Efficient Generation of Geographically Accurate
Transit Maps

Hannah Bast’, Patrick Brosi' and Sabine Storandt?

T University of Freiburg
2 MU Wiirzburg

26th ACM SIGSPATIAL - Seattle, Washington, USA

November 7, 2018



Motivation

Official CTA map

Street Subway

2 Monroe ¢

-

Jackson
&

LaSalle/ &)

| Van Buren
ol

—
I aSalle ... Harold



Motivation

Official CTA map HERE

Lake &) !

1 Rverwal Cark wacke!

Sieet iser A

c

| Ranc

ington &
Hrankin
o

gton/

Washinggon-slue |

Wells = sshington
§ kit
H vadison st st &
] 2 ' x I,
3 H AR wieh
£ @ :
£ Monroe ¢ I
& K S Adams)
2 Wabash
e
uiny Jackson oearvoradams Wich
¢ e
Lasallel[él
| Van Buren

... Harold i

1 aSQalle




Motivation

uincy

LaSalle/
Van Buren

1 aSQalle

Dearborn Stree
o
2
o
®

&

State Street Subway

3

....Harold

Deartorn &
Magon

epaflunersty
el Coner
vans
lhiang @
9

Columt




Goal: Generate these maps automatically, in high quality



Goal: Generate these maps automatically, in high quality

"Bag of trips”
(GTFS)



Goal: Generate these maps automatically, in high quality

"Bag of trips”
(GTFS)



Goal: Generate these maps automatically, in high quality

"Bag of trips” Line graph
(GTFS)



Goal: Generate these maps automatically, in high quality

Trip63

BBl Wa:

Wal

Trip544

I aSalle .. Harold

"Bag of trips” Line graph
(GTFS)



Goal: Generate these maps automatically, in high quality

Trip63
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"Bag of trips” Line graph Final map
(GTFS)
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Line graph construction

Line graph:
+ Undirected labeled graph
G=(V,EL)

+ Edge labels are subsets of
the network lines £
(L(e) € L)

« Nodes are usually stations

Example: £ = {88}, L ((u,v)) = {82}
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Line graph construction - Input data

= Map construction problem
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Line graph construction - Non-station nodes

L(erp) = {A B}

L(ess) ={C,D} '

L(evoza) =
{A B, C,D}
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- For each edge e, line [ and position p,
introduce variable xejp €0, 1

« Example: Xea1 and Xear for line A

+ Constraint: all xep have to sum up to 1 for
a single line [ on a single edge e, and for a
single p on a single edge

1 - Standard crossing: Objective variable
e % Xeerag Which is 1if pe(A) < pe(B) and
{A, B} per(A) > per(B), or else 0
(A} 2 « Split crossing: Objective variable Xeere7aB

which is 1if pe(A) < pe(B), or else 0

= O(|E|M?) variables, O(|E|M®) constraints



Line-ordering optimization - Improved ILP

- Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings



Line-ordering optimization - Improved ILP

- Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

- But we explicitly enumerate all possible line positions of
AandBone



Line-ordering optimization - Improved ILP

+ Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

- But we explicitly enumerate all possible line positions of
AandBone

- Basic idea: introduce binary variables Xea<g and Xeg<a
which can be efficiently checked



Line-ordering optimization - Improved ILP

+ Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

- But we explicitly enumerate all possible line positions of
AandBone

- Basic idea: introduce binary variables Xea<g and Xeg<a
which can be efficiently checked

= O(|E|M?) variables, O(|E|M?) constraints



Results so far (2)

{f



Results so far (2)




Results so far (2)




Line-ordering optimization - Line separations

10



Line-ordering optimization - Line separations

1 crossing 2 crossings

10



Line-ordering optimization - Line separations

1 crossing 2 crossings

VS.

10



Line-ordering optimization - Line separations

1 crossing

2 crossings

2 crossings

VS.

2 crossings

10



Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

2 crossings

VS.

2 crossings

10



Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

2 crossings
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2 crossings
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Line-ordering optimization - Line separations (ctd.)

{A,B}| |e’ - Idea: If two lines A, B continue from e to
e L2 e’, set a binary separation variable
§ Xeerpg = 11if they are next to each other in
{AB,CH— e, butnoine’
{C} * Add xeera|s to the objective function

= Still O(|E|M?) variables, O(|E|M?) constraints

1
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Line-ordering optimization - Core optimization graph

{C} {x.c}

{x}

« Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

+ Remove edges (u, v) where u and v are termini for all

L((u, v))
» Cut edges with [L(e)| =1
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1. Render parallel lines 2. Free node space

3. Render inner node connections 4. Render stations
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Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rowsxcols GLPK CBC GU x [l
Base 41kx861 = = — 22 4-7

Impr.  1.4kx982 9s 1s 41ms 22 4-7
+5Sep.  19kx1.2k  47m 19s 1.8s 27 0
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Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rowsxcols GLPK CBC GU x |

Base 41kx 861 = = — 22 47
Impr. 1.4k=x 982 9s 1s 41ms 22 4-7
+Sep. 1.9kx1.2k 47m 19s 1.8s 27 0

ILP solution times for Chicago, on core graph

rowsxcols GLPK CBC GU x [l

Base 8.2kx 266 — 47m 2m 22 4-7
Impr. 394x285 0.8s 0.1s 10ms 22 4-7
+ Sep. 505x338 23s 3.8s 0.3s 27 0

16
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- Additional rules for core graph reduction
(work in progress)

- Faster construction times of line graph
(current state: 1-15s for our test datasets)

- Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

« Octilinearize line graph for (non-overlay) schematic
metro maps (work in progress)
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u
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Line graph construction - Shared segment collapsing

L(elg) = {A, B}

L(erza) =

(aB,c py |Lles)={C D}

v

. RepeatedAly collapse (segments of) two edges e and f within a
distance d

« Sweep over some edge e in steps of 10 m, measure distance d of
current pointoneto f
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Evaluation - Line Ordering

T = number of (consecutive) line swaps necessary to transform
offical map into our map

Off. map Our map

X
Freiburg 7 1
Dallas 3 1
Chicago 26 0 27
Stuttgart 65 5 64

| X

w
N © OO
SR R N
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Line-ordering optimization - Exhaustive approach

-+ 23 edges

- Each edge e has |L(e)|! possible line
permutations

- Possible configurations for the graph
on the left: > 2 x 10"

= Naive exhaustive search infeasible
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Baseline ILP - Details

Each line must only be assigned one position:
IL(e)l

Each position must only be assigned once:

Vpe{1,...,IL(e)|}: Z Xelp = 1.

leL(e)
Constraints for ensuring that xeerag = 1if @ crossing occurs:

Xea1 + XeB2 + Xe’a2 + Xe’B1 — Xee’aB < 3
Xea2 + XeB1 + Xe’a1 + Xe’B2 — Xee’aB < 3

...etc

22



Stuttgart map - annotated
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Dataset dimensions

texer IS VI |E[ |£]
Freiburg 0.7s 74 80 81 5
Dallas 3s 108 117 118
Chicago 13.5s 143 153 154 8
Stuttgart 7.7s 192 219 229 15
Turin 49s 339 398 435 14
New York  3.7s 456 517 548 26

~N
o Ul o &~
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Core graph dimensions

vl el [£]
Freiburg 20 21 5
Dallas 24 24 7

Chicago 23 24 8
Stuttgart 50 58 15
Turin 91 124 14
New York 110 138 23

o Ul o N

25
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Challenges - Detail

Official HERE Google

I. Avoid line overlaps

Il. Match line orderings

[ll. Clearly indicate line
continuations

26



