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ABSTRACT
We present staty, a browser-based tool for quality assurance of
public transit station tagging in OpenStreetMap (OSM). Building
on the results of a similarity classifier for these stations, our tool vi-
sualizes name tag errors as well as incorrect and/or missing station
group relations. Detailed edit suggestions are provided for individ-
ual objects. This is done intrinsically without an external ground
truth. Instead, the underlying classifier is trained on the OSM data
itself. We describe how our tool derives errors and suggestions
from station tag similarities and provide experimental results on
the OSM data of the United Kingdom, the United States, and a
dataset consisting of Germany, Switzerland, and Austria. Our tool
can be accessed under https://staty.cs.uni-freiburg.de.

CCS CONCEPTS
• Information systems → Geographic information systems;
Web applications; • Social and professional topics → Quality
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1 INTRODUCTION
In OpenStreetMap (OSM), the world is described as a collection
of nodes (single points on earth), ways (lists of nodes, possibly
polygonal), and groups thereof, called relations (which may contain
other relations). All objects can be outfitted with key/value pairs
(tags). These can be chosen freely, but should follow several best
practices voted on by the community1.

Despite these best practices, a frequent problem during auto-
mated processing of OSM public transit data is inconsistent station
tagging. Problems include: (1) It is unclear whether two objects (e.g.
1https://wiki.openstreetmap.org/wiki/Editing_Standards_and_Conventions
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Figure 1: Top: staty found an erroneous short_name tag for a
bus stop in San Francisco. “Jones&Beach” is a station several
blocks north, the label was added by mistake. Bottom: staty
suggesting to move two station nodes (blue) into an existing
stop_area relation (light green) in Bern, Switzerland.

two stop positions) belong to the same abstract station, because
they are not grouped by any relation (Fig. 1, bottom). (2) Station
objects are erroneously marked as members of a relation which
belongs to another station. (3) Labels for the same station are highly
different, contain errors (Fig. 1, top), or do not hold the station name
at all (but e.g. platform numbers).

The goal of this work is to automatically find such inconsistencies
and provide suggestions to map editors how to fix them.

1.1 Related Work
A large body of work exists on automated quality assessment of
OSM data (see e.g. [1, 5, 6]). It may be categorized into extrinsic
methods which compare OSM data to an external ground truth,
and intrinsic methods operating only on the OSM data itself [1].
Extrinsic methods usually employ official datasets (e.g. [2]). These
are typically hard to obtain and/or limited to a specific region. A
recent work uses deep learning to compare OSM data to satellite
imagery [9].

Regarding intrinsic methods, most OSM editors now come with
heuristics to automatically check the quality of edits. There is also a
large number of standalone tools for quality assurance2. However,
they are typically limited to syntactic suggestions. To overcome
2https://wiki.openstreetmap.org/wiki/Quality_assurance
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Figure 2: OSM station hierarchy used by our approach. Plat-
forms and stop points, which can be tagged in various ways,
may be grouped into a stop_area relation describing a single
station, which can again be grouped into a stop_area_group.

this limitation, previous work applied machine learning to assess,
correct and enrich OSM data intrinsically. For example, in [7], a
random forest classifier was used to assess the quality of highway
tagging. OSMRec [8] auto-suggests tags for new objects by training
SVMs on existing objects and their tags. In [3] and [4], classification
approaches were used to fill in missing road segments, and add
points of interest (POI) tags, respectively.

The advent of route planners in the past decades has lead to a
growing need of routeable geo data and an interest in assessing and
improving OSM routeability in particular. For multi-modal route
planners, correct station tagging is also important. While the tools
mentioned above are often able to find holes in road networks or
errors in turn restrictions, we are not aware of previous work which
addresses the quality of public transit tagging in OSM.

1.2 Station Hierarchies in OSM
Several tagging schemata for public transit data have been used
in OSM so far3. Regarding stations, the currently active schema
Public Transport Version 2 (PTv2) is focused on describing sta-
tions through real-world physical objects and locations (timetable
poles, platforms, stop positions, etc.) which are grouped into a
single station entity by a stop_area relation. An earlier schema
(PTv1) allowed these stop_areas to be grouped again by a super-
relation stop_area_group. This was discouraged in 2011 by PTv2,
although with over 5,000 existing relations, stop_area_group re-
mains widely in use4. A recent proposal, called Refined Public
Transport, plans to re-introduce them and generally aims to sim-
plify PTv2. The need for automated tools to check e.g. station tags
is explicitly mentioned in this proposal5. It is reasonable to expect
that a mix of all schemata will be used for the foreseeable future.

In this work, we follow the common practice of using a three-
level hierarchical approach for station tagging: Level 0 contains
physical objects and locations like platforms and stop positions,
but also abstract objects like label nodes at station centroids. Level
1 contains stop_area relations which group level 0 objects into
a single station entity. Level 2 groups stop_area relations into
stop_area_groups like described above. Figure 2 gives an example
and lists the tags we use for each level. Note that level 0 objects
cannot be direct members of a level 2 group.
3https://wiki.openstreetmap.org/wiki/Public_transport
4https://taginfo.openstreetmap.org/tags/public_transport=stop_area_group
5https://wiki.openstreetmap.org/wiki/Proposed_features/Refined_Public_Transport

2 PIPELINE
Our pipeline is depicted in Figure 3 and consists of 4 steps: (1) We
translate the OSM stations into an abstract representation we call
station identifiers: tuples of a label and a geographic position which
are grouped into clusters. (2) We perform a pairwise similarity
classification between stations within a certain distance. (3) We
re-cluster the identifiers to move non-matching ones from existing
clusters into new single-element clusters. Afterwards, matching
clusters are merged again. (4) We derive errors and suggestions
from the differences between the original and the new clustering.

2.1 Translating OSM Data to Station Identifiers
We start with OSM data filtered by the tags given in Figure 2, right.
OSM offers multiple tags to label objects. For each of the kept node,
way or relation objects, we use the values of the following list
of tags as labels: name, uic_name, alt_name, loc_name, nat_name,
official_name, reg_name, ref_name, short_name, sorting_name
and gtfs_name. For example, in Figure 3a two stations "Park Street"
and "Main Street" are described by multiple level 0 station nodes,
each with different labels, and two level 1 stop_group relations.

If a level 0 object is part of a stop_area relation, we add each
label of that relation as a label to each individual member (but only
if the label was not already present in the member). For each level 0
object with geometry д (either a point, a polyline or a polygon) and
labels l ∈ L, we create an explicit station identifier s = (l ,д). Two
station identifiers s1 and s2 are clustered if they either belong to the
same original level 0 object (e.g. if the object had multiple labels),
or if their original level 0 objects were part of the same stop_area.
In the latter case, we store the ID of the original relation for that
cluster. Station identifiers which are not part of any other cluster
are put into a single-element orphan cluster.

2.2 Similarity Classification
In a second step, we do a pairwise similarity classification between
station identifiers within a threshold distance. If the distance is
greater than the threshold, we implicitly assume that they are not
similar. The clustering is ignored in this step. For our experiments,
we used a threshold of 1,000 meters. We use a machine learning
based classification approach in which a random forest classifier is
trained on matching 3-grams of identifier labels, their edit distance,
the geographical distance of the identifier geometry and their po-
sitions on multiple offset grids (to capture label characteristics on
several regional levels). Figure 3c shows the similarity measures
for two identifiers to their neighbors.

2.3 Re-Clustering
After we have obtained the pairwise identifier similarities, we per-
form a re-clustering. We first remove non-matching identifiers from
their clusters. An identifier is non-matching if the similarity to half
or more members of its cluster is below a threshold (0.6 in our
experiments). A removed identifier is put into a new orphan cluster.

Afterwards we merge matching cluster again using an iterative
approach. In each iteration, the pairwise similarities between clus-
ters are determined by averaging the pairwise similarities of their
members. The resulting list of merge candidates is ordered in de-
scending manner by their similarity. We then merge the clusters in

https://wiki.openstreetmap.org/wiki/Public_transport
https://taginfo.openstreetmap.org/tags/public_transport=stop_area_group
https://wiki.openstreetmap.org/wiki/Proposed_features/Refined_Public_Transport
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Figure 3: Our 4-step pipeline to derive errors and edit suggestions from OSM station data. The data is first transformed into
clustered station identifiers (1). Afterwards, we performa pairwise similarity classification between identifierswithin a certain
distance (2). The identifiers are then re-clustered based on their similarity scores (3). At the end, errors and suggestions are
derived from the difference between the initial clustering and the new clustering (4).

the order in which they appear in the sorted list. If two clusters are
merged, they are marked as tainted for the current iteration. If a
tainted cluster appears a second time in this iteration, we do not
merge. Figure 3d shows the re-clustered example identifiers.

2.4 Derivation of Suggestion and Errors
We then compare the new clustering to the original clustering
obtained from the OSM data and derive suggestions and error mes-
sages from the differences per original level 2, level 1 or level 0
object. We distinguish the following situations:

OK All identifiers of an object are still in the same cluster.
DL The majority of identifiers of a level 0 object originally part of
a stop_area is now in clusters not derived from a stop_area. We
suggest to remove the object from the stop_area.
MV The majority of identifiers of a level 0 object originally part of
a stop_area A are now in a cluster derived from a stop_area B.
We suggest to move the level 0 object from A to B.
GR The majority of identifiers of a level 0 object not originally
part of a stop_area are now members of a cluster derived from a
stop_area. We suggest to move the object into the stop_area.
CR The majority of identifiers of a level 0 object is now a member
of a cluster not derived from a stop_area, and this new clus-
ter contains multiple level 0 objects. We suggest to create a new
stop_area and add the objects to it.
ER None of the above apply, but an identifier is still not in its
original cluster anymore. We mark the original tag the label was
derived from as erroneous and list the unmatching identifiers.
MG If all members of a stop_area A were suggested to be moved
into the same other stop_area B, we do not report each individual
suggestion, but suggest to either merge the stop_area relations A
and B, or group them into a new level 2 stop_area_group relation.
If one of them is already part of such a stop_area_group, we
suggest to move the other one into it.

2.4.1 Handling alt_name Tags. Special care has to be applied
for labels derived from alt_name tags, as these alternative names
usually differ greatly from other names. We do not count negative
matches to station identifiers derived from alt_name tags when we

establish the majorities described above. Positive matches, however,
are counted. Similarly, in situation ER, we do not report any error if
a label derived from an alt_name tag did not match another label.

2.4.2 Platform Names as Station Labels. We found that label tag
errors (ER) were often caused because mappers incorrectly filled
the name tag of platforms or stop positions with platform names.
We catch this by a simple heuristic: if a label is marked as erroneous
and is either (1) a numeric value, (2) a single letter, (3) a combination
of a numeric value and a letter, e.g. “12b” or (4) a combination of a
single string token with (1), (2) or (3), e.g. “Track 12b”, we hint that
the reason for the tag error may be because it is a platform name.

3 EXPERIMENTAL RESULTS
We implemented the approach described above in a tool called staty,
which can be accessed under https://staty.cs.uni-freiburg.de. Our
tool offers a map to browse the analyzed station data, marks errors
and suggestions for all three station hierarchy levels described in
Section 1.2 and offers detailed edit suggestions on click. It addition-
ally offers a search functionality for easier navigation.

We tested both the approach and our tool on the OSM data of
the United Kingdom (UK), the United States (USA) as well as on the
combined dataset of Germany, Switzerland and Austria (DACH).

3.1 Distribution of Suggestions and Errors
Table 1 gives an overview over the number of errors and suggestions
found by our tool for our testing datasets. For all three datasets, the
most common suggestion was to group existing level 0 objects into
a new level 1 stop_area (CR). This matches our experience with
OSM data. It is common to see for example a stop_position and

|L0 | |L1 | |L2 | OK DL MV GR CR ER MG t

USA 231k 27k 564 179k 163 57 705 75k 157 1.7k 1.6h
UK 254k 15k 163 115k 351 134 1k 150k 180 641 0.9h
DACH 704k 97k 1.2k 538k 161 335 23k 239k 1.3k 734 3.9h

Table 1: Dataset sizes, suggestion and error distribution, and
analyzing time t for our three testing datasets. |L0 |, |L1 | and
|L2 | give the numbers of objects on level 0, 1 and 2.

https://staty.cs.uni-freiburg.de
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Figure 4: staty showing suggestions (blue) and found errors (red) in London, England. Stations for which no errors or sugges-
tions could be found are marked green.

a platform object for each direction a bus stop is served, without
any relation grouping them together. The most common cause for
attribute errors (ER) was the incorrect usage of track numbers as
station names, as was confirmed by both a manual investigation
and the track number heuristic described in Section 2.4.2.

3.2 Running Time
As we want to give mappers frequent feedback, we strive for a
reasonable running time of our approach. Table 1 gives the running
times for our approach on our three testing datasets. Times were
measured on an Intel Xeon E5649 CPU with 24 cores à 2.53 GHz.
The time is given without the training time for the station similarity
classifier, as this classifier does not have to be re-trained regularly.
The running time was below four hours for all our datasets, which
allows for multiple updates per day. Our experimental implementa-
tion updates once every 24 hours.

3.3 Correctness
As we are not aware of any fitting extrinsic ground truth dataset, we
could only assess the quality of our suggestions and reported errors
subjectively via random samples. From this, we found the following
common mistakes made by our tool: (1) Unusual abbreviations and
shortenings are not recognized by the underlying classifier, (e.g.
“Hackney College” vs. “Hackney Community College”). (2) In cities
with a regular road grid, stations describing different locations at
the same intersection like “41st St & 8th Av” and “8th Av & 41st St”
are incorrectly suggested to be grouped into a level 1 relation. (3)
Unusually large geographical distances between identifiers lead to
attribute errors (ER) being reported.

4 CONCLUSIONS AND FUTUREWORK
We described an approach for automated quality assurance of pub-
lic transit station tagging in OSM. We also presented staty, a full
implementation of this method in a browser-based tool. First ex-
perimental results on the datasets of the United States, the United
Kingdom, and on a combined dataset of Germany, Austria, and
Switzerland already look promising and show that our method is
indeed able to make valuable edit suggestions. Our experiments
also show that (given an already trained classifier) the running time
of our approach is still manageable (under 4 hours) even for entire

countries, enabling regular full updates. Nevertheless, it would be
interesting to incorporate minutely incremental updates.

A thorough investigation of the quality of our suggestions and
reported errors would require an extended user study with profes-
sional members of the OSM mapping community. To assess the
quality of the station similarity classifier that lies at the core of
our method, a comprehensive evaluation against ground truth data
would be a valuable contribution.

Further, it would be a valuable addition if staty also made sugges-
tions for non-label tags used in public transit stations. For example,
it would be easy to add static linting to tags which have a restricted
set of values or to check for the presence of suggested tags in
particular station objects. If would also be interesting to check
stop_group relations for the presence of exactly one main object
which aggregates the station’s meta tags, as it is proposed in the
upcoming Refined Public Transport schema. Our tool could also
suggest such a main object automatically. This would make staty a
valuable contribution to the acceptance of the new schema.
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