Efficient Generation of Geographically Accurate
Transit Maps

Hannah Bast’, Patrick Brosi' and Sabine Storandt?

T University of Freiburg
2 MU Wiirzburg

26th ACM SIGSPATIAL - Seattle, Washington, USA

November 7, 2018

Motivation

Official CTA map

Street Subway

2 Monroe ¢

-

Jackson
&

LaSalle/ &)

| Van Buren
ol

—
I aSalle ... Harold

Motivation

Official CTA map HERE

Lake &) !

1 Rverwal Cark wacke!

Sieet iser A

c

| Ranc

ington &
Hrankin
o

gton/

Washinggon-slue |

Wells = sshington
§ kit
H vadison st st &
] 2 ' x I,
3 H AR wieh
£ @ :
£ Monroe ¢ I
& K S Adams)
2 Wabash
e
uiny Jackson oearvoradams Wich
¢ e
Lasallel[él
| Van Buren

... Harold i

1 aSQalle

Motivation

uincy

LaSalle/
Van Buren

1 aSQalle

Dearborn Stree
o
2
o
®

&

State Street Subway

3

....Harold

Deartorn &
Magon

epaflunersty
el Coner
vans
lhiang @
9

Columt

Goal: Generate these maps automatically, in high quality

Goal: Generate these maps automatically, in high quality

"Bag of trips”
(GTFS)

Goal: Generate these maps automatically, in high quality

"Bag of trips”
(GTFS)

Goal: Generate these maps automatically, in high quality

"Bag of trips” Line graph
(GTFS)

Goal: Generate these maps automatically, in high quality

Trip63

BBl Wa:

Wal

Trip544

I aSalle .. Harold

"Bag of trips” Line graph
(GTFS)

Goal: Generate these maps automatically, in high quality

Trip63

Trip544

I aSalle .. Harold

"Bag of trips” Line graph Final map
(GTFS)

Line graph construction

Line graph:
+ Undirected labeled graph
G=(V,EL)

Line graph construction

Line graph:
+ Undirected labeled graph
G=(V,EL)
+ Edge labels are subsets of
the network lines £
(L(e) € L)

Line graph construction

Line graph:
+ Undirected labeled graph
G=(V,EL)

+ Edge labels are subsets of
the network lines £
(L(e) € L)

« Nodes are usually stations

Line graph construction

Line graph:
+ Undirected labeled graph
G=(V,EL)

+ Edge labels are subsets of
the network lines £
(L(e) € L)

« Nodes are usually stations

Example: £ = {88}, L ((u,v)) = {82}

Line graph construction - Input data

Line graph construction - Input data

Line graph construction - Input data

= Map construction problem

Line graph construction - Non-station nodes

Line graph construction - Non-station nodes

Line graph construction - Non-station nodes

L(e2) = {A B}

L(evaza) =

(a8, c,p} |Lea)={C D}

Line graph construction - Non-station nodes

L(erp) = {A B}

L(ess) ={C,D} '

L(evoza) =
{A B, C,D}

Results so far (1)

Results so far (1)

Results so far (1)

Line-ordering optimization - Baseline ILP

- For each edge e, line [and position p,
introduce variable xejp €0, 1

Line-ordering optimization - Baseline ILP

- For each edge e, line [and position p,
introduce variable xejp €0, 1

« Example: Xea1 and Xear for line A

Line-ordering optimization - Baseline ILP

- For each edge e, line [and position p,
introduce variable xejp €0, 1

« Example: Xea1 and Xear for line A

+ Constraint: all xep have to sum up to 1 for
a single line [on a single edge e, and for a
single p on a single edge

Line-ordering optimization - Baseline ILP

- For each edge e, line [and position p,
introduce variable xejp €0, 1

« Example: Xea1 and Xear for line A

+ Constraint: all xep have to sum up to 1 for
a single line [on a single edge e, and for a
single p on a single edge

- Standard crossing: Objective variable
Xeerag Which is 1if pe(A) < pe(B) and
per(A) > per(B), or else 0

Line-ordering optimization - Baseline ILP

- For each edge e, line [and position p,
introduce variable xejp €0, 1

« Example: Xea1 and Xear for line A

+ Constraint: all xep have to sum up to 1 for
a single line [on a single edge e, and for a
single p on a single edge

1 - Standard crossing: Objective variable
e % Xeerag Which is 1if pe(A) < pe(B) and
{A, B} per(A) > per(B), or else 0
(A} 2 « Split crossing: Objective variable Xeere7aB

which is 1if pe(A) < pe(B), or else 0

Line-ordering optimization - Baseline ILP

- For each edge e, line [and position p,
introduce variable xejp €0, 1

« Example: Xea1 and Xear for line A

+ Constraint: all xep have to sum up to 1 for
a single line [on a single edge e, and for a
single p on a single edge

1 - Standard crossing: Objective variable
e % Xeerag Which is 1if pe(A) < pe(B) and
{A, B} per(A) > per(B), or else 0
(A} 2 « Split crossing: Objective variable Xeere7aB

which is 1if pe(A) < pe(B), or else 0

= O(|E|M?) variables, O(|E|M®) constraints

Line-ordering optimization - Improved ILP

- Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

Line-ordering optimization - Improved ILP

- Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

- But we explicitly enumerate all possible line positions of
AandBone

Line-ordering optimization - Improved ILP

+ Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

- But we explicitly enumerate all possible line positions of
AandBone

- Basic idea: introduce binary variables Xea<g and Xeg<a
which can be efficiently checked

Line-ordering optimization - Improved ILP

+ Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

- But we explicitly enumerate all possible line positions of
AandBone

- Basic idea: introduce binary variables Xea<g and Xeg<a
which can be efficiently checked

= O(|E|M?) variables, O(|E|M?) constraints

Results so far (2)

{f

Results so far (2)

Results so far (2)

Line-ordering optimization - Line separations

10

Line-ordering optimization - Line separations

1 crossing 2 crossings

10

Line-ordering optimization - Line separations

1 crossing 2 crossings

VS.

10

Line-ordering optimization - Line separations

1 crossing

2 crossings

2 crossings

VS.

2 crossings

10

Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

2 crossings

VS.

2 crossings

10

Line-ordering optimization - Line separations

1 crossing
1 separation

2 crossings
1 separation

2 crossings
0 separations

VS.

2 crossings
0 separations

10

Line-ordering optimization - Line separations (ctd.)

{A,B}| |e’ - Idea: If two lines A, B continue from e to
e L2 e’, set a binary separation variable
§ Xeerpg = 11if they are next to each other in
{A,B,C} e, butnoine’

{C}

1

Line-ordering optimization - Line separations (ctd.)

{C}

+ |ldea: If two lines A, B continue from e to

e’, set a binary separation variable

Xeerpg = 11if they are next to each other in
e, butnoine’

* Add xeera|s to the objective function

1

Line-ordering optimization - Line separations (ctd.)

{A,B}| |e’ - Idea: If two lines A, B continue from e to
e L2 e’, set a binary separation variable
§ Xeerpg = 11if they are next to each other in
{AB,CH— e, butnoine’
{C} * Add xeera|s to the objective function

= Still O(|E|M?) variables, O(|E|M?) constraints

1

Results so far (3)

12

Results so far (3)

12

Line-ordering optimization - Core optimization graph

13

Line-ordering optimization - Core optimization graph

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

- Remove edges (u, v) where u and v are termini for all

L((u, v))

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

+ Remove edges (u, v) where u and v are termini for all

L((u, v))

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

- Remove edges (u, v) where u and v are termini for all

L((u, v))

13

Line-ordering optimization - Core optimization graph

- Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

- Remove edges (u, v) where u and v are termini for all

L((u. v))
+ Cut edges with |L(e)| =

13

Line-ordering optimization - Core optimization graph

{C} {x.c}

{x}

« Combine lines A, B that always occur together into a
single new line (A, B — X)

- Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

+ Remove edges (u, v) where u and v are termini for all

L((u, v))
» Cut edges with [L(e)| =1

13

1. Render parallel lines

14

1. Render parallel lines 2. Free node space

14

1. Render parallel lines 2. Free node space

3. Render inner node connections
14

1. Render parallel lines 2. Free node space

3. Render inner node connections 4. Render stations
14

Results so far (&)

15

Results so far (&)

Results so far (&)

Washington

>
3
H
H
2
3
g
@
K
=
&

€
2 Monroe
&

VJackson

—_— " Harold

1 aQalle .

15

Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rowsxcols GLPK CBC GU x [l
Base 41kx861 = = — 22 4-7

Impr. 1.4kx982 9s 1s 41ms 22 4-7
+5Sep. 19kx1.2k 47m 19s 1.8s 27 0

16

Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rowsxcols GLPK CBC GU x |

Base 41kx 861 = = — 22 47
Impr. 1.4k=x 982 9s 1s 41ms 22 4-7
+Sep. 1.9kx1.2k 47m 19s 1.8s 27 0

ILP solution times for Chicago, on core graph

rowsxcols GLPK CBC GU x [l

Base 8.2kx 266 — 47m 2m 22 4-7
Impr. 394x285 0.8s 0.1s 10ms 22 4-7
+ Sep. 505x338 23s 3.8s 0.3s 27 0

16

- Additional rules for core graph reduction
(work in progress)

17

- Additional rules for core graph reduction
(work in progress)

- Faster construction times of line graph
(current state: 1-15s for our test datasets)

17

- Additional rules for core graph reduction
(work in progress)

- Faster construction times of line graph
(current state: 1-15s for our test datasets)

- Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

17

- Additional rules for core graph reduction
(work in progress)

- Faster construction times of line graph
(current state: 1-15s for our test datasets)

- Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

« Octilinearize line graph for (non-overlay) schematic
metro maps (work in progress)

17

http://loom.informatik.uni-freiburg.de

18

http://loom.informatik.uni-freiburg.de

Line graph construction - Shared segment collapsing

Line graph construction - Shared segment collapsing

+ Repeatedly collapse (segments of) two edges e and f within a
distance d

Line graph construction - Shared segment collapsing

+ Repeatedly collapse (segments of) two edges e and f within a

distance d
« Sweep over some edge e in steps of 10 m, measure distance d of

current pointoneto f

Line graph construction - Shared segment collapsing

. RepeatedAly collapse (segments of) two edges e and f within a
distance d

« Sweep over some edge e in steps of 10 m, measure distance d of
current pointoneto f

- If d < d, start new segment. If not, end current (if open)

Line graph construction - Shared segment collapsing

. RepeatedAly collapse (segments of) two edges e and f within a
distance d

« Sweep over some edge e in steps of 10 m, measure distance d of
current pointoneto f

- If d < d, start new segment. If not, end current (if open)

- Take average between the two "shared segments” on e and f

Line graph construction - Shared segment collapsing

. RepeatedAly collapse (segments of) two edges e and f within a
distance d

« Sweep over some edge e in steps of 10 m, measure distance d of
current pointoneto f

- If d < d, start new segment. If not, end current (if open)

- Take average between the two "shared segments” on e and f

« Add additional non-station nodes at segment boundaries 19

Line graph construction - Shared segment collapsing

v L(esw)= {C,D} Y

. RepeatedAly collapse (segments of) two edges e and f within a
distance d

« Sweep over some edge e in steps of 10 m, measure distance d of
current pointoneto f

- If d < d, start new segment. If not, end current (if open)

- Take average between the two "shared segments” on e and f

« Add additional non-station nodes at segment boundaries 19

Line graph construction - Shared segment collapsing

L(en) = {A B}

u

v L(e34) = {C, D}

. RepeatedAly collapse (segments of) two edges e and f within a
distance d

« Sweep over some edge e in steps of 10 m, measure distance d of
current pointoneto f

- If d < d, start new segment. If not, end current (if open)

- Take average between the two "shared segments” on e and f

« Add additional non-station nodes at segment boundaries 19

Line graph construction - Shared segment collapsing

L(elg) = {A, B}

L(erza) =

(aB,c py |Lles)={C D}

v

. RepeatedAly collapse (segments of) two edges e and f within a
distance d

« Sweep over some edge e in steps of 10 m, measure distance d of
current pointoneto f

- If d < d, start new segment. If not, end current (if open)

- Take average between the two "shared segments” on e and f

« Add additional non-station nodes at segment boundaries 19

Evaluation - Line Ordering

T = number of (consecutive) line swaps necessary to transform
offical map into our map

Off. map Our map

X
Freiburg 7 1
Dallas 3 1
Chicago 26 0 27
Stuttgart 65 5 64

| X

w
N © OO
SR R N

20

Line-ordering optimization - Exhaustive approach

21

Line-ordering optimization - Exhaustive approach

-+ 23 edges

21

Line-ordering optimization - Exhaustive approach

-+ 23 edges

- Each edge e has |L(e)|! possible line
permutations

21

Line-ordering optimization - Exhaustive approach

-+ 23 edges

- Each edge e has |L(e)|! possible line
permutations

- Possible configurations for the graph
on the left: > 2 x 10"

21

Line-ordering optimization - Exhaustive approach

-+ 23 edges

- Each edge e has |L(e)|! possible line
permutations

- Possible configurations for the graph
on the left: > 2 x 10"

= Naive exhaustive search infeasible

21

Baseline ILP - Details

Each line must only be assigned one position:
IL(e)l

Each position must only be assigned once:

Vpe{1,...,IL(e)|}: Z Xelp = 1.

leL(e)
Constraints for ensuring that xeerag = 1if @ crossing occurs:

Xea1 + XeB2 + Xe’a2 + Xe’B1 — Xee’aB < 3
Xea2 + XeB1 + Xe’a1 + Xe’B2 — Xee’aB < 3

...etc

22

Stuttgart map - annotated

L

3 2 e
ot e £
e u
[—r it
e { 5
v . i Kkt r——
2]
[,

s o = —
us A | ‘MM i //ﬁ{;\b"x\ & \ - . \
4 \ -

st
PR—
u
e
e
[
somine anss
e us v
e
=N\
4 @
m”
son s
o o Owswmn

23

Dataset dimensions

texer IS VI |E[|£]
Freiburg 0.7s 74 80 81 5
Dallas 3s 108 117 118
Chicago 13.5s 143 153 154 8
Stuttgart 7.7s 192 219 229 15
Turin 49s 339 398 435 14
New York 3.7s 456 517 548 26

~N
o Ul o &~

24

Core graph dimensions

vl el [£]
Freiburg 20 21 5
Dallas 24 24 7

Chicago 23 24 8
Stuttgart 50 58 15
Turin 91 124 14
New York 110 138 23

o Ul o N

25

Challenges - Detail

Official HERE Google

o

Gonnnd I. Avoid line overlaps

Challenges - Detail

Official HERE Google

I. Avoid line overlaps

Eoll

Il. Match line orderings
atre

Challenges - Detail

Official HERE Google

I. Avoid line overlaps

Il. Match line orderings

[ll. Clearly indicate line
continuations

26

