n/p. As demonstrated by the following theorem, the class of fixed-partition algorithms
is however sufficiently powerful for all variance estimators of at least linear width. With
an eye towards a future application, the theorem is formulated for a slightly generalized

On Scheduling Parallel Tasks at Twilight 509

setting, where thep processors are not all idle initially, but start the computation at
arbitrary timest1, . . . , tp. The quantity

max{t1, . . . , tp} −
p∑

k=1

tk

is referred to as theinitial imbalanceof the respective schedule.

Theorem 3.1. Let task processing times be arbitrary, and let the overhead be h≥ 1.
Let [α, β] be a variance estimator, and let A≥ 1 with α ≥ id/A. Then for allwmin ∈
N, wmin ≥ h, and for all n, p ∈ N, given n tasks and p processors, the algorithm
FP(x 7→ bβ−1(x/A+ β(wmin))c) produces a scheduleS with

chunks(S) ≤ p · γ ∗(n/p),

idle(S) ≤ p · h+ p · β(wmin)+max{0, I − n/A− ph} + E,
waste(S) ≤ (h+ ε) · γ ∗(n/p)+ h+ β(wmin)+max{0, I − n/A− ph}/p,

whereE = sum-earlyα(S)+(p−1) ·max-lateβ(S), ε = am-devα,β(S) = E/chunks(S),
γ = max{0, id−max{wmin, b(3Aβ)−1c}}, and I is the initial imbalance ofS.

Addendum. For any δ̃: R+ → R+ such thatδ̃ ≥ 6A ·max{β − α, id} on the interval

[wmin, b(id+ δ̃)−1
(n/p)c], γ̃ = id − max{wmin, b(id+ δ̃)−1c} has the property that

γ ∗(n/p) ≤ γ̃ ∗(n/p).

That a fixed-partition algorithm can achieve the bound stated in the Main Theorem
for variance estimators of at least linear width is implied by the addendum of Thereom
3.1 as follows. Given a variance estimator[α, β] such thatβ−α ≥ id/D for someD ≥ 1,
δ̃ = 6D A · (β−α) is easily seen to fulfill the conditioñδ ≥ 6A ·max{β−α, id}. On the
other hand, sincẽδ is within a constant factor ofδ = α−1 ◦ (β − α), Lemma 3.5 implies

that, with γ̃ = id −max{wmin, b(id+ δ̃)−1c} andγwmin
= id −max{wmin, (id + δ)−1},

γ̃ ∗ is within a constant factor ofγ ∗
wmin

. Plugging this into the bound of Theorem 3.1 we
obtain that, under the assumptions of that theorem and without initial imbalance,

waste(S) = O
(
(h+ ε) · γ ∗

wmin
(n/p)+ β(wmin)

)
,

which is exactly the bound stated in the Main Theorem.
The proof of Theorem 3.1 is organized as follows. We first give a complete proof for

the caseA = 1, that is, forα = id, and subsequently extend our findings to the general
case by means of a simple time-scaling argument. In the analysis forA = 1, we first in-
vestigate how the imbalance of the schedule produced by FP(x 7→ bβ−1(x + β(wmin))c)
develops over time. Then we estimate the total number of scheduling operations. A final
paragraph is dedicated to the proof of the addendum. Throughout the proof, letl denote
the number of chunks inS, and for j = 1, . . . , l , we usewj andWj for the size of thej th
chunk and the number of tasks unassigned before the scheduling of that chunk, respec-
tively. In particular then,wj = min{Wj , bβ−1(Wj /p + β(wmin))c}. For conventional
purposes, we also takeWl+1 = 0.

510 H. Bast

3.2.1. The Idle Time. For j = 1, . . . , l , let Cj denote thej th chunk assigned. As is
shown next by a simple induction, for allj = 0, . . . , l ,

imbalance({C1, . . . , Cj })
≤ p · h+ p · β(wmin)+Wj+1+max{0, I − n− ph}
+ sum-earlyid({C1, . . . , Cj })+ (p− 1) ·max-lateβ({C1, . . . , Cj }).

For the base casej = 0, note that all the terms on the right-hand size are nonnegative.
For the induction stepj − 1 → j , we distinguish between two cases, depending on
the processing timeTj of Cj . In case this chunk is the last to finish among those in
{C1, . . . , Cj }, we have

imbalance({C1, . . . , Cj })
≤ (p− 1) · (h+ Tj)

≤ (p− 1) · (h+ β(wj)+ lateβ(Cj))

≤ p · h+ p · β(wj)− β(wj)+ (p− 1) ·max-lateβ({C1, . . . , Cj })
and it remains to verify that, owing towj = min{Wj , bβ−1(Wj /p + β(wmin))c} and
β ≥ id, p · β(wj) − β(wj) ≤ Wj + p · β(wmin) − wj = Wj+1 + p · β(wmin). In the
opposite case, ifCj is not the chunk of{C1, . . . , Cj } to finish last, we simply have

imbalance({C1, . . . , Cj }) = imbalance({C1, . . . , Cj−1})− (h+ Tj)

≤ imbalance({C1, . . . , Cj−1})− wj + earlyid(Cj),

and the desired bound follows by the induction hypotheses. This completes the induction,
and we have thus proven that

idle(S) ≤ p · h+ p · β(wmin)+max{0, I − n− ph} + E,
whereE = sum-earlyid(S)+ (p− 1) ·max-lateβ(S).

3.2.2. The Scheduling Overhead. In order to bound the total number of chunks sched-
uled, first observe that for allj = 1, . . . , l , wj = min{Wj , bβ−1(Wj /p+ β(wmin))c} ≤
Wj /p+ β(wmin), and thusWj+1 = Wj −wj ≥ (1− 1/p) ·Wj − β(wmin). Hence for all
j = 1, . . . , l − p+ 1,

Wj+p−1 ≥ (1− 1/p)p−1 ·Wj − (p− 1) · β(wmin) ≥ Wj /3− p · β(wmin),

which implies that, providedWj+p > 0, each of thej th through(j + p− 1)th chunks
is of size at least⌊

β−1(Wj+p−1/p+ β(wmin))
⌋ ≥ ⌊β−1(Wj /(3p))

⌋ = ⌊(3β)−1(Wj /p)
⌋
.

In combination with the fact that each chunk, except maybe the very last, has size at
leastwmin, we thus obtain that for allj = 1, . . . , l − p,

Wj+p ≤ max
{
0,Wj − p ·max{wmin, b(3β)−1(Wj /p)c}} = p · γ (Wj /p).

By the definition of the∗ operator this immediately implies the desired bound

chunks(S) ≤ p · γ ∗(n/p).

On Scheduling Parallel Tasks at Twilight 511

3.2.3. The Wasted Time. Combining the bounds from Sections 3.2.1 and 3.2.2, using
thatε = am-devα,β(S) = E/chunks(S), we obtain

waste(S) = (h · chunks(S)+ idle(S))/p

≤ (h+ ε) · chunks(S)/p+ h+ β(wmin)+max{0, I − n− ph}/p

≤ (h+ ε) · γ ∗(n/p)+ h+ β(wmin)+max{0, I − n− ph}/p.

This proves Theorem 3.1 for the caseA = 1.
The extension to the general case is straightforward. Given an arbitraryA ≥ 1 with

α ≥ id/A, first observe that, since in the bounds claimed in the theoremα only occurs
in the deviationsε andE (and not in the definition ofγ), and because these deviations
can only become smaller for a wider variance estimator, we can assume thatα = id/A
without loss of generality. We then rescale our time unit by a factor ofA, such that the
variance estimator becomes [id, Aβ], and all quantities measured in time, namely,I , h,
E , andε increase by a factor ofA. We can now apply the analysis from above, obtaining
that forγ = max{0, id−max{wmin, b(3Aβ)−1c}},

chunks(S) ≤ p · γ ∗(n/p),

idle(S) ≤ A · p · h+ A · p · β(wmin)+max{0, A · I − n− A · ph} + A · E,
waste(S) ≤ (Ah+ Aε) · γ ∗(n/p)+ A · h+ A · β(wmin)

+ A ·max{0, I − n/A− ph}/p.

Measured in the original time unit, that is, multiplied by 1/A, these are exactly the
bounds stated in Theorem 3.1.

3.2.4. The Addendum. It remains to prove the addendum, which, under the aditional
assumption that there existsδ̃: R+ → R+ such thatδ̃ ≥ 6A · max{β − α, id} on

[wmin, b(id+ δ̃)−1
(n/p)c], claims a bound on the wasted time in terms of the function

γ̃ = id − max{wmin, b(id+ δ̃)−1c}. To this end, letx ≤ n/p andw = max{wmin,

b(id+ δ̃)−1
(x)c}, for which owing to the assumption oñδ,

w + δ̃(w) ≥ 3A · w + δ̃(w)/2≥ 3A · w + 3A · (β(w)− α(w)) ≥ 3Aβ(w).

Now if w > wmin, we have

x ≥ (id+ δ̃)(w) ≥ 3Aβ(w) = 3Aβ(b(id+ δ̃)−1
(x)c),

and since 3Aβ and hence also its inverse is increasing, we obtain

(3Aβ)−1(x) ≥ b(id+ δ̃)xc,
and thus also

b(3Aβ)−1(x)c ≥ b(id+ δ̃)xc.
For w = wmin, we haveb(id+ δ̃)−1

(x)c ≤ wmin, and we conclude that for arbitrary
x ≤ n/p,

max{wmin, b(3Aβ)−1(x)c} ≥ max{wmin, b(id+ δ̃)−1
(x)c}.

512 H. Bast

Thereforeγ (x) ≤ γ̃ (x), so that by the monotonicity property of the∗ operator established
in Lemma 3.1,γ ∗(n/p) ≤ γ̃ ∗(n/p). We have thus, finally, proven Theorem 3.1 in its
entirety.

3.3. The Balancing Strategy

As we have seen, Theorem 3.1 from the previous section implies the bound stated in
the Main Theorem only for variance estimators of at least linear width. This section is
dedicated to the genericbalancing(BAL) strategy, which provides optimal algorithms
for every given variance estimator. To achieve this, for (some of) its scheduling decisions
the balancing strategy considers the time when a chunk is scheduled, which by definition
is ignored by any fixed-partition algorithm.

We first describe the workings of BAL on a high level, from which the strategy
may be viewed as working in two phases. In the first phase, BAL groups a number of
consecutive processor requests, serving them in what we call around, and trying to
maintain the invariant that all processors finish their chunks of a round at roughly the
same time. Naturally, chunk sizes will decrease over the rounds, until a point where the
width β(w)− α(w) of the estimated ranges [α(w), β(w)] becomes large relative to the
chunk sizes. Then the second phase begins, where the remaining tasks are scheduled by
a fixed-partition algorithm, selected according to Theorem 3.1.

We now give a detailed description of BAL. Like a particular fixed-partition algorithm
is specified by a function%: R+ → R+, an instance of BAL is obtained by implementing
two functions%1, %2: R+ → R+, one for each phase; we denote such an instance by
BAL(%1, %2). The first of these functions is used to determine the sizew of the first chunk
assigned in a round, namely,w = %1(W/p), whereW is the number of tasks unassigned
at the beginning of the round. If exactlyp chunks were assigned in the round, each of
sizew, then according to our heuristic considerations in Section 2.3,w should be chosen
as approximately max{wmin, (id+δ)−1(W/p)}, whereδ = α−1◦ (β−α) andwmin is the

minimal chunk size. For technical reasons, we actually take%1 = b(id+ δ̃)−1c, where
for someK ≥ 6,

δ̃(w) = K ·max{wmin,2 ·max{β(w)− w,w − α(w)}} .
This amounts to pretending a slightly larger width, which, as Lemmas 3.5 and 3.6 will
ensure, does not affect our final result by more than a constant factor. Concerning the
constantK , our analysis will actually choose a relatively large value in order to avoid
tedious complications. However, as is pointed out in Section 3.3.4, a smaller value would
also work.

After having computedw, which will be the size of the first chunk in the round,
BAL next setsd = (W/p−w)/K as thetoleranceof the round. Note that, for a variance

estimator[α, β], and for%1 = b(id+ δ̃)−1c as above, we havew = b(id+ δ̃)−1
(W/p)c.

Hence, ifW/p < K · wmin, we havew = 0 andd = W/p
/

K , while in the opposite
case, we have(id + δ̃)(w) ≤ W/p andd ≥ δ̃(w)/K = max{wmin,2 · max{β(w) −
w,w − α(w)}}, which implies [α(w), β(w)] ⊆ [w − d/2, w + d/2].

Having computedw andd, BAL next tests the conditiond > w/6. If it is fulfilled,
the first phase is finished. According to the above, this happens when either few tasks
remain, namely, ifW/p < K · wmin, or if the width of [α(w), β(w)] is relatively

On Scheduling Parallel Tasks at Twilight 513

Fig. 4. Chunk assignment in a round started at timeT , with targett and toleranced. The light gray rectangles
indicate chunk sizes and not processing times.

large compared withw. If d ≤ w/6, the round is continued and it then holds that
d/2≥ max{β(w)− w,w − α(w)}, d ≥ wmin, andw ≥ 6 · wmin.

Having computedw andd, and having checked thatd ≤ w/6, BAL next sets the
target t = T + h + w, whereT is the actual time. To achieve a finishing time of
approximatelyt for all chunks assigned in the round, BAL serves each request arriving
at a timeT ′ with T ≤ T ′ ≤ t − d, by a chunk of sizew′ = min{w, bt − T ′c}. Note that
sinceT ′ ≤ t − d ≤ t − wmin, w′ is guaranteed to be at leastwmin, and that forT ′ = T ,
indeedw′ = w. Our analysis assumes thath ≥ 1 and that̃δ is an increasing function, in
which caset ≤ T ′ + h + w′ ≤ t + h and max{β(w′) − w′, w′ − α(w′)} ≤ d/2. The
estimated finishing time of each chunk assigned in the round is therefore contained in
the interval [t − d/2, t + h+ d/2], which is referred to as thetolerance intervalof that
round. The quantitiest − d/2 andt + h+ d/2 are called thelowerandupper tolerance
(threshold) of the round, respectively. Figure 4 gives an illustration of what has been
described so far.

The round ends at timet − d, and with the arrival of the first request at or after
time t − d, a new round is started in the same manner as just described. This process
continues until at the beginning of a potential new round, the conditiond > w/6 is
fulfilled for the first time, in which case the first phase ends. In the second phase, the
remaining tasks are scheduled by the fixed-partition algorithm specified by%2. According
to Theorem 3.1, for a given variance estimator[α, β] and minimal chunk sizewmin, we
take%2: x 7→ bβ−1(x/A+ β(wmin))c, for someA ≥ 1 with α ≥ id/A.

Figure 5 gives a pseudo C-code implementation of the function that computes, for
a given request, the chunk size according to BAL(%1, %2). The code involves a number
of global variables, where (the constants)p andh hold the number of processors and
the scheduling overhead, respectively,W is initialized to the total number of tasks, and
PHASE is initially set to 1. All the other variables are initialized to zero, to ensure that
a new round is started right in the beginning (at time 0).

For a better understanding of the particularities of BAL, we next take a look at the
schedule produced in its first phase. Here, as well as later in the analysis, it is convenient
to denote byWi , wi , di , ti the values of the program variablesW, w, d, t just after the

514 H. Bast

Fig. 5. The size computed by BAL(%1, %2) for a chunk scheduled at timeT .

i th execution of lines (2)–(5), that is, during thei th round of the first phase. Note that
according to line (3),Wi /p = wi + Kdi , and by line (4),wi ≥ 6di , which owing to
K ≥ 6 implies thatwi ≥ 3/K ·Wi /p. The tolerance thresholds of roundi areti − di /2
andti + h + di /2, and will be denoted byt low

i andtupp
i , respectively. Roundi ends at

time ti − di , which will be denoted bytend
i .

For simplicity, we first restrict our attention to the deviationless case, where the
processing times of all chunks are within the estimated ranges. As was shown already
in the description of BAL, each chunk then finishes within the tolerance thresholds of its
round, which, by the condition in line (1), implies that at most one chunk is assigned to
each processor in each round. Hence at mostp ·wi tasks are assigned in roundi , so that
at leastp · Kdi tasks are left for the next round, that is,

Wi+1/p ≥ Kdi .

This in turn implies thatwi+1 ≥ 3/K · Wi+1/p ≥ 3di , and since the(i + 1)th round
does not start beforetend

i = ti − di , we have

tend
i+1 = ti+1− di+1 ≥ tend

i + h+ wi+1− di+1 > tend
i + h+ 1.5di = tupp

i .

This proves the valuable property that the tolerance intervals of successive rounds do not
intersect, and that in every round the previously assigned chunks finish before the round
ends. Therefore each processor is guaranteed to be assigned at least one chunk in every
round, so that actually, by what was already shown above, exactly one chunk is assigned
to each processor in each round. We conclude that in the deviationless case, the schedule
produced in BAL’s first phase exhibits a very regular structure, which is illustrated in an
example in Figure 6.

Such a structure makes it very easy to bound the wasted time of the schedule:
the idle time is at mostp − 1 times the width of the last tolerance interval, and the
number of scheduling operations is justp times the number of rounds. In the gen-
eral case, however, with arbitrary and unpredictable deviations, this structure is not
preserved. Chunks might then be processed very quickly, causing thebusynessof a

On Scheduling Parallel Tasks at Twilight 515

Fig. 6. Three rounds in the deviationless case.

round, defined as the additional number of tasks assigned in this round to processors
after their first chunks were completed. Too much busyness is of course bad, leav-
ing the next round with fewer tasks than would be required to reduce the imbalance
further. In fact, in the general case it is not even guaranteed that the upper tolerance
thresholds of successive rounds form an increasing sequence. Equally bad, processors
may also enter a round very late or not at all, in case they are still occupied with
chunks of previous rounds. This accounts for thelazinessof a round, to be defined
later as the resulting decrease in the number of tasks scheduled in that round. In an
extreme case, only a single chunk might be scheduled in a whole round, and a fast de-
crease of the unassigned tasks over the rounds, as for the deviationless case, cannot be
proven.

Note that busyness and laziness are side effects of the philosophy behind BAL to
compensate for an unexpected behaviour of a chunk by adjusting the size of the next
chunk assigned to the affected processor accordingly. This behaviour turns out to give
good results in practice, but, unfortunately, causes major technical complications in the
analysis. In extremely bad cases, when deviations are very large, we will see that BAL

is not even asymptotically optimal in the strict theoretical sense. As an alternative, we
present in Section 3.4 a variant of BAL that avoids the difficulties mentioned, at the price,
however, of a more involved implementation and a considerably worse performance
in the case of moderate deviations. The remainder of this section is dedicated to the
complete analysis of the BAL strategy, and will culminate in the following result.

Theorem 3.2. Let task processing times be arbitrary,and let the overhead be h≥ 1.Let
[α, β] be a variance estimator, let A≥ 1withα ≥ id/A,and letwmin ∈ N,wmin ≥ h such
that, for K = 49A, δ̃: w 7→ K ·max{wmin,2·max{β(w)−w,w−α(w)}} is increasing,
and the functionw 7→ δ̃(w)/w− 6A has at most one zero. Then for all n, p ∈ N, given

n tasks and p processors, the algorithmBAL(%1, %2) with%1: x 7→ b(id+ δ̃)−1
(x)c and

%2: x 7→ bβ−1(x/A+ β(wmin))c produces a scheduleS with the property that

waste(S) = O
(
(h+ ε) · γ ∗

wmin
(n/p)+ β(wmin)

)
,

whereγwmin
is the progess rate associated with[α, β] andwmin, and for some partition

516 H. Bast

S = S1 ∪̇S2 ∪̇S3, ε = (h+ε1) ·(h+ε2) ·(h+ε3)/h2−h ≤ (h+ε1+ε2+ε3)
3/h2−h,

where for i= 1,2,3,

εi = (sum-earlyα(Si)+ sum-lateβ(Si)+ (p− 2) ·max-lateβ(Si))/chunks(Si).

Remark. Note that each of theεi is somewhere between am-devα,β(Si) and av-devα,β
(Si), but typically closer to the former. Formally, the term forε is incomparable with
either of am-devα,β(S) or av-devα,β(S). However, as will become clear in the analysis,
for practical purposes we can assume thatε ≈ (am-devα,β(S))3/h2.

The proof of Theorem 3.2 is quite involved, so that we organized it into a number
of self-contained modules. As a preparation, Section 3.3.1 introduces the symbols used
in the proof. Section 3.3.2 establishes a number of basic properties of the schedule
produced in the first phase, corresponding to what was shown above in the absence
of busyness and laziness. Bounds on the latter are provided in Section 3.3.3. Building
on this, Sections 3.3.4 and 3.3.5 derive bounds on the total overhead and idle time,
from which the final section, Section 3.3.6, derives the desired bound on the wasted
time.

3.3.1. Terminology. LetSI andSII denote the two parts ofS pertaining to the chunks
scheduled in the first and second phase, respectively. Letr denote the number of rounds
in the first phase, that is, the number of executions of lines (2)–(5) except the last.
Then, as before,Wi , wi , di , ti denote the values of BAL’s program variablesW, w, d,
t in the various rounds, and fori = 1, . . . , r , tend

i = ti − di , t low
i = ti − di /2, and

tupp
i = ti +h+di /2. It will further be convenient to haved0 = tupp

0 = 0, and to denote by
bothWr+1 andn′ the number of unassigned tasks when the second phase begins. Besides,

we defineγ̃ = max{0, id − max{wmin, %1}} = max{0, id − max{wmin, b(id+ δ̃)−1c}},
and recall that, by the definition of%1 and because of lines (2)–(4),wi anddi are at least
wmin, and thusγ̃ (Wi /p) = Wi /p − wi = Kdi , for i = 1, . . . , r . Also note that, by
Lemma 3.4,γ̃ is an increasing function.

In order to make the notions ofbusynessandlazinessprecise, we writeRi for the
subschedule pertaining to the chunks assigned in roundi ; clearly, thenSI = R1∪· · ·∪Rr .
If a processor is assigned chunksC1, . . . , Cl in roundi , its busyness in that round is defined
as the total size ofC2, . . . , Cl , which is zero forl ≤ 1. The total busyness of all processors
in round i is denoted by busy(Ri), and busy(SI) = busy(R1) + · · · + busy(Rr). The
laziness of a processor in a round is zero for the first round, and max{0, wi −2.5di−1−s}
for roundi , 2 ≤ i ≤ r , wheres is the size of the first chunk assigned to that processor
in round i , that is,s = min{wi , bti − T ′c} if that chunk is scheduled at timeT ′ (see
line (7)), ors = 0 if the processor does not request any chunk at all in that round. The
total laziness of all processors in roundi is denoted by lazy(Ri), for i = 1, . . . , r , and
lazy(SI) = lazy(R1)+ · · · + lazy(Rr).

3.3.2. Local Properties of a Round. This section provides a number of simple prop-
erties ofSI , which constitute the basic building blocks of the further analysis. In fact,
Lemmas 3.8–3.10 below correspond to what was shown above in our informal description

On Scheduling Parallel Tasks at Twilight 517

of BAL for the deviationless case, except that there are now correcting terms involving
busy(Ri) and lazy(Ri) for roundi . Lemma 3.7 following says that the amount of time
that the finishing time of a chunkC, denoted by finish(C), deviates from the tolerance
thresholds of its round is bounded by what we defined as the chunk’s earliness or lateness,
respectively.

Lemma 3.7. For every chunkC assigned in round i, with finish(C) denoting the time
when it is completed,

t low
i − earlyα(C) ≤ finish(C) ≤ tupp

i + lateβ(C),

except that the first inequality does not necessarily hold ifC is the very last chunk ofS.

Proof. We have already seen in the description of BAL that for a chunkC scheduled at
time T ′ in roundi and of sizew′ = min{wi , bti − T ′c},

t low
i ≤ T ′ + h+ α(w′) ≤ T ′ + h+ β(w′) ≤ tupp

i .

Hence, with proc-time(C) denoting the processing time ofC,

t low
i − α(w′)+ proc-time(C) ≤ T ′ + h+ proc-time(C)

≤ tupp
i − β(w′)+ proc-time(C),

and according to the definitions made in Section 2.2, earlyα(C) = max{0, α(w′)−proc-
time(C)}, lateβ(C) = max{0,proc-time(C) − β(w′)}, and finish(C) = T ′ + h + proc-
time(C). Finally, verify that in caseC is the very last chunk ofS, thus scheduled in round
r , its size might be smaller than min{wr , btr − T ′c} due to line (9), in which case the
upper bound on finish(C) holds all the more but not necessarily so the lower bound.

Lemma 3.8. For all i ∈ [1 . . r], Wi = p·wi+p·Kdi ,and it holds thatwi ≥ 5/K ·Wi /p
and Kdi ≤ (1− 5/K) ·Wi /p.

Proof. According to line (3) of the BAL code,di = (Wi /p−wi)/K , and henceWi =
p·wi + p·Kdi . According to line (4) and becauseK ≥ 30,di ≤ wi /6≤ (1

5−1/K) ·wi ,
which is equivalent to(Wi /p − wi)/K ≤ (1

5 − 1/K) · wi , which implies the two
inequalities stated in the lemma.

Lemma 3.9. For all i ∈ [1 . . r], Wi+1 ≥ p · Kdi − busy(Ri).

Proof. The total size of all chunks assigned to a processor in roundi is the size of
the first chunk, which is at mostwi , plus the busyness of that processor in roundi . The
total size of all chunks assigned in roundi is hence at mostp · wi + busy(Ri), and
since, by the previous lemma,Wi = p ·wi + p · Kdi , it follows thatWi+1 ≥ p · Kdi −
busy(Ri).

518 H. Bast

Lemma 3.10. For all i ∈ [1 . . r − 1],

(a) tend
i+1− tend

i ≥ 0;

(b) tend
i+1− tupp

i ≥ wi+1− 2.5di ;

(c) tupp
i+1− tupp

i ≥ di − busy(Ri)/(3p).

Proof. Because of line (1), roundi + 1 cannot begin before the end of roundi , so that

ti+1 ≥ tend
i + h+ wi+1.

Concerning (a), we havetend
i+1 = ti+1−di+1 ≥ tend

i +h+wi+1−di+1, and according
to line (4),wi+1 ≥ 6di+1.

Concerning (b), it holds thattend
i+1 ≥ tend

i +h+wi+1−di+1 = tupp
i −1.5di+wi+1−di+1,

and, by the monotonicity of̃γ , di+1 = γ̃ (Wi+1/p)/K ≤ γ̃ (Wi /p)/K = di .
Concerning (c), we havetupp

i+1 ≥ ti+1 ≥ tend
i + h+wi+1 = tupp

i − 1.5di +wi+1, and
owing to Lemmas 3.8 and 3.9,wi+1 ≥ 5/K ·Wi+1/p ≥ 5di − busy(Ri)/(3p).

Lemma 3.11. For all i ∈ [1 . . r], Wi+1 ≤ p · Kdi + p · 2.5di−1+ lazy(Ri).

Proof. If i = 1, clearlyW2 = W1 − p · w1 = Kd2, whereas ifi = r andWr+1 = 0,
then there is nothing to show. Otherwise,i ≥ 2 and the size of each chunk assigned in
roundi is exactly the value assigned in line (7), so that, by the definition of laziness, the
total size of these chunks is at leastp · (wi − 2.5di−1)− lazy(Ri). By Lemma 3.8, we
haveWi = p · wi + p · Kdi , and thusWi+1 ≤ p · Kdi + p · 2.5di−1+ lazy(Ri).

Lemma 3.12. For i ∈ [1 . . r − 2], Wi+3/p ≤ γ̃ (Wi /p)+ lazy(Ri+1 ∪Ri+2)/p.

Proof. By two applications of the previous lemma and using Lemma 3.8,

Wi+3/p ≤ Kdi+2+ 2.5di+1+ lazy(Ri+2)/p

≤ (1− 5/K) ·Wi+2/p+ 2.5di+1+ lazy(Ri+2)/p

≤ (K − 5) · di+1+ 2.5di + lazy(Ri+1)/p+ 2.5di+1+ lazy(Ri+2)/p

≤ Kdi + lazy(Ri+2)/p+ lazy(Ri+1)/p

= γ̃ (Wi /p)+ lazy(Ri+1 ∪Ri+2)/p.

Lemma 3.13. For i ∈ [1 . . r], Wi+1/p ≤ γ̃ (bi /3c)(n/p)+ lazy(R1 ∪ · · · ∪Ri)/p.

Proof. First check that for allx, y ≥ 0, because%1 = b(id+ δ̃)−1c is an increasing
function,

γ̃ (x + y) = x + y−max{wmin, %1(x + y)}
≤ x + y−max{wmin, %1(x)} = γ̃ (x)+ y.

Using this property the claim follows by a simple induction making use of the previous
lemma.

On Scheduling Parallel Tasks at Twilight 519

3.3.3. Bounding Busyness and Laziness. The following two lemmas relate the busy-
ness and laziness of the scheduleSI to its total earliness and lateness.

Lemma 3.14. For all i ∈ [1 . . r], busy(Ri) ≤ 2 · sum-earlyα(Ri).

Proof. Let C1, . . . , Cl denote the chunks successively assigned to a fixed processor in
round i , where possiblyl = 0. By Lemma 3.7, we have that forj = 1, . . . , l − 1,
earlyα(Cj) ≥ t low

i − finish(Cj). Besides, the right-hand side is at leastdi /2, since by the
condition in line (1) all ofC1, . . . , Cl−1 finish beforetend

i = t low
i − di /2. Hence, for all

j = 1, . . . , l − 1,

2 · earlyα(Cj) ≥ t low
i − finish(Cj)+ di /2= ti − finish(Cj) ≥ bti − finish(Cj)c,

where, according to line (7), and since finish(Cj) is at leasth after the beginning of
the round, the last term is just the size ofCj+1. Consequently, the busyness of the
considered processor in roundi , which is just the total size ofC2, . . . , Cl , is bounded by
2 · sum-earlyα({ C1, . . . , Cl−1 }), and the lemma follows.

Lemma 3.15. lazy(SI) ≤ sum-lateβ(SI)+ sum-earlyα(SI).

Proof. This proof is a bit longer, so we give a plan. We first focus on the laziness of a
single processor in a single round. This will help us investigate the laziness caused by a
single chunk (in possibly many rounds), after which it will be straightforward to bound
the total laziness of a processor and finally of the whole schedule.

There is never laziness in the first round, so we consider a fixed processor in a round
i , where 2≤ i ≤ r . Let T denote the finishing time of the last chunk assigned to the
processor before roundi , and writeL for the processor’s laziness in that round, which
we defined as max{0, wi − 2.5di−1− s}, wheres= min{wi , bti − Tc} if T < tend

i , and
s= 0 otherwise. ForT < tend

i , therefore

L = max{0, wi − 2.5di−1−min{wi , bti − Tc}}
≤ max{0,max{−2.5di−1, wi − 2.5di−1− ti + T + 1}}
≤ max{0, T + wi − 2.5di−1− tend

i }
≤ max{0, T − tupp

i−1},

where the penultimate inequality uses thattend
i = ti −di ≤ ti −1, and the last inequality

follows by Lemma 3.10(b). ForT ≥ tend
i , on the other hand,L = max{0, wi −2.5di−1},

which, again by Lemma 3.10(b), implies that

L ≤ max{0, tend
i − tupp

i−1}.

In any case therefore

L ≤ max{0,min{tend
i , T} − tupp

i−1} = |[0, T] ∩ [tupp
i−1, t

end
i]|,

520 H. Bast

that is, the laziness of the considered processor in roundi is bounded by the part ofT
that lies in the (possibly empty) interval [tupp

i−1, t
end
i].

We are now ready to bound the total laziness incurred by a single fixed chunkC
scheduled in some roundj . For that purpose definej ′ as the index of that round after
round j , in which the next chunk is assigned to the same processor, orj ′ = r , if C is the
last chunk of that processor. Then, according to what was shown in the last paragraph,
the laziness caused byC is at most the part of [0, finish(C)] that lies in the intervals
[tupp

j , tend
j+1], . . . , [tupp

j ′−1, t
end
j ′], which, by Lemma 3.10(a), are disjoint (note that some of

them may be empty). This quantity is at most max{0, finish(C)−min{tupp
j , . . . , tupp

j ′−1}},
and, by Lemma 3.7, finish(C)− tupp

j ≤ lateβ(C), while, by Lemma 3.10(c),

tupp
j −min{tupp

j , . . . , tupp
j ′−1} ≤

j ′−2∑
i= j

max{0, tupp
i − tupp

i+1}

≤
j ′−2∑
i= j

busy(Ri)/(3p).

We conclude that the laziness of a fixed processor is bounded by the total lateness of
all its chunks plus busy(SI)/(3p). Summing over all processors, and bounding busyness
with the previous lemma, we obtain

lazy(SI) ≤ sum-lateβ(SI)+ busy(SI)/3≤ sum-lateβ(SI)+ sum-earlyα(SI).

3.3.4. The Scheduling Overhead. In order to bound the total number of chunks sched-
uled, we consider the following partition ofS, wherer ′ = min{r,3 · γ̃ ∗(n/p)}:
S1 contains those chunks ofR1 ∪ · · · ∪Rr ′ that are the first in the round assigned

to their processor, so that, in particular, chunks(S1) ≤ p · r ′;
S2 contains the chunks accounting for the busyness of the firstr ′ rounds, that is,
S2 = (R1 ∪ · · · ∪Rr ′)− S1;

S3 contains all the chunks scheduled after roundr ′, that is,S3 = S − (R1 ∪ · · · ∪
Rr ′) = S − (S1 ∪ S2).

We separately bound the number of chunks in each of these subschedules, for which we
have to distinguish between two cases. Note that, unless excessive lateness causes many
more rounds to be executed than would be the case without deviations, we haver ′ = r ,
and henceS1 ∪ S2 = SI andS3 = SII .

The regular case: r ′ = r and n′ > lazy(SI). In the regular case,S1 ∪ S2 = SI and
S3 = SII 6= ∅, so that

chunks(S) ≤ p · r + busy(SI)/wmin+ chunks(SII).

In order to boundr , we can employ Lemma 3.2 to derive from Lemma 3.13 that

br/3c ≤ γ̃ ∗(n/p)− γ̃ ∗(n′/p− lazy(SI)/p),

so that owing tobr/3c ≥ (r − 2)/3 andγ̃ ∗(n′/p− lazy(SI)/p) ≥ 1, and with the help

On Scheduling Parallel Tasks at Twilight 521

of Lemma 3.3,

r ≤ 3 · γ̃ ∗(n/p)− 3 · γ̃ ∗(n′/p− lazy(SI)/p)+ 2

≤ 3 · γ̃ ∗(n/p)− γ̃ ∗(n′/p− lazy(SI)/p)

≤ 3 · γ̃ ∗(n/p)− γ̃ ∗(n′/p)+ dlazy(SI)/(pwmin)e.
We further have to bound chunks(SII), and for that purpose recall that in the second phase
of BAL chunks are scheduled according to FP(x 7→ bβ−1(x/A+ β(wmin))c). Theorem
3.1 is therefore applicable, and we want to make use of its addendum in order to obtain

a bound in terms of̃γ = id − max{wmin, b(id+ δ̃)−1c}. To this end, observe that by
the condition on which the first phase is terminated,dr+1 ≥ wr+1/6 wherewr+1 =
%1(Wr+1/p) = b(id+ δ̃)−1

(n′/p)c. Then takew′r+1 = (id + δ̃)−1(n′/p), for which
clearlyw′r+1 ≤ wr+1 + 1 and hencẽδ(w′r+1) ≥ Kdr+1 − 1. Using thatK ≥ 49A,
we can then conclude from the inequalityKdr+1 ≥ K/6 · wr+1 derived above that
δ̃(w′r+1) ≥ 6A · w′r+1, and hence, by the condition oñδ imposed by Theorem 3.2,

δ̃(w) ≥ 6A · w, for all w ≤ b(id+ δ̃)−1
(n′/p)c. On the other hand, we easily verify by

means of the definition of̃δ that δ̃ ≥ K · (β − α) ≥ 6A · (β − α). Thereforeδ̃ fulfills
the requirements of (the addendum to) Theorem 3.1, and we obtain that

chunks(SII) ≤ p · γ̃ ∗(n′/p).

Plugging this and the bound onr derived before into the bound on chunks(S) established
at the beginning of the paragraph, we obtain that, for the regular case,

chunks(S) ≤ 3p · γ̃ ∗(n/p)+ busy(SI)/wmin+ lazy(SI)/wmin+ p.

The irregular case: r ′ < r or Wr+1 ≤ lazy(SI). Intuitively, the irregular case occurs
when excessive lateness of chunks causes many more rounds to be executed than in the
deviationless case. Ifr ′ = r , then the case condition ensures thatWr ′+1 = Wr+1 =
n′ ≤ lazy(SI) = lazy(R1 ∪ · · · ∪ Rr ′). If r ′ < r , thenr ′ = 3 · γ̃ ∗(n/p) and hence
γ̃ (br

′/3c)(n/p) ≤ 0, so that, by Lemma 3.13,Wr ′+1 ≤ lazy(R1 ∪ · · · ∪ Rr ′), too. It
follows that the total size of the chunks inS2 andS3 is at most busy(R1 ∪ · · · ∪Rr ′)+
lazy(R1∪· · ·∪Rr ′), and since each chunk, except maybe the very last, is of size at least
wmin, we have

chunks(S) ≤ p · r ′ + d(busy(R1 ∪ · · · ∪Rr ′)+ lazy(R1 ∪ · · · ∪Rr ′))/wmine
≤ 3p · γ̃ ∗(n/p)+ busy(SI)/wmin+ lazy(SI)/wmin+ p,

just as for the regular case.
Using the bounds on busyness and laziness established in the previous section, we

may finally conclude that, in any case,

chunks(S) ≤ 3p · γ̃ ∗(n/p)+ 3 · sum-earlyα(S)/wmin+ sum-lateβ(S)/wmin+ p.

Now recall thatγ̃ = max{0, id−max{wmin, b(id+ δ̃)−1c}}, while our goal is to bound
the wasted time in terms ofγwmin

= max{0, id − max{wmin, (id + δ)−1}}, whereδ =
α−1 ◦ (β − α). Since we defined

δ̃(w) = K ·max{wmin,2 ·max{β(w)− w,w − α(w)}} ,

522 H. Bast

and because

max{β(w)− w,w − α(w)} ≤ β(w)− α(w) ≤ δ(w),
an elegant sequence of applications of Lemmas 3.5, 3.6, 3.5, and 3.1, shows thatγ̃ ∗ ≤
2K · γ ∗

wmin
. We thus obtain

chunks(S) ≤ 6K · p · γ ∗
wmin
(n/p)

+ 3 · sum-earlyα(S)/wmin+ sum-lateβ(S)/wmin+ p.

At this point we feel the need to stress that here is the only place in our whole analysis
where an unrealistically large constant, namely,K = 49A, has come into play. However,
as we have mentioned before, in the description of BAL, this value ofK has merely been
chosen in order to avoid a number of extremely tedious technical complications, while
actuallyK = A would also suffice.

3.3.5. The Idle Time. We first bound the idle time ofSI , which is also the initial
imbalance of the scheduleSII produced in the second phase of BAL. Let r ′ be the index
of a round with maximal upper limit, that is,tupp

r ′ ≥ tupp
i , for i = 1, . . . , r . Typically

r ′ = r , but an extreme pattern of deviations may even cause the upper limit of the first
round to be largest. We split idle(SI) into three parts,I ′, I ′′, andI ′′′, namely, the amount
of idle time ofSI spent beforetend

r ′ , betweentend
r ′ andtupp

r ′ , and aftertupp
r ′ , respectively. We

first bound each of these quantities separately.
We start withI ′, which is the hard part. By Lemma 3.10(a),tend

r ′ ≤ tend
r ≤ t low

r , so
that it suffices to bound the total amount of time that processors finish beforet low

r , the
lower tolerance threshold of the last round. For processors to which a chunk that is not
the very last is assigned in roundr , Lemma 3.7 says that this amount is bounded by the
earliness of the last such chunk. It may happen, however, that a processor isdeceivedin
that it is either assigned no chunk at all in the last round, or only the very last chunk,
whose size might be reduced due to line (9) of the BAL code. Since, by Lemma 3.8,
Wr > p · wr , at leastp+ 1 chunks are scheduled in roundr , and at most one of these
(the very last) to a deceived processor. If there arep′ deceived processors,p′ of the at
leastp+ 1 chunks scheduled in roundr must beintermediate, that is, are followed by
another chunk that is not the very last and assigned to the same processor. When these
intermediate chunks finish, there are still enough tasks left, hence we know that all of
the deceived processors finish later than the intermediate chunks. The contribution of the
deceived processors toI ′ is hence bounded by the earliness of the intermediate chunks,
and we have already seen above that the amount ofI ′ due to the other processors is
bounded by the earliness of their last chunks. This proves

I ′ ≤ sum-earlyα(SI).

ConcerningI ′′′, letC denote the last chunk to finish inSI , and note that its finishing
time is just the makespan ofSI . Now if i denotes the round in whichC was scheduled,
then, since roundr ′ has the maximal upper tolerance threshold, finish(C) − tupp

r ′ ≤
finish(C)− tupp

i , which by Lemma 3.7 is at most lateβ(C). The makespan ofSI is thus at
mosttupp

r ′ + lateβ(C), and we conclude that

I ′′′ ≤ (p− 1) ·max-lateβ(SI).

On Scheduling Parallel Tasks at Twilight 523

Finally, we may trivially bound the idle timeI ′′ spent betweentend
r ′ and tupp

r ′ by
p · (tupp

r ′ − tend
r ′) = p · h + p · 1.5dr ′ . Now eitherr ′ = r , in which case we know from

Lemma 3.9 thatp ·dr ′ = p ·dr ≤ Wr+1/K +busy(Rr)/K ≤ n′/(1.5A)+busy(Rr)/3,
or r ′ < r , and because roundr ′ has the maximal upper tolerance threshold,tupp

r ′ ≥ tupp
r ′+1,

so that, by Lemma 3.10(c),dr ′ ≤ busy(Rr ′)/(3p). In any case, therefore,p · 1.5dr ′ ≤
n′/A+busy(Rr ′)/2, which by Lemma 3.14 is bounded byn′/A+sum-earlyα(Rr ′), and
we have proven that

I ′′ ≤ n′/A+ p · h+ sum-earlyα(SI).

We have finally bounded each ofI ′, I ′′, and I ′′′, and idle(SI) is just the sum of them;
therefore

idle(SI) ≤ n′/A+ p · h+ 2 · sum-earlyα(SI)+ (p− 1) ·max-lateβ(SI).

Now recall that idle(SI) is just the initial imbalance ofSII , and the idle time ofSII

is that of the whole scheduleS. Using Theorem 3.1 we therefore obtain that

idle(S) ≤ p · h+ p · β(wmin)

+max{0, idle(SI)− n′/A− p · h}
+ sum-earlyα(SII)+ (p− 1) ·max-lateβ(SII),

and by the bound on idle(SI) just established,

idle(S) ≤ p · h+ p · β(wmin)+ 2 · (sum-earlyα(S)+ (p− 1) ·max-lateβ(S)).

3.3.6. The Wasted Time. In the last two sections, we have proven that

chunks(S) ≤ 6K · p · γ ∗
wmin
(n/p)

+ 3 · sum-earlyα(S)/wmin+ sum-lateβ(S)/wmin+ p,

idle(S) ≤ p · h+ p · β(wmin)+ 2 · (sum-earlyα(S)+ (p− 1) ·max-lateβ(S)),

which, sincewmin ≥ h, immediately implies that forE = sum-earlyα(S)+sum-lateβ(S)+
(p− 2) ·max-lateβ(S),

waste(S) = O
(
h · γ ∗

wmin
(n/p)+ β(wmin)+ E/p

)
.

This almost proves Theorem 3.2, except that it remains to boundE in terms of quantities
ε1, ε2, and ε3 according to the theorem. Note, at this point, that even thoughE ≤
av-devα,β(S) · chunks(S), we cannot boundE in terms of av-devα,β(S) (not to mention
am-devα,β(S)), since the number of chunks inS is not bounded independently ofE .
This, in turn, is due to the inherent feature of BAL that it dynamically adjusts the number
of chunks it assigns to the earliness or lateness of previous chunks.

As in Section 3.3.4, defineR = 3 · γ̃ ∗(n/p) andr ′ = min{r, R}, and consider the
partitionS1∪̇S2∪̇S3 of S defined in that section. Correspondingly, define fori = 1,2,3,

Ei = sum-earlyα(Si)+ sum-lateβ(Si)+ (p− 2) ·max-lateβ(Si),

let εi = Ei /chunks(Si), and note thatE ≤ E1+ E2+ E3.

524 H. Bast

In Section 3.3.4 we have shown that chunks(S1) ≤ p · r ′ ≤ pR, which implies

E1 = ε1 · chunks(S1) ≤ ε1 · pR.

In the following we want to boundE2 in terms ofε1 andε2, andE3 in terms ofε1, ε2,
andε3. According to Section 3.3.4, the chunks ofS2 are exactly those accounting for the
busyness of rounds 1 throughr ′. Since obviously the scheduling times of two chunks
assigned to the same processor are at leasth apart, and since, by Lemma 3.7, a chunk
finishes at most its earliness before the end of the round in which it was assigned, it
follows that chunks(S2) ≤ dsum-earlyα(S1)/he ≤ E1/h + 1 ≤ (1+ ε1/h) · pR, and
hence

E2 = ε2 · chunks(S2) ≤ ε2 · (1+ ε1/h) · pR.

ConcerningS3, we have to distinguish between the regular and the irregular case just
as in Section 3.3.4. In the regular case we have seen that chunks(S3) = chunks(SII) ≤
p · γ̃ ∗(n′/p), which is clearly bounded bypR. For the irregular case we have proven
that chunks(S3) ≤ dlazy(R1 ∪ · · · ∪ Rr ′)/wmine, which by Lemma 3.15 is at most
(E1+ E2)/h+ 1. In any case, therefore, chunks(S3) ≤ E1/h+ E2/h+ pR, and hence

E3 = ε3 · chunks(S3) ≤ ε3 · (ε1/h+ ε2/h · (1+ ε1/h)+ 1) · pR.

Having thus bounded each ofE1, E2, andE3, we immediately obtain that

E ≤ E1+ E2+ E3

≤ (ε1+ ε2+ ε3+ ε2 · ε1/h+ ε3 · ε1/h+ ε3 · ε2/h+ ε3 · ε2 · ε1/h2
) · pR

= ((h+ ε1) · (h+ ε2) · (h+ ε3)/h2− h
) · pR.

Hence withε = (h+ ε1) · (h+ ε2) · (h+ ε3)/h2− h and using thatR= 3 · γ̃ ∗(n/p) ≤
6K · γ ∗

wmin
(n/p),

E/p = O (ε · γ̃ ∗(n/p)
) = O (ε · γ ∗

wmin
(n/p)

)
,

and finally note that, since the volume of a cuboid with fixed total edge length is maximal
if all edges are equally long, we also have thatε ≤ (h + ε′)3/h2 − h, whereε′ =
(ε1+ ε2+ ε2)/3. This finishes the proof of Theorem 3.2.

3.4. A Variant of the Balancing Strategy

This section is concerned with a variant of the balancing scheme, named BAL ′, whose
analysis will close the small gap left between the performance guarantee we could prove
for BAL and the upper bound claimed in our Main Theorem. Very roughly speaking, BAL ′

differs from BAL in that it does not try to compensate for deviations of chunk processing
times but simply aggravates them over the rounds: for each unit of earliness of a chunk,
BAL ′ inserts a unit of waiting time (instead of assigning an intermediate chunk), and for
each unit of lateness of a chunk, it lets all subsequent chunks for that processor start one
time unit later (instead of decreasing their sizes). We will be able to prove that in this
manner each processor is assigned exactly as many chunks in the first phase as there are
rounds, and that, compared with the deviationless case, each unit of deviation simply

On Scheduling Parallel Tasks at Twilight 525

adds to the idle time of the schedule produced in the first phase. As mentioned before,
this behaviour simplifies the analysis a lot, but lacks the so practical feature of BAL that
it can nullify the effect of small to moderate deviations. The significance of the BAL ′

scheme is therefore of a more theoretical nature.
More precisely, BAL ′ serves a processor request exactly as BAL, with two exceptions.

First, when the requesting processor has already been assigned (and finished) a chunk
in the current round, the assignment is delayed until the end of the round. At that time
a new round will be started and the request is served as if it were issued then. Clearly,
this guarantees that at most one chunk per round is assigned to each processor. The
second exception occurs when fori ≥ 2, a processor requests itsi th chunk after the
upper tolerance thresholdtupp

i−1 of the(i −1)th round; note that, by the above, this request
cannot occur before the(i − 1)th round, so that this threshold is surely known. Then,
irrespective of how long aftertupp

i−1 the request is issued, the processor is assigned a
chunk as if it had requested exactly at timetupp

i−1, and also the corresponding update of
W is performed at that time. It is convenient to say that thei th chunk of a processor
belongsto roundi , which makes sense, because even though such a chunk might be
assigned long after thei th round is over, its size is computed from the settings of
that round. The effect of the described modifications, compared with the orginal BAL

strategy, is illustrated in Figure 7. Note that without deviations, BAL ′ and BAL behave
identically.

In analogy to the piece of code given for BAL, Figure 8 provides an implementation
of the function that computes for a given request the size of the chunk to be assigned
then. As before, the variablesW, w, d, t keep track of the number of unassigned tasks,
the size of the first chunk in the current round, and the tolerance and target of that round,

Fig. 7. The original BAL compared with its variant BAL ′ in a roundi .

526 H. Bast

Fig. 8. The chunk size computed by BAL ′(%1, %2) for a request of thekth processor at timeT .

respectively, with the latter three being initialized to zero. Again, the constantsp and
h hold the number of processors and the scheduling overhead, respectively, and the
variable PHASE is initially set to one. Besides, BAL ′ requires the following additional
variables:

• An arrayr [1 . . p] counting the number of chunks scheduled to each processor,
initialized with zeros—this array can either be stored globally or in a distributed
manner by the processors.
• A variableR keeping track of the index of the current round, initially zero.
• A dynamic arrays[], with s[i] storing the size of a chunk belonging to roundi

and assigned aftertupp
i−1, to be used when roundi is over.

• A variable p′ that for each round keeps track of the number of processors that
have not yet been assigned their chunk belonging to the current round.

For most parts, the code of Figure 8 is a straightforward implementation of BAL ′ as
described above, but we should comment on the subtleties. The assignment in line (4)
ensures that after a waiting period the computation is continued with the appropriate time
stored inT . Here the maximum construct ensures thatT is at most the upper tolerance
threshold of the previous round, in order to deal adequately with the special case whereall
processors finish their chunks from the previous roundafter that threshold. Concerning
the assignment in line (8), note thatT +w − t − d/2 is just the difference between the
target going to be set for the current round, namely,T + h+w, and the upper tolerance
of the previous round, namely,t + h + d/2. Finally, the correctness of the somewhat
tricky update ofW realized by lines (5), (6), (13), (14), and (17) will be implied by
Lemma 3.16 below. In particular, the lemma implies thatW is never assigned a negative
value in line (5). The remainder of this section is concerned with proving the following
result, which establishes our Main Theorem.

On Scheduling Parallel Tasks at Twilight 527

Theorem 3.3. Let task processing times be arbitrary,and let the overhead be h≥ 1.Let
[α, β] be a variance estimator, let A≥ 1withα ≥ id/A,and letwmin ∈ N,wmin ≥ h such
that, for K = 49A, δ̃: w 7→ K ·max{wmin,2·max{β(w)−w,w−α(w)}} is increasing,
and the functionw 7→ δ̃(w)/w−6A has at most one zero. Then for all n, p ∈ N, given n

tasks and p processors, the algorithmBAL ′(%1, %2) with %1: x 7→ b(id+ δ̃)−1
(x)c and

%2: x 7→ bβ−1(x/A+ β(wmin))c produces a scheduleS with the property that

waste(S) = O
(
(h+ ε) · γ ∗

wmin
(n/p)+ β(wmin)

)
,

whereε = av-devα,β(S), andγwmin
is the progress rate associated with[α, β] andwmin.

The proof is divided into four parts. Section 3.4.1 deals with the local properties of a
round, Sections 3.4.2 and 3.4.3 are concerned with the number of scheduling operations
and the idle time, respectively, from which Section 3.4.4 derives the desired bound on
the average wasted time. With the experience of having gone through the analysis of
BAL, the following should be fairly easy to follow, since the flow of argumentation is
almost the same, except that now we are no longer bothered by busyness or laziness.

We make use of the very same notation as defined for the analysis of BAL in Section
3.3.1. In particular,r denotes the number of rounds, which is just the number of executions
of lines (3)–(11) except the last,Wi , wi , di , ti denote the values ofW, w, d, t , just
after thei th execution of these lines, andt low

i = ti − di /2, tupp
i = ti + di /2, and

tend
i = ti − di , for i = 1, . . . , r ; by convention alsod0 = tupp

0 = 0. The total number of
tasks not assigned in the first phase is denoted byWr+1 and byn′, andγ̃ is defined as

max{0, id−max{wmin, b(id+ δ̃)−1c}}.

3.4.1. Local Properties of a Round. In analogy to Section 3.3.2, this section provides
the building blocks for further analysis of BAL ′. Since for BAL ′ there is nothing like
busyness or laziness, we can now prove the valuable property that, for arbitrary devia-
tions, a round always ends after the upper limit of the previous round. The first lemma
demonstrates that the update ofW in the code of BAL ′ is performed correctly.

Lemma 3.16. For i = 1, . . . , r , the total size of all chunks belonging to round i is
Wi −Wi+1.

Proof. First verify that by lines (1), (2), and (10), either PHASE= 2 orr [k] ≤ Rwhen
lines (13)–(15) are executed. Therefore, if the assignment in line (15) is executed, we
must have PHASE= 2 and hence alsoR = r , since the increment operation onR in
line (10) can only be reached when PHASE= 1. This proves that the firstr requests of
a processor are scheduled according to line (13) or (14).

Now for fixedi ∈ [1 . . r], letwi,k denote the size of thei th chunk assigned to thekth
processor, fork = 1, . . . , p, and denote byP′ andP′′ the sets of indices of processors
for whosei th request the body of line (13) and the body of line (14), respectively, is
executed. Then, by what was shown in the first paragraph,P′ ∪ P′′ = {1, . . . , p}. By
lines (6) and (14), it is easy to see that at the beginning of the(i +1)th execution of lines
(3)–(11), the value ofp′ is just p−|P′′| = |P′|, and the value ofW is Wi −

∑
k∈P′′ wi,k.

528 H. Bast

Sincewi,k = s[i] for k ∈ P′, the value ofW after the(i + 1)th execution of line (5) is
henceWi+1 = Wi −

∑p
k=1wi,k, as claimed in the lemma.

Lemma 3.17. For all i ∈ [1 . . r], Wi = p · wi + p · Kdi , and it holds thatwi ≥
5/K ·Wi /p and Kdi ≤ (1− 5/K) ·Wi /p.

Proof. This follows by lines (9) and (10), just as for Lemma 3.8.

Lemma 3.18. For all i ∈ [1 . . r], Wi+1 ≥ p · Kdi .

Proof. Obviously, at most one chunk per processor belongs to roundi , and its size
is no larger thanwi . By the previous two lemmas, hence,Wi+1 ≥ Wi − p · wi =
p · Kdi .

Lemma 3.19. For all i ∈ [1 . . r − 1], tupp
i < tend

i+1.

Proof. Since roundi +1 is never started beforetend
i , and, by the previous two lemmas,

wi+1 ≥ 5/K ·Wi+1/p ≥ 5di ,

tend
i+1 = ti+1− di+1 ≥ tend

i + h+ wi+1− di+1 > tend
i + h+ 1.5di = tupp

i .

Lemma 3.20. For all i ∈ [1 . . r], a chunkC belonging to round i and scheduled at
time T has sizemin{wi , bti −min{T, tupp

i−1c}}, and

t low
i − earlyα(C) ≤ finish(C)−max{0, T − tupp

i−1} ≤ tupp
i + lateβ(C).

Proof. Let T be the scheduling time of chunkC, and denote its size byw. We first
observe that, according to line (8) and becausetupp

0 = 0, s[i] = min{wi , bti − tupp
i−1c},

for i = 1, . . . , r . Since the previous lemma has proven thattupp
i−1 comes before the end of

roundi , we know thatw = min{wi , bti−Tc}, for T ≤ tupp
i−1, andw = min{wi , bti−tupp

i−1c}
otherwise, according to lines (13) and (14). Hence,w = min{wi , bti − T̃c}, for T̃ =
min{T, tupp

i−1}, that is, the size ofC is exactly as if it were assigned by the original BAL at
time T̃ . Correspondingly, we can show exactly as in the proof of Lemma 3.7 that

t low
i − earlyα(C) ≤ T̃ + h+ proc-time(C) ≤ tupp

i + lateβ(C),

and the lemma follows owing tõT = T−max{0, T− tupp
i−1} andT+h+proc-time(C) =

finish(C).

Lemma 3.21. For all i ∈ [1 . . r], Wi+1 ≤ p · Kdi + p · 2.5di−1.

Proof. By the previous lemma, a chunk belonging to roundi has size at least min{wi , bti−
tupp
i−1c}, which byti ≥ tend

i−1+ h+wi = tupp
i−1− 1.5di−1+wi , is at leastbwi − 1.5di−1c ≥

wi − 2.5di−1. By Lemmas 3.16 and 3.17 therefore,Wi+1 ≤ Wi − p ·wi + p · 2.5di−1 =
p · Kdi + p · 2.5di−1.

On Scheduling Parallel Tasks at Twilight 529

Lemma 3.22. For i ∈ [1 . . r − 2], Wi+3/p ≤ γ̃ (Wi /p).

Proof. By two applications of the previous lemma and using Lemma 3.17, just as done
in the proof of Lemma 3.12.

Lemma 3.23. For i ∈ [1 . . r],Wi+1/p ≤ γ̃ (bi /3c)(n/p).

Proof. This follows easily by iterative application of the previous lemma, just as for
the proof of Lemma 3.13.

3.4.2. The Scheduling Overhead. With the help of Lemma 3.2, we obtain from Lemma
3.23 that

br/3c ≤ γ̃ ∗(n/p)− γ̃ ∗(n′/p),

wheren = W1 andn′ = Wr+1. Therefore, becausebr/3c ≥ (r −2)/3 andγ̃ ∗(n′/p) ≥ 1,

r ≤ 3 · γ̃ ∗(n/p)− 3 · γ̃ ∗(n′/p)+ 2≤ 3 · γ̃ ∗(n/p)− γ̃ ∗(n′/p).

Since each processor is assigned exactly one chunk in each of ther rounds, this implies

chunks(SI) = p · r ≤ 3p · γ̃ ∗(n/p)− p · γ̃ ∗(n′/p).

Owing to the fact that the condition for termination of the first phase and the scheduling
strategy for the second phase are identical for BAL and BAL ′, we can prove just as in
Section 3.3.4 (in fact, by the bound above onr , only the regular case can happen now)
that

chunks(SII) ≤ p · γ̃ ∗(n′/p),

so that altogether

chunks(S) = chunks(SI)+ chunks(SII) ≤ 3p · γ̃ ∗(n/p).

The same elegant sequence of applications of Lemmas 3.5, 3.6, 3.5, and 3.1 as in Sec-
tion 3.3.4 shows that̃γ ∗ ≤ 2K · γ ∗

wmin
, so that finally

chunks(S) ≤ 6K · p · γ ∗
wmin
(n/p).

3.4.3. The Idle Time. It follows from Theorem 3.1, that

idle(SII) ≤ p · h+ p · β(wmin)+max{0, imbalance(SI)− n′/A− p · h}
+ sum-earlyα(SII)+ (p− 1) · sum-lateβ(SII).

Further, the idle time ofS is the idle time ofSII plus the time wait(SI) that processors
spend waiting between two chunks in the first phase; note that such waiting is a partic-
ularity of BAL ′ and did never occur with BAL. In order to bound idle(S), we therefore
have to bound the imbalance and the waiting time ofSI separately.

530 H. Bast

To this end, we first verify, using simple induction, that for a fixed processor with
chunksC1, . . . , Cr assigned to it in the first phase,

finish(Ci) ≤ tupp
i + sum-lateβ({C1, . . . , Ci }),

for i = 1, . . . , r . For i = 1 or if finish(Ci−1) ≤ tupp
i−1, the claim follows directly from

Lemma 3.20. Otherwise, fori = 2, . . . , r and finish(Ci−1) > tupp
i−1,Ci is scheduled at time

finish(Ci−1) and Lemma 3.20 says that finish(Ci) ≤ tupp
i + lateβ(Ci)+finish(Ci−1)− tupp

i−1,

which by the induction hypothesis is at mosttupp
i + sum-lateβ({ C1, . . . , Ci }).

It is now easy to bound the idle time ofSI . We write idle(SI) = I ′ + I ′′ + I ′′′, where
I ′, I ′′, and I ′′′ denote the amount of idle time spent beforet low

r , betweent low
r andtupp

r ,
and aftertupp

r , respectively. By Lemma 3.20, each unit ofI ′ corresponds to one unit of
earliness of a chunk ofSI , so thatI ′ ≤ sum-earlyα(SI). Further, it is obvious thatI ′′ ≤
p·(tupp

r − t low
r) = p·dr + p·h, which by Lemma 3.18 is at mostn′/A+ p·h. Concerning

I ′′′ we make use of the property established in the previous paragraph implying a bound
of tupp

r + sum-lateβ(SI) on the makespan ofSI , so thatI ′′′ ≤ (p− 1) · sum-lateβ(SI).
Altogether, we have thus proven that

idle(SI) ≤ n′/A+ p · h+ sum-earlyα(SI)+ (p− 1) · sum-lateβ(SI).

Since waiting can only occur beforet low
r , we also have

wait(SI) ≤ I ′ ≤ sum-earlyα(SI),

and hence, since imbalance(SI) = idle(SI)− wait(SI),

max{0, imbalance(SI)− n′/A− p · h}
≤ sum-earlyα(SI)+ (p− 1) · sum-lateβ(SI)− wait(SI).

Plugged into the inequality established at the beginning of the section, this yields

idle(SII) ≤ p · h+ p · β(wmin)+ sum-earlyα(S)
+ (p− 1) · sum-lateβ(S)− wait(SI),

so that finally

idle(S) = wait(SI)+ idle(SII) ≤ p · h
+ p · β(wmin)+ sum-earlyα(S)+ (p− 1) · sum-lateβ(S).

3.4.4. The Wasted Time. The last two sections have shown that

chunks(S) ≤ 6K · p · γ ∗
wmin
(n/p),

idle(S) ≤ p · h+ p · β(wmin)+ sum-earlyα(S)+ (p− 1) · sum-lateβ(S),

which, forε = av-devα,β(S), immediately implies that

waste(S) = O
(
(h+ ε) · γ ∗

wmin
(n/p)+ β(wmin)

)
.

We have finally proven Theorem 3.3 and hence also our Main Theorem.

On Scheduling Parallel Tasks at Twilight 531

4. Specific Upper Bounds

In this section we apply our Main Theorem, proven over the course of the last section, to
the particular independent-tasks, bounded-tasks, and coupled-tasks settings, which we
already mentioned in the Introduction, and which are defined properly later in this section.
These applications turn out to be challenging tasks on their own; since the proof of the
generic result was already quite involved, this gives an indication of the complexity of
the scheduling problem we study here. Two tasks need to be tackled for obtaining bounds
for a specific setting. First, the setting must be related to an appropriate pair of variance
estimator and deviation. This will be straightforward for the bounded-tasks setting, while
for the stochastic settings, this involves the estimation of tails of probability distributions.
Second, a closed formula for the∗ of the progress rate of that variance estimator must
be determined. As a solution to this interesting stand-alone mathematical problem, we
propose what we call themaster theorem for the∗ operator.

In Section 4.1 we first state and prove this master theorem, and use it to instanti-
ate our Main Theorem for a representative selection of variance estimators. This will
in fact provide valuable intuition on the relation between processing time irregularity
and scheduling performance expressed by our Main Theorem. Sections 4.2, 4.3, and
4.4 are dedicated to the bounded-tasks, independent-tasks, and coupled-tasks setting,
respectively.

4.1. A Master Theorem for the Star Operator

For sufficiently well-behaved functionsγ : R → R, the following theorem provides
general-purpose approximations for the values ofγ ∗ from above as well as from below.
The addendum says that unlessγ grows very slowly, namely, with slope tending to zero,
the stated bounds are tight up to a constant factor. For convenience, we writeγ ∗(x, y)
for min{i : γ (i)(x) ≤ y} in the following; in particular, thenγ ∗(x) = γ ∗(x,0).

Theorem 4.1. For bijective increasingγ : R → R such thatid − γ is positive and
increasing onR, it holds that for all x, y ≥ 0,⌈ ∫ x

y

dz

γ−1(z)− z

⌉
≤ γ ∗(x, y) ≤

⌈ ∫ x

y

dz

z− γ (z)
⌉
.

If, additionally, for all z, z′ with y ≤ z < z′ ≤ γ−1(x) the difference quotient
(γ (z′)− γ (z))/(z′ − z) is bounded from below by some positive constant Q, then∫ x

y

dz

z− γ (z)
/∫ x

y

dz

γ−1(z)− z
≤ 1

Q
.

In particular, this property holds if the(piecewise) derivative ofγ on [y, γ−1(x)] exists
and is at least Q.

Proof. First check that since id− γ is positive and increasing, the same applies to
γ−1 − id = (id− γ) ◦ γ−1, simply becauseγ is an increasing bijection. Using that we

532 H. Bast

Fig. 9. How γ ∗(x, ·) is bounded by two integrals.

easily verify that for arbitraryx,∫ x

γ (x)

dz

γ−1(z)− z
≤
∫ x

γ (x)

dz

γ−1(γ (x))− γ (x) = 1

=
∫ x

γ (x)

dz

x − γ (x) ≤
∫ x

γ (x)

dz

z− γ (z) ,

and by analogous arguments on the intervals [γ (x)(2), γ (x)], . . . , [γ (i)(x), γ (i−1)(x)],
we obtain that for alli ∈ N,∫ x

γ (i)(x)

dz

γ−1(z)− z
≤ i ≤

∫ x

γ (i)(x)

dz

z− γ (z) .

For intuition behind this approximation, see Figure 9, wherei is just the area of the gray
rectangles, and the integrands on the left- and right-hand side are shown in dark and light
gray, respectively.

Now for arbitrary x > y, with i = γ ∗(x, y) ≥ 1, we haveγ (i)(x) ≤ y and
γ (i−1)(x) > y. Therefore,∫ x

y

dz

γ−1(z)− z
≤
∫ x

γ (i)(x)

dz

γ−1(z)− z
≤ i

and∫ x

y

dz

z− γ (z) >
∫ x

γ (i−1)(x)

dz

z− γ (z) ≥ i − 1,

which proves the first part of the theorem. For the second part, letz lie betweeny andx,
z′ = γ−1(z), and check that by the additional property onγ ,

z− γ (z)
γ−1(z)− z

= γ (z′)− γ (z)
z′ − z

≥ Q.

On Scheduling Parallel Tasks at Twilight 533

Table 3. The bound from the Main Theorem for four types of variance
estimators.

[α(w), β(w)] H · γ ∗AH(N)

[max{w/A, w − Cw1/κ }, w + Cw1/κ] 2(H · log logN + C · (AH)1/κ)

[w/A, B · w] 2(H · AB · log N)

[w/A, B · w logκ (Cw)] 2(H · AB · log N · logκ (C N))

[w/A, B · wκ] 2(H · (AB)1/κ · N1−1/κ)

In the following, we apply the above theorem to instantiate the generic bound from
the previous section for a variety of variance estimators. Our results are summarized in
Table 3, whereκ is considered a fixed constant, while for the parametersA, B, andC, all
dependencies of the corresponding bound are made explicit. For the sake of clarity, we
have writtenH for h+ ε andN for n/p. Strictly speaking, while the entries in the right
column are always upper bounds, they are upperand lower bounds only for sufficiently
largeN; this will be made explicit in Lemmas 4.1–4.4 below.

For better readability, in the following proofs we always writeE1 + E2 instead of
E1 = 2(E2), for arbitrary real expressionsE1 andE2.

4.1.1. Superlinear Width. We consider two types of variance estimators of superlin-
ear width: those, for which

(
β(w) − α(w))/w is polynomial, and those for which it

is polylogarithmic inw. We could also consider even wider estimators, but not very
meaningfully so.

Lemma 4.1. For arbitrary fixed A, B ≥ 1 andκ > 1,consider the variance estimator

[α, β]: w 7→ [w/A, B · wκ],

let δ = α−1 ◦ (β − α), and letγ = id−max{M, (id+ δ)−1}, for arbitrary fixed M≥ 1.
Then, for all N ≥ AB · Mκ ,

γ ∗(N) = 2 ((AB)1/κ · N1−1/κ
)
.

Proof. We first give the proof forA = 1 and then extend it to the general caseA ≥ 1
by a simple time-scaling argument. ForA = 1, we haveα = id, which implies that
id + δ = β and henceγ = id −max{M, β−1}. Here, as well as in the following three
proofs, max{M, β−1} andγ will be considered as functions onR in the obvious way by
taking max{M, β−1}(x) = M , for all x ≤ β(M). To be able to apply Theorem 4.1, we
first check whether the preconditions onγ are satisfied. Sinceβ is a bijectionR+ → R+
andβ(w) ≥ w for w ≥ M ≥ 1, it follows immediately thatγ = id − max{M, β−1}
is bijective onR, as well as that id− γ = max{M, β−1} is positive and increasing on
R. Further, since forw ≥ M , β ′(w) = B · κ · wκ−1 ≥ B · κ, the derivative ofβ−1 on
[β(M),∞) is bounded from above by 1/(Bκ) < 1. This is easily seen to imply that all

534 H. Bast

difference quotients ofγ are bounded from below by 1−1/(Bκ) > 0, and, in particular,
thatγ is increasing onR. Theorem 4.1 therefore yields that

γ ∗(N) +
∫ N

0

dz

max{M, β−1(z)} =
∫ β(M)

0

dz

M
+
∫ N

β(M)

dz

β−1(z)
.

Sinceβ−1(z) = (z/B)1/κ , we obtain

γ ∗(N) + β(M)

M
+ B1/κ ·

∫ N

BMκ

z−1/κ dz

= B · Mκ−1+ B1/κ · N1−1/κ − (B · Mκ)1−1/κ

1− 1/κ

+ B1/κ · N1−1/κ ,

where the last approximation uses thatN ≥ B · Mκ . This proves the lemma for
A = 1.

To deal with the general case [α(w), β(w)] = [w/A, B · wκ], just observe that
α−1◦ (β−α), and hence alsoγ , is independent of the choice of our time unit, that is, it is
invariant under the simultaneous multiplication ofα andβ by an arbitrary fixed constant.
Instead ofw 7→ [w/A, B · wκ], we may therefore just as well consider the variance
estimatorw 7→ [w, AB · wκ], for which the above analysis shows that ifN ≥ AB ·Mκ ,
then

γ ∗(N) + (AB)1/κ · N1−1/κ ,

as desired.

Lemma 4.2. For arbitrary fixed A, B,C, κ ≥ 1, consider the variance estimator

[α, β]: w 7→ [w/A, B · w · lnκ(Cw)],

let δ = α−1 ◦ (β − α), and letγ = id−max{M, (id+ δ)−1}, for arbitrary fixed M≥ 3.
Then for all N≥ (AB M lnκ(C M))2,

γ ∗(N) = 2(AB · ln N · lnκ(C N)) .

Proof. We proceed just like in the proof of Lemma 4.1, first assuming thatA = 1, for
whichγ = id−max{M, β−1}. Since forw ≥ M ≥ 3,

β ′(w) = B · lnκ−1(Cw) · (κ + ln(Cw)) ≥ 2,

we can argue just as before that all difference quotients ofγ are bounded from below by

On Scheduling Parallel Tasks at Twilight 535

1
2 so that, by Theorem 4.1,

γ ∗(N) + β(M)

M
+
∫ N

β(M)

dz

β−1(z)
.

Unfortunately, withβ(w) = B ·w · lnκ(Cw), no closed form for the inverseβ−1 exists.
However, taking instead̃β(z) = z/(B · lnκ(Cz)), we have that forw ≥ M ≥ 3,

β̃(β(w)) = B · w · lnκ(Cw)
B · (ln(Cβ(w)))κ =

w · lnκ(Cw)
(ln(Cw)+ ln B+ κ ln ln(Cw))κ

,

which is clearly at mostw and at leastw/(1+ ln B + κ)κ . Thereforeβ̃(z) is within a
constant factor ofβ−1(z), for all z≥ β(M), and thus∫ N

β(M)

dz

β−1(z)
+ B ·

∫ N

β(M)

lnκ(Cz)

z
dz

= B ·
∫ ln N

lnβ(M)
(z̄+ ln C)κ dz̄

= B · ln
κ+1(C N)− lnκ+1(Cβ(M))

κ + 1

= B · ln
(

N

β(M)

)
·

κ∑
j=0

ln j (C N) · lnκ− j (Cβ(M))

κ + 1
,

where the sum can easily be seen to lie between lnκ(C N) and(κ + 1) · lnκ(C N). Since
N ≥ β2(M), we have thus shown that for the caseA = 1,

γ ∗(N) + B · ln N · lnκ(C N).

For arbitraryA ≥ 1, the same formula holds forN ≥ (Aβ)2(M) and whenB is replaced
by AB, which is shown via the invariance of[α, β] under an arbitrary time scaling exactly
as done for the previous proof.

4.1.2. Linear Width

Lemma 4.3. For arbitrary fixed A≥ 1 and B> 1, consider the variance estimator

[α, β]: w 7→ [w/A, B · w].

Letδ = α−1 ◦ (β−α), and letγ = id−max{M, (id+ δ)−1}, for arbitrary fixed M≥ 2.
Then for all N≥ (AB · M)2,

γ ∗(N) = 2(AB · ln N).

536 H. Bast

Proof. Sinceγ = id −max{M, id/(AB)} has slope at least 1− 1/(AB) > 0 every-
where, Theorem 4.1 yields that

γ ∗(N) +
∫ N

0

dz

max{M, z/(AB)}

=
∫ AB·M

0

dz

M
+ AB ·

∫ N

AB·M

dz

z

= AB+ AB · ln N

AB · M ,

which for N ≥ (AB · M)2 is within a constant factor ofAB · ln N.

This result implies the following interesting property of linear-width variance es-
timators, which, as we will see in a minute, give rise to scheduling schemes that are
particularly easy to implement. Consider the polylogarithmically superlinear variance
estimator

[α, β]: w 7→ [
w/A, B · w · lnκ(Cw)] ,

for which the Main Theorem together with Lemma 4.2 proves the following bound on
the wasted time:

2(H · AB · ln N · lnκ(C N)).

Now for n tasks andp processors, chunk sizes are naturally bounded byN = n/p, and
for all w ≤ N,

[w/A, B · w lnκ(Cw)] ⊆ [w/A, B · lnκ(C N) · w].

However, for the linear-width variance estimator corresponding to the ranges on the
right-hand side, the Main Theorem in combination with Lemma 4.3 implies a bound on
the wasted time of

2(H · AB · lnκ(C N) · ln N),

which is identical to the bound obtained for the variance estimator of polylogarithmically
superlinear width. This provides evidence that the class of scheduling schemes associated
with variance estimators of linear width are optimal for a wide variety of settings. On
the other hand, the optimal scheme pertaining to such a variance estimator [id/A, B · id]
is of a particularly simple form, namely, FP(x 7→ bx/C + wminc), whereC = A · B.
It is easy to see that (ignoring the rounding issue) the sizes of the chunks assigned
according to this strategy form a geometric sequence; this follows by(W− (W/(Cp)+
wmin))/(Cp) + wmin = (W/(Cp) + wmin) · (1 − 1/(Cp)). We leave it to the reader
to verify that the variance estimators of polynomially superlinear width, which were
considered in Lemma 4.1, may not be replaced by variance estimators of linear width
without loss.

On Scheduling Parallel Tasks at Twilight 537

4.1.3. Sublinear Width

Lemma 4.4. For arbitrary fixed A≥ 1, C > 1, and κ > 1, consider the variance
estimator

[α, β]: w 7→ [max{w/A, w − Cw1/κ}, w + Cw1/κ],

let δ = α−1 ◦ (β − α), and letγ = id−max{M, (id+ δ)−1}, for arbitrary fixed M> 0.
Then for all N≥ max{M, (2AC)κ/(κ−1)},

γ ∗(N) = 2 (ln(ln N/ln M)+ C · A · M1/κ/M
)
.

Proof. As before, our goal will be to boundγ ∗(N)with the help of Theorem 4.1, which
for sublinear-width variance estimators, however, turns out to be more complicated than
for those of at least linear width. In particular, we cannot use the time-scaling argu-
ment here since forA > 1, Aβ is no longer of the same form asβ, as it has been in
the cases considered before. This proof is therefore going to be more involved than its
predecessors.

Sinceα(w) = max{w/A, w−Cw1/κ},δmay have a sharp (that is, not differentiable)
bend, which turns out to be somewhat unconvenient to deal with. However, it is easy to
see thatδ(w) is always betweenC · w1/κ and 2AC · w1/κ . In view of Lemmas 3.1 and
3.5, we may hence assume without loss of generality that

δ(w) = 2AC · w1/κ .

Our next step will be to boundγ ∗(Ñ), whereÑ = max{δ(M), (2AC)κ/(κ−1)}; note
that the second term is just the unique positive fixpoint ofδ, and thatÑ ≤ N. To this
end, first verify by means of the identity id− (id+ δ)−1 = (id+ δ−1)−1 that the inverse
of γ = id−max{M, (id+ δ)−1} is just

γ−1 = id+max{M, δ−1}.

Now on(−∞, δ(M)], γ−1 describes a straight line with slope 1, while the derivative of
δ−1: z 7→ zκ/(2AC)κ at an arbitraryz ∈ (0, (2AC)κ/(κ−1)] is

κ · zκ−1/(2AC)κ ≤ κ.

We may therefore conclude thatγ−1 has slope bounded byκ+1 everywhere on(−∞, Ñ],
and hence thatγ has slope at least 1/(κ + 1) everywhere on(−∞, γ−1(Ñ)], so that, by
Theorem 4.1,

γ ∗(Ñ) +
∫ Ñ

0

dz

max{M, δ−1(z)} .

538 H. Bast

SinceÑ ≥ δ(M), it holds that∫ Ñ

0

dz

max{M, δ−1(z)} =
∫ δ(M)

0

dz

M
+
∫ Ñ

δ(M)

dz

zκ/(2AC)κ

= δ(M)

M
+ (2AC)κ

Ñ1−κ − δ(M)1−κ
1− κ

+ δ(M)

M
,

and thus

γ ∗(Ñ) + δ(M)/M = 2C · A · M1/κ/M.

To finish the proof, it remains to boundγ ∗(N, Ñ) = min{i : γ (i)(N) ≤ Ñ}, that
is, the number of iterations ofγ required to get fromN to Ñ. In fact, we actually
boundγ ∗(N, Ñ + M), which differs by at most one fromγ ∗(N, Ñ). Unfortunately, the
derivative ofδ−1 grows beyond all bounds so that limx→∞ γ ′(x) = 0, which invalidates a
further direct application of Theorem 4.1. What comes to our rescue is that the evaluation
of γ ∗ can be shown to be equivalent to the evaluation ofγ̃ ∗, whereγ̃ = T ◦ γ ◦ T−1, for
an arbitrary bijective transformT . In order to prove this, use simple induction to check
that

γ̃ (i)(T(x)) = γ̃ (i−1)(γ̃ (T(x))) = γ̃ (i−1)(T(γ (x))) = · · · = T(γ (i)(x)),

for all i ∈ N, which immediately implies that

γ ∗(x, y) = γ̃ ∗(T(x), T(y))

for all x, y in the domain ofT .
For our purposes, consider the transformT : z 7→ ln(z/N̂) with inverseT−1: z 7→

N̂ · ez, where N̂ = (2AC)κ/(κ−1) denotes the fixpoint ofδ; in particular, N̂ ≤ Ñ.
Then, since for allz ≥ δ(M), γ−1(z) = z+ δ−1(z) = z+ zκ/(2AC)κ , it holds for all
z≥ T(δ(M)) that

γ̃−1(z) = (T ◦ γ−1 ◦ T−1)(z) = (T ◦ γ−1)(N̂ · ez)

= T(N̂ez+ (N̂ez)κ/(2AC)κ)

= T(N̂ez · (1+ e(κ−1)z))

= z+ ln(1+ e(κ−1)z).

Using that, we easily check that for allz≥ T(δ(M)),

(
γ̃−1

)′
(z) = 1+ (κ − 1)

e(κ−1)z

1+ e(κ−1)z
≤ κ,

which implies thatγ̃ ′(z) ≥ 1/κ, for all z ≥ γ̃−1(T(δ(M))) = T(γ−1(δ(M))) =
T(M + δ(M)). Having verified this, we may now apply Theorem 4.1 in order to obtain

On Scheduling Parallel Tasks at Twilight 539

the approximation

γ̃ ∗(T(N), T(Ñ + M)) +
∫ T(N)

T(Ñ+M)

dz

γ̃−1(z)− z
=
∫ T(N)

T(Ñ+M)

dz

ln(1+ e(κ−1)z)
.

Since the integral cannot be solved in a closed form, we resort to the approximation
(t + 1)/2≤ ln(1+ et) ≤ t + 1 for t ≥ 0, from which we obtain that∫ T(N)

T(Ñ+M)

dz

ln(1+ e(κ−1)z)
+
∫ T(N)

T(Ñ+M)

dz

1+ (κ − 1)z

= 1

κ − 1
· ln 1+ (κ − 1) · T(N)

1+ (κ − 1) · T(Ñ + M)
.

SinceT(N) = ln(N/N̂) andT(Ñ + M) = ln((Ñ + M)/N̂), and by the bound onN
assumed in the lemma, the last term can be shown to be in the order of ln logM N, and
we finally get

γ ∗(N, Ñ) + γ ∗(N, Ñ + M) = γ̃ ∗(T(N), T(Ñ + M)) + ln(ln N/ln M).

Having boundedγ ∗(Ñ) andγ ∗(N, Ñ) separately, we now easily obtain the desired
result

γ ∗(N) + γ ∗(N, Ñ)+ γ ∗(Ñ) + ln(ln N/ln M)+ C · A · M1/κ/M.

This finishes the analysis of variance estimators with sublinear width, and we have finally
proven all the bounds claimed in Table 3.

4.2. Bounded Tasks

If for someTmin, Tmax > 0 with Tmin ≤ 1 ≤ Tmax, the processing time of each task is
guaranteed to be in the range [Tmin, Tmax], we say that task processing times arebounded
by [Tmin, Tmax]. Note that, as for our definition of a variance estimator, the condition
Tmin ≤ 1 ≤ Tmax is not a restriction but merely reflects a commitment to a certain time
scale. As we will see next, the application of the Main Theorem to a bounded-tasks
setting is almost trivial; in particular, note that no randomness is involved here.

Lemma 4.5. Let task processing times be bounded by[Tmin, Tmax]. Then for all n, p ∈
N, the scheduleS produced by an arbitrary algorithm given n tasks and p processors
satisfies

av-devα,β(S) = 0,

where

[α, β] : w 7→ [Tmin · w, Tmax · w].

540 H. Bast

Proof. It suffices to observe that, by the assumption on the task processing times, the
sum of the processing times of anyw tasks will always be at leastTmin · w and at most
Tmax · w.

Corollary 4.2. Let task processing times be bounded by[Tmin, Tmax], and let the over-
head be h≥ 1. Then there exists a fixed-partition algorithm that for all n, p ∈ N, given
n tasks and p processors, produces a scheduleS with

waste(S) = O(h · Tmax/Tmin · log(n/p)).

Proof. For everywmin ∈ N with wmin ≥ h, a combination of the Main Theorem, or
rather of Theorem 3.1, with the previous lemma yields a fixed partition algorithm that
for n tasks andp processors produces a scheduleS with

waste(S) = O(h · γ ∗
wmin
(n/p)+ β(wmin)),

whereγwmin
is the progress rate associated with

[α, β] : w 7→ [Tmin · w, Tmax · w]

andwmin. According to our comments concerning the choice ofwmin at the beginning
of Section 3, we choosewmin = dh/Tmine, in which caseβ(wmin) ≤ 2 · h · Tmax/Tmin.
Further, Lemma 4.3 tells us thatγ ∗

wmin
(n/p) = O(Tmax/Tmin · log(n/p)), and we finally

obtain

waste(S) = O(h · Tmax/Tmin · log(n/p)+ h · Tmax/Tmin)

= O(h · Tmax/Tmin · log(n/p)).

4.3. Independent Tasks

If for someσ > 0, the processing times of the tasks are independent, identically dis-
tributed, nonnegative random variables with mean 1, varianceσ 2, and finite third moment,
we say that task processing times areindependent, with varianceσ 2. The application of
our Main Theorem to this setting is analogous to that for the bounded-tasks setting, but
significantly more involved. As a prerequisite, we first prove the following assertion on
the sum of independent, identically distributed random variables; a related, more general
result can be found in [1].

Lemma 4.6. Let Z be the sum of m independent random variables, identically dis-
tributed with meanµ ≤ 0, finite varianceσ 2 > 0, and finite third central moment
%3 > 0.Then for some constantϑ > 0,with t = −µ/σ andη = ϑ ·et2/2 ·%3/σ 3

/
m1/2,

E max{0, Z} ≤ (1+ η) · σ√m · 1√
2π

1

1+ t2
e−t2/2.

If Z is normal, the inequality even holds forη = 0.

On Scheduling Parallel Tasks at Twilight 541

Proof. LetµZ = m·µ andσ 2
Z = m·σ 2 denote the mean and variance ofZ, respectively.

We first consider the special case whereZ is a normal random variable. Then(Z−µZ)/σZ

has standard normal distribution, so that, by the definition of the expected value,

E max{0, Z} = σZ · E max{0, (Z − µZ)/σZ − t}
= σZ ·

∫ ∞
−∞

max{0, x − t} · 1√
2π

e−x2/2 dx

= σZ ·
∫ ∞

t
(x − t) · 1√

2π
e−x2/2 dx

= σZ ·
(

1√
2π

e−t2/2− t · (1−8(t))
)
,

where8 denotes the standard normal distribution function. The lemma now follows by
the approximation

1−8(t) ≥ 1√
2π

t

1+ t2
e−t2/2

and the fact that 1− t · t/(1+ t2) = 1/(1+ t2). The proof of this approximation is
analogous to that given, for example, in the textbook of Grimmett and Stirzaker [10] for
a slightly weaker bound; it suffices to check that for allx,

d

dx

x

1+ x2
e−x2/2 ≥ −e−x2/2,

which, by multiplication with(2π)−1/2 and integration over [t,∞], yields the desired
bound. This finishes the proof for the case of normalZ.

Now assume thatZ is the sum ofm independent, identically distributed random
variables. Our plan is to bound the difference betweenE max{0, Z} andE max{0, Z̃},
whereZ̃ is a normal variable with the same mean and variance asZ. This will reduce
the proof of the lemma to what has already been shown in the first paragraph. Bounding
this difference turns out to be a matter of bounding the pointwise difference between
the distribution functions ofZ and Z̃, which we establish via a strong bound on the
convergence rate of the central limit theorem. First observe that, since the mean of a
nonnegative random variableX can be expressed as

∫∞
0 Pr(X > x)dx (see, for example,

[10]),

E max{0, Z} = σZ ·
∫ ∞

0
Pr

(
Z

σZ

> x

)
dx

= σZ ·
∫ ∞

0
Pr

(
Z − µZ

σZ

> x + t

)
dx

= σZ ·
∫ ∞

t
Pr

(
Z − µZ

σZ

> x

)
dx,

and

E max{0, Z̃} = σZ ·
∫ ∞

t
Pr

(
Z̃ − µZ

σZ

> x

)
dx.

542 H. Bast

Now by a variant of the Berry–Esseen inequality [27, Theorem 5.17], there exists a
constantϑ > 0, such that for allx > 0,∣∣∣∣∣Pr

(
Z − µZ

σZ

> x

)
− Pr

(
Z̃ − µZ

σZ

> x

)∣∣∣∣∣ ≤ ϑ√
2π
· m · %3(

m · σ 2
)3/2 · 1

(1+ x)3
,

and hence, withη = ϑ · et2/2 · %3/σ 3/m1/2,∣∣∣∣∣Pr

(
Z − µZ

σZ

> x

)
− Pr

(
Z̃ − µZ

σZ

> x

)∣∣∣∣∣ ≤ η · 1√
2π
· e−t2/2 · 1

(1+ x)3
.

Since
∫∞

t (1+ x)−3 dx ≤ (1+ t2)−1, this implies

∫ ∞
t

∣∣∣∣∣Pr

(
Z − µZ

σZ

> x

)
− Pr

(
Z̃ − µZ

σZ

> x

)∣∣∣∣∣dx ≤ η · 1√
2π

1

1+ t2
e−t2/2,

and we may conclude that

|E max{0, Z} − E max{0, Z̃}| ≤ η · σZ · 1√
2π

1

1+ t2
e−t2/2.

Together with what was shown in the first paragraph for the normal case, this proves our
lemma in the general case.

We are now ready to derive a bound on the average deviation incurred by some strat-
egy in the independent-tasks setting. This bound will contain an implicit factor of%3/σ 3,
whereσ 2 is the variance and%3 is the absolute third central moment of a single task’s
processing time. We treat this factor as a fixed constant, which is justified in view of the
fact that for an arbitrary random variableX, the quotientE|X − EX|3/(E|X − EX|2)3/2
is invariant under the multiplication ofX with an arbitrary (nonzero) factor.

Lemma 4.7. Let task processing times be independent, with varianceσ 2. Then for
all n, p ∈ N, the scheduleS produced by an arbitrary algorithm given n tasks and p
processors satisfies

E[av-devα,β(S)] = O(σ),

where1

[α, β] : w 7→ [w − σ ·
√

lnw · w1/2, w + σ ·
√

p+ lnw · w1/2].

Proof. We first prove that the expected deviation of an arbitrary fixed chunk with
respect to[α, β] is bounded byO(σ). To this end, letw ∈ N, and letC be a chunk of an

On Scheduling Parallel Tasks at Twilight 543

arbitrary but fixed selection ofw tasks. Then, by the definitions in Section 2.2, and with
T denoting the total processing time ofC,

E earlyα(C) = E max{0, w − σ ·
√

lnw · w1/2− T},
E lateβ(C) = E max{0, T − w − σ ·

√
p+ lnw · w1/2}.

Let s = ϑ · %3/σ 3, where%3 is the absolute third central moment of a single task’s
processing time, andϑ is the constant according to Lemma 4.6. SinceT has expected
valuew and varianceσ 2w, we then obtain from Lemma 4.6, applied witht1 =

√
lnw

andη1 = s · et2
1/2/
√
w = s, that

E earlyα(C) ≤ (1+ η1) · σ
√
w · 1√

2π

1

1+ t2
1

e−t2
1/2 ≤ 1+ s√

2π
· σ.

Similarly, with t2 =
√

p+ lnw andη2 = s · et2
2/2/
√
w = s · ep/2,

E lateβ(C) ≤ (1+ η2) · σ
√
w · 1√

2π

1

1+ t2
2

e−t2
2/2 ≤ 1+ s√

2π
· σ

p
.

It follows immediately that

E devα,β(C) = E earlyα(C)+ (p− 1) · E lateβ(C) ≤ (1+ s) · σ,

and we have shown that, forε = (1+ s) · σ , the expected deviation of an arbitrary fixed
chunk with respect to[α, β] is bounded byε.

Using this property, we now prove the lemma. LetC1, . . . , Cl denote the chunks of
S, in the order they were allocated, and denote byw1, . . . , wl their respective sizes. Now
l is a random variable but certainlyl ≤ n, so that we may definen random variables
Y1, . . . ,Yn such that, forj = 1, . . . ,n,

Yj =
{

devα,β(Cj), j ≤ l ,
ε, j > l .

Since

av-devα,β(S) = 1

l

l∑
j=1

Yj = ε + n

l
·
(

1

n

n∑
j=1

Yj − ε
)
,

proving the lemma reduces to bounding the expectation of(1/n)
∑n

j=1 Yj by ε.
Since the selection of tasks belonging toCj is completely determined by the algo-

rithm together with the processing times of the previously scheduled chunksC1, . . . , Cj−1,
and since the processing times of the individual tasks are independent, the property es-
tablished in the first paragraph of the proof implies that for allj = 1, . . . , l ,

E[Yj

∣∣ Y1, . . . ,Yj−1] ≤ ε.

544 H. Bast

Since this very bound holds trivially whenj > l , it holds in fact for all j = 1, . . . ,n.
Using this, we can show that for allj = 1, . . . ,n,

E

[
1

j

j∑
i=1

Yi

∣∣∣∣∣Y1, . . . ,Yj−1

]
= 1

j

j−1∑
i=1

Yi + 1

j
· E[Yj |Y1, . . . ,Yj−1]

≤ 1

j

j−1∑
i=1

Yi + ε
j
,

which, by taking expectation on both sides, implies that

E

[
1

j

j∑
i=1

Yi

]
≤ j − 1

j
· E
[

1

j − 1

j−1∑
i=1

Yi

]
+ ε

j
.

A simple induction now shows that

E

[
1

n

n∑
j=1

Yj

]
≤ ε,

which immediately implies the desired bound

E av-devα,β(S) = ε + n

l
·
(

E

[
1

n

n∑
j=1

Yj

]
− ε

)
≤ ε = (1+ s) · σ = O(σ).

With the help of Lemma 4.7, it is now easy to translate the Main Theorem to
the independent-tasks setting. We remark that Corollary 4.3 below implies a doubly
logarithmic asymptotic bound asn grows large, which settles a conjecture put forward
in [12]. The apparently weirdσ

√
p · (h+ σ 2)1/2+λ term becomes meaningful in light of

the fact that when the minimum chunk size is in the order ofh + σ 2 (as will be), then
the expected maximal processing time ofp chunks of such size is tightly bounded by
O((h+ σ 2)+ σ√p · (h+ σ 2)1/2) [11], [14].

Corollary 4.3. Let task processing times be independent, with varianceσ 2, and let the
overhead be h≥ 1. Then for arbitrary fixedλ > 0, there exists an algorithm that for all
n, p ∈ N, given n tasks and p processors, produces a scheduleS with

E waste(S) = O((h+ σ) · log log(n/p)+ σ√p · (h+ σ 2)1/2+λ).

Proof. For everywmin ∈ Nwithwmin ≥ h, a combination of our Main Theorem with the
previous lemma yields an algorithm that forn tasks andp processors yields a schedule
S with

E waste(S) = O((h+ σ) · γ ∗
wmin
(n/p)+ β(wmin)),

On Scheduling Parallel Tasks at Twilight 545

whereγwmin
is the progress rate associated with

[α, β] : w 7→ [w − σ ·
√

lnw · w1/2, w + σ ·
√

p+ lnw · w1/2]

andwmin. Now [α, β] has sublinear width but is not quite of the type considered in the
corresponding Section 4.1.3. We therefore next derive a slightly wider variance estimator
[α̃, β̃] that indeed suits the requirements of Lemma 4.4 from that section. To this end,
observe that there exists a constantC ≥ 1, depending only onλ, such that for allw ∈ N,√

p+ lnw ≤ C · √p · wλ/2, and thus

w + σ
√

p+ lnw · w1/2 ≤ w + C · σ√p · w1/2+λ/2.

Further, forw ≥ (3+ 8σ 2) · ln(3+ 8σ 2), it holds thatw/lnw ≥ 4σ 2, so thatσ
√

lnw ·
w1/2 ≤ w/2, which in turn implies that

w − σ ·
√

lnw · w1/2 ≥ max{w/2, w − C · σ√p · w1/2+λ/2}.

Takingwmin = dh+ (3+ 8σ 2) · ln(3+ 8σ 2)e, the variance estimator

[α̃, β̃]: w 7→ [
max{w/2, w − C · σ · √p · w1/2+λ/2}, w + C · σ · √p · w1/2+λ/2]

hence satisfies̃α ≤ α andβ̃ ≥ β at least on [wmin,∞), which for δ̃ = α̃−1 ◦ (β̃ − α̃)
andγ̃wmin

= max{0, id−max{wmin, (id+ δ̃)−1}} is easily seen to imply thatγwmin
≤ γ̃wmin

,
and thus, by Lemma 3.1,γ ∗

wmin
≤ γ̃ ∗

wmin
. Concerningγ̃wmin

we may now apply Lemma 4.4,
from which we obtain that

γ̃ ∗
wmin
(n/p) = O

(
log log(n/p)+ σ√p · wλ/2−1/2

min

)
= O (log log(n/p)+ σ√p · (h+ σ 2)λ−1/2

)
.

Concerningβ(wmin), it is easy to check that

β(wmin) ≤ wmin+ C · σ√p · w1/2+λ/2
min = O (h+ σ√p · (h+ σ 2)1/2+λ

)
.

Plugging these bounds into the bound obtained at the beginning of the proof, we finally
obtain

E waste(S) = O ((h+ σ) · log log(n/p)+ σ√p · (h+ σ 2)1/2+λ
)
.

Since the proof of the corollary above makes use of a variance estimator of sublinear
width, the corresponding algorithm is not of the fixed-partition type, but rather one of the
more sophisticated instances of our balancing strategy. Since our Main Theorem, in its
general form, was established by means of BAL ′, the question arises whether the bound
of Corollary 4.3 can also be achieved by the original BAL scheme, which we found to be
more natural and easier to implement. The following corollary (to Theorem 3.2) gives a
positive answer.

546 H. Bast

Corollary 4.4. Let task processing times be independent, with varianceσ 2, and let the
overhead be h≥ 1. Then for arbitrary fixedλ > 0, there exists an instance ofBAL that
for all n, p ∈ N, given n tasks and p processors, produces a scheduleS with

E waste(S) = O ((h+ σ 3/h2) · log log(n/p)+ σ√p · (h+ σ 2)1/2+λ
)
.

Proof. According to Theorem 3.2, for everywmin ∈ N with wmin ≥ h, and for the
variance estimator

[α, β] : w 7→ [w − σ ·
√

lnw · w1/2, w + σ ·
√

p+ lnw · w1/2]

there is an instance of BAL that, givenn tasks andp processors, produces a scheduleS
with

waste(S) = O
(
(h+ ε) · γ ∗

wmin
(n/p)+ β(wmin)

)
,

whereγwmin
is the progress rate associated with[α, β] andwmin, and

ε = (h+ ε1) · (h+ ε2) · (h+ ε3)/h2− h,

for some partitionS = S1∪̇S2∪̇S3, and εi = av-devα,β(Si), for i = 1,2,3. Now
Lemma 4.7 implies that all ofE[ε1], E[ε2 | ε1], andE[ε3 | ε1, ε2] are bounded byO(σ)
which is easily seen to imply thatE ε = O(σ + σ 2/h+ σ 3/h2) = O(h+ σ 3/h2), and
hence

E waste(S) = O
(
(h+ σ 3/h2) · γ ∗

wmin
(n/p)+ β(wmin)

)
.

The desired bound now follows by settingwmin = dh + (3 + 8σ 2) · ln(3 + 8σ 2)e
and estimatingγ ∗

wmin
(n/p) and β(wmin) just as done in the proof of the previous

corollary.

4.4. Coupled Tasks

If for someσ > 0 andTmin with 0 < Tmin ≤ 1, task processing times are identically
distributed random variables with range [Tmin,∞), mean 1, and varianceσ 2, and if for
each pair of tasks it holds that their processing times are either independent or equal
with probability one, then we say that task processing times arecoupled, with minimum
Tmin and varianceσ 2. The corollary below gives an indication that scheduling in the
coupled-tasks is much harder than in the independent and bounded-tasks settings. It
should be noted, however, that since the corollary below makes no assumptions on the
well-behavedness of the distribution of a task’s processing time, except that its variance
exists, this result is really a worst-case bound. We leave it to the reader to verify that for
reasonably behaved distributions (for instance, exponential), significantly better bounds
can be achieved.

On Scheduling Parallel Tasks at Twilight 547

Lemma 4.8. Let task processing times be coupled, with minimum Tmin and variance
σ 2. Then for all n, p ∈ N, the scheduleS produced by an arbitrary fixed-partition
algorithm given n tasks and p processors satisfies

E[av-devα,β(S)] ≤ σ 2,

where

[α, β] : w 7→ [Tmin · w, pw2].

Proof. Letw ∈ N, and letC be a chunk of an arbitrary but fixed selection ofw tasks.
By assumption, these tasks are divided into some numberl of groups such that all tasks
from the same group have equal processing times, while processing times of tasks from
different groups are independent. Letw1, . . . , wl ∈ N be the sizes of the groups, and
note thatw1+ · · · +wl = w. Clearly then the total processing timeT of C has meanw
and variance

σ 2 · w2
1 + · · · + σ 2 · w2

l ≤ σ 2 · (w1+ · · · + wl)
2 = σ 2 · w2,

so that, by a simple application of Chebyshev’s inequality,

E lateβ(C) = E max{0, T − pw2} =
∫ ∞

0
Pr(T − pw2 > x)dx

≤
∫ ∞
(p−1)w2

Pr(T − w > x)dx

≤
∫ ∞
(p−1)w2

(σ 2w2/x2)dx

≤ σ 2/(p− 1).

Since there is never earliness with respect toα, we have thus proven that the expected
deviation of an arbitrary fixed chunk is bounded byσ 2. This immediately implies the
same bound for the expected average deviation of the schedule produced by an arbitrary
fixed-partition algorithm.

Corollary 4.5. Let task processing times be coupled, with minimum Tmin and variance
σ 2, and let the overhead be h≥ 1. Then there exists a fixed-partition algorithm that for
all n, p ∈ N with n/p ≥ p · (h+ σ 2)2/T3

min, given n tasks and p processors, produces
a scheduleS with

E waste(S) = O
(
(h+ σ 2) ·

√
n/Tmin

)
.

Proof. A simple application of the Main Theorem in combination with the previous
lemma yields an algorithm that forn tasks andp processors produces a scheduleS with

E waste(S) = O
(
(h+ σ 2) · γ ∗

wmin
(n/p)+ β(wmin)

)
,

548 H. Bast

whereγwmin
is the progress rate associated with the variance estimatorw 7→ [Tmin · w, pw2]

and the minimal chunk sizewmin = d(h+ σ 2)/Tmine. According to Lemma 4.1,

γ ∗
wmin
(n/p) = O

(
p1/2/T1/2

min · (n/p)1/2
)
= O(n1/2/T1/2

min),

so that, forn/p ≥ p · (h+ σ 2)2/T3
min,

E waste(S) = O
(
(h+ σ 2) ·

√
n/Tmin+ p · (h+ σ 2)2/T2

min

)
= O

(
(h+ σ 2) ·

√
n/Tmin

)
.

5. Lower Bounds

This section complements our findings from the previous two sections with matching or
almost matching lower bounds. In Section 5.1 we show that for each variance estimator,
no algorithm can improve by more than a constant factor on the wasted-time bound
stated in our Main Theorem; this implies the optimality of the balancing strategy, at
least within the realm of our modelling. Section 5.2 presents a general lower bound for
the case when task processing times are randomly distributed. Note that, unlike for our
upper bounds, we cannot hope to obtain such a lower bound via reduction from a lower
bound pertaining to our general framework; namely, as was explained in the Introduction,
compared with our variance-estimator based approach, probabilistic assumptions add a
certain regularity to the problem, which makes proving lower bounds harder. Indeed,
the results from Section 5.2 will leave a small gap to the upper bounds proven in the
previous section.

5.1. Arbitrary Processing Times

This section is dedicated to proving the following theorem, which provides the exactly
matching lower bound to our Main Theorem. As we already remarked at the beginning
of Section 3, this lower bound implies that the optimal choice for the minimal chunk
sizewmin is in the order ofα−1(h+ ε). Note that while the Main Theorem requires that
id/α be a decreasing function, the (addendum to the) theorem below makes do with the
superadditivity ofα; this is indeed a weaker requirement, since for arbitraryw ≥ v > 0,
it follows from α(w)/w ≥ α(v)/v that

α(w + v) ≥ (w + v) · α(w)/w = α(w)+ v · α(w)/w ≥ α(w)+ v · α(v)/v
= α(w)+ α(v).

Theorem 5.1. Let processing times be arbitrary, let the overhead be h, and let[α, β] be
an arbitrary variance estimator. Then for everyε ≥ 0, for every scheduling algorithmA,
and for all n, p ∈ N, there exist T1, . . . , Tn ≥ 0 such that, given n tasks with processing
times T1, . . . , Tn and p processors,A produces a scheduleS with ε = av-devα,β(S) =

On Scheduling Parallel Tasks at Twilight 549

am-devα,β(S) and

waste(S) = Ä ((h+ ε) · γ ∗(α(n/p))
)
,

whereγ = id−max{h+ ε, α ◦ β−1}.

Addendum. If, additionally,α is superadditive, that is, for allw, v > 0, α(w + v) ≥
α(w)+ α(v), and provided thatβ is a bijection onR+, it holds that

γ ∗(α(n/p)) ≥ γ ∗
α-1(h+ε)(n/p),

whereγα-1(h+ε) denotes the progress rate associated with[α, β] andα−1(h+ ε).

The proof of Theorem 5.1 is organized as follows. In Section 5.1.1 we first prove the
lower bound under the assumption that the given algorithm does not incur anywaiting
time. Section 5.1.2 shows how to extend this proof to the general case. The final section,
Section 5.1.3, is concerned with the proof of the addendum that translates the proven
bounds to a form compatible with our Main Theorem. Throughout the proof, thelower
andupper thresholdof a chunkC of sizew and scheduled at a timeT mean the times
T + h+ α(w) andT + h+ β(w), denoted by lower(C) and upper(C), respectively.

5.1.1. The Case Without Waiting. The basic and rather obvious idea of the proof is to
play an adversary and fix the chunk processing times (and hence theT1, . . . , Tn) incre-
mentally, along with the scheduling decisions made by our algorithm. We next describe
this construction in detail. Though we need not fix the processing time of a chunk right
at the time of its allocation, we usually do that, except for one designatedpeak chunk, for
which the decision is postponed. Initially, the very first chunk assigned becomes the (first)
peak chunk. Whenever a new chunkCnew is scheduled, its upper threshold upper(Cnew)

is compared with that of the current peak chunkCpeak: if upper(Cnew) ≤ upper(Cpeak),
the finishing time ofCnew is fixed immediately at its lower threshold lower(Cnew); in
the opposite case,Cnew becomes the new peak chunk, and the finishing time ofCpeak is
fixed at the maximum of lower(Cpeak) and the actual time. Note that as a consequence
the upper threshold of a peak chunk is always larger than that of its predecessor. The
processing time of the last peak chunkClast, finally, is fixed atβ(w) + ε · l/(p − 1),
wherew is the size ofClast andl is the total number of chunks scheduled. This finishes
the description of our incremental construction, and we now have to verify that the
resulting scheduleS indeed has the properties stated in the theorem. Since all chunks
have deviation zero, except the last one, whose deviation isε · l , we immediately see
that av-devα,β(S) = am-devα,β(S) = ε. The remainder of this proof derives the desired
lower bound on the wasted time ofS.

To this end, we introduce the notions of thepeakand theleadof a (partial) schedule,
where the former is simply the upper threshold of the peak chunk, and the latter measures
the lead of this peak chunk on the other chunks. Formally, ifS ′ denotes aprefixof S,
that is, a sequence of chunks assigned until some time in the scheduling process, and if

550 H. Bast

Fig. 10. The peak chunk, peak, and lead of a scheduleS ′.

Cpeak is the peak chunk ofS ′, that is, the peak chunk at that time, we define

peak(S ′) = upper(Cpeak),

lead(S ′) = peak(S ′)− max
C∈S ′\Cpeak

finish(C).

This is indeed well-defined, since, by the above construction, the finishing time of all
chunks except the peak chunk are fixed immediately at the time of allocation. For an
illustration, see Figure 10.

Note that since the upper threshold of the peak chunk is maximal among the upper
thresholds of the chunks inS ′, the lead according to this definition is always positive.
Also observe that the lead of a schedule is intimately related to its imbalance: namely,
imbalance(S ′) ≥ (p − 1) · lead(S ′), for every prefixS ′ of S, and, for the complete
schedule,

imbalance(S) ≥ (p− 1) · (lead(S)+ ε · chunks(S)/(p− 1))

= (p− 1) · lead(S)+ ε · chunks(S).

Using the above definitions, we prove a lower bound on waste(S) as follows. First,
Lemma 5.1 demonstrates that the scheduling of a large chunk incurs a correspondingly
large lead. Following that, Lemma 5.2 shows that the lead cannot decrease arbitrarily
fast from one batch of allocations to the next. Using these two lemmas, Lemma 5.3
derives a bound on the lead ofS, proceeding from which we then argue that either many
(small) chunks are assigned or the final lead is large. Throughout the proof,γ̃ denotes the
functionx 7→ (id− α ◦ β−1)(x−h− ε); check that sinceβ−1 andβ−α are increasing
functions, the same applies to(β − α) ◦ β−1 = id− α ◦ β−1, and hence tõγ .

Lemma 5.1. For an arbitrary prefixS ′ of S, if w denotes the size of the chunk ofS ′
that was scheduled last, thenlead(S ′) ≥ β(w)− α(w).

Proof. Let T denote the scheduling time of the chunk ofS ′ that was scheduled last.
The upper threshold of this chunk isT + h + β(w), so that, by definition of the peak,
peak(S ′) ≥ T+h+β(w). Now for an arbitrary chunkC of S ′ that is not the peak chunk

On Scheduling Parallel Tasks at Twilight 551

of S ′, the following holds. If the size ofC is beloww, its finishing time, fixed at timeT
at the latest, is at most

T + h+ α(w) ≤ peak(S ′)− β(w)+ α(w) = peak(S ′)− (β(w)− α(w)).

If the size ofC is at leastw, then the difference between the upper and the lower threshold
of C is at leastβ(w)−α(w), sinceβ−α is increasing. The finishing time ofC is therefore
at most

max
{
T,peak(S ′)− (β(w)− α(w))} = peak(S ′)− (β(w)− α(w)).

This proves that the lead ofS ′ is at leastβ(w)− α(w).

Lemma 5.2. For two arbitrary prefixesS ′, S ′′ of S with chunks(S ′′)− chunks(S ′) ≤
p− 1,

lead(S ′′) ≥ γ̃ (lead(S ′)).

Proof. The key to this proof is the simple observation that in the case without waiting
each of the at mostp− 1 chunks inS ′′\S ′ is scheduled before or at time peak(S ′) −
lead(S ′); see Figure 10. LetC denote an arbitrary such chunk except the peak chunk ofS ′′,
and letw denote its size. Clearly then, its upper threshold cannot be more than peak(S ′′),
and by the observation above, its lower threshold is at most peak(S ′)− lead(S ′)+ h+
α(w). Hence, using that peak(S ′) ≤ peak(S ′′),

peak(S ′′)− lower(C) ≥ max{lead(S ′)− h− α(w),upper(C)− lower(C)}
= max{lead(S ′)− h− α(w), β(w)− α(w)}
≥ lead(S ′)− h− (α ◦ β−1)(lead(S ′)− h)

≥ γ̃ (lead(S ′)).

Here the penultimate inequality follows from the fact that the decreasing function
w 7→ lead(S ′) − h − α(w) intersects the increasing functionw 7→ β(w) − α(w)
at w = β−1(lead(S ′) − h). Since the finishing time finish(C) of C is fixed at time
max{lower(C),peak(S ′)− lead(S ′)} at the latest, we thus obtain

peak(S ′′)− finish(C) ≥ min{peak(S ′′)− lower(C), lead(S ′)} ≥ γ̃ (lead(S ′)).

By the definition of the lead, this immediately implies that lead(S ′′) ≥ γ̃ (lead(S ′)).

Lemma 5.3. Withwmaxdenoting the maximal size of a chunk inS,and r = dchunks(S)
/(p− 1)e,

lead(S) ≥ γ̃ (r+1)(β(wmax)),

552 H. Bast

and thus, by construction,

idle(S) ≥ (p− 1) · γ̃ (r+1)(β(wmax))+ ε · chunks(S).

Proof. Let S ′ be a prefix ofS such that the chunk ofS ′ scheduled last has sizewmax.
Then, by Lemma 5.1,

lead(S ′) ≥ β(wmax)− α(wmax),

and sinceS\S ′ contains at most chunks(S) ≤ r · (p− 1) chunks, repeated application
of Lemma 5.2 yields that

lead(S) ≥ γ̃ (r)(lead(S ′)) ≥ γ̃ (r)(β(wmax)− α(wmax)).

From that, the desired bound follows owing toγ̃ (β(wmax)) ≤ (id− α ◦ β−1)(β(wmax)) =
β(wmax)− α(wmax).

We are now ready to derive a lower bound on the wasted time ofS. Namely, withr
andwmaxdefined as in the last lemma, the number of chunks inS is at least(p−1)·(r−1),
and we immediately obtain that

waste(S) = (1/p) · (h · chunks(S)+ idle(S))
≥ ((p− 1)/p) · ((h+ ε) · (r − 1)+ γ̃ (r+1)(β(wmax))

)
.

To eliminater , check that becausẽγ always decreases its argument by at leasth+ ε, for
all i ∈ N andx > 0,

γ̃ ∗(x) ≤ i + dγ̃ (i)(x)/(h+ ε)e ≤ i + 1+ γ̃ (i)(x)/(h+ ε),
hence withi = r + 1 andx = β(wmax),

γ̃ (r+1)(β(wmax))+ (h+ ε) · (r + 2) ≥ (h+ ε) · γ̃ ∗(β(wmax)).

This, in turn, implies the lower bound

waste(S) ≥ ((p− 1)/p) · (h+ ε) · (γ̃ ∗(β(wmax))− 3
)
.

Two items remain in order to prove Theorem 5.1. First, to relateγ̃ ∗ to γ ∗, where
γ = id−max{h+ε, α ◦β−1}, and, second, to resolve the dependency on the (unknown)
wmax. For the first item, just observe that for allx ≥ 0,

γ (2)(x) ≤ γ (x)− h− ε ≤ (id− α ◦ β−1)(x)− h− ε
≤ (id− α ◦ β−1)(x − h− ε) = γ̃ (x),

which immediately implies thatγ ∗(x) ≤ 2 · γ̃ ∗(x). In order to eliminatewmax, we make
use of the trivial lower bound on chunks(S) of dn/wmaxe. We then have idle(S) ≥
ε ·n/wmax and waste(S) ≥ (h+ ε) · (n/p)/wmax, so that in combination with the bound
above on waste(S) we obtain

waste(S) = Ä ((h+ ε) · ((n/p)/wmax+ γ ∗(β(wmax)))
)
.

On Scheduling Parallel Tasks at Twilight 553

Resolving the dependency onwmax is now a matter of proving the following somewhat
amazing lemma. Note that since id/A ≤ α ≤ id, it holds thatα(n/p)/α(wmax) ≤
A · (n/p)/wmax.

Lemma 5.4. α(n/p)/α(wmax)+ γ ∗(β(wmax)) ≥ γ ∗(α(n/p)).

Proof. The proof is trivial if eitherβ(wmax) ≥ α(n/p) or α(wmax) ≤ h + ε, so we
assume in the following thatα(n/p) > β(wmax) andwmax> α−1(h+ ε). Then we can
choosei ∈ N minimal such thatγ (i)(α(n/p)) ≤ β(wmax), so that, in particular,

γ ∗(α(n/p)) ≤ i + γ ∗(β(wmax)).

Besides, it holds thatI = γ (i−1)(α(n/p)) > β(wmax) and thus 0≤ γ (i)(α(n/p)) ≤
α(n/p)− i ·max{h+ ε, α ◦ β−1(I)}, which, sinceα ◦ β−1(I) ≥ α(wmax) ≥ h+ ε by
assumption, implies that

0≤ α(n/p)− i · α(wmax).

In combination with the above we thus obtain

γ ∗(α(n/p)) ≤ i + γ ∗(β(wmax)) ≤ α(n/p)/α(wmax)+ γ ∗(β(wmax)).

This finishes the proof of Theorem 5.1 under the constraint that an algorithm may
not incur any waiting time between any two chunks successively assigned to the same
processor. In the next section we adapt the argumentation above to the case of arbitrary
scheduling algorithms.

5.1.2. The General Case. In view of possible waiting times, we need to complement
our incremental construction of the chunk processing times by the description of a (very)
special case, which could not have occurred so far. Namely, it may now happen—even if
not very meaningfully so—that after the selection of some peak chunk, the next chunk is
assigned at a timeT ′ after the upper thresholdT of that peak chunk; in particular, then,
all processors wait betweenT andT ′. Our action in that case will simply be to make
the new chunk the peak chunk, and to fix the finishing time of the old peak chunk at its
upper threshold (and not atT ′).

In view of the general setting, it is easy to see that Lemma 5.1 holds without changes,
while for Lemmas 5.2 and 5.3 a correcting term now has to be added. To enable a concise
statement of the modified statements we agree to define, for an arbitrary scheduleS ′,
and for arbitrary nonnegativeT ′, T ′′,

idle[T ′,T ′′](S ′)

as the total amount of idle time ofS ′ spent in the time interval [T ′, T ′′]. This is consistent
with our definition from Section 2.1 in the sense that withT = makespan(S ′), idle(S ′) =
idle[0,T](S ′).

554 H. Bast

Lemma 5.5. For two arbitrary prefixesS ′,S ′′ ofS such thatchunks(S ′) < chunks(S ′′)
≤ chunks(S ′)+ bp/2c,

lead(S ′′) ≥ γ̃ (lead(S ′))− 2 · idle[T ′,T ′′](S)/p,

where T′ = peak(S ′)− lead(S ′), and T′′ = peak(S ′′)− lead(S ′′).

Proof. LetT denote the time of the latest allocation inS ′′, so that for an arbitrary chunk
C ∈ S ′′\S ′ with sizew,

lower(C) ≤ T + h+ α(w).

Without waiting, we would haveT ≤ T ′ = peak(S ′) − lead(S ′), as in the proof of
Lemma 5.2. Now that waiting is allowed, we make use of the following argument. By
the definition of the lead, there arep− 1 processors whose chunks ofS ′ finish before
or atT ′ = peak(S ′)− lead(S ′), and since|S ′′\S ′| ≤ bp/2c, and by the definition ofT ,
at least 1+ p− 1− bp/2c = dp/2e of these are not assigned another chunk beforeT .
Therefore,

idle[T ′,T](S) ≥ p/2 · (T − T ′),

and thus, using thatT ≤ peak(S ′′)− lead(S ′′) = T ′′,

lower(C) ≤ T + h+ α(w)
≤ T ′ + 2 · idle[T ′,T](S)/p+ h+ α(w)
≤ peak(S ′)− lead(S ′)+ 2 · idle[T ′,T ′′](S)/p+ h+ α(w).

From this we deduce, analogously to the proof of Lemma 5.2,

peak(S ′′)− lower(C)
≥ max

{
lead(S ′)− h− 2 · idle[T ′,T ′′](S)/p− α(w), β(w)− α(w)}

≥ γ̃ (lead(S ′)− 2 · idle[T ′,T ′′](S)/p),

which implies the same bound for the lead ofS ′′. It remains to appeal to the sublinearity
property ofγ̃ , according to which̃γ (x − y) ≥ γ̃ (x)− y, for all x, y ≥ 0.

Lemma 5.6. Withwmaxdenoting the maximal size of a chunk ofS,andr = dchunks(S)/
bp/2ce,

lead(S) ≥ γ̃ (r+1)(β(wmax))− 2 · idle[0,T](S)/p,

where T= peak(S)− lead(S), and thus

idle(S) ≥ (p− 1) · γ̃ (r+1)(β(wmax))/2+ ε · chunks(S).

On Scheduling Parallel Tasks at Twilight 555

Proof. As in the proof of corresponding Lemma 5.3, there exists a prefixS ′ of S for
which, by Lemma 5.1,

lead(S ′) ≥ β(wmax)− α(wmax),

so that, by iterated application of Lemma 5.5 making use of the sublinearity property
of γ̃ ,

lead(S) ≥ γ̃ (r)(β(wmax)− α(wmax))− 2 · idle[0,T](S)/p

≥ γ̃ (r+1)(β(wmax))− 2 · idle[0,T](S)/p.

The bound on the idle time follows, since

idle(S) = idle[0,T](S)+ (p− 1) · lead(S)+ ε · chunks(S),

and, because the lead is never negative,

lead(S) ≥ lead(S)/2≥ γ̃ (r+1)(β(wmax))/2− idle[0,T](S)/p.

As before, we easily obtain from this lemma a lower bound on the wasted time of
S. Namely, using that chunks(S) ≥ (r − 1) · bp/2c ≥ (r − 1) · (p− 1)/2,

waste(S) = (1/p) · (h · chunks(S)+ idle(S))
≥ ((p− 1)/2p) · ((h+ ε) · (r − 1)+ γ̃ (r+1)(β(wmax))

)
,

which differs by a factor of exactly 2 from the bound obtained after Lemma 5.3 in the
proof for the case without waiting. The very same manipulations as used before will
therefore lead to the bound stated in the theorem.

5.1.3. Matching the Upper Bound. This final section is concerned with proving the
addendum to Theorem 5.1, which translates the bound proven above to a form compatible
with our Main Theorem. We first show, by a tricky combination of simple algebraic
manipulations, that

α ◦ γα-1(h+ε) ≤ γ ◦ α,
from which the addendum will follow easily. We start by observing that because id+
(β − α) ◦ α−1 = β ◦ α−1,

id = (id+ (β − α) ◦ α−1) ◦ α ◦ β−1.

Owing to the fact thatα is superadditive and henceα−1 is subadditive, it holds that, with
δ = α−1 ◦ (β − α),

id = α−1 ◦ (id+ (β − α) ◦ α−1) ◦ α ◦ β−1 ◦ α
≤ (α−1 ◦ id+ α−1 ◦ (β − α) ◦ α−1) ◦ α ◦ β−1 ◦ α
= (id+ δ) ◦ β−1 ◦ α,

556 H. Bast

and therefore

α ◦ (id− (id+ δ)−1) ≤ α ◦ (id− (id+ δ)−1) ◦ (id+ δ) ◦ β−1 ◦ α
= α ◦ δ ◦ β−1 ◦ α
= (id− α ◦ β−1) ◦ α.

Similarly,α ≤ id and the superadditivity property ofα imply that

α ◦ (id− α−1(h+ ε)) ≤ α − (h+ ε) ≤ α − (h+ ε) ◦ α = (id− (h+ ε)) ◦ α.
Altogether, since for arbitrary functionsf1, f2, g1, g2, f1 ≤ g1 and f2 ≤ g2 together
imply that min{ f1, f2} ≤ min{g1, g2}, we obtain that

min
{
α ◦ (id− (id+ δ)−1), α ◦ (id− α−1(h+ ε))}
≤ min

{(
id− α ◦ β−1

) ◦ α, (id− (h+ ε)) ◦ α} .
By the monotonicity ofα, min{α ◦ f, α ◦ g} = α ◦min{ f, g} and min{ f ◦ α, g ◦ α} =
min{ f, g}◦α, for arbitrary functionsf andg, so that the last inequality may be rewritten
as

α ◦ (id−max{α−1(h+ ε), (id+ δ)−1}) ≤ (id−max{h+ ε, α ◦ β−1}) ◦ α.
We have thus proven that

α ◦ γα-1(h+ε) ≤ γ ◦ α,
which, via a simple induction, is easily seen to imply that for alli ∈ N,

α ◦ γ (i)
α-1(h+ε) ≤ γ (i) ◦ α.

Hence for arbitraryx > 0, and for alli ∈ N,

γ (i)(α(x)) ≤ 0 ⇒ α ◦ γ (i)
α-1(h+ε)(x) ≤ 0 ⇒ γ

(i)
α-1(h+ε)(x) ≤ 0,

and we have finally proven that

γ ∗(α(n/p)) ≥ γ ∗
α-1(h+ε)(n/p).

This finishes the proof of Theorem 5.1.

5.2. Randomly Distributed Processing Times

For the lower bound proof given in the previous section, we fixed chunk processing times
at both ends of the estimated ranges[α(w), β(w)]. In a sense, the proof thus exploited
the full generality of our variance-estimator-based model, so that we cannot expect the
obtained result to translate easily to a setting where processing times are randomly
distributed. However, as is shown in Section 5.2.1 below, a rather simple argument
suffices to prove a surprisingly tight general lower bound on the expected wasted time
for randomly distributed task processing times. In Section 5.2.2 we derive from this
general result lower bounds for two specific instances of the independent-tasks and the

On Scheduling Parallel Tasks at Twilight 557

coupled-tasks setting (note that for the bounded-tasks setting, which is nonprobabilistic,
Theorem 5.1 applies).

5.2.1. General Bound. Like Theorem 5.1 from the previous section, Theorem 5.2
below is also formulated in terms of the progress rate of a variance estimator[α, β].
Intuitively, the ranges[α(w), β(w)] now describe the concentration of processing times
of chunks of sizew around their mean; the corresponding requirement of Theorem 5.2
is that such processing times have a certain likelihood to lie belowα(w) as well as to lie
aboveβ(w).

Theorem 5.2. Let task processing times be randomly distributed, with mean1, let the
overhead be h, and assume that there exist K≥ 1 and a variance estimator[α, β] such
that for allw ∈ N, it holds that for the total processing time T ofw tasks,

min {Pr(T ≤ α(w)),Pr(T ≥ β(w))} ≥ 1/K .

Then for all n, p ∈ N,and for an arbitrary algorithm that,given n tasks and p processors,
produces a scheduleS such that the processing times of the chunks ofS are independent,
it holds that

E waste(S) = Ä ((h · γ ∗(n)/p)/K
)
,

whereγ denotes the progress rate associated with[α, β] and h.

The proof of this theorem is somewhat akin to that of Theorem 5.1 but not analogous.
The similarity is that both proofs show that either relatively small and hence many chunks
are allocated, or the final imbalance is likely to be large. For Theorem 5.1 this was
realized by showing first that a large chunk induces a large peak, and second that the
peak can only decrease at a certain fixed rate from one batch of allocations to the next
(the difference between lead and imbalance is not essential at this point). However, as we
already remarked above, the proof of the last assertion made use of the full power of the
variance-estimator-based model. Instead, the following proof is based on the argument
that, intuitively speaking, a large chunk is likely to cause an imbalance too large to be
rebalanced by the remaining work. In fact, Theorem 5.1 could also have been proven
along this line of argumentation, however, with somewhat more effort. While the proof
of Theorem 5.1 considered batches of2(p) scheduling operations, the proof below takes
a more simplistic approach by coarsely quantifying the effect of individual scheduling
operations. This accounts for a loss of accuracy in our bounds that is on the order of the
number of processors.

Technically, the proof is organized as follows. With Lemma 5.7 we first provide a
formalization of the pretty intuitive (and nonprobabilistic) fact that whenever the imbal-
ance is large and the processing time of the remaining work is small, the wasted time is
bound to be large. After that we prove the key Lemma 5.8 saying that a too large chunk
causes a large expected wasted time. From this result it will be straightforward to deduce
the theorem.

558 H. Bast

Lemma 5.7. For an arbitrary scheduleS ′ on p processors, with initial imbalance I
and total processing time T,

p · waste(S ′) ≥ I − T.

Proof. Fork = 1, . . . , p, we denote byHk the sum of all overheads and waiting times
of the kth processor, byTk its total processing time, and bytk the time when it first
becomes idle initially. ThenT = ∑p

k=1 Tk and, by the definition of initial imbalance
given in Section 3.2 (just before Theorem 3.1),I = p ·max{t1, . . . , tp} −

∑p
k=1 tk, so

that

p · waste(S ′)

=
p∑

k=1

Hk + imbalance(S ′)

=
p∑

k=1

Hk + p ·max{t1+ H1+ T1, . . . , tp + Hp + Tp}

−
p∑

k=1

(tk + Hk + Tk)

≥ p ·max{t1, . . . , tp} −
p∑

k=1

tk −
p∑

k=1

Tk

= I − T.

Lemma 5.8. Under the assumptions of the theorem, for W, p ∈ N, let S ′ denote the
schedule produced by an algorithm given W tasks and p processors and for an arbitrary
fixed initial imbalance. Then, with γ̃ = id− (id+ (β − α)/(4K))−1,

max
{
W − w, p · E waste(S ′)

} ≥ γ̃ (W),

wherew denotes the size of the very first chunk ofS ′.

Proof. Let C denote the very first chunk ofS ′, let T denote its processing time, and
let us measure time relative to the scheduling time ofC (which is hence 0). We first
establish a lower bound on the expected imbalance incurred byC, for which we consider
two cases. In one case, there exists a processor other than the one to whichC is assigned
that becomes idle later thanh+ (α(w)+ β(w))/2. Since, under the assumptions of the
theorem, Pr(T ≤ α(w)) ≥ 1/K , this gives us

E imbalance({C}) ≥
(
α(w)+ β(w)

2
− α(w)

)
· Pr(T ≤ α(w)) ≥ β(w)− α(w)

2K
.

In the opposite case, there certainly exists a processor other than the one to whichC is
assigned that becomes idle at or beforeh+(α(w)+ β(w))/2. However, then again, now

On Scheduling Parallel Tasks at Twilight 559

owing to Pr(T ≥ β(w)) ≥ 1/K ,

E imbalance({C})≥
(
β(w)− α(w)+ β(w)

2

)
· Pr(T ≥ β(w)) ≥ β(w)− α(w)

2K
.

With δ̃ defined as(β − α)/(4K), it follows that in any case, the expected imbalance
incurred byC, which is just the initial imbalance ofS ′\{C}, is at least 2· δ̃(w). Since the
expected total processing time ofS ′\{C} is justW − w, Lemma 5.7 hence allows us to
conclude that

p · E waste(S ′) ≥ 2 · δ̃(w)− (W − w).

The lemma now follows easily. EitherW − w ≥ γ̃ (W), in which case we are done, or
W−w < γ̃ (W), which by the identityγ̃ = id− (id+ δ̃)−1 = δ̃ ◦ (id+ δ̃)−1 and by the
monotonicity ofδ̃ implies δ̃(w) ≥ γ̃ (W) and hence 2· δ̃(w)− (W − w) ≥ γ̃ (W).

With Lemma 5.8 it is now easy to prove the theorem. As in that lemma, define
γ̃ = id − (id + (β − α)/(4K))−1, and first observe that sincẽγ (x) > 0 for all x > 0,
there must exist an integerj such thatWj+1 < γ̃ (j)(n), whereWj+1 denotes the number
of unassigned tasks after the firstj scheduling operations. Letj denote the smallest such
integer, and note that, since the decisions taken by a scheduling algorithm may depend
on the processing times of already processed chunks,j is actually a random variable.
We therefore temporarily consider a restricted probability space, wherej as well as the
processing times of the firstj − 1 chunks are arbitrarily fixed. In this probability space
consider the scheduleSj consisting of the remaining chunks. Using that the processing
time of the first chunk ofSj is independent of the processing times of the previous
chunks, Lemma 5.8, applied toSj , then guarantees that

max
{
Wj+1, p · E waste(Sj)

} ≥ γ̃ (Wj);
note thatWj+1 = Wj − (Wj −Wj+1), whereWj −Wj+1 is just the size of thej th chunk.
However, by the wayj was defined,Wj+1 < γ̃ (j)(n) andWj ≥ γ̃ (j−1)(n), so that we
have in fact

p · E waste(Sj) ≥ γ̃ (Wj) ≥ γ̃ (j)(n).

By adding the overhead of the initialj − 1 chunks, this immediately gives us a bound
for the complete schedule:

p · E waste(S) ≥ h · (j − 1)+ γ̃ (j)(n).

Now the very argument used in the proof of Theorem 5.1 (just after the proof of
Lemma 5.3) can be applied to eliminatej and deduce that

p · E waste(S) ≥ h · (min{γ̃ , id− h}∗(n)− 2
)
.

At this point, recall that all the probabilistic assertions we have derived so far were in
fact conditional on the above fixing ofj and the processing times of the initialj − 1

560 H. Bast

chunks. However, since our last bound is independent ofj , the arbitrariness of our fixing
implies that the bound must hold for the complete probability space as well.

All that remains to complete the proof is now to relate min{γ̃ , id − h} = id −
max{h, (id+(β−α)/(4K))−1}appropriately toγ = id−max{h, (id+α−1◦(β−α))−1}.
However, since, by our definition of a variance estimator, we haveα ≥ id/A, for some
constantA ≥ 1, Lemma 3.5 yieldsγ ∗ ≤ 4K A ·min{γ̃ , id− h}∗, and we may conclude
that

p · E waste(S) = Ä(h · γ ∗(n)/(AK)).

This finishes the proof of Theorem 5.2.

5.2.2. Specific Bounds. In view of Theorem 5.2, obtaining lower bounds for a stochas-
tic setting reduces to bounding from below the tails of the underlying probability distribu-
tion. In the following, this is demonstrated for two specific settings. The first is a special
instance of the independent-tasks setting with the processing time of a task assumed to
be normal (truncated at zero). The second is a special instance of the coupled-tasks set-
ting, assuming a uniform distribution of the task processing times, as well as a particular
coupling. Corollary 5.3 settles one of the open problems put forward in [12].

Corollary 5.3. Let task processing times be independent, normal and with variance
σ 2, and let the overhead be h≥ 2. Then for all n, p ∈ N with n/p ≥ max{h, (4σ)2},
the scheduleS produced by an arbitrary scheduling algorithm given n tasks and p
processors satisfies

E waste(S) = Ä((h · log logh n+ σ√h)/p).

Proof. The proof is a simple matter of combining Theorem 5.2 with well-known tail
estimates for the normal distribution. Letw ∈ N, and letT be the total processing time
of an arbitrary fixed selection ofw tasks. ThenT is normal with meanw and variance
σ 2w, and by the tail estimates established in the proof of Lemma 4.6 (in fact, for our
purposes here those from [10] would do equally well), there exists a constantK ≥ 1
such that

Pr(T ≥ w + σ√w) ≥ 1/K ,

as well as

Pr(T ≤ max{w/2, w − σ√w}) ≥ Pr(T ≤ w − σ√w) ≥ 1/K .

The precondition to Theorem 5.2 is hence fulfilled with

[α, β] : w 7→ [max{w/2, w − σ√w}, w + σ√w],

and the theorem gives us

E waste(S) = Ä(h · γ ∗(n)/p),

On Scheduling Parallel Tasks at Twilight 561

whereγ is the progress rate associated with[α, β] andh. Using Lemma 4.4 to evaluate
γ ∗, we have that, forn/p ≥ max{h, (4σ)2},

γ ∗(n) = Ä(log logh n+ σ/√h).

Corollary 5.4. Let task processing times be coupled, and uniformly distributed in
[Tmin, Tmax], and let the overhead be h. Then for all n, p ∈ N with n/p ≥ (3h)2,
and for every algorithm that produces a scheduleS such that the processing times of
each pair of tasks are equal if the tasks belong to the same chunk and independent
otherwise, it holds that

E waste(S) = Ä((h · logn)/p).

Proof. By assumption, the processing timeT of a chunk ofS of sizew is uniformly
distributed in [Tmin · w, Tmax · w], so that for1T = (Tmax− Tmin)/4, we have Pr(T ≤
(Tmin +1T) · w) ≥ 1

4 as well as Pr(T ≥ (Tmax−1T) · w) ≥ 1
4. The preconditions to

Theorem 5.2 are therefore satisfied with

[α, β] : w 7→ [(3Tmin+ Tmax)/4 · w, (Tmin+ 3Tmax)/4 · w],

so that we obtain

E waste(S) = Ä(h · γ ∗(n)/p),

whereγ is the progress rate associated with[α, β] andh. Since 1≤ (Tmin + 3Tmax)/

(3Tmin+Tmax) ≤ 3, Lemma 4.4 implies that forn/p ≥ (3h)2, γ ∗(n) = Ä(logn), which
proves the corollary.

Acknowledgments

The author wishes to thank Torben Hagerup for introducing her to the subject, Volker Priebe for incredibly
thorough proof reading and tireless praising, Susan Hert for improving the English, Pierre Fraigniaud for
having been such an obliging editor, and Berthold V¨ocking for comments on the Introduction.

References

[1] Bast, H. (2000), Provably Optimal Scheduling of Similar Tasks, Ph.D. thesis, Universit¨at des Saarlandes.
[2] Bull, J. M. (1998), Feedback guided dynamic loop scheduling: algorithms and experiments, inPro-

ceedings, European Conference on Parallel Computing(EURO-PAR’98), pp. 377–382, Lecture Notes
in Computer Science 1470, Springer-Verlag, Berlin.

[3] Coffman, E. G. (1976),Computer and Job-Shop Scheduling Theory, Wiley, New York.
[4] Durand, M. D., Jalby, W., Kervella, L., and Montaut, T. (1996), Impact of memory contention on dynamic

scheduling on NUMA multiprocessors,IEEE Transactions on Parallel and Distributed Systems, 11,
1201–1214.

[5] Eager, D. L., and Subramaniam, S. (1994), Affinity scheduling of unbalanced workloads, inProceedings,
Supercomputing(SC’94), pp. 214–226.

562 H. Bast

[6] Eager, D. L., and Zahorjan, J. (1992), Adaptive Guided Self-Scheduling, Technical Report 92-01-01,
Department of Computer Science and Engineering, University of Washington.

[7] Flynn, L. E., Hummel, S. F., and Schonberg, E. (1992), Factoring: a method for scheduling parallel
loops,Communications of the ACM35(8), 90–101.

[8] Garey, M. R., and Johnson, D. S. (1979),Computers and Intractability, a Guide to the Theory of
NP-Completeness, Freemann, San Francisco, California.

[9] Graham, R. L. (1966) Bounds for certain multi-processing anomalies,Bell System Technical Journal
45, 1563–1581.

[10] Grimmett, G. R., and Stirzaker, D. R. (1992),Probability and Random Processes(2nd edn.), Oxford
University Press, Oxford.

[11] Gumbel, E. J. (1954), The maxima of the mean largest value and of the range,Annals of Mathematical
Statistics25, 76–84.

[12] Hagerup, T. (1996), Allocating independent tasks to parallel processors: an experimental study, in
Proceedings, Parallel Algorithms for Irregularly Structured Problems(IRREGULAR1996), pp. 1–33,
Lecture Notes in Computer Science 1117, Springer-Verlag, Berlin.

[13] Hagerup, T. (1997), Allocating independent tasks to parallel processors: an experimental study,Journal
of Parallel and Distributed Computing47, 185–197.

[14] Hartley, H. O., and David, H. A. (1954), Universal bounds for mean range and extreme observation,
Annals of Mathematical Statistics25, 85–99.

[15] Hummel, S. F., Banicescu, I., Wang, C., and Wein, J. (1995), Load balancing and data locality via
fractiling: an experimental study, inProceedings, 3rd Workshop on Languages, Compilers, and Run-
Time Systems for Scalable Computers(LCR ’95), pp. 85–98, Kluwer, Dordrecht.

[16] Hummel, S. F., Kimelman, D., Schonberg, E., Tennehouse, M., and Zernik, D. (1997), Using program
visualization for tuning parallel-loop scheduling,IEEE Concurrency5, 26–40.

[17] Hummel, S. F., Schmidt, J., Uma, R. N., and Wein, J. (1996), Load-sharing in heterogeneous sys-
tems via weighted factoring, inProceedings, 8th Annual ACM Symposium on Parallel Algorithms and
Architectures(SPAA’96), pp. 318–328.

[18] Kruskal, C. P., and Weiss, A. (1985), Allocating independent subtasks on parallel processors,IEEE
Transactions on Software Engineering11, 1001–1016.

[19] Liu, J., Lam B. Y., and Saletore, V. A. (1993), Scheduling non-uniform parallel loops on distributed mem-
ory machines, inProceedings,Hawaii International Conference on System Sciences, vol. 2, pp. 516–525.

[20] Liu, J., and Saletore, V. A. (1993), Self-scheduling on distributed-memory machines, inProceedings,
Supercomputing(SC’93), pp. 814–823.

[21] Liu, J., Saletore, V. A., and Lewis, T. G. (1994), Safe self scheduling—a parallel loop scheduling scheme
for shared-memory multiprocessors,International Journal of Parallel Programming22(6), 589–616.

[22] Lucco, S. (1992), A dynamic scheduling method for irregular parallel programs, inProceedings, Con-
ference on Programming Language Design and Implementation(PLDI ’92), pp. 200–211.

[23] Lusk, E. L., and Overbeek, R. A., (1983), Implementation of Monitors with Macros: a Programming Aid
for the HEP and Other Parallel Processors, Technical Report ANL-83-97, Argonne National Laboratory,
Argonne, Illinois.

[24] Markatos, E. P., and LeBlanc, T. J. (1994), Using processor affinity in loop scheduling on shared-memory
multiprocessors,IEEE Transactions on Parallel and Distributed Systems5(4), 379–400.

[25] Orlando, S., and Perego, R. (1998), A comparison of implementation strategies for nonuniform data-
parallel computations,Journal of Parallel and Distributed Computing52, 132–149.

[26] Orlando, S., and Perego, R. (1998), Scheduling data-parallel computations on heterogeneous and time-
shared environments, inProceedings, European Conference on Parallel Computing(EURO-PAR’98),
pp. 356–365, Lecture Notes in Computer Science 1470, Springer-Verlag, Berlin.

[27] Petrov, V. V. (1995),Limit Theorems of Probability Theory, Oxford University Press, Oxford.
[28] Pinedo, M. (1995),Scheduling: Theory, Algorithms, and Systems, Prentice-Hall, Englewood Cliffs, New

Jersey.
[29] Polychronopoulos, C. D., and Kuck, D. J. (1987), Guided self-scheduling: a practical scheduling scheme

for parallel supercomputers,IEEE Transactions on Computers36, 1425–1439.
[30] Rudolph, D. C., and Polychronopoulos, C. D. (1989), An efficient message-passing scheduler based

on guided self-scheduling, inProceedings International Conference on Supercomputing(ICS ’89),
pp. 50–60.

On Scheduling Parallel Tasks at Twilight 563

[31] Shmoys, D. B., Wein, J., and Williamson, D. P. (1995), Scheduling parallel machines online,SIAM
Journal of Computing24, 1313–1331.

[32] Smith, B. (1981), Architecture and applications of the HEP multiprocessor computer system, inPro-
ceedings, SPIE Symposium(Real Time ProcessingIV), pp. 241–248.

[33] Tang, P., and Yew, P. C. (1986), Processor self-scheduling for multiple-nested parallel loops, inPro-
ceedings, International Conference on Parallel Processing(ICPP ’86), pp. 528–535.

[34] Tzen, T. H., and Ni, L. M. (1993), Trapezoid self-scheduling—a practical scheduling scheme for parallel
compilers,IEEE Transactions on Parallel and Distributed Systems4(1), 87–98.

[35] Wolfe, M. (1996)High Performance Compilers for Parallel Computing, Addison-Wesley, Amsterdam.
[36] Yan, Y., Jin, C., and Zhang, X. (1997), Adaptively scheduling parallel loops in distributed shared-memory

systems,IEEE Transactions on Parallel and Distributed Systems8(1), 70–81.

Online publication November27, 2000

View publication statsView publication stats

https://www.researchgate.net/publication/47842988

