Theory Comput. Systen83, 489-563 (2000)
DOI: 10.1007s002240010013

Theory of
Computing
Systems

© 2000 Springer-Verlag
New York Inc.

On Scheduling Parallel Tasks at Twilight

H. Bast

Max-Planck-Institut i Informatik,
66123 Saarhucken, Germany
hannah@mpi-sb.mpg.de

Abstract. We consider the problem of processing a given number of tasks on a
given number of processors as quickly as possible when only vague information
about the processing time of a task is available before it is completed. Whenever a
processor is idle, it can be assigned, at the price of a certain overhead, a portion,
called a chunk, of the unassigned tasks. The goal is to minimize the makespan, that
is, the time that passes until all the tasks are completed. The difficulty then is to
find the optimal tradeoff between the processors’ load balance, which is favoured
by having small, and therefore many, chunks, and the total scheduling overhead,
which is lower when there are fewer chunks. This scheduling problem has been
the subject of intensive research in the past, and a large variety of heuristics have
been proposed. Its mathematical analysis, however, turned out to be difficult even
for simplistic models of the vague-information issue, and little theoretical work has
been presented to date. In this work we present a novel theoretical model that covers
a multitude of natural vague-information scenarios, and for which we can prove
general upper and lower bounds on the achievable makespan. From this we derive
optimal bounds and algorithms for awhole variety of specific scenarios, including the
modelling of task processing times as independent, identically distributed random
variables, which guided the design of most of the previously existing heuristics.
Unlike traditional approaches, our model neither ignores a priori knowledge of
the input (the processing times) nor does it restrict the distribution of the input, but
instead works with the concepts of an a priori estimate of the processing times, which
is implicit in every algorithm, and a measure for the deviation of this estimate from
the actual processing times, which is not known until all the tasks are completed.

* This research was supported in part by a Graduiertenkolleg graduate fellowship of the Deutsche For-
schungsgemeinschaft (DFG), and in part by ESPRIT LTR Project No. 20244 - ALCOM-IT.

490 H. Bast
1. Introduction

Most information is vague, that is, incomplete and possibly imprecise, but modelling
this concept in arigorous yet practically useful way is very difficult. Indeed, virtually all
theoretical studies of computational problems proceed from one of the three following
simplifying assumptions: the relevant information is completely known a priori, it is
completely unknown a priori, or its distribution is in some way restricted. In this article
we study a multiprocessor scheduling scenario where none of these simplifications leads
to satisfactory results, and for which, correspondingly, hardly any theoretical work exists.
On the other hand, we will see that this scenario has a very practical background, and
that many heuristics have been devised in the past; all of these, however, lack a solid
theoretical underpinning. We address this deficit by providing, for the first time for such
a vague-information setting, a precise yet general mathematical model, together with a
comprehensive theoretical analysis.

The following subsection will guide the reader through the vast scheduling literature,
and step by step familiarize him or her with the various aspects and subtleties of our
scheduling scenario. Impatient readers, who want to know about this scenario and about
our results right away, should consider jumping to Section 1.2 now. Very impatient
readers, who are looking for a more formal and complete description of our setting, might
even want to jump to Section 2, which technically does not rely on the Introduction.

1.1. Motivation and Background

One of the challenges in exploiting the power of parallel computers is to msghedule

the parallelism contained in a program onto a set of processors such that these processors
are utilized as effectively as possible. Since the bulk of the running time of a program

is spent in its repetitive parts, and these are typically coded as loops, one of the key
issues in this context is effecti@op schedulingthat is, determining which iteration of

a loop should be executed on which processor at which time. Of special interest here are
so-calledparallel loops whose iterations may be executed in any order, hence also con-
currently with each other. Parallel loops are prevalent especially in scientific and numeric
code, and there exists an abundance of techniques and tools for detecting when iterations
are independent as well as for transforming suitable loops to establish that property [35].

In general, processors need to synchronize after the parallel execution of a loop in
order to ensure that all iterations are completed before the execution of the next program
statement is begun. The goal of effective loop scheduling is therefore to minimize the
completion time of the last iteration, a quantity known aslémgthor makesparof the
schedule. We also remark that a parallel loop might be executed a large number of times
(as part of an outer serial loop), in which case even small deviations in the makespan can
accumulate as considerable amounts of running time; achieving an optimal or close-to-
optimal makespan is therefore of utmost importance.

Problems that involve the scheduling of certain tasks on parallel machines or pro-
cessors have been the subject of very intensive theoretical research. In the remainder of
this subsection, we give an overview over the various lines of this research and discuss
their applicability to problems like parallel-loop scheduling. This will naturally lead to
our abstract problem formulation, given in Section 1.2.

On Scheduling Parallel Tasks at Twilight 491

1.1.1. Static Scheduling When the processing times of the tasks are known in advance,
optimal schedules can be compustatically, thatis, before the actual computation starts.
We assume thgdreemptionsire not allowed, meaning that once a task is scheduled on a
processor, it must be run to completion on that processor. This is a realistic assumption
for fine-grained applications like parallel-loop scheduling, where the processing time of
a single task (an iteration) is small compared with the overall execution time. We observe
that nonpreemptive static scheduling with minimal makespan is tantamount to distribut-
ing the tasks on the processors so as to achieve an ofiagdbalancethat is, processor
finishing times which differ as little as possible from each other. The exact version of
this problem is easily seen to be NP-complete even when the number of processors is
restricted to two [3], [8]. For many practical applications, however, sufficiently accurate
approximations do equally well. Given for instance the above-mentioned property of
relatively small task processing times, it would clearly be satisfactory if the finishing
times of the processors differed by no more than a single task’s processing time. This,
however, can be easily achieved by a linear-time algorithm, which divides the total work
into blocks or chunks of consecutive iterations, one chunk for each processor. In the
context of loop scheduling, the optimal such scheme is knowrak schedulingr
static chunking

What complicates the application of static scheduling schemes in practice is that
in order to know the processing times of the tasks in advance, we must find a way to
predict them. This is difficult because certain low-level details of the actual process that
determines processing times are practically impossible to foresee. For example, while
a compiler might be able to figure out which variables a program will manipulate at a
particular point, it usually cannot predict with certainty where in the memory hierarchy
(cache, etc.) a particular memory access will take place. In so-cafjathrapplications,
the outcomes of such low-level events follow a well-predictable pattern. In that case,
static scheduling coupled with some kind of performance prediction is the method of
choice. A specific scheme that addresses this issue for the particular case of a parallel
loop repeated within a serial loop was presented by Bull [2]. We here consider so-called
irregular applications, where the processing times vary widely and in an unpredictable
manner. Given the complex interplay of several processors working in concert, this is
clearly a realistic assumption in the context of parallel computing in general, and, as
various experimental studies have shown, for loop scheduling in particular [15], [4],
[16]. Under such circumstances, static scheduling schemes are clearly inappropriate, as
they cannot avoid that some processors finish long before others, thus wasting their time
for the rest of the computation.

1.1.2. Dynamic Scheduling In appreciation of the problems pointed out above, much
attention in scheduling theory has been devoted to the study of what today are called
online problems, where parts or all of the relevant information are not available to an
algorithm beforehand. A basic method for the setting where nothing is known about the
processing time of a task until it is completed is as follows. The tasks are queued in an
arbitrary order, and at runtime, whenever a processor becomes idle, the task at the head
of the queue is removed and scheduled to that processor. Unlike for static schemes, a task
here does not know a priori on which processor it will be processed, which is referred

492 H. Bast

to asdynamicscheduling. We remark that for scheduling the iterations of a parallel loop
on a shared-memory machine, this scheme can be implemented without a (notoriously
inefficient) central scheduling unit: via a shared memory variable the processors can
instead “schedule themselves” the tasks from the queue whenever they become idle
[32], [23], [33]. In the context of parallel computing, the described method is therefore
referred to aself-scheduling

In a sense, self-scheduling is an efficient scheduling scheme. First, by construction
it produces a schedule in which the finishing times of the processors differ by at most
the processing time of a single task—a result that we have deemed satisfactory above.
Second, self-scheduling is provably optimal with respect to the so-catiegpetitive
ratio, defined as the maximum factor (over all possible inputs) by which the solution
deviates from the optimal so-called offline solution, which could have been produced if
all the relevant information had been available beforehand. This optimality result is a
combination of the upper bound implied by Graham’s analysis [9] and a lower bound
proven by Shmoys et al. [31].

As it turns out, however, self-scheduling sometimes performs quite poorly in prac-
tice, and at times even worse than simple static schemes. The reason is that each schedul-
ing decision that is postponed to runtime is associated with a cant@irheadwhich
addsto the parallel execution time. Examples for possible sources of such overhead are
synchronizationemployed to handle concurrent requests to a common task pool (for
example, the queue abovepmmunicationneeded to retrieve data required for pro-
cessing a task, and, of coursemputationnecessary to make the scheduling decision
itself. Especially in the case of fine-grained applications, such as a typical parallel loop,
this overhead may account for a significant portion of the total running time, so great
care has to be taken so as not to outweigh the gains of an improved load balance. In fact,
this outweighing is likely to happen for the described self-scheduling algorithm, which,
scheduling one iteration at a time, achieves its near-optimal balance of processor loads
at the price of a maximal number of scheduling operations. In this sense, self-scheduling
is just the extreme opposite to static scheduling, which minimizes overheads at the risk
of a large load imbalance. To achieve better tradeoffs between the load imbalance and
the scheduling overhead, we must therefore congiglbrid schemes which schedule
not all, but several tasks at a time.

In the literature, such hybrid scheduling schemes have hardly been investigated.
One obvious reason for this is the implicit assumption that the overhead entailed by
a dynamic scheduling operation (which is always there) be negligible compared with
the processing time of a single task. A subtler point is that in the scenario where noth-
ing is known about the processing times in advance, self-scheduling comes out as an
optimal algorithm with respect to the competitive ratio, even when incorporating over-
heads into the analysis. This should not be too surprising since when the processing
times can be arbitrary, then, intuitively speaking, no advantage lies in scheduling several
tasks at a time (a single task might take an equally long time). A meaningful analy-
sis of hybrid scheduling schemes that considers the tradeoff between load imbalance
and scheduling overhead must hence be based on some notioboohded irregu-
larity of the task processing times, by which it would be implied that a larger number
of tasks indeed tends to have a larger total processing time than a smaller number of
tasks.

On Scheduling Parallel Tasks at Twilight 493

1.1.3. Stochastic Scheduling The traditional approach to make such a notion of a
bounded irregularity precise é&verage-casanalysis. In the context of scheduling prob-
lems, an average-case analysis will assume that the processing times behave randomly
according to some probability distribution, certain properties of which are provided as
part of the input; in the operations-research community, this setting is better known
under the heading dftochastic schedulinf28]. Unfortunately, average-case analysis

is usually much harder than worst-case analysis, and quickly becomes intractable when
dealing with dynamic problems. Indeed, compared with the abundance of results built on
worst-case analysis, theoretical analyses of scheduling problems with random processing
times are few and typically concerned with only the most basic settings. When it comes
to considering both random processing tinaesl scheduling overheads, only a single,
specialized result, due to Kruskal and Weiss [18], seems to be known. We describe this
result next, and come back to average-case analysis in Section 1.2.

The object of the investigations by Kruskal and Weiss was the sifiygéd-size
chunkingheuristic, which instead of scheduling only one task at a time, schedules
so-calledchunksof a fixed number of tasks at a time. Kruskal and Weiss modelled
task processing times, as well as the per-chunk overheads, as independent, identi-
cally distributed (and sufficiently well behaved) random variables. In a sense, their
result was promising: they showed that the chunk size can be chosen such that the
expected makespan is within a factor of-le of the optimum, where — 0 as the
number of tasks goes to infinity. However, this result has a number of weaknesses,
and the authors themselves explained that it should be viewed as “a lower bound
for real machines”. First, their analysis was asymptotic, so that it remained unclear
when e would actually become small. Second, the assumption of independent, iden-
tically distributed task processing times leads to chunk processing times that are very
sharply concentrated around their mean—indeed, for this setting even the aforemen-
tioned naive static chunking strategy gives reasonable results. It was left entirely open
what would happen for more realistic, less well-behaved processing times. Third, even
within this limited setting, fixed-size chunking is not the asymptotically optimal schedul-
ing scheme. Fourth, a suitable—not to mention optimal—chunk size is very hard to
determine, and no intuitive default setting exists. The bottom line is that, roughly speak-
ing, fixed-size chunking is a useful but “quick-and-dirty” heuristic. Indeed, Kruskal and
Weiss already noted that an optimal scheme should rather have “the chunk size de-
crease as the scheduling process evolves”. This is in fact quite natural, since smaller
chunks are required only towards the end, in order to achieve balanced finishing times,
whereas earlier chunks should be larger in order to help keep the scheduling overhead
small.

1.1.4. Decreasing-Size Heuristics Following the work by Kruskal and Weiss, a multi-

tude of heuristics for scheduling tasks in chunks of decreasing sizes have been presented,
among others by Polychronopoulos and Kuck [29], Tzen and Ni [34], Flynn et al. [7],
Lucco [22], Liu et al. [21], and Hagerup [13]. A survey of most of these can be found

in the comparative experimental study of Hagerup [13] or in [1]. We only mention here
that most of these heuristics were actually implemented, and at least two of them, the
guided self-schedulingf Polychronopoulos and Kuck [29] and a variant of thetoring
strategy due to Flynn et al. [7] have been embodied in a variety of serious (that is, not

494 H. Bast

specially created) applications. On top of these basic strategies, numerous more complex
schemes were constructed, addressing other important practical issues such as affinity
and data locality [24], [5], [15], [25], self-adaptiveness [6], [36], distributed memory
[30], [19], [20], and heterogeneous, time-shared environments [17], [26]. For our pur-
poses here, one should note that for all of these, a clever heuristic for partitioning the
tasks into chunks is an essential component.

Itis conspicious that not even the most basic decreasing-size schemes are supported
by any rigorous analysis. This is unsatisfactory in several respects. First, and most ob-
viously, there is the risk of a poor performance even under circumstances that conform
well to the underlying model. As is shown in [1], this is indeed the case for several of
the named schemes. Second, experiments are in general hardly suitable to assess the
appropriateness of the complexity of a scheme relative to its performance. So, for ex-
ample, the FAC scheme of Flynn et al. [7] was designed on the basis of a very intricate
heuristic but tends to perform rather poorly compared with its “quick-and-dirty” variant
FAC2, which does away with all the intricacy. Similarly, Hagerup [13] honestly judged
his BoLD scheme by saying that “considerations that are at least as logical lead to dif-
ferent variants of BLD that just happen not to perform as well”. A third issue is that
many of the previous schemes are controlled by one or more parameters, whose tuning
has a great impact on the performance. Concrete guidance for setting these parameters
properly was often not given.

1.2. Our Work

We summarize the various elements that constitute our scheduling scenario. We are given
n tasks, the processing time of each of which is not known until it is completed, to be
scheduled in an arbitrary order gnprocessors, initially idle. Whenever a processor is
idle, it may be scheduled an arbitrary portion, callezhank of the so far unscheduled
tasks, at the price of a certain overhead per chunk. Here, as well as later, we work with the
assumption of a fixed overhe&id As is shown in Section 3, this (of course unrealistic)
restriction is not for technical necessity but rather for convenience, to simplify our
presentation. Our goal is to minimize the makespan of the schedule, which we will see to
be tantamount to minimizing the sum of the idle times of processors finishing early plus
the sum of all overheads, a quantity called tested timeof the schedule. Using this
objective, achieving near-optimal makespan corresponds to achieving a wasted time that
is negligible compared with the total processing time of the tasks (on which a scheduling
algorithm has no influence). It should be noted that when considering wasted times, small
constant-factor changes are not very significant: for instance, wasted times amounting to
1% and 5% of the total processing time correspond to a makespan that is off the optimum
by a factor of 101 and 105, respectively.

1.2.1. A Generic Approach As we have learned from Section 1.1, a meaningful anal-
ysis of the tradeoff between load imbalance and scheduling overhead, and hence of the
wasted time, must consider some notion of a bounded irregularity of the task process-
ing times. This is of course a fairly vague concept, which can be concretized in many
ways. One example is what we call tinelependent-tasks settingthich underlies the

On Scheduling Parallel Tasks at Twilight 495

theoretical investigations of Kruskal and Weiss [18] as well as most existing heuristic
schemes; here the task processing times are independent, identically distributed random
variables. Note that this is a particularly well-behaved setting, since the independence
assumption implies a very sharp concentration of chunk processing times. Hagerup [13]
also considered a special instance of what we caltthgled-tasksetting, where task
processing times are again identically distributed random variables; however, tasks are
now divided arbitrarily into groups, and independence only holds between pairs of tasks
from different groups, while the processing times of all tasks in the same group are equal
with probability one. This models, for example, an image processing application, where,
naturally, processing costs vary from region to region rather than from pixel to pixel.
Yet another model of bounded irregularity is that in which threshdjgsand Tyax are

known such that each task processing time is guaranteed to lie Withi Tmax]. We

call this thebounded-tasks settingstances of which were previously also considered

by Liu et al. [21].

While it is certainly instructive to study any of these particular settings, it would
of course be more desirable to have a meta-model that comprises all of the approaches
named above. Results for such a model would provide more comprehensive insight into
how exactly the issue of vagueness of information affects scheduling efficiency. More-
over, each of the settings described above hinges on the fact that the input distribution
is restricted, so that it is not clear whether results could be extrapolated to distributions
that deviate (maybe only slightly) from the imposed requirements. More convincing
performance bounds should do away with such restrictions, and instead have the prop-
erty that they degrade gracefully as inputs become less well-behaved. A third concern,
particular to stochastic modellings in general, is that a probability distribution is always
in danger of overspecifying the modelled behaviour, by having to assign a probabili-
tiy to each and every event. So, for example, no probability distribution function can
express that some task takes somewhere between 10 and 20 milliseconds—which is
certainly an informative statement by itself—without also having to commit to some
average time, or to specify how likely it is that less than 15 milliseconds suffice. As
a result, probabilistic assumptions may—and usually do—add an artifical regularity
to the studied problem, which it did not possess originally. Algorithms and analyses
that, perhaps even unknowingly, exploit this structure are hence of somewhat limited
use.

A year’s (or two) contemplation over the desires expressed above leads us to the
following two concepts: &ariance estimatqgmwhich models what an algorithm implicitly
assumes on the processing times, an@wdation which measures the deviation of the
actual processing times from their estimated behaviour and is not known until all the tasks
are completed. The variance estimator is specified by two functipis Rt — R™,
with the meaning thatd(w), 8(w)] is an estimated rangef typical processing times
for chunks of sizav. The deviation will be defined as a honnegative real quantityat
measures the average distance of an actual chunk processing time to its respective range
[a(w), B(w)]. Naturally, e will be zero if the processing times of all chunks are within
the estimated ranges, and the more the processing times deviate from these ranges, the
larger the value of will be. This approach is described and explained in great detail in
Section 2.

496 H. Bast

Table 1. The optimal wasted time compared with that of fixed-size chunking, static

chunking, and self-scheduling for a variety of estimated ranges, wheteh + ¢ and

N = n/p. The entries are exact up to a constant factor, provided\hatsufficiently
large compared witli .

[w— vw, w+ Jw] [w/2, 2w] [w/2, wlogw] [w/2, w?]
OPT H - loglogN H-logN H-log? N H- VN
FIX VH-N VH-N J/H-NlogN (H-N)%3
sc H+ VN H+N H+N-logN H + N2
Ss H-N H-N H-N H-N

1.2.2. Theoretical Results Our main result quantifies for each setting of the parameters

n, p, h, «, 8, ande, in a closed formula OP, p, h, «, B,), the optimal wasted time

that can be achieved for schedulingasks onp processors with overhedd when

the average deviation of the processing time of a chunk with respdet, 8] is at

moste. To establish this result, we present a single generic algorithnhalencing
strategy, establish upper bounds on its wasted time, and subsequently prove that no other
algorithm can do better. This powerful result is in sharp contrast with aforementioned
previous work that, even for the particular independent-tasks setting, could not provide
any nontrivial performance bounds. Our formula for OPT is extremely sexy, namely,

(h+e)-y*(n/p),

wherey*(n/p) = min{i: y®(n/p) < 0}, andy is approximately id- « o 871, that is,

v (X) = x—a(B71(x)). Unfortunately, the underlying intuition cannot be easily conveyed

in a few lines; indeed, the whole of Section 2.3 is dedicated to this task. Instead we
provide Table 1 as an appetizer. It states the order of magnitude afQB;Th, «, 8, ¢)

for a number of selected ranges({v), 8(w)]. For the sake of comparison, the last
three rows provide the corresponding performance of an optimal fixed-size scheme, and
of the aforementioned static-chunking and self-scheduling schemes, respectively. The
previously existing decreasing-size schemes are missing from the table because all of
them were designed for the special independent-tasks setting, so that they do not easily
adapt to more irregular scheduling problems.

Equipped with the magic formula for OPT, it becomes easy to prove upper bounds
for a whole variety of input models. So, for instance, for the independent-tasks setting
we can show that the expected deviation of a chunk with respeat te §F+/Inw -
w¥? w + o/p+Inw - w¥?] is on the order of the standard deviatierof a single
task’s processing time. This correspondence, which will be established by a careful ap-
proximation of the convergence rate of the central limit theorem, immediately implies
an upper bound oD ((h + o) - loglog(n/p)) on theexpectedvasted time achievable in
the independent-tasks setting; as will also be shown, no algorithm can do significantly
better than this. Similary, the (much more poorly behaved) coupled-tasks setting cor-
responds to ranges| pw?] ande < o2, which implies anO((h + ¢?) - ,/n) upper
bound on the expected wasted time. This can be improved in special cases, for example
to O(h-logn - log(n/p)), when the chunk processing times have exponentially small
tails. For the bounded-tasks setting, finally, the formula for OPT immediately implies an
upper and lower bound @ (h - log(n/ p)).

On Scheduling Parallel Tasks at Twilight 497

1.2.3. Practical Significance Apart from yielding tight performance bounds for a
whole variety of concrete settings, our analysis also provides valuable insights on how
to design practical schemes for scheduling tasks on parallel processors.

For example, we will see that by underestimating the irregularity, thatis, by choosing
too narrow estimated ranges, the average deviatinay grow as large ag p, resulting
in disastrous performance. On the other hand, the first row of Table 1 gives an indication
that even a considerable widening of the estimated ranges has a much less dramatic
effect. This suggests that overestimating the irregularity is always preferable to risking
large deviations. Since large variances call for smaller chunks, it follows that in case of
doubt a chunk size should be chosen too small rather than too large—a guideline that
was not adequately followed in many previous papers.

Further, it turns out that for small to moderate degrees of irregularity, in particular
for the independent-tasks and the bounded-tasks setting, very simple scheduling schemes
suffice to achieve a wasted time that is logarithmigip, which should be good enough
for all practical purposes. This insight was missing from most previous work, where
much more complicated strategies did not achieve a significantly better performance
(see also [1]). We show that in order to achieve sublogarithmic wasted times, a strategy
must consider the processing times of already completed chunks, which inevitably leads
to more complicated algorithms (and implementations).

Another practically relevant outcome of our analysis is that the decreasing of chunk
sizes should stop at some minimal chunk size that should ideally be a small constant
factor times the scheduling overhead. In fact, actual implementations of dynamic loop
scheduling schemes have been applying this principle for a long time, but so far no
theoretical explanation could be given. In previous works, only Lucco [22] and Liu et
al. [21] took this issue into account.

1.2.4. Beyond Scheduling We would finally like to highlight two contributions of this
work that we expect to be of interest beyond the particular problem studied.

One such contribution is our idea of modelling the issue of vague information
in computational problems by astimate which models the implicit assumptions an
algorithm makes on the input, together wittheviation which is not known until after the
problem has been solved. This approach is an alternative to the traditional probabilistic
approach, where the quantities in question are modelled as random variables. In the
context of this work, the deterministic approach turns out to be simpler, more direct,
closer to reality, and more general than its probabilistic counterpart. As a matter of fact,
the deterministic approach was our key to solving a problem that in previous work, using
probabilistic arguments, appeared to be mathematically intractable. We would expect
a similar approach to yield new results and insights also for other problems involving
quantities that vary in an unpredictable but somehow limited manner.

A second contribution that we expect to be of more general interest isaster
theorem for the* operator For a functiony: R — R, the* operator “counts” the
number of iterations of required to get from someto somey; formally, y*(x, y) =
min{i € N: y®(x) < y}. Just as in our work, deriving closed formulas for(x, y)
for a given functiony frequently occurs as a subtask in the analysis of all kinds of
algorithms, where it is typically solved in some ad hoc manner. Our master theorem,

498 H. Bast

stated and proven in Section 4.1, provides a surprising approximatigri(af y) in
terms of the integra) dz/(z — y (2)).

1.3. Overview

The remainder of this article is organized as follows. The next section sets the framework
for our theoretical investigations. In particular, we make precise the concepts of our
generic approach and carefully explain the intuition behind them. Following that, Section
3 is dedicated to the proof of our generic upper bound, which we formulate in what we
call our Main TheoremWe first state the theorem, give a few explanations, and then
proceed to the (quite involved) proof. In the course of the proof, our In@ancing
strategy is described and explained. Section 4 is devoted to specific bounds for our
scheduling problem. We show how to instantiate our Main Theorem for a variety of
settings, including the aforementioned bounded-tasks, independent-tasks, and coupled-
tasks setting. Apart from yielding specific results, this section also provides valuable
intuition on the functional relation described by the magic OPT formula. In particular,
this section presents oomaster theorem for thieoperator. Section 5, finally, is concerned

with various lower bounds. We first show that no algorithm can do significantly better than
what is stated in our Main Theorem, and then extend this result to randomly distributed
processing times.

2. Framework

This section sets the formal framework for our scheduling scenario. In Section 2.1 we first
recapitulate the scenario and introduce some basic terminology. Section 2.2 provides the
definitions laying the ground work for our generic analyis. Section 2.3 serves to clarify
the intuition behind our formalization.

2.1. Basic Setting and Definitions

Given aren tasks, ordered in a queue, to be processeg @nocessors, initially idle.
Whenever a processor is idle, it may remove an arbitrary number of tasks, celtledia

from the head of the queue. The processor is then working for a period of time, which
consists of theverheadand theprocessing timef the chunk, where the latter is just

the sum of the processing times of the contained tasks. For the sake of clarity, all our
results are stated for a fixed overhdapler chunk; as we will see in Section 3, however,
these results can be easily extended to variable overheads. Since the processing time of
a chunk is not known in advance, at any time all that is known about a scheduled chunk
is whether it is completed or not. Once a chunk has been assigned to a processor it may
not be preempted, but has to be run to completion on that processor.

A scheduling algorithnis a (deterministic) algorithm that determines how many
tasks an idle processor removes from the queue at which time. We say that a chunk
is scheduledsynonymouslyassignedallocated by an algorithm, and we refer to the
number of tasks in a chunk as thigeof that chunk. According to the above description,
for determining a chunk size an algorithm may employ knowledge of the processing
times of already completed chunks. If it ignores this information, the partitioning of the

On Scheduling Parallel Tasks at Twilight 499

makespan(S§)

chunks(S) = number of B

imbalance(S) = sum of =
idle(S) = sum of <> + sum of -

sum of B + sum of <«—» + sum of -

waste(S) =
(S) number of processors

Fig. 1. A scheduleS on four processors and some associated quantities.

tasks into chunks will be independent of the task processing times; the algorithm is then
said to havdixed partition

Givenn tasks andp processors, a scheduling algorithm producestadulede-
fined as the partitioning of the tasks into chunks together with a mapping that deter-
mines for each chunk the time when it is scheduled, its completion time, its over-
head, and the (index of the) processor to which it is assigned. For our analysis, it is
convenient to understand a chunk as a collection of tgdksits image under the
mapping of the schedule of which it is a part. In view of this convention, we of-
ten denote schedules by a collection of chunks, and, in particular, &rige S to
denote that chunk belongs to the partitioning of schedufe The following defini-
tion names the characteristic properties of a schedule, which Figure 1 illustrates by an
example.

Definition. For a schedul& on p processors and with overhehgyer chunk, denote
by cx the number of chunks assigned to #th processor, byl their total processing
time, and byt{" the finishing time of the last such chunk, fer= 1,..., p. Then
define

chunkgS) = Y P c,

makespa@S) = max(t;", ... 0"},

imbalanceS) = Y"F_; (makespa(s) — "),

idle(S) = Y F_,(makespa@S) — Tx — h - c),

wastdS) = (h - chunkgS) + idle(S)) /p.

The last two quantities are referred to asithe timeandwasted timerespectively, of.
From the definition above, or more easily from Figure 1, it is straightforward to

deduce thap times the makespan of a schedule is jusimes its wasted time plus the
total processing time of all tasks. A scheduling algorithm has no influence on the latter,

500 H. Bast

so in order to achieve a schedule with near-optimal makespan, it must take care to incur
as little wasted time as possible.

2.2. Modelling Processing Time Irregularity

We now provide the basic ingredients for our generic cake, as tasted in the Introduction:
thevariance estimatgrwhich represents an algorithm’s a priori estimate of chunk pro-
cessing times, theeviation which measures the deviation of the actual processing times
from these estimates, and thmgress ratewhich specifies for a particular estimate the
optimal “pace” of the scheduling process. We first give a precise definition for each
of these terms, and afterwards provide extensive intuition in the form of a simplified
analysis. In the following definition, as well as later in the paper, id is used to denote the
identity functionx — X.

Definition. For continuous and strictly increasing functiamsg: R — RT such
that, for some constam > 1, id/A < o < id < g onR", and such thag — « is
increasing, the function

[, B] 2 w = [(w), B(w)]

is called avariance estimatarThe function8 —« is referred to as theidthof [«, 8], and
we say thalwx, 8] hassublinear linear, orsuperlineamwidth if, for w — oo, the quotient
(B(w) — a(w))/w tends to zero, to a positive constant, or to infinity, respectively.

We briefly comment on the finer points of this first definition. As described in
the Introduction, the intended meaning[ef(w), 8(w)] is that it estimates the range
of processing times for chunks of size The fact thatx and g8 are defined over the
positive reals instead of over the positive integers is merely a technicality, which will
be convenient later, in the analysis. The conditiorc id < g reflects the concept
of a similarity between task processing times, which we found to be a prerequisite to a
meaningful analysis. Note that our definition relates to a time scale, where the processing
time of a single task is “around” 1. The condition' @l < «, finally, is essential to ensure
that a variance estimator represents meaningful information, because assuming bounds
on the processing times from above but none from below amounts to an almost complete
online setting. If, for example, all chunks assigned after the very first one had (close to)
zero processing time, then the wasted time of the schedule would be proportional to the
processing time of that first, and typically large, chunk.

Definition. Let [«, 8] be a variance estimator. Then we define, for a chtiik size
w with processing timd that is part of a schedule gmprocessors,

early, (C) = max0, «(w) — T},
lates(C) = max0, T — S(w)},
dev, 4(C) = early,(C) + (p — 1) - lates (C),

On Scheduling Parallel Tasks at Twilight 501

called theearliness lateness anddeviation respectively, o with respect tdo, 8].
From that we define, for a schedwfeon p processors,

sum-early(S) = > _ early, (C),

CeS
sum-latg(S) = Z lates (C),
CeS
max-latg(S) = rcrw%xlateﬂ ©),

and

av-dey, g(S) = (sum-early(S) + (p — 1) - sum-latg(S))/chunkgs),
am-dey, g(S) = (sum-early (S) + (p — 1) - max-latg(S))/chunkgS).

The latter quantities are referred to as #werage deviatiomndamortized deviation
respectively, ofS with respect tde, 8].

We briefly explain why we have defined two measures for the deviation of a schedule.
First observe that both of them are zero if and only if the processing times of all chunks
are within the estimated ranges accordingctog]. Also, in both definitions, finishing
the processing of a chunk earlier or later than estimated is weighted differently, the
intuitive reason being that the earliness of a chunk merely affects the processor working
on it, while all processors may have to wait for a chunk that finishes late; this becomes
clearer in Section 2.3. The two measures differ in that the average deviation accounts
for the lateness afverychunk, while only the chunk with maximal lateness contributes
to the amortized deviation. In particular, we always have

am-dey, 4 (S) < av-dey, 3(S),

andthe two measures are equalifand only if all the lateness of the schedule is concentrated
on one chunk. Our main result will be expressed in terms of the average deviation,
which is easier to handle, while some of our more specific results, dealt with later in
the paper, call for the more precise (and actually more natural) amortized-deviation
measure. Note that the definition of the deviation of a chunk is consistent with those
of the deviation of a schedule, in the sense that for an arbitrary ciudiy, z(C) =
av-dey, g ({C}) = am-dey, g ({C}), where{C} denotes the (sub)schedule consisting only
of the chunkC.

In the definition of the progress rate, given next, shaperator denotes the compo-
sition of two functionsf andg, thatis,f o g: x — f(g(x)). The inverse of a function
f: Rt — RT that is strictly increasing and unbounded (but not necessarily surjec-
tive), is defined ad % y > inf{x > 0: f(x) > y}. If f is a bijection, this is just the
usual inverse off . If f is a bijection betweef®* and(yg, c0), for someyy > 0, then
f~1(y) =0, fory < yo. Theo as well as the'! notation is used extensively throughout
the paper.

502 H. Bast

0 h h+ a(w) h+ B(w)

Fig. 2. The imbalance of the initial chunks is at mgst (8(w) — a(w)).

Definition. For an arbitrary variance estimatfr, 8] and for arbitraryM > 0, the
progress rateassociated witlie, 8] andM is defined as

yu = max]{0, id — max M, (id + 8§ }},
wheres = a1 o (8 — a).

It will become clear in the following section that this complicated function has in
fact a very natural interpretation in the context of our scheduling problem.

2.3. Intuitive Analysis

As promised, we next provide intuition for the above definitions, by investigating, under
extremely simplifying (and formally inadmissable) assumptions, the properties of an
optimal scheduling process. Lkt, 8] be a variance estimator, lgtbe the number of
processors, and let us first proceed under the assumption that the deviation is zero. We
begin by considering the firgt chunks to be scheduled; since they are all scheduled
at the same time, it seems natural to have them of a commonusiBming this, the
imbalance of the (partial) schedule constituted by thesdunks is certainly at most
(p—12 - (B(w) — a(w)); this is illustrated in Figure 2.

Now, for the sake of simplicity, we assume thatis a linear function, that is,
a = id/A, for someA > 1. To be able to “catch up” with the processor finishing last,
and thus to achieve an even processor utilization, each other processor must process at
leastA - (B(w) — a(w)) more tasks. Since, in view of the scheduling overhead, it is
desirable that we schedule as few chunks as possitdapuld be chosen maximal with
respect to this constraint. This suggests a valueifdinat guarantees that when- w
tasks are assigneth — 1) - A- (B(w) —a(w)) ~ p- A- (B(w) — a(w)) tasks will be
left. Writing 8§ for Ao (8 —a) = a1 o (8 — a), like in the definition of progress rate
above,w should hence satisfy

p-w+p-8(w)=n,

wheren is the total number of tasks. Under the assumption thatéds a bijection of
R* (which it indeed is if lim,_.o B(w) = 0) this equation has a unique solution

w = (id + 8)"X(n/p).

Unfortunately, matters become really complicated after thegicstunks since from
then on the assignment of chunks will most likely occur in a completely asynchronous

On Scheduling Parallel Tasks at Twilight 503

W/P > Win + 5(wmin) Wmin S W/p S Wrin + §(wmin) VV/p < Wmin

W/p W/p e W /p —a

!
1

e " e

- W

S(w) e - W = Wipip =

Fig. 3. w = min {W/p, maxwmin, (id + 8)~1(W/p)} }.

manner. However, for the purpose of our providing intuition here, we assume that,
throughout the scheduling process, chunks are scheduledimsof p chunks of a
common size each, determined according to the rule formulated above. However, we
consider that, as our true analysis will show, an optimal algorithm should not assign
chunks smaller than a certaminimal chunk sizevn,,. Taking this into account, the
common chunk size for a round should be chosen as

w = min{W/p, max{wmin, (id + 8) "1 (W/p)}},

where W is the number of tasks unassigned before the first chunk of that round is
scheduled. Here the minimum ensures that for the very last chunk we do not assign more
tasks than are actually left. An illustration of this formula is given in Figure 3.

We measure the progress of an algorithm by the number of unassigned tasks divided
by p. Then a round op chunks, with common size determined according to the above
formula, reduces this quantity from sor¢/ p to

(W — p- min{W/p, max{wmin, (id + 8)"*(W/p)}}) /p.

According to the definition of progress rate, this is just (W/ p). Note that, in Figure 3,
Yurin (W/ P) 1S just the width of the dark grey rectangle(s). Clearly, the lasges; the
closery,_ . is to the identity function, which corresponds to a (literally) small progress
made by a single round. Table 2 gives a feeling for how the progress rate is related to
where, for simplicity, it is assumed that,i, = 1.

Itis now easy to see why it is natural to express bounds on the wasted time in terms of
the progress rate. To this end, consider the following illustration of a scheduling process
evolving in rounds as described above:

n/p — y..n/p — y@m/p — --- — 0.

Ymin

Table 2. Examples of variance estimators and their associated
progress rate.

[e(w), B(w)] (%) (id +)71 x) 1 (x)
[w, w+ /] NG ~ X - X ~ JX
[w, 2w] X X/2 X/2
[w, w - logw] ~ xlogx ~ X/ logx ~ X — X/ logx

7]

~ w? ~ X A X — /X

[w, w

504 H. Bast

The number of rounds in this process can be concisely expressed as/p), where
for an arbitrary functionf: R — R, f* is defined as

f*(x) = min{i e N: £ (x) <0}.

Denoting our schedule hy, we hence have

chunkgS) = p-y; (n/p).

Note that for the variance estimators from Table 2, the functipris approximately
log log, log, lod, and./", respectively.

For a bound on the wasted time, it remains to investigate the idle tirSewhich,
provided that waiting between two chunks never occurs (as is the case for most, though
not all, of the algorithms studied in this article), is equal to the imbalance Wfe again
simplify matters here, making the seemingly natural assumption that the last chunks to
finish are also those which were scheduled last. Then, still in the absence of deviations,
the imbalance af is certainly bounded bp- (h + B(wmin)). Now also taking deviations
into account, we assume, again for simplicity, that only the very last chunk, we call it
C1, is late, while the last chunks of the other processors, we call them., Cp, are
all early. In this seemingly worst case the deviations increase the imbalance by exactly
(p—1) - lateg(C1) + early, (Co) + - - - + early, (Cp). According to the definition given in
the previous section, this quantity is just sum-egi) + (p — 1) - max-latg(S), and
we obtain

imbalancé€S) < p-h+ p- B(wmin) + sum-early (S) + (p — 1) - max-latg(S).

Writing ¢ for the average deviation &, which in the considered case is equal to the
amortized deviation, we may conclude that

wastdS) = (h - chunkgS) + imbalancésS))/p
=0 ((h+e)- 7., (/P + Bwmn)) -

W

This is exactly the bound we prove in the next section.

3. Generic Upper Bound

This section is devoted to the proof of our Main Theorem, which, using the formal-
ism introduced in the previous section, provides a generic upper bound that covers a
wide spectrum of possible irregularities in the task’s processing times. We first state the
theorem, and then make a few remarks.

Main Theorem. Lettask processing times be arbitralgt the overhead be i 1,and
let [, B] be a variance estimator such that bathie andmin{/id, 2} are decreasing
functions Then for allwmin € N, wmin > h, there exists an algorithm that for all
n, p € N, given n tasks and p processppsoduces a schedulg with

wasteS) = O ((h+e) - v, (0/P) + Bwmin))

Ymin

wheres = av-dey, (S) andy, is the progress rate associated wjth 8] and wmin.

On Scheduling Parallel Tasks at Twilight 505

We firstremark that the conditions imposechasndg are a technicality which stems
from our proofs. For the theorem above, we chose a convenient formulation, while the
actual weaker requirements are detailed in Theorems 3.2 and 3.3. All variance estimators
considered in this paper have these (for a variance estimator natural) properties.

In Section 5 we prove a lower bound showing that no algorithm can do better than
what is stated in the theorem above. This lower bound implies that the above bound is
optimal for wmin = [a~t(h + ¢)]. To verify this, lets = ¢! o (8 — «) and observe
that for allx < (id 4 8)(wmin), (id + 8)71(X) < wmin, SO that owing tg8 < id + §,

Yo (B(wmin)) iS just[B(wmin)/wmin]. This implies that fon/p > B (wmin),

(h+e)- V,fmm(n/p) > (h+¢) - (B(Wmin)/Wmin)
= ((h+&)/Ta" (h+&)1) - Bwmin) = QL(B(Wmin)).-

Forwmin = [~ 1(h4+&)]—and hence actually for albi, in the order ofr 1 (h+¢)—the
bound from the above theorem therefore becomes

wastéS) = O ((h+¢) - y's,..,(/P))

which exactly matches the lower bound stated in Theorem 5.1. Note, however, that a
scheduling algorithm does not knavin advance, which is why we formulated the above
theorem for generabin.

Atthis point, we also comment on the role of the overhead in our scheduling problem.
Inthe above theorem, as well as for all the other results stated in this paper, the per-chunk
overhead is assumed to be a fixed constamts is clear from our problem definition,
however, for bounds on the makespanitis irrelevant which part of the total time consumed
by a chunk is overhead and which is processing times of the tasks. As a consequence,
all our results therefore continue to hold for arbitrary overheads, with the meaning of
re-interpreted as thaverageoverhead incurred for a chunk, that is, the total overhead
divided by the number of chunks. This will become clearer in the forthcoming analysis.

A final remark is concerned with the somewhat peculiar role @i the bound
above, which is not, as one might expect, a property of the set of tasks alone, but of
the schedule produced by some algorithm on these tasks. In particular, for one and the
same input different algorithms might incur different values.dt should be clear that
this anomaly is not an artefact of our modelling but that it is inherent in a scheduling
scenario involving vague information. Since our algorithms cannot find out in advance
which tasks are going to take a long time and which a short time, one algorithm might,
by chance, group together tasks with high and low processing times in the same chunk,
while another algorithm might schedule all long tasks in one chunk and all short tasks
in another chunk. Obviously, the second algorithm will then incur a larger deviation
than the first. As we will see in the following section though, this effect disappears when
considering concrete settings that make somehow “symmetric” assumptions on the task’s
processing times.

The remainder of this section is organized as follows. Section 3.1 first establishes a
number of abstract properties of theperator, which will be used on various occasions
in the analysis. In Section 3.2 we then consider the class of fixed-partition scheduling
algorithms, and show that they can achieve the above stated bound for all variance es-
timators of at least linear width. Following that, Section 3.3 provides a description of

506 H. Bast

the generic balancing @) strategy, parameterized By, 8], together with a complete
analysis. The final section, Section 3.4, is dedicated to a varianaiof damed BL’,

whose analysis will establish the Main Theorem stated above. The reason that we inves-
tigate both schemes is thanBis more natural and simpler thamB, and also more
efficient for small to moderate deviations, while for very large deviations only B
asymptotically optimal.

3.1. Properties of the Star Operator

While most of the properties expressed in the lemmas below are quite obvious and
easy to prove, it took an exceptional effort from us (we could not resist mentioning it)
to establish Lemma 3.5 in its current form. Translated to our scheduling context, the
simple but somewhat amazing message of this lemma is that increasing the width of a
variance estimator by a constant factor increases the wasted-time bound stated in the
Main Theorem by at most the same factor. To avoid any misunderstandings, we first
restate our definition of theoperator.

Definition. For an arbitrary functioy: R — R, we define
y*: x> min{i e N: yP(x) < 0}.

Remark. Throughout the paper, we apply th@perator only to functions such that
the value assigned above is finite forall

Lemma 3.1. Lety, y: R — Rsuchthaty isincreasingTheny < y impliesy* < y*.
Proof. It suffices to check that, by a simple induction,
yP00 =y sy Yo s 7P x0) = 700,
foralli € N and for allx. O
Lemma 3.2. Lety: R — R be increasingThen for all x y > 0, and for all i € N,
yPozy = ye0-—yiy =i

Proof. Fori’ = y*(y) > 0,y ~P(y) > 0, hence by the assumption gnand because
y isincreasingy '~ (x) > y @~V (y) > 0. Thisinturnimpliesthag*(x) > i’ —1+i
and thusy*(x) > i’ +1i. O

Lemma3.3. Lety: R — Rwithy <id— M, forsome M> 0.Thenforallxy >0
with X >y,

YEX) —y*(y) < [(x —y)/M].

On Scheduling Parallel Tasks at Twilight 507

Proof. Leti be the smallest nonnegative integer with the property #faex) < vy.
Theny*(x) — y*(y) < i, and because each applicationyoflecreases its argument by
atleastM,i < [(X —y)/M]. O

Lemma 3.4. For increasings: R* — R* and for arbitrary M > 0, the function
id — max{M, (id + 8)~1} is well-defined and increasing

Proof. Since id+ § is strictly increasing and unbounded, the well-definedness follows
by our definition of the inverse given in Section 2.2. For a proof of the monotonicity
property, assume that far, y > 0, x — (id 4+ 8)"1(x) < y — (id 4 8)"1(y). Then with

X' = (id + &) ~1(x) andy = (id + §)"1(y), we haves(xX) = x — X' <y — Yy = 8(y)

and hence, becausés increasingx’ < y’,sothatalsx = x'+8(x') < Yy +48(y) = y.

This proves thatid- (id+-8) ! is increasing, which continues to hold when the minimum
with id — M is formed. O

Lemma 3.5. For increasing continuous: Rt — R* and for arbitrary M > 0 and
K e N, lety =id —maxM, (id + §)~1} andy = id — max{M, (id + K§)~1}. Then
forall x > 0,

7R < K- y*(x).
Proof. The key to the proof is showing that for all> O,
7K < K-y

(we mention that the simpler statemeift’ (x) < y(x), which would also imply the
lemma, is wrong). For that, define = max{M, (id + §)~1(x)} as the portion thay
subtracts from an arbitrary fixed argument 0. In casew = M, we very simply have
y(X) = X — M, so thatpy) (Kx) < K -x — K - M = K - y(x). Otherwise, we have
X = w + §(w) and thuss(w) = X — w = y(X), and for ally > 0 it holds that

y>w+Ksw) << (d+K&y) >w,

that is,y subtracts at least from any argument w + K§(w). SinceKx = Kw +
K8 (w), we conclude thafg K—P(Kx) < w + K8(w), and in the same way; (w +
Kd(w)) < Kd§(w). By the previous lemma; is increasing, so that

7O Kx) = 7 P (Kx)) < 7(w + Ksw)) < Ksw) =K - y(x),
as claimed above. Iterative application of this statement yields that foeaNy,

7KD(Kx) < K - yD(x),

508 H. Bast
so that fori = y*(x), we have

7H 00 = 7K < K-y <0,
which, by the definition of the star operator, proves thaix) < Ki = K - y*(x). O

Lemma 3.6. For increasing continuous: R* — R™ and for arbitrary M > 0, let
y =id—maxM, (id+8)~1}, and for§ = maxM, 8}, lety = id—maxM, (id+4§)~1}.
Thenforall x > 0, y*(X) = 7*(x).

Proof. The proof is by induction o *(x), making use of the equivalenge (x) =

1 & 0<x=<M < p*Xx) = 1 several times; in particular, it immediately
settles the base case. Rof(x) = 2, we must have & y(x) < M. Sincey > y and
max{M, y} = max{M, y}, thisimplies O< y(x) < M, whichinturn proves*(x) = 2.
Fory*(x) > 2, finally, letw = (id 4+ 8)~%(x), and verify thaB (w) = y(X) > M. Then
§(w) = §(w) and hencex = w + 8(w) = w + &(w), which impliesy (x) = 7(x), and

it follows by way of induction that

YV =y"yx)+1=y"(yx)+1=y"Fx) +1=y"X. O

3.2. Fixed-Partition Scheduling

In this section we explore the power of fixed-partition scheduling algorithms, that is,
algorithms whose division of the tasks into chunks does not depend on the tasks’ pro-
cessing times. One should note here that of the numerous known heuristics, which we
mentioned in the Introduction, all but the most recent one [13] are of the fixed-partition
type. For our purposes, it is useful to think of a particular fixed-partition algorithm as be-
ing specified by a function: R™ — N such that, whelV tasks are unassigned, the size

of the next chunk scheduled is i, o (W/ p)}. Note that the minimum withV is just

to ensure that the chunk size is never greater than the total number of remaining tasks. In
the following we denote an algorithm defined in this way by&PNote that, naturally,

FP(o) never inserts waiting time before scheduling a chunk to an idle processor.

We next observe that it is natural for a fixed-partition algorithm to hawe < x
unlessx is small. This is because when all processors request at roughly the same time—
as they indeed do in the beginning—all of them should be assigned a chunk of about the
same size. Given that(x) < x, a scheduling operation by) cannot decrease the
number of unassigned tasks by more than a factor-efl} p, wherep is the number
of processors, an@ successive scheduling operations therefore cannot decrease it by
more than a factorqfL—1/p)P > %1. Areasonable fixed-partition algorithm is therefore
bound to have a number of scheduling operations that are logarithmipithe number
of tasks per processor.

However, variance estimators of sublinear width have a progresg rait y (X)/

X = 0(1), inwhich case the bound claimed in the Main Theorem becomes sublogarithmic
inn/p. As demonstrated by the following theorem, the class of fixed-partition algorithms
is however sufficiently powerful for all variance estimators of at least linear width. With
an eye towards a future application, the theorem is formulated for a slightly generalized

On Scheduling Parallel Tasks at Twilight 509

setting, where the processors are not all idle initially, but start the computation at
arbitrary timed, . . ., t,. The quantity

p
max(ty, ...t} — >t
k=1
is referred to as thimitial imbalanceof the respective schedule.

Theorem 3.1. Let task processing times be arbitragnd let the overhead be 1 1.
Let[«, B] be a variance estimatpand let A> 1 with « > id/A. Then for allwmi, €
N, wmin > h, and for all n, p € N, given n tasks and p processpthe algorithm
FP(Xx — |87 1(x/A+ B(wmin))]) produces a schedul§ with

chunkgS) < p-y*(n/p),
idle(S) < p-h+ p- B(wmin) + Max0, | —n/A— ph} + &,
wastéS) < (h+¢) - y*(n/p) +h + B(wmin) + Maxo, | —n/A— phj/p,

where€ = sum-early (S)+ (p—1)-max-latg(S), e = am-dey, z(S) = £/chunkssS),
y = max0, id — maxwmin, [(3AB8)1]}}, and | is the initial imbalance af.

Addendum. Forany$: R — R* such that > 6A- max 8 — «, id} on the interval
[wmin, LGd +8) "(n/p)]], 7 = id — max{wmin, L(id + 3) "]} has the property that
y*(n/p) < y*(n/p).

That a fixed-partition algorithm can achieve the bound stated in the Main Theorem
for variance estimators of at least linear width is implied by the addendum of Thereom
3.1l asfollows. Given a variance estimdigy 8] suchthapg—« > id/D for someD > 1,

§ = 6DA. (B —«) is easily seen to fulfill the conditioh > 6A- max — «, id}. On the

other hand, sincé&is within a constant factor & = « 1o (8 — &), Lemma 3.5 implies

that, with = id — maxwin. L(d+8)]} andy, . = id — maxwmn, (id + 8)~1},

y* is within a constant factor of;” . Plugging this into the bound of Theorem 3.1 we

obtain that, under the assumptions of that theorem and without initial imbalance,
wastdS) = O ((h+e) - 7, (0/p) + Blwmn))

Ymin

which is exactly the bound stated in the Main Theorem.

The proof of Theorem 3.1 is organized as follows. We first give a complete proof for
the caseA = 1, that is, fore = id, and subsequently extend our findings to the general
case by means of a simple time-scaling argument. In the analysés$of, we first in-
vestigate how the imbalance of the schedule produced by FP | 871(X + B(wmin))
develops over time. Then we estimate the total number of scheduling operations. A final
paragraph is dedicated to the proof of the addendum. Throughout the proafelatte
the number of chunks i, and forj =1, ..., 1, we usew; andW, for the size of thg th
chunk and the number of tasks unassigned before the scheduling of that chunk, respec-
tively. In particular thenw; = min{W,, |871(W,/p + B(wmin))]}. For conventional
purposes, we also taki,; = 0.

510 H. Bast

3.2.1. The Idle Time Forj =1,..., [, let C; denote thejth chunk assigned. As is
shown next by a simple induction, for gli= 0, ...,I,
imbalanc&{Ci, ..., C;})
<p-h+p-B(Wnin) + W11+ maxo0, | —n— ph}
+ sum-early({Cy, ..., C;H) + (p—1) - max-latg ({Cq, ..., Cj).
For the base casg= 0, note that all the terms on the right-hand size are nonnegative.
For the induction step — 1 — |, we distinguish between two cases, depending on
the processing timd; of C;. In case this chunk is the last to finish among those in
{C1,...,C;}, we have
imbalancé{Cy, ..., C;})
(-1 -(h+T)
<(p—1 - (h+ Bwj) + lates (Cj))
=p-h+p-Bw) — Bwj) + (p— 1) -max-latg({Cs, ..., i}
and it remains to verify that, owing te; = min{W;, L,B*l(VVj/p + B(wmin))]} and
B =id, p-Bw) —Bw) =W + p-Bwmin) —wj = Wit1+ P B(wmin). In the
opposite case, f; is not the chunk ofCs, .. ., Cj} to finish last, we simply have
imbalancé{C1, ..., C;}) = imbalancg{Ci, ..., Cj_1}) — (h+T))
< imbalancg{Cs, ..., Cj_1}) — w; + earlyy(Cj),
and the desired bound follows by the induction hypotheses. This completes the induction,
and we have thus proven that
idle(S) < p-h+ p- B(wmin) + maxo0, | —n — ph} +¢&,
where€ = sum-early(S) + (p — 1) - max-latg(S).
3.2.2. The Scheduling Overhead In order to bound the total number of chunks sched-
uled, first observe that for ajl = 1, ..., 1, wj = min{W,, |3=X(W;/p + B(wmin)]} <
W, /p+ B(wmin), and thusV, ;1 = W, —w; > (1—1/p) - W, — B(wmin). Hence for all
i=1L...,l—p+1,
Wiip-1= (1=1/pP - W — (p— 1) - Bwmin) = W;/3 = p- B(wmin),

which implies that, providedlV, ., > 0, each of theth through(j + p — 1)th chunks
is of size at least

| B Wit p_1/P+ Bwmin) | = B W, /Bp) | = | BB *(W/p)].

In combination with the fact that each chunk, except maybe the very last, has size at
leastwmin, we thus obtain thatforall = 1,...,1 — p,

Wi p < max{0, W, — p- max{wmin, L(38) " (W;/p)]}} = p- ¥ (Wi/p).
By the definition of the operator this immediately implies the desired bound
chunkgS) < p-y*(n/p).

On Scheduling Parallel Tasks at Twilight 511

3.2.3. The Wasted Time Combining the bounds from Sections 3.2.1 and 3.2.2, using
thate = am-dey, 5(S) = £/chunksS), we obtain
wastdS) = (h - chunkgS) + idle(S))/p
< (h+e¢) - chunkgS)/p + h + B(wmin) + maxo, I —n — ph}/p
< (h+e)-y*(n/p) + h+ B(wmin) + Max0, | —n— ph}/p.
This proves Theorem 3.1 for the ca8e= 1.
The extension to the general case is straightforward. Given an arbitrary with
a > id/A, first observe that, since in the bounds claimed in the thear@mly occurs
in the deviationg and€& (and not in the definition of), and because these deviations
can only become smaller for a wider variance estimator, we can assuneezhat/A
without loss of generality. We then rescale our time unit by a factgk,cfuch that the
variance estimator becomes [ig], and all quantities measured in time, namélyh,

&, ande increase by a factor ok. We can now apply the analysis from above, obtaining
that fory = max0, id — max{wmin, L(3A8)1}},

chunkgS) < p-y*(n/p),
idle(S) < A-p-h+ A-p-B(wmin) + max{0, A-1 —n— A.ph}+A- &,
wastéS) < (Ah+ As) - y*(n/p) + A-h+ A B(wmin)
+ A-max0, | —n/A— ph}/p.
Measured in the original time unit, that is, multiplied byA, these are exactly the
bounds stated in Theorem 3.1.

3.2.4. The Addendum It remains to prove the addendum, which, under the aditional
assumption that there exisés R — R* such thats > 6A - max{p — «, id} on

[wmin, L(d + S)fl(n/ p)]], claims a bound on the wasted time in terms of the function
7 = id — max{wmin, | (id +S)71J}. To this end, letx < n/p andw = maX{wmin,
LGd + §) " (x)]}, for which owing to the assumption dp

w+5w) > 3A-w+5w)/2>3A - w+3A- (Bw) —a(w)) > 3AB(wW).
Now if w > wmin, We have
X = (id + 8)(w) = 3AB(w) = 3AB(L(id +8) " (0)),
and since 38 and hence also its inverse is increasing, we obtain
(3AB)H(x) = L(id + §)x],
and thus also
LBAB) ()] = L(id + §)x].

Forw = wmin, We have| (id + S)fl(x)J < wmin, and we conclude that for arbitrary
X=<n/p,

maX(wmin, LBAB)2(x)]} = max(wmin, L(d +8) " (x)]}.

512 H. Bast

Thereforey (X) < 7(x), so that by the monotonicity property of theperator established
in Lemma 3.1y*(n/p) < y*(n/p). We have thus, finally, proven Theorem 3.1 in its
entirety. 0

3.3. The Balancing Strategy

As we have seen, Theorem 3.1 from the previous section implies the bound stated in
the Main Theorem only for variance estimators of at least linear width. This section is
dedicated to the generlmalancing(BAL) strategy, which provides optimal algorithms

for every given variance estimator. To achieve this, for (some of) its scheduling decisions
the balancing strategy considers the time when a chunk is scheduled, which by definition
is ignored by any fixed-partition algorithm.

We first describe the workings ofAB on a high level, from which the strategy
may be viewed as working in two phases. In the first phage, @oups a number of
consecutive processor requests, serving them in what we cailrel and trying to
maintain the invariant that all processors finish their chunks of a round at roughly the
same time. Naturally, chunk sizes will decrease over the rounds, until a point where the
width B(w) — a(w) of the estimated ranges(w), S(w)] becomes large relative to the
chunk sizes. Then the second phase begins, where the remaining tasks are scheduled by
a fixed-partition algorithm, selected according to Theorem 3.1.

We now give a detailed description ofB. Like a particular fixed-partition algorithm
is specified by a functiop: Rt — R*, aninstance of BL is obtained by implementing
two functionsp1, 02: RT™ — R™, one for each phase; we denote such an instance by
BAL (01, 02). The first of these functions is used to determine thewsinéthe first chunk
assigned in a round, namely,= o1(W/ p), whereW is the number of tasks unassigned
at the beginning of the round. If exactfychunks were assigned in the round, each of
sizew, then according to our heuristic considerations in Section2should be chosen
as approximately maxwmin, (id+8)~X(W/p)}, wheres = « 1o (8 —a) andwmin is the
minimal chunk size. For technical reasons, we actually take- | (id + 5)_1J, where
for someK > 6,

S(w) = K - max{wmin, 2- max{f(w) — w, w — a(w)}}.

This amounts to pretending a slightly larger width, which, as Lemmas 3.5 and 3.6 will
ensure, does not affect our final result by more than a constant factor. Concerning the
constantK, our analysis will actually choose a relatively large value in order to avoid
tedious complications. However, as is pointed out in Section 3.3.4, a smaller value would
also work.

After having computedv, which will be the size of the first chunk in the round,
BAL next setdl = (W/p—w)/K as thetoleranceof the round. Note that, for a variance
estimatoffa, 8], and foro; = | (id + §) | as above, we have = [(id + &) -(W/p)].
Hence, ifW/p < K - wmin, we havew = 0 andd = W/p/K, while in the opposite
case, we havéid + §)(w) < W/p andd > §(w)/K = maxwmin, 2 - maxs(w) —
w, w — a(w)}}, which implies (w), B(w)] € [w —d/2, w +d/2].

Having computedv andd, BAL next tests the conditiod > w/6. If it is fulfilled,
the first phase is finished. According to the above, this happens when either few tasks
remain, namely, ifW/p < K - wnn, or if the width of [a(w), B(w)] is relatively

On Scheduling Parallel Tasks at Twilight 513

lower tolerance upper tolerance

, N s e

T
T Tl TII TIII t t + h

> time

Fig. 4. Chunk assignmentin a round started at timevith targett and toleranced. The light gray rectangles
indicate chunk sizes and not processing times.

large compared withw. If d < w/6, the round is continued and it then holds that
d/2 > maX{p(w) —w, w —a(w)},d > wmin, andw > 6 - wmin.

Having computedry andd, and having checked thdt < w/6, BAL next sets the
targett = T 4+ h + w, whereT is the actual time. To achieve a finishing time of
approximatelyt for all chunks assigned in the roundaBserves each request arriving
atatimeT’ with T < T’ <t —d, by a chunk of sizev’” = min{w, [t — T']}. Note that
sinceT’ <t —d <t — wnmin, w' is guaranteed to be at least,n, and that forT’ = T,
indeedw’ = w. Our analysis assumes that- 1 and thab is an increasing function, in
whichcasd < T"+h+w <t+hand maxg(w) — w', w — a(w’)} < d/2. The
estimated finishing time of each chunk assigned in the round is therefore contained in
the interval f — d/2, t + h + d/2], which is referred to as thelerance intervabf that
round. The quantities— d/2 andt + h + d/2 are called théowerandupper tolerance
(threshold of the round, respectively. Figure 4 gives an illustration of what has been
described so far.

The round ends at time— d, and with the arrival of the first request at or after
timet — d, a new round is started in the same manner as just described. This process
continues until at the beginning of a potential new round, the conddion w/6 is
fulfilled for the first time, in which case the first phase ends. In the second phase, the
remaining tasks are scheduled by the fixed-partition algorithm specified Bgcording
to Theorem 3.1, for a given variance estimdtarg] and minimal chunk sizeyn, we
takeoo: X — [B71(X/ A+ B(wmin))], for someA > 1 with o > id/A.

Figure 5 gives a pseudo C-code implementation of the function that computes, for
a given request, the chunk size according ta &1, 02). The code involves a number
of global variables, where (the constangsandh hold the number of processors and
the scheduling overhead, respectivélyjs initialized to the total number of tasks, and
PHASE is initially set to 1. All the other variables are initialized to zero, to ensure that
a new round is started right in the beginning (at time 0).

For a better understanding of the particularities af Bive next take a look at the
schedule produced in its first phase. Here, as well as later in the analysis, it is convenient
to denote by, wj, d;, t; the values of the program variablés, w, d, t just after the

514 H. Bast

(1) if (PHASE ==1 && T >t—d) { (*x new round %)
(2) w = 01(W/p);
(3) 4= (W/p - w)/K;
(4) if (d >w/6) PHASE = 2;
(5) t=T+h+w;
(6) }
(M) if (PHASE ==1) s=min{w,[t-T]}
(8) if (PHASE ==2) s = o2(W/p);
(9) s =min{ W,s };
(10) W=W-g;
(11) return s;

Fig. 5. The size computed byAR (o1, 02) for a chunk scheduled at tine.

ith execution of lines (2)—(5), that is, during th round of the first phase. Note that
according to line (3)W/p = w; + Kd;, and by line (4)w; > 6d;, which owing to

K > 6 implies thatw; > 3/K - W/ p. The tolerance thresholds of roundret; — d; /2
andt; + h 4 d; /2, and will be denoted by°" andt"*", respectively. Round ends at
timet; — d;, which will be denoted bye".

For simplicity, we first restrict our attention to the deviationless case, where the
processing times of all chunks are within the estimated ranges. As was shown already
in the description of BL, each chunk then finishes within the tolerance thresholds of its
round, which, by the condition in line (1), implies that at most one chunk is assigned to
each processor in each round. Hence at rpost; tasks are assigned in roundso that
at leastp - Kd; tasks are left for the next round, that is,

Wii1/p > Kdi.

This in turn implies thatw;j,; > 3/K - Wi,1/p > 3d;, and since théi + 1)th round
does not start befot" = t; — d;, we have

tie-E]C-i = ti+1 —_ di +1 Z tiend+ h + U)i+]_ _ di+1 > tiend+ h + 15d| = tiupp.

This proves the valuable property that the tolerance intervals of successive rounds do not
intersect, and that in every round the previously assigned chunks finish before the round
ends. Therefore each processor is guaranteed to be assigned at least one chunk in every
round, so that actually, by what was already shown above, exactly one chunk is assigned
to each processor in each round. We conclude that in the deviationless case, the schedule
produced in BL's first phase exhibits a very regular structure, which is illustrated in an
example in Figure 6.

Such a structure makes it very easy to bound the wasted time of the schedule:
the idle time is at mosp — 1 times the width of the last tolerance interval, and the
number of scheduling operations is justtimes the number of rounds. In the gen-
eral case, however, with arbitrary and unpredictable deviations, this structure is not
preserved. Chunks might then be processed very quickly, causinguymessf a

On Scheduling Parallel Tasks at Twilight 515

tltow tUPp t!‘)ow /;\?‘PP tguw tUPP

} ' 1 pevensernnneseas | T .
0 first round gecond round third round

Fig. 6. Three rounds in the deviationless case.

round, defined as the additional number of tasks assigned in this round to processors
after their first chunks were completed. Too much busyness is of course bad, leav-
ing the next round with fewer tasks than would be required to reduce the imbalance
further. In fact, in the general case it is not even guaranteed that the upper tolerance
thresholds of successive rounds form an increasing sequence. Equally bad, processors
may also enter a round very late or not at all, in case they are still occupied with
chunks of previous rounds. This accounts for znessof a round, to be defined

later as the resulting decrease in the number of tasks scheduled in that round. In an
extreme case, only a single chunk might be scheduled in a whole round, and a fast de-
crease of the unassigned tasks over the rounds, as for the deviationless case, cannot be
proven.

Note that busyness and laziness are side effects of the philosophy behirtd B
compensate for an unexpected behaviour of a chunk by adjusting the size of the next
chunk assigned to the affected processor accordingly. This behaviour turns out to give
good results in practice, but, unfortunately, causes major technical complications in the
analysis. In extremely bad cases, when deviations are very large, we will seesthat B
is not even asymptotically optimal in the strict theoretical sense. As an alternative, we
presentin Section 3.4 a variant okBthat avoids the difficulties mentioned, at the price,
however, of a more involved implementation and a considerably worse performance
in the case of moderate deviations. The remainder of this section is dedicated to the
complete analysis of theAB strategy, and will culminate in the following result.

Theorem 3.2. Lettask processingtimes be arbitraand letthe overhead beh 1.Let
[a, B] be avariance estimatdet A > 1witha > id/A, and letwmin € N, wmin > h such
that, for K = 49A, §: w > K -maxwmin, 2-max{(w) —w, w —a(w)}} is increasing
and the functionw > §(w)/w — 6A has at most one zer®hen for alln p € N, given
n tasks and p processothe algorithmBAL (g1, 02) With g1: X +— [(id + S)_l(x)J and
02: X = |B7L(X/A+ B(wmin)) | produces a schedulg with the property that

Ymin

wasteS) = O ((h+e) - v, (/p) + Bwmn))

wherey,, . is the progess rate associated wjth 8] and wmin, and for some partition

516 H. Bast

S = 81082083, e = (h+81)-(h+82)-(h+83)/h2—h < (h+81+82+83)3/h2—h,
where fori= 1, 2, 3,

gi = (sum-early (S;) + sum-latg(S;) + (p — 2) - max-latg(S;i))/chunkssS;).

Remark. Note that each of thg is somewhere between am-gexS;) and av-dey g
(Si), but typically closer to the former. Formally, the term fors incomparable with
either of am-dey 4 (S) or av-dey, s(S). However, as will become clear in the analysis,
for practical purposes we can assume that (am-de\&_ﬁ(S))“"/ h2.

The proof of Theorem 3.2 is quite involved, so that we organized it into a number
of self-contained modules. As a preparation, Section 3.3.1 introduces the symbols used
in the proof. Section 3.3.2 establishes a number of basic properties of the schedule
produced in the first phase, corresponding to what was shown above in the absence
of busyness and laziness. Bounds on the latter are provided in Section 3.3.3. Building
on this, Sections 3.3.4 and 3.3.5 derive bounds on the total overhead and idle time,
from which the final section, Section 3.3.6, derives the desired bound on the wasted
time.

3.3.1. Terminology LetS; andsS; denote the two parts & pertaining to the chunks
scheduled in the first and second phase, respectively. dehote the number of rounds

in the first phase, that is, the number of executions of lines (2)—(5) except the last.
Then, as beforé\V;, wj, d, ti denote the values of®’s program variable®V, w, d,

t in the various rounds, and for= 1,...,r, t*"% = t, — d;, t° = t, — d;/2, and

t"P° = t; +-h+d; /2. It will further be convenient to havdy = t;"" = 0, and to denote by
bothW; ,; andn’ the number of unassigned tasks when the second phase begins. Besides,
we definej = max0, id — max{wmin, 01}} = Max{0, id — max{wmin, L(d + 3) "]},

and recall that, by the definition of and because of lines (2)—(4); andd; are at least
wmin, and thusy (Wi /p) = Wi/p — w; = Kd;, fori = 1,...,r. Also note that, by
Lemma 3.4y is an increasing function.

In order to make the notions tiusynessndlazinesrecise, we writéRk; for the
subschedule pertaining to the chunks assigned in rowhelrly, therS; = Rq1U- - -UR;.
Ifaprocessorisassigned chuiks. . ., C; inroundi, its busynessin that round is defined
asthetotal size dl,, ..., C;, whichis zero fot < 1. The total busyness of all processors
in roundi is denoted by bugyR;), and busysS;) = busy(R1) + - - - + busyR;). The
laziness of a processor in a round is zero for the first round, anfnax— 2.5d; _; — s}
for roundi, 2 <i < r, wheres is the size of the first chunk assigned to that processor
in roundi, that is,s = min{w;, |ti — T’]} if that chunk is scheduled at timE’ (see
line (7)), ors = 0 if the processor does not request any chunk at all in that round. The
total laziness of all processors in rounts denoted by lazgR,), fori = 1,...,r, and
lazy(S)) = lazy(R1) + - - - + lazy(R;).

3.3.2. Local Properties of a Round This section provides a number of simple prop-
erties ofS;, which constitute the basic building blocks of the further analysis. In fact,
Lemmas 3.8-3.10 below correspond to what was shown above in our informal description

On Scheduling Parallel Tasks at Twilight 517

of BAL for the deviationless case, except that there are now correcting terms involving
busy(Ri) and lazyR;) for roundi. Lemma 3.7 following says that the amount of time

that the finishing time of a chun®, denoted by finis{C), deviates from the tolerance
thresholds of its round is bounded by what we defined as the chunk’s earliness or lateness,
respectively.

Lemma 3.7. For every chunkC assigned in round,iwith finish(C) denoting the time
when it is completed

oY — early, () < finish(C) < t"™ + late; (C),

except that the first inequality does not necessarily haldisfthe very last chunk &.

Proof. We have already seen in the description af Bhat for a chunlC scheduled at
time T’ in roundi and of sizew’ = min{w;, [t — T']},

" <T'+h+a@)<T +h+Bw) <™
Hence, with proc-tim&) denoting the processing time 6f

t — (w') 4 proc-timeC) < T’ + h + proc-timgC)
< """ — B(w') + proc-timegC),

and according to the definitions made in Section 2.2, g&fly= max0, «(w’) — proc-
time(C)}, lates (C) = max0, proc-timgC) — B(w")}, and finiskiC) = T’ + h 4 proc-
time(C). Finally, verify that in cas€ is the very last chunk af, thus scheduled in round
r, its size might be smaller than nfin,, [t — T’} due to line (9), in which case the
upper bound on finigit’) holds all the more but not necessarily so the lower bound.

Lemma 3.8. Foralli € [1..r], W, = p-wj+p-Kd;,anditholdsthaty; > 5/K-W,/p
and Kd < (1-5/K) - Wi/p.

Proof. According to line (3) of the BL code,di = (W;/p — w;)/K, and hencé\ =
p-w;+ p-Kd . According to line (4) and becaue > 30,d, < w;/6 < (% —1/K)-wj,
which is equivalent taW;/p — wj)/K < (% — 1/K) - wj, which implies the two
inequalities stated in the lemma. O

Lemma3.9. Foralli e [1..r], W1 > p- Kdi —busyR;).

Proof. The total size of all chunks assigned to a processor in rouadhe size of
the first chunk, which is at most;, plus the busyness of that processor in rourithe
total size of all chunks assigned in rounds hence at mosp - w; + busyR;), and
since, by the previous lemm®&} = p- w; + p- Kd, it follows thatW,; > p- Kd; —
busy(R;). O

518 H. Bast

Lemma3.10. Foralli €[1..r —1],
(a) tend tend > 0;
(b) te”d ”pp > wigg — 2.50;
© t.“fi’ (9 > d — busyR:)/(3p)

Proof. Because of line (1), rounid+ 1 cannot begin before the end of roundo that
i1 > tiend‘l‘ h + w1

Concerning (a), we ha\t§+l =t 1—d > tie“d+ h+ wj,1 —di1, and according
to line (4), w1 > 6d41.

Concerning (b), itholds thgt"? > te"h-+wi 1 —0iq = t"*°—1.50, +wj1—di 41,
and, by the monotonicity of, diy1 = y(Wiy1/p)/K < 7y(Wi/p)/K =di.

Concerning (c), we havg!y > tiy1 > t8"9+ h + wiy = t*° — 150 + i1, and
owing to Lemmas 3.8 and 3.9 ;1 > 5/K - Wi, 1/p > 5d; — busy(R;)/(3p). O

Lemma3.11. Foralli e[1..r], Wi 1 < p-Kd + p-25d_1 + lazy(R;).

Proof. Ifi =1, clearlyW, = W) — p- w1 = Kdp, whereas if =r andW,,; =0,

then there is nothing to show. Otherwisez 2 and the size of each chunk assigned in
roundi is exactly the value assigned in line (7), so that, by the definition of laziness, the
total size of these chunks is at legest (w; — 2.5d,_1) — lazy(R;). By Lemma 3.8, we
haveW, = p-w; + p- Kdj, andthusV, . ; < p-Kd + p-25d_; + lazy(R;). O

Lemma3.12. Fori e[l..r —2],Wi,3/p < y(W/p) + lazy(Ri+1 U Rit2)/p-

Proof. By two applications of the previous lemma and using Lemma 3.8,

Wits/p < Kdisz + 2,501 + lazy(Rit2)/p

1—-5/K)-Wi2/p+ 25d 1+ 1azy(Ri2)/p

(K =5) - dit1+25d +1azy(Rit1)/p + 2.50i 11 + lazy(Ri+2)/p
Kd +lazy(Rii2)/p + lazy(Ri+1)/p

= y(Wi/p) +1azy(Ri+1 U Rit2)/p. O

A

=
=

Lemma3.13. Fori e[1..r], W1/p < 71/ (n/p) +lazy(R1U--- UR;)/p.

Proof. First check that for alk, y > 0, because; = [(id + S)flj is an increasing
function,
y(X+Yy) =X +y— maXxwmin, 01(X + Y)}
<X+ Y —maX{wmin, 01(X)} = y(X) + Y.

Using this property the claim follows by a simple induction making use of the previous
lemma. O

On Scheduling Parallel Tasks at Twilight 519

3.3.3. Bounding Busyness and Lazines3 he following two lemmas relate the busy-
ness and laziness of the schedf|¢o its total earliness and lateness.

Lemma3.14. Foralli € [1..r], busyRi) < 2. sum-early(R;).

Proof. LetCy,...,C denote the chunks successively assigned to a fixed processor in
roundi, where possibly = 0. By Lemma 3.7, we have that fgr= 1,...,1 — 1,

early, (C)) > tlow — finish(C;). Besides, the right-hand side is at ledg®, since by the
condition in line (1) all ofCy, ..., 1 finish beforet®™® = t/*¥ — d; /2. Hence, for all
i=21...,1-1,

2. early, (Cj) >t/ — finish(Cj) + di /2 = t; — finish(C;) > [t — finish(C})],

where, according to line (7), and since fini§p is at leasth after the beginning of
the round, the last term is just the size @f... Consequently, the busyness of the
considered processor in roundwvhich is just the total size af, . . ., C, is bounded by
2-sum-early ({Cs, ..., C_1}), and the lemma follows. O

Lemma 3.15. lazy(S)) < sum-latg(S;) + sum-early(S)).

Proof. This proof is a bit longer, so we give a plan. We first focus on the laziness of a
single processor in a single round. This will help us investigate the laziness caused by a
single chunk (in possibly many rounds), after which it will be straightforward to bound
the total laziness of a processor and finally of the whole schedule.

There is never laziness in the first round, so we consider a fixed processor in a round
i, where 2<i < r. Let T denote the finishing time of the last chunk assigned to the
processor before rourigdland writeL for the processor’s laziness in that round, which
we defined as mdR, wi — 2.5d,_; — s}, wheres = minfw;, [t — T} If T < tie“d, and
s = 0 otherwise. Foll < t&"9, therefore

L = max0, wi —2.5d_1 — min{wi, [t — T]}}

< max0, max{—25d_1, wj —25di_1 —t + T +1}}
< max0, T + w; — 2.5¢_; — t*"9
<max0, T — t"}},

where the penultimate inequality uses #ft = t; —d; < t; — 1, and the last inequality
follows by Lemma 3.10(b). FoF > tie”d, on the other hand, = max0, w; — 2.5d;_1},
which, again by Lemma 3.10(b), implies that

L < max0, t&"9 — t""P}.

In any case therefore

L < max(0, min{t™™, T} — %9} = [0, T] N[, "],

520 H. Bast

that is, the laziness of the considered processor in rousithounded by the part of
that lies in the (possibly empty) intervaf'fy, te"q.

We are now ready to bound the total laziness incurred by a single fixed ¢hunk
scheduled in some round For that purpose defing as the index of that round after
round j, in which the next chunk is assigned to the same processpr=or, if C is the
last chunk of that processor. Then, according to what was shown in the last paragraph,
the laziness caused lgyis at most the part of [(inish(C)] that lies in the intervals

[t;"P, t209], [t;™. t89, which, by Lemma 3.10(a), are disjoint (note that some of
them may be empty). This quantity is at most f@finish(C) — min{t;™, ..., ;" }},

and, by Lemma 3.7, finighi) — t;*” < late; (C), while, by Lemma 3. 10(c)

—2

upp upp. £UPP) upp _ upp
T —min{t;™, L) X:max{o,tI t)

i'-

Z busy(Ri)/(3p).

We conclude that the laziness of a fixed processor is bounded by the total lateness of
all its chunks plus bugys))/(3p). Summing over all processors, and bounding busyness
with the previous lemma, we obtain

lazy(S)) < sum-latg(S)) + busy(S))/3 < sum-latg(S)) + sum-early (S)). O

3.3.4. The Scheduling Overhead In order to bound the total number of chunks sched-
uled, we consider the following partition &f, wherer’ = min{r, 3- y*(n/p)}:

S1 contains those chunks &, U - - - U R,/ that are the first in the round assigned
to their processor, so that, in particular, chuidks$ < p-r’;

S, contains the chunks accounting for the busyness of therfirstunds, that is,
S2=(RrU---URy) — Sy,

Sz contains all the chunks scheduled after rouhdhat is,S3 =S — (R U--- U
Ri)=8—(51USy).

We separately bound the number of chunks in each of these subschedules, for which we
have to distinguish between two cases. Note that, unless excessive lateness causes many
more rounds to be executed than would be the case without deviations, we kave

and hences; U S, = S andS; = S

The regular caser’ = r and n > lazy(S)). In the regular case§; U S, = S and
S3=8) # 7, so that

chunkgS) < p-r + busy(S))/wmin + chunksS))).

In order to bouna, we can employ Lemma 3.2 to derive from Lemma 3.13 that
lr/3] < 7*(n/p) — 7" (n'/p — lazy(S)/ p).

so that owing tar /3] > (r — 2)/3 andy*(n’/p — lazy(S))/p) > 1, and with the help

On Scheduling Parallel Tasks at Twilight 521

of Lemma 3.3,

r<3.p*(n/p)—3-p*(n'/p—lazy(S)/p) + 2
<3-7%(n/p) —y*(n'/p —lazy(S))/p)
<3.-y*(n/p) — 7 (n'/p) + [lazy(S)) /(Pwmin) 1.

We further have to bound chuni&;), and for that purpose recall that in the second phase
of BAL chunks are scheduled according ta®R> |87 1(X/A+ B(wmin))]). Theorem
3.1 is therefore applicable, and we want to make use of its addendum in order to obtain
a bound in terms of = id — max{wmin, | (id + S)_lj}. To this end, observe that by
the condition on which the first phase is terminatédd,; > wr,1/6 wherew,; =

. ~ -1 . = .
01(Wry1/p) = L(id+6) "(n'/p)]. Then takew;,, = (id + 8)~1(n’/p), for which
clearly w/,; < wry1+ 1 and hencé(w;, ;) > Kd41 — 1. Using thatk > 49A,
we can then conclude from the inequaliyd: ;1 > K/6 - w41 derived above that
s(wy,4) = 6A - w/,, and hence, by the condition ahimposed by Theorem 3.2,

S(w) > 6A - w, for allw < L(d + 5)_1(n// p)J. On the other hand, we easily verify by
means of the definition aof thats > K - (8 — «a) > 6A - (8 — «). Therefores fulfills
the requirements of (the addendum to) Theorem 3.1, and we obtain that

chunkgs)) < P-)7*(”// p).

Plugging this and the bound orderived before into the bound on chuik$ established
at the beginning of the paragraph, we obtain that, for the regular case,

chunkgS) < 3p - y*(n/p) + busyS))/wmin + 1azy(S)/ wmin + Pp.

The irregular caser’ < r or W;;1 < lazy(S5)). Intuitively, the irregular case occurs

when excessive lateness of chunks causes many more rounds to be executed than in the
deviationless case. If = r, then the case condition ensures tit,; = W, ;1 =

n < lazy(S) = lazy(Ry U --- URy). If r’ < r, thenr’ = 3. y*(n/p) and hence

73 (n/p) < 0, so that, by Lemma 3.13),,1 < lazy(R1 U --- U R;), too. It

follows that the total size of the chunksda andSs is at most busgR, U - - - U R,/) +
lazy(R1U---UR,), and since each chunk, except maybe the very last, is of size at least
Wmin, We have

chunkgS) < p-r’' + [(busy R U---URy) +lazy(R1 U --- URe))/wWmin]
< 3p-y*(n/p) + busyS))/wmin + 18zY(S)) /wmin + P,

just as for the regular case.
Using the bounds on busyness and laziness established in the previous section, we
may finally conclude that, in any case,

chunkgS) < 3p- 7*(n/p) + 3 sum-early (S)/wmin + Sum-latg (S)/wmin + P.

Now recall thaty = max{0, id — max{wmin, | (id + S)flj}}, while our goal is to bound
the wasted time in terms of, . = max0, id — maXx{wmin, (id + 8)~1}}, wheres =

a~ 1o (B —). Since we defined

S(w) = K - max{wmin, 2- maxp(w) — w, w — a(w)}},

522 H. Bast

and because

max{(f(w) —w, w —a(w)} < f(w) —a(w) < d(w),
an elegant sequence of applications of Lemmas 3.5, 3.6, 3.5, and 3.1, shows that
2K -y . We thus obtain

chunkgS) <6K - p-y; (n/p)

+ 3 sum-early (S) /wmin + sum-latg (S) /wmin + p.

At this point we feel the need to stress that here is the only place in our whole analysis
where an unrealistically large constant, namEly;= 49A, has come into play. However,
as we have mentioned before, in the descriptionaf,Bhis value ofK has merely been

chosen in order to avoid a number of extremely tedious technical complications, while
actuallyK = A would also sulffice.

3.3.5. The Idle Time We first bound the idle time aof,, which is also the initial
imbalance of the schedul& produced in the second phase @fiBLetr’ be the index

of a round with maximal upper limit, that ig,*® > t"*°, fori = 1,...,r. Typically
r’ =r, but an extreme pattern of deviations may even cause the upper limit of the first
round to be largest. We splitidi§) into three partsl’, 1”7, andl”’, namely, the amount

upp
r

of idle time ofS; spent beforéS", betweert™andt, ", and aftet,*", respectively. We
first bound each of these quantities separately.

We start withl’, which is the hard part. By Lemma 3.10()1% < t&" < t/°¥, so
that it suffices to bound the total amount of time that processors finish béfty¢he
lower tolerance threshold of the last round. For processors to which a chunk that is not
the very last is assigned in roundLemma 3.7 says that this amount is bounded by the
earliness of the last such chunk. It may happen, however, that a procedsoeigedn
that it is either assigned no chunk at all in the last round, or only the very last chunk,
whose size might be reduced due to line (9) of the Bode. Since, by Lemma 3.8,
W > p- wy, at leastp + 1 chunks are scheduled in roungdand at most one of these
(the very last) to a deceived processor. If there @rdeceived processorg; of the at
leastp + 1 chunks scheduled in roumdmust beintermediatethat is, are followed by
another chunk that is not the very last and assigned to the same processor. When these
intermediate chunks finish, there are still enough tasks left, hence we know that all of
the deceived processors finish later than the intermediate chunks. The contribution of the
deceived processors tois hence bounded by the earliness of the intermediate chunks,
and we have already seen above that the amount dfie to the other processors is

bounded by the earliness of their last chunks. This proves
I" < sum-early (S).

Concerning ", letC denote the last chunk to finish &, and note that its finishing
time is just the makespan &f. Now if i denotes the round in whidhwas scheduled,
then, since round’ has the maximal upper tolerance threshold, fi@h- t,*° <
finish(C) — ", which by Lemma 3.7 is at most lat€). The makespan &, is thus at

mostt, ™ + late; (C), and we conclude that

[<(p-— 1) - max-Iat%(Sl)-

On Scheduling Parallel Tasks at Twilight 523

Finally, we may trivially bound the idle timé” spent betweent™ andt, ™ by
p- (P —1&"% = p.h+ p- 1.5d,. Now eitherr’ = r, in which case we know from

r/
Lemma3.9thap-d = p-d <Wr;1/K +busyR;)/K < n’/(1.5A) +busyR:)/3,

orr’ < r, and because roundhas the maximal upper tolerance threshgitf, >t

so that, by Lemma 3.10(cy, < busyR;)/(3p). In any case, thereforgy - 1.5d,, <
n'/ A+ busy R,)/2, which by Lemma 3.14 is bounded by A+ sum-early (R;-), and
we have proven that

I” <n'/A+ p-h+sum-early(S).

We have finally bounded each bf, 1”7, andl”, and idl&€S)) is just the sum of them;
therefore

idle(S)) <n'/A+ p-h+2-sum-early(S) + (p — 1) - max-latg(S)).
Now recall that idl€S)) is just the initial imbalance aof;;, and the idle time o8,
is that of the whole schedulg. Using Theorem 3.1 we therefore obtain that
idle(S) < p-h+ p- B(wmin)
+ max0, idle(S)) —n'/A— p-h}
+ sum-early (Si) + (p — 1) - max-latg (Sy),

and by the bound on id{&)) just established,
idle(S) < p-h+ p- B(wmin) + 2 (sum-early(S) + (p — 1) - max-latg(S)).

3.3.6. The Wasted Time In the last two sections, we have proven that

chunksS) < 6K - p-y; (n/p)
+ 3- sum-early (S)/wmin + sum-latg (S)/wmin + P,
idle(S) < p-h+ p- B(wmin) + 2 - (sum-early,(S) + (p — 1) - max-latg(S)),

which, sincavmin > h,immediatelyimpliesthatfaf = sum-early, (S)+sum-latg(S)+
(p — 2) - max-latg (S),

wasteS) = O (h-y:_ (V/p) + B(wmin) + €/P).

This almost proves Theorem 3.2, except that it remains to b6underms of quantities
€1, &2, andez according to the theorem. Note, at this point, that even thatigh
av-dey, g(S) - chunkgS), we cannot bound in terms of av-dey s (S) (not to mention
am-dey, 4(S5)), since the number of chunks #i is not bounded independently &t
This, in turn, is due to the inherent feature @fiRthat it dynamically adjusts the number
of chunks it assigns to the earliness or lateness of previous chunks.

As in Section 3.3.4, definR = 3- 7*(n/p) andr’ = min{r, R}, and consider the
partitionS;US,US3 of S defined in that section. Correspondingly, define fer 1, 2, 3,

& = sum-early (Si) + sum-latg (S;) + (p — 2) - max-latg(S;),
lets; = & /chunksS;), and note thaf < &, + &, + &s.

524 H. Bast

In Section 3.3.4 we have shown that chuitk$ < p-r’ < pR, which implies
E1=2¢1- chunk$81) <é&p- DR.

In the following we want to bound in terms ofe; andey, and&s in terms ofey, 5,

andes. According to Section 3.3.4, the chunksSfare exactly those accounting for the
busyness of rounds 1 through Since obviously the scheduling times of two chunks
assigned to the same processor are at leagtart, and since, by Lemma 3.7, a chunk
finishes at most its earliness before the end of the round in which it was assigned, it
follows that chunk&S,) < [sum-early (S1)/h] < &/h+1 < (1+¢e1/h)- pR and
hence

Er=¢o- chunk$82) <e-(1+ 81/ h) . pR.

ConcerningSs, we have to distinguish between the regular and the irregular case just
as in Section 3.3.4. In the regular case we have seen that difighks chunkss,) <

p - 7*(n’'/p), which is clearly bounded bpR. For the irregular case we have proven
that chunksSs) < [lazy(R1 U --- U Ry/)/wmin], Which by Lemma 3.15 is at most

(&1 + &2)/h + 1. In any case, therefore, churil§s) < &/h+ &/h + pR, and hence

&3 =e3-chunkgSs) < e3- (e1/h+e2/h-(1+¢e1/h)+1) - pR
Having thus bounded each &f, £,, and&;, we immediately obtain that

E<E+EH+E
< (81+82+83+82-81/h+83'81/h+83~82/h+83-82-81/h2)~pR
=((h+e1) (h+e2) - (h+e3)/h*—h)- pR

Hence withs = (h+¢1) - (W + &5) - (W+e3)/h? —h and using thaR = 3- 7*(n/p) <
6K -y, (n/p),

E/p=0(e-7' /) =0 (e, (/P).

Ymin

and finally note that, since the volume of a cuboid with fixed total edge length is maximal
if all edges are equally long, we also have thak (h + ¢)3/h? — h, wheree’ =
(81 + &2 + €2)/3. This finishes the proof of Theorem 3.2. O

3.4. A Variant of the Balancing Strategy

This section is concerned with a variant of the balancing scheme, namédvBose
analysis will close the small gap left between the performance guarantee we could prove
for BAL and the upper bound claimed in our Main Theorem. Very roughly speaking, B

differs from BaL in that it does not try to compensate for deviations of chunk processing
times but simply aggravates them over the rounds: for each unit of earliness of a chunk,
BAL’ inserts a unit of waiting time (instead of assigning an intermediate chunk), and for
each unit of lateness of a chunk, it lets all subsequent chunks for that processor start one
time unit later (instead of decreasing their sizes). We will be able to prove that in this
manner each processor is assigned exactly as many chunks in the first phase as there are
rounds, and that, compared with the deviationless case, each unit of deviation simply

On Scheduling Parallel Tasks at Twilight 525

adds to the idle time of the schedule produced in the first phase. As mentioned before,
this behaviour simplifies the analysis a lot, but lacks the so practical featura ahBt
it can nullify the effect of small to moderate deviations. The significance of theé B
scheme is therefore of a more theoretical nature.

More precisely, BL’ serves a processor request exactlyas, Bith two exceptions.
First, when the requesting processor has already been assigned (and finished) a chunk
in the current round, the assignment is delayed until the end of the round. At that time
a new round will be started and the request is served as if it were issued then. Clearly,
this guarantees that at most one chunk per round is assigned to each processor. The
second exception occurs when for 2, a processor requests ith chunk after the
upper tolerance threshdiiﬂff of the (i — 1)th round; note that, by the above, this request
cannot occur before th@ — 1)th round, so that this threshold is surely known. Then,
irrespective of how long afta:f’_"f the request is issued, the processor is assigned a
chunk as if it had requested exactly at tiu’t&f, and also the corresponding update of
W is performed at that time. It is convenient to say thatitfechunk of a processor
belongsto roundi, which makes sense, because even though such a chunk might be
assigned long after thigh round is over, its size is computed from the settings of
that round. The effect of the described modifications, compared with the orginal B
strategy, is illustrated in Figure 7. Note that without deviations,’Band BAL behave
identically.

In analogy to the piece of code given fosB Figure 8 provides an implementation
of the function that computes for a given request the size of the chunk to be assigned
then. As before, the variabl&¥, w, d, t keep track of the number of unassigned tasks,
the size of the first chunk in the current round, and the tolerance and target of that round,

—_ B O O

Cali= R Dl s RS

| | | | t > time
T f‘%l’l{ i T tind ti+h

i~

round 7 round > ¢

round < ¢

Fig. 7. The original B\L compared with its variant&.’ in a roundi.

526 H. Bast

® =
(2) if (PHASE ==1 && r[k] > R) { (* new round)

3) if (T<t-d) wait until ¢ — d;

) T =max{t—dmin{¢t+h+d/2,T}};

(5) if (R>0) W=W —p - s[R];

(6) P =p;

o w = g1 (W/p);

(8) siR+ 1] =min{w, |T+w-t-d/2] };

(9) d=W/p-w)/K;

(10) if (d>w/6) PHASE =2 else R= R + 1;

(11) t=T+h+w;

12

(13) if (rk] < R) {s=s[rk]; W =W +s;}

(14) if (r[k] == R) {s=min{w,max{s[R],[t-T]}};p'=p -1}
15) i (K] > B) {s=o:(W/p)s)

(16) s =min{W,s};

1n) W=W—s;

(18) return s;

Fig. 8. The chunk size computed byB (o1, 02) for a request of th&th processor at timé .

respectively, with the latter three being initialized to zero. Again, the constaatsl

h hold the number of processors and the scheduling overhead, respectively, and the
variable PHASE is initially set to one. BesidessiBrequires the following additional
variables:

e An arrayr[1.. p] counting the number of chunks scheduled to each processor,
initialized with zeros—this array can either be stored globally or in a distributed
manner by the processors.

e A variable R keeping track of the index of the current round, initially zero.

e A dynamic arrays[], with g[i] storing the size of a chunk belonging to rouind
and assigned aftef™, to be used when rourids over.

e A variable p’ that for each round keeps track of the number of processors that
have not yet been assigned their chunk belonging to the current round.

For most parts, the code of Figure 8 is a straightforward implementatioaldfe®
described above, but we should comment on the subtleties. The assignment in line (4)
ensures that after a waiting period the computation is continued with the appropriate time
stored inT. Here the maximum construct ensures thas at most the upper tolerance
threshold of the previous round, in order to deal adequately with the special casaWwhere
processors finish their chunks from the previous roaitelr that threshold. Concerning
the assignment in line (8), note thBt+ w — t — d/2 is just the difference between the
target going to be set for the current round, nameély; h + w, and the upper tolerance
of the previous round, namely+ h + d/2. Finally, the correctness of the somewhat
tricky update ofW realized by lines (5), (6), (13), (14), and (17) will be implied by
Lemma 3.16 below. In particular, the lemma implies tais never assigned a negative
value in line (5). The remainder of this section is concerned with proving the following
result, which establishes our Main Theorem.

On Scheduling Parallel Tasks at Twilight 527

Theorem 3.3. Lettask processing times be arbitraaynd letthe overhead beh 1.Let
[a, B] be avariance estimatdet A > 1witha > id/A, and letwmin € N, wmin > h such
that, for K = 49A, §: w > K -maxwmin, 2-max{(w) —w, w —a(w)}} is increasing
and the functionv — §(w)/w — 6A has at most one zerdhen foralln p € N, givenn
tasks and p processqrthe algorithmBAL' (o1, 02) With g1: X | (id + S)_l(x)J and
02: X = |B7L(X/A+ B(wmin)) | produces a schedulg with the property that

wasteS) = O ((h+e) - v.;, (/P) + Bwmn))

Ymin

wheree = av-dey, 4(S), andy,,_ is the progress rate associated with 8] and wmin.

The proofis divided into four parts. Section 3.4.1 deals with the local properties of a
round, Sections 3.4.2 and 3.4.3 are concerned with the number of scheduling operations
and the idle time, respectively, from which Section 3.4.4 derives the desired bound on
the average wasted time. With the experience of having gone through the analysis of
BAL, the following should be fairly easy to follow, since the flow of argumentation is
almost the same, except that now we are no longer bothered by busyness or laziness.

We make use of the very same notation as defined for the analysis af Bection
3.3.1. Inparticular, denotes the number of rounds, which is just the number of executions
of lines (3)—(11) except the lasty;, w;, d;, tj denote the values oV, w, d, t, just
after theith execution of these lines, anff¥ = t — di/2, t""° = t + di/2, and
t"d =t —d, fori = 1,...,r; by convention alsd = t,"" = 0. The total number of
tasks not assigned in the first phase is denotetvby and byn’, andy is defined as

max(0, id — max{wmin, |(id + 3) "]}1.

3.4.1. Local Properties of a Round In analogy to Section 3.3.2, this section provides
the building blocks for further analysis ofaB’. Since for B\L’ there is nothing like
busyness or laziness, we can now prove the valuable property that, for arbitrary devia-
tions, a round always ends after the upper limit of the previous round. The first lemma
demonstrates that the updateVifin the code of BL’ is performed correctly.

Lemma 3.16. Fori = 1,...,r, the total size of all chunks belonging to round i is
W — Wi,

Proof. First verify that by lines (1), (2), and (10), either PHASE2 orr [k] < Rwhen

lines (13)—(15) are executed. Therefore, if the assignment in line (15) is executed, we
must have PHASE= 2 and hence als® = r, since the increment operation éhin

line (10) can only be reached when PHASEL. This proves that the firstrequests of

a processor are scheduled according to line (13) or (14).

Now for fixedi € [1..r], letw; x denote the size of thi¢h chunk assigned to thieh
processor, fok = 1, ..., p, and denote by?’ and P” the sets of indices of processors
for whoseith request the body of line (13) and the body of line (14), respectively, is
executed. Then, by what was shown in the first paragr&phj P” = {1, ..., p}. By
lines (6) and (14), itis easy to see that at the beginning ofithel)th execution of lines
(3)—~(11), the value op is justp — |P”| = | P’|, and the value oW isW; — 3", 5, wi k.

528 H. Bast

Sincew; x = s[i] for k € P’, the value ofW after the(i + 1)th execution of line (5) is
henceW, .1 =W, — Zle wj k, as claimed in the lemma. O

Lemma3.17. Foralli € [1..r], W, = p-w; + p- Kdj, and it holds thatw; >
5/K - W /p and Kd < (1-5/K) - Wi/p.

Proof. This follows by lines (9) and (10), just as for Lemma 3.8. O
Lemma 3.18. Foralli e[1..r], W11 > p-Kd;.

Proof. Obviously, at most one chunk per processor belongs to rouadd its size
is no larger thanw;. By the previous two lemmas, henddi,; > W, — p- wj =
p- Kdi . O

Lemma3.19. Foralli e [1..r — 1], " < t&nd.

Proof. Since round + 1 is never started befotﬁ”d, and, by the previous two lemmas,
wiy1 > 5/K - Wi 1/p > 5d;,

e =ty — A1 > 2" N+ wipg — digg >t h+ 150 =t O

Lemma 3.20. Foralli € [1..r], a chunkC belonging to round i and scheduled at
time T has sizenin{w;, [t — min{T, t"*}|}}, and

o — early, (C) < finish(C) — max(0, T — t"}} < t""° 4 late; (C).

Proof. Let T be the scheduling time of churtk and denote its size by. We first
observe that, according to line (8) and becaif88 = 0, s[i] = min{w;, |t — t"*}},
fori = 1,...,r. Since the previous lemma has proven {8 comes before the end of
roundi , we know thaw = min{w;, [t —T]},for T <t} andw = min{w;, |t —t"*]}
otherwise, according to lines (13) and (14). Hence= min{w;, [t — T}, for T =
min{T, t"}, that is, the size of is exactly as if it were assigned by the originaiLBat
time T. Correspondingly, we can show exactly as in the proof of Lemma 3.7 that

' — early, (C) < T + h + proc-timeC) < t"*° + late; (C),

and the lemma follows owing & = T —max0, T —t""} andT +h + proc-timgC) =
finish(C). O

Lemma3.21. Foralli e[1..r], W 1 <p-Kd + p-25d_;.

Proof. Bythe previouslemma, achunkbelonging to rouhds size atleast mjm;, [t —
t"PP]}, which byt; > "+ h + w; =t} — 1.5d, 1 + w;, is at leastw; — 1.50 1| >

wj — 2.50;_;. By Lemmas 3.16 and 3.17 therefow,,1 < W, — p-wj + p-25d,_; =
p-Kd + p-25d_;. O

On Scheduling Parallel Tasks at Twilight 529

Lemma3.22. Fori e[l..r —2], Wi.3/p < 7(W,/p).

Proof. By two applications of the previous lemma and using Lemma 3.17, just as done
in the proof of Lemma 3.12. O

Lemma3.23. Fori e[1..r],W,1/p < 7L 1n/p).

Proof. This follows easily by iterative application of the previous lemma, just as for
the proof of Lemma 3.13. O

3.4.2. The Scheduling Overhead With the help of Lemma 3.2, we obtain from Lemma
3.23 that

Lr/3] = y*(n/p) = y*('/p),

wheren = Wj andn’ = W, ;. Therefore, becauge/3| > (r —2)/3andy*(n’/p) > 1,
r<3.7*(n/p)=3-7*(/p)+2=<3-7*(n/p) — 7*('/ p).

Since each processor is assigned exactly one chunk in eachrofdheds, this implies
chunkgS) = p-r <3p-p*(n/p) — p-y*('/p).

Owing to the fact that the condition for termination of the first phase and the scheduling
strategy for the second phase are identical far Bnd BAL’, we can prove just as in
Section 3.3.4 (in fact, by the bound abovergmnly the regular case can happen now)
that

chunkgSy) < p-7*(n'/p),
so that altogether
chunkgS) = chunkgS)) + chunkgS) < 3p - 7*(n/p).

The same elegant sequence of applications of Lemmas 3.5, 3.6, 3.5, and 3.1 as in Sec-
tion 3.3.4 shows that* < 2K -y, so that finally

chunkgS) < 6K - p-v* (n/p).

Wmin

3.4.3. The Idle Time It follows from Theorem 3.1, that

idle(Si) < p-h+ p- B(wmin) + max0, imbalancés;) —n'/A— p- h}
+ sum-early (Si) + (p — 1) - sum-latg (Sy).

Further, the idle time of is the idle time ofS), plus the time waiiS,) that processors
spend waiting between two chunks in the first phase; note that such waiting is a partic-
ularity of BAL’ and did never occur with & . In order to bound idleS), we therefore

have to bound the imbalance and the waiting timé&,aseparately.

530 H. Bast

To this end, we first verify, using simple induction, that for a fixed processor with
chunksCy, ..., C; assigned to it in the first phase,

finish(C;) <t + sum-latg ({C1, ..., Gi}),

fori =1,...,r.Fori = 1 orif finish(Ci_1) < t"™, the claim follows directly from
Lemma 3.20. Otherwise, for= 2, ..., r andfiniskC,_;) > t"™}, C; is scheduled at time
finish(C;_1) and Lemma 3.20 says that finigh) < t""+lates; (C) +finish(C;_1) —t""%,
which by the induction hypothesis is at mgst’ + sum-latg ({Cy, ..., Ci }).

Itis now easy to bound the idle time &f. We write idlgS)) = 1’4+ 1”7+ 1", where
I’,1”, and1”” denote the amount of idle time spent befgf¥, betweert/* andt;™",
and aftert;™, respectively. By Lemma 3.20, each unitléfcorresponds to one unit of
earliness of a chunk &, so thatl” < sum-early (S,). Further, it is obvious thalt” <
p- (tr*P—t°*") = p.d, + p-h, which by Lemma 3.18 is at most/ A+ p-h. Concerning
| we make use of the property established in the previous paragraph implying a bound
of " 4+ sum-latg(S;) on the makespan d, so thatl” < (p — 1) - sum-latg(S)).
Altogether, we have thus proven that

idle(S) <n'/A+ p-h+sum-early(S) + (p— 1) - sum-latg(S)).
Since waiting can only occur befot8", we also have

wait(S)) < I’ < sum-early(S)),
and hence, since imbalanéy) = idle(S)) — wait(S)),

max0, imbalancéS)) —n'/A— p-h}
< sum-early(S)) + (p — 1) - sum-latg(S;) — wait(S)).

Plugged into the inequality established at the beginning of the section, this yields

idle(Sy) < p-h+ p- B(wmin) + sum-early,(S)
+ (p—1) - sum-latg(S) — wait(S)),

so that finally

idle(S) = wait(S)) + idle(S)) < p-h
+ p - B(wmin) + sum-early (S) + (p — 1) - sum-latg(S).

3.4.4. The Wasted Time The last two sections have shown that

chunkgS) < 6K - p-y/ (n/p),
idle(S) < p-h+ p- B(wmin) + sum-early(S) + (p — 1) - sum-latg (S),

which, fore = av-dey, 4(S), immediately implies that
wastdS) = O ((h+e) - 7, (0/p) + B(wmn))

We have finally proven Theorem 3.3 and hence also our Main Theorem. O

On Scheduling Parallel Tasks at Twilight 531
4. Specific Upper Bounds

In this section we apply our Main Theorem, proven over the course of the last section, to
the particular independent-tasks, bounded-tasks, and coupled-tasks settings, which we
already mentioned in the Introduction, and which are defined properly later in this section.
These applications turn out to be challenging tasks on their own; since the proof of the
generic result was already quite involved, this gives an indication of the complexity of
the scheduling problem we study here. Two tasks need to be tackled for obtaining bounds
for a specific setting. First, the setting must be related to an appropriate pair of variance
estimator and deviation. This will be straightforward for the bounded-tasks setting, while
for the stochastic settings, this involves the estimation of tails of probability distributions.
Second, a closed formula for theof the progress rate of that variance estimator must
be determined. As a solution to this interesting stand-alone mathematical problem, we
propose what we call thmaster theorem for theoperator.

In Section 4.1 we first state and prove this master theorem, and use it to instanti-
ate our Main Theorem for a representative selection of variance estimators. This will
in fact provide valuable intuition on the relation between processing time irregularity
and scheduling performance expressed by our Main Theorem. Sections 4.2, 4.3, and
4.4 are dedicated to the bounded-tasks, independent-tasks, and coupled-tasks setting,
respectively.

4.1. A Master Theorem for the Star Operator

For sufficiently well-behaved functions: R — R, the following theorem provides
general-purpose approximations for the valueg'ofrom above as well as from below.
The addendum says that unlesgrows very slowly, namely, with slope tending to zero,
the stated bounds are tight up to a constant factor. For convenience, we ixritey)

for min{i: ¥ (x) < y} in the following; in particular, thep*(x) = y*(x, 0).

Theorem 4.1. For bijective increasingy: R — R such thatid — y is positive and
increasing orR, it holds that for all x y > 0,

"/X dz —‘< *(x)<’7/X dz —‘
y iz | TV E) 25y |

If, additionally, for all z, Z with y < z < Z < y~l(x) the difference quotient
(y(Z) — y(2))/(Z — z) is bounded from below by some positive constanthén

1
y z—y(z)/_/y Y- l(Z)—Z =Q

In particular, this property holds if thépiecewisgderivative ofy on[y, y ~1(x)] exists
and is at least Q

Proof. First check that since ig y is positive and increasing, the same applies to
y 1 —id = (id — y) o y~1, simply becausg is an increasing bijection. Using that we

532 H. Bast

+9 () ¥ () ~(z) T v)

Fig. 9. How y*(x, -) is bounded by two integrals.

easily verify that for arbitrary,

/‘X dz /‘X dz
yo0 Y N -z v Y Hy (¥) —y(X)
/x dz /x dz
= NN E - >
yoo X —v(X) yoo Z—v(2)

and by analogous arguments on the interval}@, y X1, ..., [yP), y P (x)],
we obtain that for ali € N,

/‘X dz) /‘X dz
——— <i < .
yH(x) Yy l2-z Yy Z—v(2)

For intuition behind this approximation, see Figure 9, whasgust the area of the gray
rectangles, and the integrands on the left- and right-hand side are shown in dark and light
gray, respectively.

Now for arbitraryx > y, withi = y*(x,y) > 1, we havey®(x) < y and
Y1~V (x) > y. Therefore,

/" dz /x dz)
— o < — o <
y Y X2 -z Ly ¥ H2) -2

and

/" dz /x dz)
> >0 —1,
y Z—y(2 Y-y Z— ¥ (2

which proves the first part of the theorem. For the second pagt)iebetweeny andx,
Z = y~1(2), and check that by the additional property;on

z—y(@ y@)-y@®
yvi2-z 7-z = Q =

On Scheduling Parallel Tasks at Twilight 533

Table 3. The bound from the Main Theorem for four types of variance
estimators.

[a(w), B(w)] H - yan(N)
[max{w/A, w — Cw/¥}, w + Cw/¥] O(H -loglogN + C - (AH)Y/x)

[w/A, B-w] O(H - AB-logN)
[w/A, B-wlog*(Cw)] ©(H - AB-logN - log€ (C N))
[w/A, B - w*] O(H - (AB)V¥ . N1-1/x)

In the following, we apply the above theorem to instantiate the generic bound from
the previous section for a variety of variance estimators. Our results are summarized in
Table 3, where is considered a fixed constant, while for the parameteB, andC, alll
dependencies of the corresponding bound are made explicit. For the sake of clarity, we
have writtenH for h 4+ ¢ andN for n/ p. Strictly speaking, while the entries in the right
column are always upper bounds, they are ugpeilower bounds only for sufficiently
large N; this will be made explicit in Lemmas 4.1-4.4 below.

For better readability, in the following proofs we always wilite = E; instead of
E; = ®(Ey), for arbitrary real expressiorts; and E,.

4.1.1. Superlinear Width We consider two types of variance estimators of superlin-
ear width: those, for Whicmﬁ(w) — a(w))/w is polynomial, and those for which it

is polylogarithmic inw. We could also consider even wider estimators, but not very
meaningfully so.

Lemma 4.1. For arbitrary fixed A B > 1and« > 1, consider the variance estimator
[o, Bl: w > [w/A, B-w"],

lets = a~to (B —a), and lety = id —max{M, (id + §)~1}, for arbitrary fixed M > 1.
Thenforall N > AB .- M¥,

y*(N) = © ((AB)Y* . NI=Y/x)

Proof. We first give the proof folA = 1 and then extend it to the general ca#se 1
by a simple time-scaling argument. FAr= 1, we havexr = id, which implies that
id 4+ 6 = B and hencer = id — max{M, g~1}. Here, as well as in the following three
proofs, maxM, g~} andy will be considered as functions @in the obvious way by
taking maxM, g~1}(x) = M, for all x < B(M). To be able to apply Theorem 4.1, we
first check whether the preconditions prare satisfied. Sincg is a bijectionR*t — R
andg(w) > w for w > M > 1, it follows immediately thay = id — maxM, g~}

is bijective onR, as well as that id- y = max{M, 81} is positive and increasing on
R. Further, since fow > M, g/(w) = B -« - w*t > B - «, the derivative o8~ on
[B(M), 0c0) is bounded from above by/1Bk) < 1. This is easily seen to imply that all

534 H. Bast

difference quotients of are bounded from below by-11/(Bk) > 0, and, in particular,
thaty is increasing ofR. Theorem 4.1 therefore yields that

" (N N dz FMdz N dz
a)*/o maX{M,ﬁ*l(Z)}_/o W+/m B2

Sincep~%(z) = (z/B)Y/*, we obtain

M N

pn = EP v [2z
M BMK

lel//(_ (B . MK)l*l/K

B. MK‘fl Bl//c .
+ 1-1/x

= Bl/K X lel/l(’
where the last approximation uses thét > B - M*. This proves the lemma for
A=1.

To deal with the general case(w), 8(w)] = [w/A, B - w], just observe that
a~1o (B —a), and hence alsp, is independent of the choice of our time unit, that s, it is
invariant under the simultaneous multiplicatiorecdindg by an arbitrary fixed constant.
Instead ofw +— [w/A, B - w*], we may therefore just as well consider the variance

estimatorw — [w, AB - w*], for which the above analysis shows thahif> AB- M*,
then

y*(N) = (AB)Y* - NT¥,
as desired. O
Lemma 4.2. For arbitrary fixed A B, C, ¥ > 1, consider the variance estimator
[a, B]: w [w/A,B-w-In“(Cw)],

leté = 1o (B —a),and lety =id — max{M, (id + 8)~1}, for arbitrary fixed M > 3.
Then for all N> (AB MIn“(C M))?,

y*(N) =© (AB-InN - In“(CN)).

Proof. We proceed just like in the proof of Lemma 4.1, first assuming #hat 1, for
whichy = id — maxM, g~1}. Since forw > M > 3,

B'(w) = B-In“"YCw) - (k + In(Cw)) > 2,

we can argue just as before that all difference quotienisa bounded from below by

On Scheduling Parallel Tasks at Twilight 535

£ so that, by Theorem 4.1,

" . B(M) /N dz
N)=—"= —_—
y ()= M * B(M) B2

Unfortunately, withﬂ(w)Nz B - w - In“(Cw), no closed form for the inversg exists.
However, taking instead(z) = z/(B - In“(C2), we have that fow > M > 3,

B-w-In"(Cw) w - IN“(Cw)
B (IN(CBw)))* (IN(Cw)+InB +« InIn(Cw))<’

B(B(w)) =

which is clearly at most and at leastv/(1 + In B + «)*. Therefore(z) is within a
constant factor oB~1(z), for all z > 8(M), and thus

N N K
/ _dlz . B~/ In (Cz)dZ
sy B2 pmy Z

InN
=B~/ (z+InC)*dz
|

np(M)
_ g, InHECN) — InHCp(M))
- Kk+1 ‘ .
_B.In (L) » In'(CN) - In* (CAM))
B(M) Kk+1

j=0

where the sum can easily be seen to lie betweg(@CIN) and(x + 1) - In“(CN). Since
N > B%(M), we have thus shown that for the case= 1,

y*(N) =B-InN - In“(CN).

For arbitraryA > 1, the same formula holds fo¢ > (AB)?(M) and wherB is replaced
by AB, whichis shown via the invarianceef, 8] under an arbitrary time scaling exactly
as done for the previous proof. O

4.1.2. Linear Width
Lemma 4.3. For arbitrary fixed A> 1 and B> 1, consider the variance estimator
[a, B]: w— [w/A, B-w].

Lets = a~ 1o (B —a),and lety =id —maxM, (id + 8)~1}, for arbitrary fixed M > 2.
Then for all N> (AB- M)?,

y*(N) = ©(AB-InN).

536 H. Bast

Proof. Sincey = id — maxM, id/(AB)} has slope at least1 1/(AB) > 0 every-
where, Theorem 4.1 yields that

s [
VEUE)y maxM, z/(AB)}

ABM g7 N dz
0 M ABM Z

= AB+ AB-In

AB-M’

which for N > (AB - M)? is within a constant factor ofB - In N. |

This result implies the following interesting property of linear-width variance es-
timators, which, as we will see in a minute, give rise to scheduling schemes that are
particularly easy to implement. Consider the polylogarithmically superlinear variance
estimator

[a, B]: w [w/A, B-w- In"(Cw)],

for which the Main Theorem together with Lemma 4.2 proves the following bound on
the wasted time:

O(H - AB-InN - In“(CN)).

Now for n tasks andp processors, chunk sizes are naturally boundel by n/p, and
forallw < N,

[w/A, B-wlIn“(Cw)] € [w/A, B-In“(CN) - w].

However, for the linear-width variance estimator corresponding to the ranges on the
right-hand side, the Main Theorem in combination with Lemma 4.3 implies a bound on
the wasted time of

O(H - AB-In“(CN) - InN),

whichisidentical to the bound obtained for the variance estimator of polylogarithmically
superlinear width. This provides evidence that the class of scheduling schemes associated
with variance estimators of linear width are optimal for a wide variety of settings. On
the other hand, the optimal scheme pertaining to such a variance estimaforfid id]

is of a particularly simple form, namely, FP+— |X/C + wmin]), whereC = A . B.

It is easy to see that (ignoring the rounding issue) the sizes of the chunks assigned
according to this strategy form a geometric sequence; this followg\by (W/(Cp) +
Wmin))/(CP) + wmin = (W/(CP) + wmin) - (L — 1/(Cp)). We leave it to the reader

to verify that the variance estimators of polynomially superlinear width, which were
considered in Lemma 4.1, may not be replaced by variance estimators of linear width
without loss.

On Scheduling Parallel Tasks at Twilight 537

4.1.3. Sublinear Width

Lemma 4.4. For arbitrary fixed A> 1,C > 1,and« > 1, consider the variance
estimator

[a, B]: w i~ [max{w/A, w — CwY*}, w + Cw?/*],

lets = 0(—1 ¢} (ﬂ —), and |et)/ =id— ma)({M, (|d + 5)—1}, for arbitrary fixed M > 0.
Then for all N> max{M, (2AC)</«~Dy,

y*(N) = © (In(InN/InM) +C - A- MY</M).

Proof. As before, our goal will be to bound*(N) with the help of Theorem 4.1, which

for sublinear-width variance estimators, however, turns out to be more complicated than
for those of at least linear width. In particular, we cannot use the time-scaling argu-
ment here since foA > 1, AB is no longer of the same form &k as it has been in

the cases considered before. This proof is therefore going to be more involved than its
predecessors.

Sincex(w) = maxw/A, w—Cw?¥*}, 5 may have asharp (thatis, not differentiable)
bend, which turns out to be somewhat unconvenient to deal with. However, it is easy to
see thas(w) is always betwee€ - w* and 2AC - w'/*. In view of Lemmas 3.1 and
3.5, we may hence assume without loss of generality that

8(w) = 2AC - w¥/x.

Our next step will be to boung*(N), whereN = max(§(M), (2AC)*/*~D}: note
that the second term is just the unique positive fixpoins,aind thatN < N. To this
end, first verify by means of the identity id (id + 8) ! = (id + 6 1)~ that the inverse
of y =id — max{M, (id + 8)~} is just

y 1 =id + maxM, s71}.

Now on(—o0, §(M)], ¥ ~* describes a straight line with slope 1, while the derivative of
8§71 z+— z</(2AC)“ at an arbitraryz € (0, (2AC)</«~D]is

k- 271/ (2AC)" < k.

We may therefore conclude that* has slope bounded y-1 everywhere of—oo, N],
and hence that has slope at leasy/ I« + 1) everywhere ori—oo, y 1(N)], so that, by
Theorem 4.1,

(N ;/’(‘ dz
A A LR

538 H. Bast

SinceN > §(M), it holds that

/N dz _/‘*(M)dz_i_/’(' dz
o maxM,s-%2} Jo M sovy 2/ (2AC)H«

_8(M) NI — 5(M)L«
== + (2AC) —
L8V
- V?

and thus
V*(N) =5§(M)/M=2C-A. Ml/K/M,

To finish the proof, it remains to boune(N, N) = min{i: y®(N) < N}, that
is, the number of iterations of required to get fromN to N. In fact, we actually
boundy*(N, N + M), which differs by at most one from*(N, N). Unfortunately, the
derivative ofs—* grows beyond all bounds so that ljm,, ¥’ (x) = 0, which invalidates a
further direct application of Theorem 4.1. What comes to our rescue is that the evaluation
of y* can be shown to be equivalent to the evaluatiofigfwherey = T oy o T2, for
an arbitrary bijective transforii. In order to prove this, use simple induction to check
that

7OT) =7 PETeoN =7 VTN = =T),

for alli € N, which immediately implies that

YY) =y (TX), T(y)

for all x, y in the domain ofT. .
_ Forour purposes, consider the transfofmz — In(z/N) with inversele: Z>
N - &, whereN = (2AC)*/*“~D denotes the fixpoint o; in particular, N < N.
Then, since for alz > §(M), y~%(2) = z+ 67 X(2) = z+ z/(2AC)~, it holds for all
z > T(§(M)) that
7@ =ToyoTH=Toy H(N-&)

= T(N€& + (N&)“/(2AC))

=T(N& - (14 e« D7)

=z+In1+e* b2,

Using that, we easily check that for alb> T (§(M)),

e(K—l)Z

-1V .
(V)(Z)—l‘i‘(K—l)m <k,

which implies thaty’(z) > 1/k, for all z > YT B(M))) = T LE(M))) =
T(M + §(M)). Having verified this, we may now apply Theorem 4.1 in order to obtain

On Scheduling Parallel Tasks at Twilight 539
the approximation

T

TN+m) 71D = Z

Since the integral cannot be solved in a closed form, we resort to the approximation
(t+1)/2<In(1+¢€) <t+1fort > 0, from which we obtain that

T(N) dz) T(N) dz
/‘l"(NJrM) |n(1+e(K_1)Z) N /;(NJrM) 1+ -1z

1 n 1+ —=1)-T(N)
k=1 14+x-1 -T(N+M)

SinceT(N) = In(N/N) andT(N + M) = In((N + M)/N), and by the bound o
assumed in the lemma, the last term can be shown to be in the order of;INlpgnd
we finally get

y*(N, N) = y*(N, N 4+ M) = 7*(T(N), T(N + M)) = In(In N/In M).

Having bounded*(N) andy*(N, N) separately, we now easily obtain the desired
result

y*(N) = y*(N, N) + y*(N) = In(InN/InM) + C - A- MY« /M.

This finishes the analysis of variance estimators with sublinear width, and we have finally
proven all the bounds claimed in Table 3. O

4.2. Bounded Tasks

If for some Tin, Tmax > 0 with Tin < 1 < Thax the processing time of each task is
guaranteed to be in the randeh, Tmax, We say that task processing times boainded

by [Tmin, Tmax]- Note that, as for our definition of a variance estimator, the condition
Tmin < 1 < Tmax IS Not a restriction but merely reflects a commitment to a certain time
scale. As we will see next, the application of the Main Theorem to a bounded-tasks
setting is almost trivial; in particular, note that no randomness is involved here.

Lemma 4.5. Lettask processing times be boundedByn, Tmax- Thenforalln p €
N, the schedul& produced by an arbitrary algorithm given n tasks and p processors
satisfies

av-dey, s(S) =0,

where

[o, B]: w = [Tmin - w, Tmax - w].

540 H. Bast

Proof. It suffices to observe that, by the assumption on the task processing times, the
sum of the processing times of anytasks will always be at lea3tyi, - w and at most
Trnax - W. O

Corollary 4.2. Let task processing times be bounded By, Tmax, and let the over-
head be h> 1. Then there exists a fixed-partition algorithm that for allme N, given
n tasks and p processgrzroduces a schedulg with

wastéS) = O(h - Tmax/ Tmin - lOg(n/ p)).

Proof. For everywmin € N with wmin > h, a combination of the Main Theorem, or

rather of Theorem 3.1, with the previous lemma yields a fixed partition algorithm that
for n tasks andp processors produces a schedfileith

wastdS) = O(h-y* (n/p) + B(wmin)),

Ymin

wherey, is the progress rate associated with
[a, B]: w = [Tmin - w, Tmax - w]

andwmin. According to our comments concerning the choicevgf, at the beginning
of Section 3, we choos@min = [h/ Tmin], in which case8(wmin) < 2 h - Tmax/ Tmin-
Further, Lemma 4.3 tells us th;autmm(n/ P) = O(Tmax/ Tmin - l0g(n/ p)), and we finally
obtain

WaStQS) = O(h : Tmax/Tmin : |Og(n/ p) +h- Tmax/Tmin)
= O(h . Tmax/Tmin ' Iog(n/ p)) O

4.3. Independent Tasks

If for someo > 0, the processing times of the tasks are independent, identically dis-
tributed, nonnegative random variables with mean 1, variaAgand finite third moment,

we say that task processing times m@ependentwith variances . The application of

our Main Theorem to this setting is analogous to that for the bounded-tasks setting, but
significantly more involved. As a prerequisite, we first prove the following assertion on
the sum of independent, identically distributed random variables; a related, more general
result can be found in [1].

Lemma 4.6. Let Z be the sum of m independent random varighteemntically dis-
tributed with mearp. < O, finite variances? > 0, and finite third central moment
0% > 0.Then for some constarit> 0,witht = —u /o andn = 9 -€/2. 03/02 / m/?,

1 et2/2
«/ 1+1t2 ’

If Z is normal the inequality even holds faor= 0.

Emax0,Z} < (1+7n) -o/m-

On Scheduling Parallel Tasks at Twilight 541

Proof Letu, = m-pando? = m-o? denote the mean and varianceZgfespectively.
We first consider the special case whgrie a normal random variable. Théd—u,) /o,
has standard normal distribution, so that, by the definition of the expected value,

E max0, Z} = o, - E max0, (Z — u,)/o, — 1}
> 1 2
=0y max0, x —t} - ——e */2dx
: [Xt} <=

o0
/oo(x t) ! e X*/2dx
= 05 * —_ [—
i/ N 21
1 —t2/2)
=0, | —€ —t1- (11—t ,
2 (Nz (()
where® denotes the standard normal distribution function. The lemma now follows by
the approximation
1—d() > t
T J2r 1412
and the fact that +-t - t/(1+t?) = 1/(1+t?). The proof of this approximation is
analogous to that given, for example, in the textbook of Grimmett and Stirzaker [10] for
a slightly weaker bound; it suffices to check that fonall
d x
dx 1+ x2

—t2/2

2 2
e X /2 > _g X /2’

which, by multiplication with(27)~/? and integration overt[oc], yields the desired
bound. This finishes the proof for the case of norxal

Now assume thaZ is the sum ofm independent, identically distributed random
variables. Our plan is to bound the difference betwgemax0, Z} andE max0, Z},
whereZ is a normal variable with the same mean and variancg. &his will reduce
the proof of the lemma to what has already been shown in the first paragraph. Bounding
this difference turns out to be a matter of bounding the pointwise difference between
the distribution functions oZ and Z, which we establish via a strong bound on the
convergence rate of the central limit theorem. First observe that, since the mean of a
nonnegative random variab¥ecan be expressed ﬁg’ Pr(X > x) dx (see, for example,
[10]),

o0 Z
E max{0, Z}:az~/ Pr(— >x>dx
0

:az-/ Pr(

0
o0 Z_

:gz./ Pr(Hz x)dx,
t 0z

E max0, Z} =az./ Pr
t

>x+t>dx

and

542 H. Bast

Now by a variant of the Berry—Esseen inequality [27, Theorem 5.17], there exists a
constant) > 0, such that for alk > 0,

zZ- Z-
Pr(Mz>x)—Pr< Mz>x>
o, Oz

and hence, witly = 9 - €°/2 . 03/03/mY/2,

. Z-
Pr(Mz>x>—Pr< Mz>x)
o, Oz

Since /™ (14 x)~3dx < (1 +t»~, this implies

- Vs m- o3 1
T V2r (mee2)?? A%

o Z- zZ- 1 1
f Pr(Hz >x>—Pr Pz o x)|dx <y —— e t/2,
t 0z 0z N1 1412

and we may conclude that

|E max0, Z} — E max0, Z}| < 1 1 ep

, —_— y = . O’ - —_— .
o V2r 1+t2

Together with what was shown in the first paragraph for the normal case, this proves our
lemma in the general case. O

We are now ready to derive a bound on the average deviation incurred by some strat-
egy in the independent-tasks setting. This bound will contain an implicit factoy/ef,
whereo? is the variance angd? is the absolute third central moment of a single task’s
processing time. We treat this factor as a fixed constant, which is justified in view of the
fact that for an arbitrary random variab¥g the quotienE| X — EX|3/(E|X — EX|?)%/?
is invariant under the multiplication of with an arbitrary (nonzero) factor.

Lemma4.7. Let task processing times be independevith variances?. Then for
all n, p € N, the schedule& produced by an arbitrary algorithm given n tasks and p
processors satisfies

Elav-dey, 4(S)] = O(o),
wherel
[, Bl: wi> [w—0-vVInw- w2, w+o-/p+nw- w?.

Proof. We first prove that the expected deviation of an arbitrary fixed chunk with
respect tda, B] is bounded byO (o). To this end, lew € N, and letC be a chunk of an

On Scheduling Parallel Tasks at Twilight 543

arbitrary but fixed selection ab tasks. Then, by the definitions in Section 2.2, and with
T denoting the total processing time©f

Eearly,(C) = E max0, w — o - VInw - w2 - T},
Elates(C) =E max0, T —w —o - /p+Inw - w¥?).

Lets = ¥ - 03/03, wherep?® is the absolute third central moment of a single task’s
processing time, and is the constant according to Lemma 4.6. Sifichas expected
valuew and variance ?w, we then obtain from Lemma 4.6, applied with= +/Inw
andn, = s- €/2//w = s, that

1 2 1+s
Eearly,(C) < (1+m)-o /2 <
% (C) < (X14m) -ovw- J_1+t1 F
Similarly, witht, = /p+Tnw andn, = s - €%/2//w = s - eP/2,
1 2 1+s o
Elates(C) < 1+ n2) -0 el < T — .~
&) < (1+n2) - ovw- \/Zlthz == p

It follows immediately that
Edev, 4(C) = Eearly,(C) + (p—1 -Elateg(C) < (1 +5) - o,

and we have shown that, fer= (1+s) - o, the expected deviation of an arbitrary fixed
chunk with respect tfw, 8] is bounded by.

Using this property, we now prove the lemma. Cgt. .., C; denote the chunks of
S, inthe order they were allocated, and denotey. . ., w; their respective sizes. Now
| is a random variable but certainly< n, so that we may define random variables
Y1, ..., Yssuchthat, forf =1,...,n

Y, = {deva,,s(cj), j=l

g, j >l

Since
av-dey, 4(S) = - EI Y, =¢+ no(2 En Y,
’13 I J < j & I n] < | & 5

proving the lemma reduces to bounding the expectatiat of) Z?:l Y bye.

Since the selection of tasks belongingas completely determined by the algo-
rithm together with the processing times of the previously scheduled cunks , C;_1,
and since the processing times of the individual tasks are independent, the property es-
tablished in the first paragraph of the proof implies that forja# 1, .. .,1,

ELYj | Y1,....Yj] <e.

544 H. Bast

Since this very bound holds trivially whein> |, it holds in fact for allj = 1, ..., n.
Using this, we can show that for gll=1, ..., n,
1 1501
E|:TZYi Yl,...,Y,-l}zf Y+ 2 -E[YY, ..., Y]
J i=1 J i=1 J
13
)= J

which, by taking expectation on both sides, implies that

i P -1
E[Ty v <t el LS|+ 8
J'l J J_li::]_ J

A simple induction now shows that
1 n
E _ f
BYE
j=1
which immediately implies the desired bound

Eav—de\&,ﬁ(S)=8+|E~<E [%;Y,} —8) <e=(A+5s)-0=0(). O

With the help of Lemma 4.7, it is now easy to translate the Main Theorem to
the independent-tasks setting. We remark that Corollary 4.3 below implies a doubly
logarithmic asymptotic bound asgrows large, which settles a conjecture put forward
in [12]. The apparently weird ,/p - (h + 0)/?** term becomes meaningful in light of
the fact that when the minimum chunk size is in the orden af o2 (as will be), then
the expected maximal processing timem€thunks of such size is tightly bounded by
O((h+0?) +o/p- (h+0%Y?)[11], [14].

Corollary 4.3. Lettask processing times be indepengeiith variances?, and let the
overhead be b= 1. Then for arbitrary fixed. > 0, there exists an algorithm that for all
n, p € N, given n tasks and p processppsoduces a schedulg with

EwastéS) = O((h + o) - loglog(n/p) + o/p - (h + a?)Y2).

Proof Foreverywmin € Nwith wmin > h, acombination of our Main Theorem with the

previous lemma yields an algorithm that fotasks andp processors yields a schedule
S with

EwastdS) = O((h+0) -y (n/p) + B(wmin)),

Ymin

On Scheduling Parallel Tasks at Twilight 545

wherey, . is the progress rate associated with

[, B]l: ws [w—0-vVInw- w2 w+o-/p+nw-w?

andwnin. Now [a, 8] has sublinear width but is not quite of the type considered in the
corresponding Section 4.1.3. We therefore next derive a slightly wider variance estimator
[@, B] that indeed suits the requirements of Lemma 4.4 from that section. To this end,
observe that there exists a const@nt 1, depending only oR, such that for allv € N,

Jp+Ihw <C- /p-w"? and thus
w+oy/p+nw w2 <w4+C.oy/p- w2

Further, forw > (3+ 802) - IN(3+ 8 2), it holds thatw/In w > 402, so thato v/Inw -
wl? < w/2, which in turn implies that

w—o-vVInw-w"?>maxw/2, w—C co/p- w22y
Takingwmin = [N+ (34 802) - In(3 + 852)], the variance estimator

[@, Bl: w> [maXxw/2,w —C-o - /p-w/**?) w+C.o./p-w?™?
hence satisfied < « andf > 8 at least on fmin, 00), which ford =a 1o (B—a)
andy, . = max0, id — max{wmin, (id+8)~'}} is easily seento imply that, . < 7,
and thus, by Lemma 3.y, <y, .Concerning, we may now apply Lemma4.4,

from which we obtain that

Vo (n/p) =0 (Iog log(n/p) +o/P- wﬁ]/iﬁfl/Z)
= O (loglogn/p) +o/p - (h +o>*~*3).

Ymin

Concerning8(wmin), it is easy to check that
B(Wmin) < wmin+C-0/P- wrln/iﬁﬂ/z =0 (h +oyp-(h+ O’Z)l/ZHL) .

Plugging these bounds into the bound obtained at the beginning of the proof, we finally
obtain

EwastéS) = O ((h+ o) - loglogn/p) + o/p - (h+0?)Y2). O

Since the proof of the corollary above makes use of a variance estimator of sublinear
width, the corresponding algorithm is not of the fixed-partition type, but rather one of the
more sophisticated instances of our balancing strategy. Since our Main Theorem, in its
general form, was established by means af 'Bthe question arises whether the bound
of Corollary 4.3 can also be achieved by the original Bcheme, which we found to be
more natural and easier to implement. The following corollary (to Theorem 3.2) gives a
positive answetr.

546 H. Bast

Corollary 4.4. Lettask processing times be independeiith variances?, and let the
overhead be k= 1. Then for arbitrary fixed. > 0, there exists an instance BRL that
forall n, p € N, given n tasks and p processppsoduces a schedulg with

Ewastes) = O ((h+0°/h? - loglog(n/p) + o /B - (h+0%)*7) .

Proof. According to Theorem 3.2, for evetynin € N with wmin > h, and for the
variance estimator

[, Bl: w> [w—0 - VInw- w2 w+o-/p+nw-w?

there is an instance ofA that, givenn tasks andp processors, produces a schedsile
with

wastds) = O ((h o).yt (/p)+ ﬂ(wmm)) ,

Wmin

wherey,, . is the progress rate associated With 8] andwmin, and
e=(+e) (h+e)-(h+eg)/h?—h,

for some partitionS = S1US,USs, ands; = av-dey, 4(Si), fori = 1,2,3. Now
Lemma 4.7 implies that all d[e1], E[e2 | 1], andE[e3 | 1, 2] are bounded byD (o)
which is easily seen to imply th&e = O(o + 02/h+ 03/h?) = O(h +¢3/h?), and
hence

EwastéS) = O ((h+0/h?) -y (0/p) + B(wmn)) -

Wmin

The desired bound now follows by settingynin = [h + (3 + 802) - In(3 + 862)]
and estimatingy;” (n/p) and B(wmin) just as done in the proof of the previous
corollary. O

4.4. Coupled Tasks

If for someo > 0 andTmin with 0 < Tmin < 1, task processing times are identically
distributed random variables with rangg[,, o), mean 1, and varianee?, and if for

each pair of tasks it holds that their processing times are either independent or equal
with probability one, then we say that task processing timesaupled with minimum

Tmin and varianceo 2. The corollary below gives an indication that scheduling in the
coupled-tasks is much harder than in the independent and bounded-tasks settings. It
should be noted, however, that since the corollary below makes no assumptions on the
well-behavedness of the distribution of a task’s processing time, except that its variance
exists, this result is really a worst-case bound. We leave it to the reader to verify that for
reasonably behaved distributions (for instance, exponential), significantly better bounds
can be achieved.

On Scheduling Parallel Tasks at Twilight 547

Lemma 4.8. Let task processing times be coupladth minimum T, and variance
o?. Then for all n p € N, the scheduleS produced by an arbitrary fixed-partition
algorithm given n tasks and p processors satisfies

E[av-dey, 4(S)] < o2,
where
[, B1: w > [Tin - w, pw?.

Proof. Letw € N, and letC be a chunk of an arbitrary but fixed selectiornuotasks.

By assumption, these tasks are divided into some nuintfegroups such that all tasks

from the same group have equal processing times, while processing times of tasks from
different groups are independent. Lef, ..., w; € N be the sizes of the groups, and
note thatw; + - - - + w; = w. Clearly then the total processing tirieof C has meanw

and variance

2 2 2 2 2 2 2 2

so that, by a simple application of Chebyshev’s inequality,
Elate;(C) = E max{0, T — pw?} = / PrT — pw? > x) dx
0

[o¢]
5/ Pr(T —w > x)dx
(p—Dw?

< / (02w?/x?) dx
(

p—DHw?
<o?/(p-1D).

Since there is never earliness with respeat tave have thus proven that the expected
deviation of an arbitrary fixed chunk is bounded &%: This immediately implies the

same bound for the expected average deviation of the schedule produced by an arbitrary
fixed-partition algorithm. O

Corollary 4.5. Let task processing times be coupletith minimum T, and variance
o2, and let the overhead be f 1. Then there exists a fixed-partition algorithm that for
alln, pe Nwithn/p > p- (h+02)?/T2,,, given n tasks and p processppsoduces

a schedules with

EwastdS) = O ((h to?). \/n/Tmin) .

Proof. A simple application of the Main Theorem in combination with the previous
lemma yields an algorithm that fortasks and processors produces a schedsilith

EwasteS) = O ((h+02) - v5, (0/P) + B(wmn))

Wmin

548 H. Bast

wherey,, isthe progress rate associated with the variance estimater Tmin - w, pw?]
and the minimal chunk sizenin = [(h + 62)/ Tmin]. According to Lemma 4.1,

L /p) = O (P2 THE - (/p)¥2) = 02Tl

“mln

sothat, fom/p > p-(h+02)?/T3,,

E wastgS) = ((h + 0'2) vV N/ Tmin+ P - (h+ 02) / mln)
— O((h—i—az)w/n/Tmin). 0

5. Lower Bounds

This section complements our findings from the previous two sections with matching or
almost matching lower bounds. In Section 5.1 we show that for each variance estimator,
no algorithm can improve by more than a constant factor on the wasted-time bound
stated in our Main Theorem; this implies the optimality of the balancing strategy, at
least within the realm of our modelling. Section 5.2 presents a general lower bound for
the case when task processing times are randomly distributed. Note that, unlike for our
upper bounds, we cannot hope to obtain such a lower bound via reduction from a lower
bound pertaining to our general framework; namely, as was explained in the Introduction,
compared with our variance-estimator based approach, probabilistic assumptions add a
certain regularity to the problem, which makes proving lower bounds harder. Indeed,
the results from Section 5.2 will leave a small gap to the upper bounds proven in the
previous section.

5.1. Arbitrary Processing Times

This section is dedicated to proving the following theorem, which provides the exactly
matching lower bound to our Main Theorem. As we already remarked at the beginning
of Section 3, this lower bound implies that the optimal choice for the minimal chunk
Sizewmin is in the order ot ~(h + ¢). Note that while the Main Theorem requires that
id/a be a decreasing function, the (addendum to the) theorem below makes do with the
superadditivity ofx; this is indeed a weaker requirement, since for arbitrary v > 0O,

it follows from o (w)/w > a(v)/v that

a(w+v) > (w+v) aw)/w=aw)+v a(w)/w=>ac(w)+v-a@®)/v
=a(w) + a(v).

Theorem 5.1. Letprocessing times be arbitrafgt the overhead be,land let[«, 8] be
an arbitrary variance estimatof hen for every > 0,for every scheduling algorith,
and foralln, p € N, there exist T, ..., T, > 0such thatgiven n tasks with processing
times T, ..., Ty and p processorsA produces a schedulg with ¢ = av-dey, 4(S) =

On Scheduling Parallel Tasks at Twilight 549

am-dey, 4(S) and
wastéS) = Q ((h+¢) - y*(a(n/p))),

wherey =id — maxh+ ¢, a o 1.

Addendum. If, additionally,« is superadditive, that is, for alb, v > 0, a(w + v) >
a(w) + a(v), and provided thas is a bijection orR*, it holds that

)/*(Ol(n/ p)) Z yjl(h+s:)(n/p)7

wherey, .., denotes the progress rate associated [witi8] anda—1(h + ¢).

The proof of Theorem 5.1 is organized as follows. In Section 5.1.1 we first prove the
lower bound under the assumption that the given algorithm does not incuvaitigg
time Section 5.1.2 shows how to extend this proof to the general case. The final section,
Section 5.1.3, is concerned with the proof of the addendum that translates the proven
bounds to a form compatible with our Main Theorem. Throughout the proofother
andupper thresholdf a chunkC of sizew and scheduled at a tinTe mean the times
T +h+ a(w) andT + h + 8(w), denoted by lowdC) and uppefC), respectively.

5.1.1. The Case Without Waiting The basic and rather obvious idea of the proof is to
play an adversary and fix the chunk processing times (and hendg,the, T,) incre-
mentally, along with the scheduling decisions made by our algorithm. We next describe
this construction in detail. Though we need not fix the processing time of a chunk right
at the time of its allocation, we usually do that, except for one desigpaigkichunkfor
which the decision is postponed. Initially, the very first chunk assigned becomes the (first)
peak chunk. Whenever a new chufl,, is scheduled, its upper threshold up@agn)
is compared with that of the current peak chufka if uppenCpew) < UpPerCpeal,
the finishing time ofCpey, is fixed immediately at its lower threshold lowégey); in
the opposite cas€yew becomes the new peak chunk, and the finishing timé,jis
fixed at the maximum of low&€,ea0 and the actual time. Note that as a consequence
the upper threshold of a peak chunk is always larger than that of its predecessor. The
processing time of the last peak chufiks;, finally, is fixed atg(w) + ¢ -1/(p — 1),
wherew is the size o5t andl is the total number of chunks scheduled. This finishes
the description of our incremental construction, and we now have to verify that the
resulting schedul& indeed has the properties stated in the theorem. Since all chunks
have deviation zero, except the last one, whose deviatien iswe immediately see
that av-dey 4 (S) = am-dey, s(S) = . The remainder of this proof derives the desired
lower bound on the wasted time &f

To this end, we introduce the notions of fheakand thdeadof a (partial) schedule,
where the former is simply the upper threshold of the peak chunk, and the latter measures
the lead of this peak chunk on the other chunks. Formallg; denotes grefixof S,
that is, a sequence of chunks assigned until some time in the scheduling process, and if

[¢)]

50 H. Bast

peak(S')

——lead(S")

chunk with fixed processing time

ni peak chunk

Fig. 10. The peak chunk, peak, and lead of a schedlle

Cpeakis the peak chunk a$’, that is, the peak chunk at that time, we define

peakS") = upperCpear),
leadS") = peakS’) — o max finish(C).
s’

\Cpeak

This is indeed well-defined, since, by the above construction, the finishing time of all
chunks except the peak chunk are fixed immediately at the time of allocation. For an
illustration, see Figure 10.

Note that since the upper threshold of the peak chunk is maximal among the upper
thresholds of the chunks i, the lead according to this definition is always positive.
Also observe that the lead of a schedule is intimately related to its imbalance: namely,
imbalancéS’) > (p — 1) - leadS’), for every prefixS’ of S, and, for the complete
schedule,

imbalancéS) > (p — 1) - (leadS) + ¢ - chunkgS)/(p — 1))
= (p—1 -leadS) + ¢ - chunksS).

Using the above definitions, we prove a lower bound on wa&stas follows. First,
Lemma 5.1 demonstrates that the scheduling of a large chunk incurs a correspondingly
large lead. Following that, Lemma 5.2 shows that the lead cannot decrease arbitrarily
fast from one batch of allocations to the next. Using these two lemmas, Lemma 5.3
derives a bound on the lead8f proceeding from which we then argue that either many
(small) chunks are assigned or the final lead is large. Throughout the prdefiotes the
functionx — (id — « o 871 (x —h —¢); check that sincg ! andg — « are increasing
functions, the same appliests — «) o 81 = id — « o 871, and hence t§.

Lemma5.1. For an arbitrary prefixS’ of S, if w denotes the size of the chunk&sf
that was scheduled Igghenlead S’) > B(w) — a(w).

Proof. LetT denote the scheduling time of the chunk&fthat was scheduled last.
The upper threshold of this chunkTs+ h + g(w), so that, by definition of the peak,
peakS’) > T +h+ B(w). Now for an arbitrary chunk of S’ that is not the peak chunk

On Scheduling Parallel Tasks at Twilight 551

of &', the following holds. If the size df is beloww, its finishing time, fixed at tim@
at the latest, is at most

T +h+a(w) < peakS’) — B(w) + a(w) = peakS’) — (B(w) — a(w)).

If the size ofC is at leastw, then the difference between the upper and the lower threshold
of Cisatleasp(w) —a(w), sinces —« is increasing. The finishing time Gfis therefore
at most

max{T, peakS") — (B(w) — a(w))} = peakS") — (B(w) — a(w)).

This proves that the lead & is at leasiB(w) — a(w). O

Lemma 5.2. For two arbitrary prefixesS’, S” of S with chunkgS”) — chunkgS’) <
p-1,

leadS”) > y(leadS)).

Proof. The key to this proof is the simple observation that in the case without waiting
each of the at mogp — 1 chunks inS”\&’ is scheduled before or at time pé&k) —

lead S’); see Figure 10. L&t denote an arbitrary such chunk except the peak chu&K,of
and letw denote its size. Clearly then, its upper threshold cannot be more thagigak
and by the observation above, its lower threshold is at most(j5&ek leadS’) + h +
a(w). Hence, using that peéR’) < peaksS”),

peakS”) — lower(C) > maxleadS’) — h — a(w), uppeKC) — lower(C)}
max{leadS’) — h — a(w), B(w) — a(w)}
> leadS’) —h — (@ o g7 Y (leadS) — h)
> y(leadS").

\%

Here the penultimate inequality follows from the fact that the decreasing function
w — leadS’) — h — a(w) intersects the increasing functian — B(w) — a(w)
atw = p~Y(leadS’) — h). Since the finishing time finig) of C is fixed at time
max{lower(C), peakS’) — lead S’)} at the latest, we thus obtain

peakS”) — finish(C) > min{peakS”) — lower(C), leadS")} > y (leadS")).

By the definition of the lead, this immediately implies that 2§ > y (leadS")). O

Lemma 5.3. Withwnaxdenoting the maximal size of a chuni§rand r = [chunkgS)
/(p—DT,

leadS) > 7Y (B(wmax),

552 H. Bast
and thus by construction
idle(S) > (p— 1) - 7" (B(wman) + & - chunksS).

Proof. LetS’ be a prefix ofS such that the chunk @&’ scheduled last has sizgnax.
Then, by Lemma 5.1,

Ieac{S’) > B(Wmax) — o (Wmax),

and sinceS\S’ contains at most chunkS) < r - (p — 1) chunks, repeated application
of Lemma 5.2 yields that

leadS) > 7" (leadS")) > 7 (B (Wmax) — o(WmaW)-

From that, the desired bound follows owingt3 (wmay) < (id — o o B~ (B(Wmay) =
B(Wmax) — & (Wmax)- O

We are now ready to derive a lower bound on the wasted tinge Bamely, withr
andwmaxdefined as in the lastlemma, the number of chuni&igat least p—1)-(r —1),
and we immediately obtain that

wastdS) = (1/p) - (h - chunkgS) + idle(S))
>((p=D/p)-((h+e) -1 =D+ 7P (B(wma)) -

To eliminater, check that becaugealways decreases its argument by at Idaste, for
alli e Nandx > 0,

70 i+ 7000/ +e)] <i+1+7000/(h+e),
hence with =r + 1 andX = B(wmax),

PV Bwmad) + (h+8) - (r +2) = (h+ &) - 7*(B(wma)-
This, in turn, implies the lower bound

wastdS) = (p—1)/p) - (h+ &) - (7*(B(wmad) — 3) .

Two items remain in order to prove Theorem 5.1. First, to refdtéo y*, where
y =id—maxh+¢, « o 71}, and, second, to resolve the dependency on the (unknown)
wmax- FOr the first item, just observe that for al> 0,

y@) <y —h—e<(d-aop H(x)—h—=s
<(d—aop™HXx—h—e) =7(x),
which immediately implies that*(x) < 2- p*(x). In order to eliminatevax, We make
use of the trivial lower bound on chunk®) of [n/wmax]. We then have idigS) >

&-N/wmaxand wastéS) > (h+¢) - (n/p)/wmax SO that in combination with the bound
above on wasi{&) we obtain

wastdS) = 2 ((h+ &) - ((/P)/wmax+ ¥ (B(wmav))) -

On Scheduling Parallel Tasks at Twilight 553

Resolving the dependency an,ax is now a matter of proving the following somewhat
amazing lemma. Note that since/l < o < id, it holds thata(n/p)/a(wWmay) =<

A-(n/P)/Wmax-
Lemmas5.4. a(n/p)/a(wmaxd) + ¥*(B(wmad) = y*(ax(n/p)).

Proof. The proof is trivial if eitherf(wmax) > a(n/p) or a(wmay < h + &, SO we
assume in the following that(n/p) > B(wmax) andwmax > o~ Y(h + ¢). Then we can
choosé e N minimal such thay) (a(n/p)) < B(wmax, SO that, in particular,

Y a/p) <i+ y*(B(wmax)-

Besides, it holds that = y Y (x(n/p)) > B(wmad and thus 0< y D (a(n/p)) <
a(n/p) —i-maxh + e, a o B71(1)}, which, sincex o B71(1) > a(wmay > h+ ¢ by
assumption, implies that

O<a(/p) —i-a(wna.
In combination with the above we thus obtain

Y an/p) <i+y*(Bwma) < an/p)/a(Wma) + ¥ (B(Wmax)- O

This finishes the proof of Theorem 5.1 under the constraint that an algorithm may
not incur any waiting time between any two chunks successively assigned to the same
processor. In the next section we adapt the argumentation above to the case of arbitrary
scheduling algorithms.

5.1.2. The General Case In view of possible waiting times, we need to complement
our incremental construction of the chunk processing times by the description of a (very)
special case, which could not have occurred so far. Namely, it may now happen—even if
not very meaningfully so—that after the selection of some peak chunk, the next chunk is
assigned at a tim&’ afterthe upper threshold of that peak chunk; in particular, then,

all processors wait betweéh and T’. Our action in that case will simply be to make

the new chunk the peak chunk, and to fix the finishing time of the old peak chunk at its
upper threshold (and not &t).

Inview of the general setting, itis easy to see that Lemma 5.1 holds without changes,
while for Lemmas 5.2 and 5.3 a correcting term now has to be added. To enable a concise
statement of the modified statements we agree to define, for an arbitrary sc§edule
and for arbitrary nonnegative’, T”,

id|e[Tr7T~] (S/)

as the total amount of idle time 6f spent in the time intervalll’, T”]. This is consistent
with our definition from Section 2.1 in the sense that Witk= makespa@s’), idle(S’) =
id|E[O.T] (8/)

554 H. Bast

Lemma 5.5. Fortwo arbitrary prefixess’, S” of S such thathunkgS’) < chunkgS”)
< chunkgS’) + Lp/2],

leadS”) > y(leadS")) — 2 - idlerr 71(S)/ p.
where T = peakS’) —lead§’), and T” = peakS”) — lead S”).

Proof. LetT denote the time of the latest allocationSf, so that for an arbitrary chunk
C € §8"\S' with sizew,

lower(C) < T +h+ a(w).

Without waiting, we would have < T’ = peakS’) — leadS’), as in the proof of
Lemma 5.2. Now that waiting is allowed, we make use of the following argument. By
the definition of the lead, there ape— 1 processors whose chunks&ffinish before
oratT’ = peaksS’) — leadS’), and sincdS”\S’| < | p/2], and by the definition of,
atleast 14 p— 1 — | p/2] = [p/2] of these are not assigned another chunk before
Therefore,

idlerr 11(S) = p/2- (T =T,
and thus, using thall < peakS”) —leadS”) =T,

lower(C) < T +h+a(w)
<T'+2. idlerr 1(S)/p+h+ a(w)
< peakS’) —leadS’) + 2-idlegr 1(S)/p + h + a(w).

From this we deduce, analogously to the proof of Lemma 5.2,

peakS”) — lower(C)
> maX{IeadS’) —h—2.idlefr 11(S)/p — a(w), B(w) — oz(w)}
> y(leadS’) — 2 - idlerr 11(S)/ p),

which implies the same bound for the leadt It remains to appeal to the sublinearity
property ofy, according to whicly (x — y) > p(x) — y, forall x, y > 0. O

Lemma5.6. Withwnyadenoting the maximal size of achunkSoéndr = [chunkgS)/
Lp/2]1,

leadS) > 7 (B(wman) — 2 - idlep 11(S)/p,
where T= peakS) — leadS), and thus

idle(S) > (p—1) - 7"V (B(wma)/2 + ¢ - chunksS).

On Scheduling Parallel Tasks at Twilight 555

Proof. As in the proof of corresponding Lemma 5.3, there exists a p&fof S for
which, by Lemma 5.1,

leadS") > B(Wmaw) — & (Wmax),

so that, by iterated application of Lemma 5.5 making use of the sublinearity property
of y,

lead'S) = 7 (B(wma — a(wma) — 2 idle1)(S)/ P
> 7D (B(wmav) — 2 - idlep 11(S)/ p.

The bound on the idle time follows, since
idle(S) = idlej,11(S) + (p — 1) - leadS) + ¢ - chunkgS),
and, because the lead is never negative,

leadS) > leadS)/2 > 7" (B(wmax)/2 — idlep 11(S)/ p. O

As before, we easily obtain from this lemma a lower bound on the wasted time of
S. Namely, using that chunk§) > (r — 1) - [p/2] > —1)-(p—1)/2,

wastdS) = (1/p) - (h - chunkgS) + idle(S))
> ((p—D/2p) - ((h+¢) - r =D+ 7P (B(wmax)) ,
which differs by a factor of exactly 2 from the bound obtained after Lemma 5.3 in the

proof for the case without waiting. The very same manipulations as used before will
therefore lead to the bound stated in the theorem.

5.1.3. Matching the Upper Bound This final section is concerned with proving the
addendumto Theorem 5.1, which translates the bound proven above to a form compatible
with our Main Theorem. We first show, by a tricky combination of simple algebraic
manipulations, that

& O Yeldhie) = yoa,

from which the addendum will follow easily. We start by observing that because id
B—-—a)oat=Boal,

id=(d+ (B —a)ocaHoaop™

Owing to the fact that is superadditive and henee?® is subadditive, it holds that, with
§=ato(B—a),

id=ato(d+(B—-—a)ocaHoaop o
< (@ toid+ato(B—a)ocaHoaoplou

= (d+8)oBtoa,

556 H. Bast

and therefore

aod—(d+8)™) <ao(d—(d+8 Ho(d+8op o
=aodoBfloa
=({d—aop Hoa.
Similarly, « < id and the superadditivity property afimply that
ao(d—ath+e)<a—(h+e)<a—(h+e)oa=(d—(h+¢))oa.

Altogether, since for arbitrary functionf, f,, g1, g2, f1 < 0; and f, < g, together
imply that mir{ f1, fo} < min{g;, g2}, we obtain that

min {o o (id — (id + 8) ™), @ o (id — & *(h +)}
<min{(id—aop Hoa, (d-(h+e)oa}.

By the monotonicity ofx, minfa o f,x 0 g} = @ omin{f, g} and mi{f ca,goa} =
min{ f, g} o, for arbitrary functionsf andg, so that the last inequality may be rewritten
as

oo (id—maxa tth+e), ([d+8)1) < (id—maxh+e aop P oa.
We have thus proven that
OO Vel S Y OK,
which, via a simple induction, is easily seen to imply that foii &l N,
aoy, <yVoa
Hence for arbitrark > 0, and for alli € N,
yP@x) <0 = woyy,,(0=0 = i, 00=0,
and we have finally proven that
Yy (@(/p) = Vi, (N/P).
This finishes the proof of Theorem 5.1. O

5.2. Randomly Distributed Processing Times

For the lower bound proof given in the previous section, we fixed chunk processing times
at both ends of the estimated randeéw), S(w)]. In a sense, the proof thus exploited

the full generality of our variance-estimator-based model, so that we cannot expect the
obtained result to translate easily to a setting where processing times are randomly
distributed. However, as is shown in Section 5.2.1 below, a rather simple argument
suffices to prove a surprisingly tight general lower bound on the expected wasted time
for randomly distributed task processing times. In Section 5.2.2 we derive from this
general result lower bounds for two specific instances of the independent-tasks and the

On Scheduling Parallel Tasks at Twilight 557

coupled-tasks setting (note that for the bounded-tasks setting, which is nonprobabilistic,
Theorem 5.1 applies).

5.2.1. General Bound Like Theorem 5.1 from the previous section, Theorem 5.2
below is also formulated in terms of the progress rate of a variance estifnaiey.
Intuitively, the range$a(w), B(w)] now describe the concentration of processing times
of chunks of sizav around their mean; the corresponding requirement of Theorem 5.2
is that such processing times have a certain likelihood to lie belaw as well as to lie
aboveB(w).

Theorem 5.2. Let task processing times be randomly distributeith meanl, let the
overhead be hand assume that there exist X 1 and a variance estimatdt, 8] such
that for all w € N, it holds that for the total processing time T wftasks

min{Pr(T < a(w)), P(T > B(w))} > 1/K.

Thenforalln p € N, and foran arbitrary algorithm thaigiven n tasks and p processprs
produces a schedulg such that the processing times of the chunkS afe independent
it holds that

EwastdS) = Q((h- y*(n)/p)/K) .
wherey denotes the progress rate associated Withs] and h

The proof of this theorem is somewhat akin to that of Theorem 5.1 but not analogous.
The similarity is that both proofs show that either relatively small and hence many chunks
are allocated, or the final imbalance is likely to be large. For Theorem 5.1 this was
realized by showing first that a large chunk induces a large peak, and second that the
peak can only decrease at a certain fixed rate from one batch of allocations to the next
(the difference between lead and imbalance is not essential at this point). However, as we
already remarked above, the proof of the last assertion made use of the full power of the
variance-estimator-based model. Instead, the following proof is based on the argument
that, intuitively speaking, a large chunk is likely to cause an imbalance too large to be
rebalanced by the remaining work. In fact, Theorem 5.1 could also have been proven
along this line of argumentation, however, with somewhat more effort. While the proof
of Theorem 5.1 considered batche€xfp) scheduling operations, the proof below takes
a more simplistic approach by coarsely quantifying the effect of individual scheduling
operations. This accounts for a loss of accuracy in our bounds that is on the order of the
number of processors.

Technically, the proof is organized as follows. With Lemma 5.7 we first provide a
formalization of the pretty intuitive (and nonprobabilistic) fact that whenever the imbal-
ance is large and the processing time of the remaining work is small, the wasted time is
bound to be large. After that we prove the key Lemma 5.8 saying that a too large chunk
causes a large expected wasted time. From this result it will be straightforward to deduce
the theorem.

558 H. Bast

Lemma5.7. For an arbitrary schedules’ on p processorswith initial imbalance |
and total processing time,T

p-wastdS) > | —T.

Proof. Fork=1,..., p, we denote byHy the sum of all overheads and waiting times
of the kth processor, byl its total processing time, and iy the time when it first
becomes idle initially. Them = >"P_, Ty and, by the definition of initial imbalance
given in Section 3.2 (just before Theorem 3.L)= p - maxXty, ..., tp} — Zlf:ltk, SO
that

p - wastéS")

p
= Z Hy + imbalances’)
k=1

p
= He +p-maxty + Hy +Tg, ..., tp + Hp + Ty}
k=1

P
—) (tk+ He+Ty)
k=1

p p
p-max{tl,...,tp}—Ztk—ZTk

k=1 k=1
= -T. O

v

Lemma 5.8. Under the assumptions of the theordor W, p € N, let S’ denote the
schedule produced by an algorithm given W tasks and p processors and for an arbitrary
fixed initial imbalanceThen with 7 = id — (id + (8 — a)/(4K))™ %,

max{W — w, p- Ewasté&S")} > y (W),
wherew denotes the size of the very first chuniSof

Proof. LetC denote the very first chunk &', let T denote its processing time, and
let us measure time relative to the scheduling tim& d¢fvhich is hence 0). We first
establish a lower bound on the expected imbalance incurrédfioy which we consider
two cases. In one case, there exists a processor other than the one t@ vehassigned
that becomes idle later thdry- (a(w) + B(w))/2. Since, under the assumptions of the
theorem, PfT < a(w)) > 1/K, this gives us

a(w) + pw)
2

B(w) —a(w)

E imbalance{C}) > (2K

a(w)> -Pr(T < a(w)) >

In the opposite case, there certainly exists a processor other than the one t@wshich
assigned that becomes idle at or befose(x(w) + B(w))/2. However, then again, now

On Scheduling Parallel Tasks at Twilight 559
owing to P(T > B(w)) > 1/K,

a(w) + B(w)
2

pw) — a(w)

E imbalanceg{C}) > (ﬂ(w) - 2K

) PrT = B(w)) =

With § defined ag8 — «)/(4K), it follows that in any case, the expected imbalance
incurred byC, which is just the initial imbalance &'\{C}, is at least 25(w). Since the
expected total processing time &M\ {C} is justW — w, Lemma 5.7 hence allows us to
conclude that

p-EwastdS’) > 2-§(w) — (W — w).

The lemma now follows easily. Eith&¥ — w > Y (W), in Whi~ch case we are done, or
W —w < 7 (W), which by the identityy = id — (id+8)* = § o (id 4+ 6)* and by the
monotonicity ofs impliess(w) > (W) and hence 25(w) — (W —w) > p(W). O

With Lemma 5.8 it is now easy to prove the theorem. As in that lemma, define
7 =id — (id + (8 — a)/(4K)) ™1, and first observe that singax) > 0 for all x > 0,
there must exist an integgrsuch thawV, {; < 79, whereW; ., denotes the number
of unassigned tasks after the fifstcheduling operations. L¢tdenote the smallest such
integer, and note that, since the decisions taken by a scheduling algorithm may depend
on the processing times of already processed chunlsactually a random variable.
We therefore temporarily consider a restricted probability space, whasevell as the
processing times of the firgt— 1 chunks are arbitrarily fixed. In this probability space
consider the schedul$j consisting of the remaining chunks. Using that the processing
time of the first chunk ofS; is independent of the processing times of the previous
chunks, Lemma 5.8, applied &, then guarantees that

max{W; 1, p- Ewastds;)} = 7(W));

note thatWj 1 = Wj — (W} — Wj,1), whereW; — W, is just the size of the¢th chunk.
However, by the wayj was definedW; ., < 7 (n) andw; > 7=V (n), so that we
have in fact

p-Ewastds)) > 7 (W) > 7 (n).

By adding the overhead of the initigdl— 1 chunks, this immediately gives us a bound
for the complete schedule:

p-EwastéS) > h-(j — 1) + 7P (n).

Now the very argument used in the proof of Theorem 5.1 (just after the proof of
Lemma 5.3) can be applied to elimingtend deduce that

p- EwastgS) > h- (min{y,id — h}*(n) — 2).

At this point, recall that all the probabilistic assertions we have derived so far were in
fact conditional on the above fixing gf and the processing times of the initip 1

560 H. Bast

chunks. However, since our last bound is independepttbie arbitrariness of our fixing
implies that the bound must hold for the complete probability space as well.

All that remains to complete the proof is now to relate ffiind — h} = id —
max(h, (id+ (8 —«a)/(4K))~1} appropriately tgy = id—max(h, (id+ato(B—a))1}.
However, since, by our definition of a variance estimator, we haweid/ A, for some
constantA > 1, Lemma 3.5 yieldg* < 4K A- min{y, id — h}*, and we may conclude
that

p - Ewasté€S) = Q(h - y*(n)/(AK)).
This finishes the proof of Theorem 5.2. O

5.2.2. Specific Bounds In view of Theorem 5.2, obtaining lower bounds for a stochas-

tic setting reduces to bounding from below the tails of the underlying probability distribu-
tion. In the following, this is demonstrated for two specific settings. The first is a special
instance of the independent-tasks setting with the processing time of a task assumed to
be normal (truncated at zero). The second is a special instance of the coupled-tasks set-
ting, assuming a uniform distribution of the task processing times, as well as a particular
coupling. Corollary 5.3 settles one of the open problems put forward in [12].

Corollary 5.3. Let task processing times be independeotmal and with variance
o2, and let the overhead be & 2. Then for all n p € N with n/p > max(h, (40)?},

the scheduleS produced by an arbitrary scheduling algorithm given n tasks and p
processors satisfies

EwastdS) = Q((h - loglog, n + a+vh)/p).
Proof. The proof is a simple matter of combining Theorem 5.2 with well-known tail
estimates for the normal distribution. Lete N, and letT be the total processing time
of an arbitrary fixed selection ab tasks. TherT is normal with mearw and variance
o?w, and by the tail estimates established in the proof of Lemma 4.6 (in fact, for our
purposes here those from [10] would do equally well), there exists a constantl
such that

PHT > w +ovw) > 1/K,
as well as

Pr(T < max{w/2, w —o+/w}) > PAT <w —o/w) > 1/K.
The precondition to Theorem 5.2 is hence fulfilled with

[o, B]: w = [max{w/2, w — o /w}, w + o/w],

and the theorem gives us

EwastéS) = Q(h-y*(n)/p),

On Scheduling Parallel Tasks at Twilight 561

wherey is the progress rate associated With 8] andh. Using Lemma 4.4 to evaluate
y*, we have that, fon/p > maxh, (40)%},

y*(n) = Q(loglog, n + o /vh). O

Corollary 5.4. Let task processing times be coupleshd uniformly distributed in

[Tmin, Tmad, and let the overhead be.hen for all n p € N with n/p > (3h)?,

and for every algorithm that produces a schedSlsuch that the processing times of
each pair of tasks are equal if the tasks belong to the same chunk and independent
otherwiseit holds that

EwastédS) = Q((h-logn)/p).

Proof. By assumption, the processing tiffieof a chunk ofS of sizew is uniformly
distributed in [Tmin - w, Tmax - w], SO that forAT = (Tmax — Tmin) /4, We have RIT <
(Tmin + AT) - w) > % aswell as AT > (Tmax— AT) - w) > 1. The preconditions to
Theorem 5.2 are therefore satisfied with

[o, B]: w = [(BTmin + Tma /4 - w, (Tmin + 3Tmax) /4 - w],
so that we obtain
EwastéS) = Q(h- y*(n)/p),

wherey is the progress rate associated wWith 8] andh. Since 1< (Tmin + 3Tmax)/
(8Tmin+ Tmax) < 3, Lemma 4.4 implies that far/p > (3h)?, y*(n) = Q(logn), which
proves the corollary. O

Acknowledgments

The author wishes to thank Torben Hagerup for introducing her to the subject, Volker Priebe for incredibly
thorough proof reading and tireless praising, Susan Hert for improving the English, Pierre Fraigniaud for
having been such an obliging editor, and Bertholztkiing for comments on the Introduction.

References

[1] Bast, H.(2000), Provably Optimal Scheduling of Similar Tasks, Ph.D. thesis, Unatatsi Saarlandes.

[2] Bull, J. M. (1998), Feedback guided dynamic loop scheduling: algorithms and experimeRts; in
ceedingsEuropean Conference on Parallel CompultifiJRO-PAR98), pp. 377-382, Lecture Notes
in Computer Science 1470, Springer-Verlag, Berlin.

[3] Coffman, E. G. (1976)Computer and Job-Shop Scheduling Thed¥jley, New York.

[4] Durand, M. D., Jalby, W., Kervella, L., and Montaut, T. (1996), Impact of memory contention on dynamic
scheduling on NUMA multiprocessorlzEE Transactions on Parallel and Distributed Systefis
1201-1214.

[5] Eager,D.L.,and Subramaniam, S. (1994), Affinity scheduling of unbalanced worklo&dscieedings
SupercomputingSC’'94), pp. 214-226.

562

(6]
(7]
(8]
(9]
[20]
[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]

[30]

H. Bast

Eager, D. L., and Zahorjan, J. (1992), Adaptive Guided Self-Scheduling, Technical Report 92-01-01,
Department of Computer Science and Engineering, University of Washington.

Flynn, L. E., Hummel, S. F., and Schonberg, E. (1992), Factoring: a method for scheduling parallel
loops,Communications of the ACB5(8), 90-101.

Garey, M. R., and Johnson, D. S. (197@omputers and Intractabilitya Guide to the Theory of
NP-Completenesg&reemann, San Francisco, California.

Graham, R. L. (1966) Bounds for certain multi-processing anomasiel,System Technical Journal

45, 1563-1581.

Grimmett, G. R., and Stirzaker, D. R. (199Pyobability and Random Processénd edn.), Oxford
University Press, Oxford.

Gumbel, E. J. (1954), The maxima of the mean largest value and of the remugs of Mathematical
Statistics25, 76-84.

Hagerup, T. (1996), Allocating independent tasks to parallel processors: an experimental study, in
ProceedingsParallel Algorithms for Irregularly Structured ProblenffRREGULARL996), pp. 1-33,
Lecture Notes in Computer Science 1117, Springer-Verlag, Berlin.

Hagerup, T. (1997), Allocating independent tasks to parallel processors: an experimentadiatrr,

of Parallel and Distributed Computing7, 185-197.

Hartley, H. O., and David, H. A. (1954), Universal bounds for mean range and extreme observation,
Annals of Mathematical Statisti@b, 85-99.

Hummel, S. F., Banicescu, |., Wang, C., and Wein, J. (1995), Load balancing and data locality via
fractiling: an experimental study, iRroceedings3rd Workshop on Language€ompilers and Run-

Time Systems for Scalable Comput@GR'95), pp. 85-98, Kluwer, Dordrecht.

Hummel, S. F., Kimelman, D., Schonberg, E., Tennehouse, M., and Zernik, D. (1997), Using program
visualization for tuning parallel-loop schedulin§EE Concurrency, 26—40.

Hummel, S. F., Schmidt, J., Uma, R. N., and Wein, J. (1996), Load-sharing in heterogeneous sys-
tems via weighted factoring, iRroceedings8th Annual ACM Symposium on Parallel Algorithms and
Architecture SPAA'96), pp. 318-328.

Kruskal, C. P., and Weiss, A. (1985), Allocating independent subtasks on parallel proce#sE&rs,
Transactions on Software Engineerifhd, 1001-1016.

Liu,J.,LamB.Y., and Saletore, V. A. (1993), Scheduling non-uniform parallel loops on distributed mem-
ory machines, ifProceedingsHawaii International Conference on System Sciena@s?2, pp. 516-525.

Liu, J., and Saletore, V. A. (1993), Self-scheduling on distributed-memory machineésdaedings
SupercomputingSC’93), pp. 814-823.

Liu, J., Saletore, V. A., and Lewis, T. G. (1994), Safe self scheduling—a parallel loop scheduling scheme
for shared-memory multiprocessohsternational Journal of Parallel Programming2(6), 589-616.

Lucco, S. (1992), A dynamic scheduling method for irregular parallel progran®speedingsCon-
ference on Programming Language Design and Implementéfibbl '92), pp. 200-211.

Lusk, E. L., and Overbeek, R. A., (1983), Implementation of Monitors with Macros: a Programming Aid
for the HEP and Other Parallel Processors, Technical Report ANL-83-97, Argonne National Laboratory,
Argonne, lllinois.

Markatos, E. P., and LeBlanc, T. J. (1994), Using processor affinity in loop scheduling on shared-memory
multiprocessordEEE Transactions on Parallel and Distributed Systest#), 379-400.

Orlando, S., and Perego, R. (1998), A comparison of implementation strategies for nonuniform data-
parallel computationslournal of Parallel and Distributed Computirgp, 132—149.

Orlando, S., and Perego, R. (1998), Scheduling data-parallel computations on heterogeneous and time-
shared environments, ProceedingsEuropean Conference on Parallel ComputifilJRO-PAR98),

pp. 356-365, Lecture Notes in Computer Science 1470, Springer-Verlag, Berlin.

Petrov, V. V. (1995)Limit Theorems of Probability Thear@xford University Press, Oxford.

Pinedo, M. (1995)SchedulingTheory Algorithms and System#$rentice-Hall, Englewood Cliffs, New
Jersey.

Polychronopoulos, C. D., and Kuck, D. J. (1987), Guided self-scheduling: a practical scheduling scheme
for parallel supercomputerdsEE Transactions on Compute3$, 1425-1439.

Rudolph, D. C., and Polychronopoulos, C. D. (1989), An efficient message-passing scheduler based
on guided self-scheduling, iRroceedings International Conference on Supercomputi6® '89),

pp. 50-60.

On Scheduling Parallel Tasks at Twilight 563

(31]
(32]
(33]
(34]

[35]
(36]

Shmoys, D. B., Wein, J., and Williamson, D. P. (1995), Scheduling parallel machines dsiliid,
Journal of Computin@4, 1313-1331.

Smith, B. (1981), Architecture and applications of the HEP multiprocessor computer systero; in
ceedingsSPIE SymposiurtReal Time Processinky), pp. 241-248.

Tang, P., and Yew, P. C. (1986), Processor self-scheduling for multiple-nested parallel loBps, in
ceedingsinternational Conference on Parallel ProcessifiGPP '86), pp. 528-535.

Tzen, T.H.,and Ni, L. M. (1993), Trapezoid self-scheduling—a practical scheduling scheme for parallel
compilers,|EEE Transactions on Parallel and Distributed Systef(ts), 87—98.

Wolfe, M. (1996)High Performance Compilers for Parallel Computjrigddison-Wesley, Amsterdam.

Yan, Y., Jin, C.,and Zhang, X. (1997), Adaptively scheduling parallel loops in distributed shared-memory
systems|EEE Transactions on Parallel and Distributed Systes(ts), 70-81.

Online publication Novembet7, 2000

https://www.researchgate.net/publication/47842988

