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Line graph construction

Line graph:
• Undirected labeled graph
G = (V, E, L)

• Edge labels are subsets of
the network lines L
(L(e) ⊆ L)

• Nodes are usually stations

u

v

Example: L = { }, L ((u, v)) = { }
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Line graph construction - Input data
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Line graph construction - Input data

⇒ Map construction problem 4



Line graph construction - Non-station nodes

v
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L(e12) = {A,B}

{C ,D}L(e34) =

v

w

uu′

L(e1′2′3′4′) =

L(e12) = {A,B}

{C ,D}{A,B ,C ,D} L(e34) =
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Results so far (1)
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Line-ordering optimization - Baseline ILP

{A,B}

{A,B}

1
2

1 2

e

e′ • For each edge e, line l and position p,
introduce variable xelp ∈ 0, 1

• Example: xeA1 and xeA2 for line A
• Constraint: all xelp have to sum up to 1 for
a single line l on a single edge e, and for a
single p on a single edge

• Standard crossing: Objective variable
xee′AB which is 1 if pe(A) < pe(B) and
pe′(A) > pe′(B), or else 0

• Split crossing: Objective variable xee′e′′AB
which is 1 if pe(A) < pe(B), or else 0
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Line-ordering optimization - Improved ILP

• Observation: we only need to check if pe(A) < pe(B) (or
vice versa) for both types of crossings

• But we explicitly enumerate all possible line positions of
A and B on e

• Basic idea: introduce binary variables xeA<B and xeB<A
which can be efficiently checked
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Results so far (2)
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Line-ordering optimization - Line separations
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Line-ordering optimization - Line separations (ctd.)

e′

{A,B,C}

1
2

e

3

{A,B}

1 2

1
{C}

• Idea: If two lines A,B continue from e to
e′, set a binary separation variable
xee′A‖B = 1 if they are next to each other in
e, but no in e′

• Add xee′A‖B to the objective function

⇒ Still O(|E|M2) variables, O(|E|M2) constraints
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Results so far (3)
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Line-ordering optimization - Core optimization graph

1
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{C}
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{E}
{F}

{E, F}

{E, F}

{D}

{G}

• Combine lines A,B that always occur together into a
single new line (A,B→ X)

• Delete nodes with degree 2 if adjacent edges have the
same lines and merge these edges

• Remove edges (u, v) where u and v are termini for all
L((u, v))

• Cut edges with |L(e)| = 1
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Rendering

1. Render parallel lines
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Rendering

1. Render parallel lines 2. Free node space

3. Render inner node connections 4. Render stations
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Results so far (4)
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Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rows×cols GLPK CBC GU × ||
Base 41k×861 — — — 22 4-7
Impr. 1.4k×982 9s 1s 41ms 22 4-7
+ Sep. 1.9k×1.2k 47m 19s 1.8s 27 0

ILP solution times for Chicago, on core graph

rows×cols GLPK CBC GU × ||
Base 8.2k×266 — 47m 2m 22 4-7
Impr. 394×285 0.8s 0.1s 10ms 22 4-7
+ Sep. 505×338 23s 3.8s 0.3s 27 0

16



Evaluation - ILP Solution times

ILP solution times for Chicago, on baseline graph

rows×cols GLPK CBC GU × ||
Base 41k×861 — — — 22 4-7
Impr. 1.4k×982 9s 1s 41ms 22 4-7
+ Sep. 1.9k×1.2k 47m 19s 1.8s 27 0

ILP solution times for Chicago, on core graph

rows×cols GLPK CBC GU × ||
Base 8.2k×266 — 47m 2m 22 4-7
Impr. 394×285 0.8s 0.1s 10ms 22 4-7
+ Sep. 505×338 23s 3.8s 0.3s 27 0

16



Future work

• Additional rules for core graph reduction
(work in progress)

• Faster construction times of line graph
(current state: 1-15 s for our test datasets)

• Other sources for input line graph than schedule data
(e.g. OSM, work in progress)

• Octilinearize line graph for (non-overlay) schematic
metro maps (work in progress)
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Thank you!

http://loom.informatik.uni-freiburg.de
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Line graph construction - Shared segment collapsing

v

w

u

L(e1) = {A}
L(e2) = {B}

L(e3) = {D}

L(e4) = {C}

• Repeatedly collapse (segments of) two edges e and f within a
distance d̂

• Sweep over some edge e in steps of 10m, measure distance d of
current point on e to f

• If d < d̂, start new segment. If not, end current (if open)
• Take average between the two ”shared segments” on e and f
• Add additional non-station nodes at segment boundaries

19
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Line graph construction - Shared segment collapsing
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Evaluation - Line Ordering

T = number of (consecutive) line swaps necessary to transform
offical map into our map

Off. map Our map

× || × || T
Freiburg 7 1 7 0 2
Dallas 3 1 3 0 1
Chicago 26 0 27 0 1
Stuttgart 65 5 64 2 4
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Line-ordering optimization - Exhaustive approach

• 23 edges
• Each edge e has |L(e)|! possible line
permutations

• Possible configurations for the graph
on the left: > 2× 1017

⇒ Naive exhaustive search infeasible
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Baseline ILP - Details

Each line must only be assigned one position:

∀l ∈ L(e) :
|L(e)|
∑

p=1
xelp = 1.

Each position must only be assigned once:

∀p ∈ {1, ..., |L (e)|} :
∑

l∈L(e)
xelp = 1.

Constraints for ensuring that xee′AB = 1 if a crossing occurs:

xeA1 + xeB2 + xe′A2 + xe′B1 − xee′AB ≤ 3
xeA2 + xeB1 + xe′A1 + xe′B2 − xee′AB ≤ 3

...etc

22



Stuttgart map - annotated
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Dataset dimensions

textr |S | |V| |E| |L| M
Freiburg 0.7s 74 80 81 5 4
Dallas 3s 108 117 118 7 4
Chicago 13.5s 143 153 154 8 6
Stuttgart 7.7s 192 219 229 15 8
Turin 4.9s 339 398 435 14 5
New York 3.7s 456 517 548 26 9
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Core graph dimensions

|V| |E| |L| M
Freiburg 20 21 5 4
Dallas 24 24 7 4
Chicago 23 24 8 6
Stuttgart 50 58 15 8
Turin 91 124 14 5
New York 110 138 23 9
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Challenges - Detail

Official HERE Google

I. Avoid line overlaps

II. Match line orderings

III. Clearly indicate line
continuations
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