
Efficient Generation of Geographically Accurate
Transit Maps

Hannah Bast 1, Patrick Brosi 1 and Sabine Storandt 2

1 University of Freiburg
2 LMU Würzburg

26th ACM SIGSPATIAL - Seattle, Washington, USA

November 7, 2018

Motivation

Official CTA map

HERE Google

1

Motivation

Official CTA map HERE

Google

1

Motivation

Official CTA map HERE Google

1

Goal

Goal: Generate these maps automatically, in high quality

Trip63

Trip2

Trip92

Trip544

Trip243

2

Goal

Goal: Generate these maps automatically, in high quality

Trip63

Trip2

Trip92

Trip544

Trip243

”Bag of trips”
(GTFS)

2

Goal

Goal: Generate these maps automatically, in high quality

Trip63

Trip2

Trip92

Trip544

Trip243

”Bag of trips”
(GTFS)

2

Goal

Goal: Generate these maps automatically, in high quality

Trip63

Trip2

Trip92

Trip544

Trip243

”Bag of trips”
(GTFS)

Line graph

2

Goal

Goal: Generate these maps automatically, in high quality

Trip63

Trip2

Trip92

Trip544

Trip243

”Bag of trips”
(GTFS)

Line graph

2

Goal

Goal: Generate these maps automatically, in high quality

Trip63

Trip2

Trip92

Trip544

Trip243

”Bag of trips”
(GTFS)

Line graph Final map

2

Line graph construction

Line graph:
• Undirected labeled graph
G = (V, E, L)

• Edge labels are subsets of
the network lines L
(L(e) ⊆ L)

• Nodes are usually stations

u

v

Example: L = { }, L ((u, v)) = { }

3

Line graph construction

Line graph:
• Undirected labeled graph
G = (V, E, L)

• Edge labels are subsets of
the network lines L
(L(e) ⊆ L)

• Nodes are usually stations

u

v

Example: L = { }, L ((u, v)) = { }

3

Line graph construction

Line graph:
• Undirected labeled graph
G = (V, E, L)

• Edge labels are subsets of
the network lines L
(L(e) ⊆ L)

• Nodes are usually stations

u

v

Example: L = { }, L ((u, v)) = { }

3

Line graph construction

Line graph:
• Undirected labeled graph
G = (V, E, L)

• Edge labels are subsets of
the network lines L
(L(e) ⊆ L)

• Nodes are usually stations

u

v

Example: L = { }, L ((u, v)) = { }

3

Line graph construction - Input data

4

Line graph construction - Input data

4

Line graph construction - Input data

⇒ Map construction problem 4

Line graph construction - Non-station nodes

v

w

u

L(e12) = {A,B}

{C ,D}L(e34) =

v

w

uu′

L(e1′2′3′4′) =

L(e12) = {A,B}

{C ,D}{A,B ,C ,D} L(e34) =

5

Line graph construction - Non-station nodes

v

w

u

L(e12) = {A,B}

{C ,D}L(e34) =

v

w

uu′

L(e1′2′3′4′) =

L(e12) = {A,B}

{C ,D}{A,B ,C ,D} L(e34) =

5

Line graph construction - Non-station nodes

v

w

u

L(e12) = {A,B}

{C ,D}L(e34) =

v

w

uu′

L(e1′2′3′4′) =

L(e12) = {A,B}

{C ,D}{A,B ,C ,D} L(e34) =

5

Line graph construction - Non-station nodes

v

w

u

L(e12) = {A,B}

{C ,D}L(e34) =

v

w

uu′

L(e1′2′3′4′) =

L(e12) = {A,B}

{C ,D}{A,B ,C ,D} L(e34) =

5

Results so far (1)

6

Results so far (1)

6

Results so far (1)

6

Line-ordering optimization - Baseline ILP

{A,B}

{A,B}

1
2

1 2

e

e′ • For each edge e, line l and position p,
introduce variable xelp ∈ 0, 1

• Example: xeA1 and xeA2 for line A
• Constraint: all xelp have to sum up to 1 for
a single line l on a single edge e, and for a
single p on a single edge

• Standard crossing: Objective variable
xee′AB which is 1 if pe(A) < pe(B) and
pe′(A) > pe′(B), or else 0

• Split crossing: Objective variable xee′e′′AB
which is 1 if pe(A) < pe(B), or else 0

7

Line-ordering optimization - Baseline ILP

{A,B}

{A,B}

1
2

1 2

e

e′ • For each edge e, line l and position p,
introduce variable xelp ∈ 0, 1

• Example: xeA1 and xeA2 for line A

• Constraint: all xelp have to sum up to 1 for
a single line l on a single edge e, and for a
single p on a single edge

• Standard crossing: Objective variable
xee′AB which is 1 if pe(A) < pe(B) and
pe′(A) > pe′(B), or else 0

• Split crossing: Objective variable xee′e′′AB
which is 1 if pe(A) < pe(B), or else 0

7

Line-ordering optimization - Baseline ILP

{A,B}

{A,B}

1
2

1 2

e

e′ • For each edge e, line l and position p,
introduce variable xelp ∈ 0, 1

• Example: xeA1 and xeA2 for line A
• Constraint: all xelp have to sum up to 1 for
a single line l on a single edge e, and for a
single p on a single edge

• Standard crossing: Objective variable
xee′AB which is 1 if pe(A) < pe(B) and
pe′(A) > pe′(B), or else 0

• Split crossing: Objective variable xee′e′′AB
which is 1 if pe(A) < pe(B), or else 0

7

Line-ordering optimization - Baseline ILP

{A,B}

{A,B}

1
2

1 2

e

e′ • For each edge e, line l and position p,
introduce variable xelp ∈ 0, 1

• Example: xeA1 and xeA2 for line A
• Constraint: all xelp have to sum up to 1 for
a single line l on a single edge e, and for a
single p on a single edge

• Standard crossing: Objective variable
xee′AB which is 1 if pe(A) < pe(B) and
pe′(A) > pe′(B), or else 0

• Split crossing: Objective variable xee′e′′AB
which is 1 if pe(A) < pe(B), or else 0

7

Line-ordering optimization - Baseline ILP

{A,B}

{A,B}

1
2

1 2

e

e′

{A,B}

1
2

e

e′

e′′{A}

{B}

1

1

• For each edge e, line l and position p,
introduce variable xelp ∈ 0, 1

• Example: xeA1 and xeA2 for line A
• Constraint: all xelp have to sum up to 1 for
a single line l on a single edge e, and for a
single p on a single edge

• Standard crossing: Objective variable
xee′AB which is 1 if pe(A) < pe(B) and
pe′(A) > pe′(B), or else 0

• Split crossing: Objective variable xee′e′′AB
which is 1 if pe(A) < pe(B), or else 0

7

Line-ordering optimization - Baseline ILP

{A,B}

{A,B}

1
2

1 2

e

e′

{A,B}

1
2

e

e′

e′′{A}

{B}

1

1

• For each edge e, line l and position p,
introduce variable xelp ∈ 0, 1

• Example: xeA1 and xeA2 for line A
• Constraint: all xelp have to sum up to 1 for
a single line l on a single edge e, and for a
single p on a single edge

• Standard crossing: Objective variable
xee′AB which is 1 if pe(A) < pe(B) and
pe′(A) > pe′(B), or else 0

• Split crossing: Objective variable xee′e′′AB
which is 1 if pe(A) < pe(B), or else 0

⇒ O(|E|M2) variables, O(|E|M6) constraints 7

Line-ordering optimization - Improved ILP

• Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

• But we explicitly enumerate all possible line positions of
A and B on e

• Basic idea: introduce binary variables xeA<B and xeB<A
which can be efficiently checked

8

Line-ordering optimization - Improved ILP

• Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

• But we explicitly enumerate all possible line positions of
A and B on e

• Basic idea: introduce binary variables xeA<B and xeB<A
which can be efficiently checked

8

Line-ordering optimization - Improved ILP

• Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

• But we explicitly enumerate all possible line positions of
A and B on e

• Basic idea: introduce binary variables xeA<B and xeB<A
which can be efficiently checked

8

Line-ordering optimization - Improved ILP

• Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

• But we explicitly enumerate all possible line positions of
A and B on e

• Basic idea: introduce binary variables xeA<B and xeB<A
which can be efficiently checked

⇒ O(|E|M2) variables, O(|E|M2) constraints

8

Results so far (2)

9

Results so far (2)

9

Results so far (2)

9

Line-ordering optimization - Line separations

vs.

10

Line-ordering optimization - Line separations

1 crossing

vs.

2 crossings

10

Line-ordering optimization - Line separations

1 crossing

vs.

vs.

2 crossings

10

Line-ordering optimization - Line separations

1 crossing

2 crossings

vs.

vs.

2 crossings

2 crossings

10

Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

vs.

vs.

2 crossings

2 crossings

10

Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

vs.

vs.

2 crossings
0 separations

2 crossings
0 separations

10

Line-ordering optimization - Line separations (ctd.)

e′

{A,B,C}

1
2

e

3

{A,B}

1 2

1
{C}

• Idea: If two lines A,B continue from e to
e′, set a binary separation variable
xee′A‖B = 1 if they are next to each other in
e, but no in e′

• Add xee′A‖B to the objective function

⇒ Still O(|E|M2) variables, O(|E|M2) constraints

11

Line-ordering optimization - Line separations (ctd.)

e′

{A,B,C}

1
2

e

3

{A,B}

1 2

1
{C}

• Idea: If two lines A,B continue from e to
e′, set a binary separation variable
xee′A‖B = 1 if they are next to each other in
e, but no in e′

• Add xee′A‖B to the objective function

⇒ Still O(|E|M2) variables, O(|E|M2) constraints

11

Line-ordering optimization - Line separations (ctd.)

e′

{A,B,C}

1
2

e

3

{A,B}

1 2

1
{C}

• Idea: If two lines A,B continue from e to
e′, set a binary separation variable
xee′A‖B = 1 if they are next to each other in
e, but no in e′

• Add xee′A‖B to the objective function

⇒ Still O(|E|M2) variables, O(|E|M2) constraints

11

Results so far (3)

12

Results so far (3)

12

Line-ordering optimization - Core optimization graph

1

2

3

4

5
6

7

8

9

{A,B,C}

{A,B,C}

{A,B}

{C}
{D, E, F}

{A,B}
{E}

{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

2

3

4

5
6

7

8

9

{A,B,C}

{A,B,C}

{A,B}

{C}
{D, E, F}

{A,B}
{E}

{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

2

3

4

5
6

7

8

9

{A,B,C}

{A,B,C}

{A,B}

{C}
{D, E, F}

{A,B}
{E}

{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

2

3

4

5
6

7

8

9

{A,B,C}

{A,B,C}

{A,B}

{C}
{D, E, F}

{A,B}
{E}

{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

2

3

4

5
6

7

8

9

{A,B,C}

{A,B,C}

{A,B}

{C}
{D, E, F}

{A,B}
{E}

{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

2

3

4

5
6

7

8

9

{A,B,C}

{A,B,C}

{A,B}

{C}
{D, E, F}

{A,B}
{E}

{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

2

3

4

5
6

7

8

9

{A,B,C}

{A,B,C}

{A,B}

{C}
{D, E, F}

{A,B}
{E}

{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

34

5

8

9

{X,C}

{X}

{C}

{D, E, F}

{X}

{E}

{F}
{E, F}

{D}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

34

5

8

9

{X,C}

{X}

{C}

{D, E, F}

{X}

{E}

{F}
{E, F}

{D}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

34

5

8

9

{X,C}

{X}

{C}

{D, E, F}

{X}

{E}

{F}
{E, F}

{D}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Line-ordering optimization - Core optimization graph

1

3

5

9

{X,C}

{X}

{C}{E, F} {D}
{F}

{E}

{D, E, F}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1

13

Rendering

1. Render parallel lines

14

Rendering

1. Render parallel lines 2. Free node space

14

Rendering

1. Render parallel lines 2. Free node space

3. Render inner node connections
14

Rendering

1. Render parallel lines 2. Free node space

3. Render inner node connections 4. Render stations
14

Results so far (4)

15

Results so far (4)

15

Results so far (4)

15

Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rows×cols GLPK CBC GU × ||
Base 41k×861 — — — 22 4-7
Impr. 1.4k×982 9s 1s 41ms 22 4-7
+ Sep. 1.9k×1.2k 47m 19s 1.8s 27 0

ILP solution times for Chicago, on core graph

rows×cols GLPK CBC GU × ||
Base 8.2k×266 — 47m 2m 22 4-7
Impr. 394×285 0.8s 0.1s 10ms 22 4-7
+ Sep. 505×338 23s 3.8s 0.3s 27 0

16

Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rows×cols GLPK CBC GU × ||
Base 41k×861 — — — 22 4-7
Impr. 1.4k×982 9s 1s 41ms 22 4-7
+ Sep. 1.9k×1.2k 47m 19s 1.8s 27 0

ILP solution times for Chicago, on core graph

rows×cols GLPK CBC GU × ||
Base 8.2k×266 — 47m 2m 22 4-7
Impr. 394×285 0.8s 0.1s 10ms 22 4-7
+ Sep. 505×338 23s 3.8s 0.3s 27 0

16

Future work

• Additional rules for core graph reduction
(work in progress)

• Faster construction times of line graph
(current state: 1-15 s for our test datasets)

• Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

• Octilinearize line graph for (non-overlay) schematic
metro maps (work in progress)

17

Future work

• Additional rules for core graph reduction
(work in progress)

• Faster construction times of line graph
(current state: 1-15 s for our test datasets)

• Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

• Octilinearize line graph for (non-overlay) schematic
metro maps (work in progress)

17

Future work

• Additional rules for core graph reduction
(work in progress)

• Faster construction times of line graph
(current state: 1-15 s for our test datasets)

• Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

• Octilinearize line graph for (non-overlay) schematic
metro maps (work in progress)

17

Future work

• Additional rules for core graph reduction
(work in progress)

• Faster construction times of line graph
(current state: 1-15 s for our test datasets)

• Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

• Octilinearize line graph for (non-overlay) schematic
metro maps (work in progress)

17

Thank you!

http://loom.informatik.uni-freiburg.de

18

http://loom.informatik.uni-freiburg.de

Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

L(e3) = {D}

L(e4) = {C}

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries

19

Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

L(e3) = {D}

L(e4) = {C}

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries

19

Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

L(e3) = {D}

L(e4) = {C}

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries

19

Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

L(e3) = {D}

L(e4) = {C}

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)

• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries

19

Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

L(e3) = {D}

L(e4) = {C}

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f

• Add additional non-station nodes at segment boundaries

19

Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

L(e3) = {D}

L(e4) = {C}

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries 19

Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

{C ,D}L(e34) =

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries 19

Line graph construction - Shared segment collapsing

v

w

u

L(e12) = {A,B}

{C ,D}L(e34) =

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries 19

Line graph construction - Shared segment collapsing

v

w

uu′

L(e1′2′3′4′) =

L(e12) = {A,B}

{C ,D}{A,B ,C ,D} L(e34) =

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries 19

Evaluation - Line Ordering

T = number of (consecutive) line swaps necessary to transform
offical map into our map

Off. map Our map

× || × || T
Freiburg 7 1 7 0 2
Dallas 3 1 3 0 1
Chicago 26 0 27 0 1
Stuttgart 65 5 64 2 4

20

Line-ordering optimization - Exhaustive approach

• 23 edges
• Each edge e has |L(e)|! possible line
permutations

• Possible configurations for the graph
on the left: > 2× 1017

⇒ Naive exhaustive search infeasible

21

Line-ordering optimization - Exhaustive approach

• 23 edges

• Each edge e has |L(e)|! possible line
permutations

• Possible configurations for the graph
on the left: > 2× 1017

⇒ Naive exhaustive search infeasible

21

Line-ordering optimization - Exhaustive approach

• 23 edges
• Each edge e has |L(e)|! possible line
permutations

• Possible configurations for the graph
on the left: > 2× 1017

⇒ Naive exhaustive search infeasible

21

Line-ordering optimization - Exhaustive approach

• 23 edges
• Each edge e has |L(e)|! possible line
permutations

• Possible configurations for the graph
on the left: > 2× 1017

⇒ Naive exhaustive search infeasible

21

Line-ordering optimization - Exhaustive approach

• 23 edges
• Each edge e has |L(e)|! possible line
permutations

• Possible configurations for the graph
on the left: > 2× 1017

⇒ Naive exhaustive search infeasible

21

Baseline ILP - Details

Each line must only be assigned one position:

∀l ∈ L(e) :
|L(e)|
∑

p=1
xelp = 1.

Each position must only be assigned once:

∀p ∈ {1, ..., |L (e)|} :
∑

l∈L(e)
xelp = 1.

Constraints for ensuring that xee′AB = 1 if a crossing occurs:

xeA1 + xeB2 + xe′A2 + xe′B1 − xee′AB ≤ 3
xeA2 + xeB1 + xe′A1 + xe′B2 − xee′AB ≤ 3

...etc

22

Stuttgart map - annotated

Bietigheim- Bissingen Marbach – Backnang

Schorndorf

Backnang

Renningen – Schwabstraße

Kirchheim (T)

Herrenberg

Schwabstr.

Filderstadt

S 4S 5

S
4 S

5

S
4 S

5
S

6 S60

S 2 S 3

S
2

S
3

S 2

S
1 S

2
S

3

S
4 S

5 S
6

S
60

S
1

S
2

S
3

S 1 S 2 S 3

S
2 S

3

S 1

S
1

S
60

S
1

Weil der Stadt/Böblingen
S 6/S60

Waiblingen

Böblingen Rohr

Zuffenhausen

Ludwigsburg

 Bad
Cannstatt

Neckarpark

Suttnerstr.Tapachstr.

Fürfelder Str.
Zuffenhausen

Kelterplatz

Hohensteinstr.

Friedrichswahl

Löwentor

Züricher Str.

Landauer
Str.

Rastatter
Str.

Wolfbusch

Bergheimer Hof

Wilhelm-
Geiger-Platz

Föhrich

Sportpark
Feuerbach

Arndt-/Spittastr.

Vogelsang

Herderplatz

Lind-
paintnerstr.

Beet-
hovenstr.

Millöcker-
str.

Eltinger
Str.

Löwentorbrücke

Stadtbibliothek

Friedrichs-
bau

Schwab-/Bebelstr.

Glockenstr.Nord-
bahnhof

Mitt-
nachtstr.

Milch-
hof Wilhelma

Mühlsteg

 Kraftwerk
Münster

 Münster Viadukt

 Münster
Rathaus

Freibergstr.

Elbestr.

Hallschlag Wagrain-
äcker

 Riethmüller-
haus

Hofen

Auwiesen Brückenstr.Hornbach

Obere Ziegelei

Gnesener Str.

Kursaal

Daimlerplatz

Uff-Kirchhof
Augsburger Platz

Nürnberger Str.

Schwabenlandhalle

Antwerpener Str.

Esslinger Str.

Olgaeck

Eugensplatz

Heidehofstr.

Stafflenbergstr.

Bubenbad

Payerstr.

Geroksruhe

Stelle

Ruhbank (Fernsehturm)

Silberwald

Schemppstr.

Sillenbuch

Bockelstr.

Ruit

Parksiedlung

Zinsholz

Kreuzbrunnen

Technische Akademie

Scharnhauser Park

Österreich.
Platz

Erwin-Schoettle
-Platz

Bihlplatz

Jurastr.

Wall-
graben

SSB-
Zentrum

Vaihinger
Str.

 Rohrer
Weg

Möhringen FreibadLeinfelden
Frank

Unter-
aichen

Pfaffenweg

Nägele-
 str.

Zahnrad-
bahnhof

Dobelstr.

Bopser

Peregrina-
str.

Sonnen-
berg

Möhringen
 Bf Sigmaringer Str.

Salzäcker

Wielandshöhe

Maybachstr.

Degerloch
Albstr.

Wangen Marktplatz

Hedelfinger Str.

Insel-
str.

Im
Degen

Brendle
(Groß-
markt)

Schlacht-
 hofOstheim

Leo-Vetter-Bad

Ostendplatz
Raitelsberg

Karl-Olga-
 Krankenhaus

Staatsgalerie

Wangener-/
Landhausstr.

Bergfriedhof

Russische
Kirche

Rosenberg-/
Seidenstr.

Schloss-/Johannesstr.

Beskidenstr.

Höhenstr.

 Salamanderweg

Siedlung

Weilimdorf
Löwen-Markt

Feuerbach
Pfostenwäldle

Waldau

Liststr.

Rosenstein-
park

Schozacher Str.

Rotebühlplatz
 Stadtmitte

Schloss-
platz

Charlotten-
 platz

Rat-
haus

Wald-
eck

Kalten-
tal

Engel-
boldstr.Fauststr.

Vaihingen Schillerplatz Riedsee

Mineralbäder
Metzstr.

Berliner Platz

Neckar-
tor

Blick

Eszet

Schlotterbeckstr.

Kienbachstr.

EbitzwegMer-
cedes-
str.

FreibergHimmelsleiter

Stöckach

Eckarts-
haldenweg

Borsigstr.

Sieglestr.

Steinhaldenfeld

Hauptfriedhof

Mühlhausen Mühle

Breitwiesen

Rosen-
steinbrücke

Landhaus

Plieninger Str.

Vaihingen
Viadukt

Haigst

Wasenstr.Gaisburg

Pragsattel
Feuerbach

Bf

Weinsteige

Cannstatter
 Wasen

Fasanenhof

Fasanenhof Schelmenwasen

Europaplatz

EnBW City

Kirchtalstr.

Salzwiesenstr.

Wimpfener Str.

Heutingsheimer Str.

Korntaler Str.

Zuffenhausen
Rathaus

Prag-
friedhof

Fellbach
Lutherkirche

Südheimer
 Platz

Plieningen

Waldfriedhof

Degerloch

Gerlingen

Stammheim

Hauptbahnhof
(Arnulf-Klett-Pl.)

Marienplatz

Vaihingen Bf

Bad Cannstatt
Wilhelmsplatz

Untertürkheim Bf

Heslach
Vogelrain

Leinfelden Bf

Botnang

Giebel

Neckargröningen
Remseck

Neugereut

Killesberg

Hölderlinplatz

NeckarPark
(Stadion)

Heumaden

Hedelfingen

Mönchfeld

Max-Eyth-See

Flughafen/Messe

Nellingen Ostfildern

Stuttgarter Straßenbahnen AG www.ssb-ag.de Tel: 0711 7885-3333 © VVS 12.2014

Stadtbahn-Liniennetz

23

Dataset dimensions

textr |S | |V| |E| |L| M
Freiburg 0.7s 74 80 81 5 4
Dallas 3s 108 117 118 7 4
Chicago 13.5s 143 153 154 8 6
Stuttgart 7.7s 192 219 229 15 8
Turin 4.9s 339 398 435 14 5
New York 3.7s 456 517 548 26 9

24

Core graph dimensions

|V| |E| |L| M
Freiburg 20 21 5 4
Dallas 24 24 7 4
Chicago 23 24 8 6
Stuttgart 50 58 15 8
Turin 91 124 14 5
New York 110 138 23 9

25

Challenges - Detail

Official HERE Google

I. Avoid line overlaps

II. Match line orderings

III. Clearly indicate line
continuations

26

Challenges - Detail

Official HERE Google

I. Avoid line overlaps

II. Match line orderings

III. Clearly indicate line
continuations

26

Challenges - Detail

Official HERE Google

I. Avoid line overlaps

II. Match line orderings

III. Clearly indicate line
continuations

26

