Efficient Generation of Geographically Accurate Transit Maps

Hannah Bast ${ }^{1}$, Patrick Brosi ${ }^{1}$ and Sabine Storandt ${ }^{2}$

${ }^{1}$ University of Freiburg
${ }^{2}$ LMU Würzburg

26th ACM SIGSPATIAL - Seattle, Washington, USA
November 7, 2018

Motivation

Official CTA map

Motivation

Official CTA map

HERE

Motivation

Official CTA map

HERE

Google

Goal: Generate these maps automatically, in high quality

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips"
(GTFS)

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips" (GTFS)

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips" (GTFS)

Line graph

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips"
Line graph

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips" (GTFS)

Line graph
Final map

Line graph construction

Line graph:

- Undirected labeled graph $G=(V, E, L)$

Line graph construction

Line graph:

- Undirected labeled graph $G=(V, E, L)$
- Edge labels are subsets of the network lines \mathcal{L} $(L(e) \subseteq \mathcal{L})$

Line graph construction

Line graph:

- Undirected labeled graph $G=(V, E, L)$
- Edge labels are subsets of the network lines \mathcal{L}
$(L(e) \subseteq \mathcal{L})$
- Nodes are usually stations

Line graph construction

Line graph:

- Undirected labeled graph

$$
G=(V, E, L)
$$

- Edge labels are subsets of the network lines \mathcal{L}
$(L(e) \subseteq \mathcal{L})$
- Nodes are usually stations

Example: $\mathcal{L}=\{: 8, L((u, v))=\{\bullet \bullet\}$

Line graph construction - Input data

Line graph construction - Input data

Line graph construction - Input data

Line graph construction - Non-station nodes

Line graph construction - Non-station nodes

Line graph construction - Non-station nodes

Line graph construction - Non-station nodes

Results so far (1)

Results so far (1)

Results so far (1)

Line-ordering optimization - Baseline ILP

- For each edge e, line l and position p, introduce variable $x_{\text {elp }} \in 0,1$

Line-ordering optimization - Baseline ILP

- For each edge e, line l and position p, introduce variable $x_{\text {elp }} \in 0,1$
- Example: $x_{e A 1}$ and $x_{e A 2}$ for line A

Line-ordering optimization - Baseline ILP

- For each edge e, line l and position p, introduce variable $x_{\text {elp }} \in 0,1$
- Example: $x_{e A 1}$ and $x_{e A 2}$ for line A
- Constraint: all $x_{\text {elp }}$ have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge

Line-ordering optimization - Baseline ILP

- For each edge e, line l and position p, introduce variable $x_{\text {elp }} \in 0,1$
- Example: $x_{e A 1}$ and $x_{e A 2}$ for line A
- Constraint: all $x_{\text {elp }}$ have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge
- Standard crossing: Objective variable $x_{e e^{\prime} A B}$ which is 1 if $p_{e}(A)<p_{e}(B)$ and $p_{e^{\prime}}(A)>p_{e^{\prime}}(B)$, or else 0

Line-ordering optimization - Baseline ILP

- For each edge e, line l and position p, introduce variable $x_{\text {elp }} \in 0,1$
- Example: $x_{e A 1}$ and $x_{e A 2}$ for line A
- Constraint: all $x_{\text {elp }}$ have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge
- Standard crossing: Objective variable $x_{e e^{\prime} A B}$ which is 1 if $p_{e}(A)<p_{e}(B)$ and $p_{e^{\prime}}(A)>p_{e^{\prime}}(B)$, or else 0
- Split crossing: Objective variable $x_{e e^{\prime} e^{\prime \prime} A B}$ which is 1 if $p_{e}(A)<p_{e}(B)$, or else 0

Line-ordering optimization - Baseline ILP

- For each edge e, line l and position p, introduce variable $x_{\text {elp }} \in 0,1$
- Example: $x_{e A 1}$ and $x_{e A 2}$ for line A
- Constraint: all $x_{\text {elp }}$ have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge
- Standard crossing: Objective variable $x_{e e^{\prime} A B}$ which is 1 if $p_{e}(A)<p_{e}(B)$ and $p_{e^{\prime}}(A)>p_{e^{\prime}}(B)$, or else 0
- Split crossing: Objective variable $x_{e e^{\prime} e^{\prime \prime} A B}$ which is 1 if $p_{e}(A)<p_{e}(B)$, or else 0
$\Rightarrow \mathcal{O}\left(|E| M^{2}\right)$ variables, $\mathcal{O}\left(|E| M^{6}\right)$ constraints

Line-ordering optimization - Improved ILP

- Observation: we only need to check if $p_{e}(A)<p_{e}(B)$ (or vice versa) for both types of crossings

Line-ordering optimization - Improved ILP

- Observation: we only need to check if $p_{e}(A)<p_{e}(B)$ (or vice versa) for both types of crossings
- But we explicitly enumerate all possible line positions of A and B on e

Line-ordering optimization - Improved ILP

- Observation: we only need to check if $p_{e}(A)<p_{e}(B)$ (or vice versa) for both types of crossings
- But we explicitly enumerate all possible line positions of A and B on e
- Basic idea: introduce binary variables $x_{e A<B}$ and $x_{e B<A}$ which can be efficiently checked

Line-ordering optimization - Improved ILP

- Observation: we only need to check if $p_{e}(A)<p_{e}(B)$ (or vice versa) for both types of crossings
- But we explicitly enumerate all possible line positions of A and B on e
- Basic idea: introduce binary variables $x_{e A<B}$ and $x_{e B<A}$ which can be efficiently checked
$\Rightarrow \mathcal{O}\left(|E| M^{2}\right)$ variables, $\mathcal{O}\left(|E| M^{2}\right)$ constraints

Results so far (2)

Results so far (2)

Results so far (2)

Line-ordering optimization - Line separations

VS.

Line-ordering optimization - Line separations

1 crossing

VS.

2 crossings

Line-ordering optimization - Line separations

1 crossing

VS.

2 crossings

VS.

Line-ordering optimization - Line separations

1 crossing

2 crossings

VS.

2 crossings

VS.

2 crossings

Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

VS.

2 crossings

2 crossings

Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

VS.

2 crossings
0 separations

VS.

2 crossings
0 separations

Line-ordering optimization - Line separations (ctd.)

- Idea: If two lines A, B continue from e to e^{\prime}, set a binary separation variable $x_{e e^{\prime} A \| B}=1$ if they are next to each other in e, but no in e^{\prime}

Line-ordering optimization - Line separations (ctd.)

- Idea: If two lines A, B continue from e to e^{\prime}, set a binary separation variable $x_{e e^{\prime} A \| B}=1$ if they are next to each other in e, but no in e^{\prime}
- Add $x_{e e^{\prime} A \| B}$ to the objective function

Line-ordering optimization - Line separations (ctd.)

- Idea: If two lines A, B continue from e to e^{\prime}, set a binary separation variable $x_{e e^{\prime} A \| B}=1$ if they are next to each other in e, but no in e^{\prime}
- Add $x_{e e^{\prime} A \| B}$ to the objective function
\Rightarrow Still $\mathcal{O}\left(|E| M^{2}\right)$ variables, $\mathcal{O}\left(|E| M^{2}\right)$ constraints

Results so far (3)

Results so far (3)

Line-ordering optimization - Core optimization graph

Line-ordering optimization - Core optimization graph

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all $L((u, v))$

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all $L((u, v))$

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all $L((u, v))$

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all $L((u, v))$
- Cut edges with $|L(e)|=1$

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a single new line ($A, B \rightarrow X$)
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all $L((u, v))$
- Cut edges with $|L(e)|=1$

Rendering

1. Render parallel lines

Rendering

1. Render parallel lines

2. Free node space

Rendering

1. Render parallel lines

2. Free node space

3. Render inner node connections

Rendering

1. Render parallel lines

2. Render inner node connections

3. Free node space

4. Render stations

Results so far (4)

Results so far (4)

Results so far (4)

Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

	rows \times cols	GLPK	CBC	GU	\times	$\\|$
Base	$41 \mathrm{k} \times 861$	-	-	-	22	$4-7$
Impr.	$1.4 \mathrm{k} \times 982$	9 s	1 s	41 ms	22	$4-7$
+ Sep.	$1.9 \mathrm{k} \times 1.2 \mathrm{k}$	$\mathbf{4 7 m}$	$\mathbf{1 9 s}$	1.8 s	27	0

Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

	rows \times cols	GLPK	CBC	GU	\times	$\\|$
Base	$41 \mathrm{k} \times 861$	-	-	-	22	$4-7$
Impr.	$1.4 \mathrm{k} \times 982$	9 s	1 s	41 ms	22	$4-7$
+ Sep.	$1.9 \mathrm{k} \times 1.2 \mathrm{k}$	$\mathbf{4 7 m}$	19 s	1.8 s	27	0

ILP solution times for Chicago, on core graph

	rows \times cols	GLPK	CBC	GU	\times	$\\|$
Base	$8.2 \mathrm{k} \times 266$	-	$\mathbf{4 7 m}$	$\mathbf{2 m}$	22	$4-7$
Impr.	394×285	$\mathbf{0 . 8 s}$	$\mathbf{0 . 1 s}$	$\mathbf{1 0 m s}$	22	$\mathbf{4 - 7}$
+ Sep.	505×338	$\mathbf{2 3 s}$	$\mathbf{3 . 8 s}$	$\mathbf{0 . 3 s}$	$\mathbf{2 7}$	0

Future work

- Additional rules for core graph reduction (work in progress)

Future work

- Additional rules for core graph reduction (work in progress)
- Faster construction times of line graph (current state: 1-15 s for our test datasets)

Future work

- Additional rules for core graph reduction (work in progress)
- Faster construction times of line graph (current state: 1-15 s for our test datasets)
- Other sources for input line graph than schedule data (e.g. OSM, work in progress)

Future work

- Additional rules for core graph reduction (work in progress)
- Faster construction times of line graph (current state: 1-15 s for our test datasets)
- Other sources for input line graph than schedule data (e.g. OSM, work in progress)
- Octilinearize line graph for (non-overlay) schematic metro maps (work in progress)

Line graph construction - Shared segment collapsing

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m , measure distance d of current point on e to f

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m , measure distance d of current point on e to f
- If $d<\hat{d}$, start new segment. If not, end current (if open)

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m , measure distance d of current point on e to f
- If $d<\hat{d}$, start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m , measure distance d of current point on e to f
- If $d<\hat{d}$, start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m , measure distance d of current point on e to f
- If $d<\hat{d}$, start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m , measure distance d of current point on e to f
- If $d<\hat{d}$, start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m , measure distance d of current point on e to f
- If $d<\hat{d}$, start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries

Evaluation - Line Ordering

$\mathrm{T}=$ number of (consecutive) line swaps necessary to transform offical map into our map

	Off. map			Our map				
	\times	$\\|$		\times	$\\|$	\mathbf{T}		
Freiburg	7	1		7	0	$\mathbf{2}$		
Dallas	3	1		3	0	$\mathbf{1}$		
Chicago	26	0		27	0	$\mathbf{1}$		
Stuttgart	65	5		64	2	$\mathbf{4}$		

Line-ordering optimization - Exhaustive approach

Line-ordering optimization - Exhaustive approach

- 23 edges

Line-ordering optimization - Exhaustive approach

- 23 edges
- Each edge e has |L(e)|! possible line permutations

Line-ordering optimization - Exhaustive approach

- 23 edges
- Each edge e has |L(e)|! possible line permutations
- Possible configurations for the graph on the left: $>2 \times 10^{17}$

Line-ordering optimization - Exhaustive approach

- 23 edges
- Each edge e has |L(e)|! possible line permutations
- Possible configurations for the graph on the left: $>2 \times 10^{17}$
\Rightarrow Naive exhaustive search infeasible

Baseline ILP - Details

Each line must only be assigned one position:

$$
\forall I \in L(e): \sum_{p=1}^{|L(e)|} x_{e l p}=1 .
$$

Each position must only be assigned once:

$$
\forall p \in\{1, \ldots,|L(e)|\}: \sum_{l \in L(e)} x_{e l p}=1 .
$$

Constraints for ensuring that $x_{e e^{\prime} A B}=1$ if a crossing occurs:

$$
\begin{array}{r}
x_{e A 1}+x_{e B 2}+x_{e^{\prime} A 2}+x_{e^{\prime} B 1}-x_{e e^{\prime} A B} \leq 3 \\
x_{e A 2}+x_{e B 1}+x_{e^{\prime} A 1}+x_{e^{\prime} B 2}-x_{e e^{\prime} A B} \leq 3 \\
\ldots \text { etc }
\end{array}
$$

Stuttgart map - annotated

Stadtbahn-Liniennetz

Dataset dimensions

	$t_{\text {extr }}$	$\|\mathcal{S}\|$	$\|V\|$	$\|E\|$	$\|\mathcal{L}\|$	M
Freiburg	0.7 s	74	80	81	5	4
Dallas	3 s	108	117	118	7	4
Chicago	13.5 s	143	153	154	8	6
Stuttgart	7.7 s	192	219	229	15	8
Turin	4.9 s	339	398	435	14	5
New York	3.7 s	456	517	548	26	9

Core graph dimensions

	$\|V\|$	$\|E\|$	$\|\mathcal{L}\|$	M
Freiburg	20	21	5	4
Dallas	24	24	7	4
Chicago	23	24	8	6
Stuttgart	50	58	15	8
Turin	91	124	14	5
New York	110	138	23	9

Challenges - Detail

Official HERE Google

I. Avoid line overlaps

Challenges - Detail

Official HERE Google

I. Avoid line overlaps

II. Match line orderings

Challenges - Detail

