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ABSTRACT
We present LOOM (Line-Ordering Optimized Maps), a fully auto-

matic generator of geographically accurate transit maps. The input

to LOOM is data about the lines of a given transit network, namely

for each line, the sequence of stations it serves and the geograph-

ical course the vehicles of this line take. We parse this data from

GTFS, the prevailing standard for public transit data. LOOM pro-

ceeds in three stages: (1) construct a so-called line graph, where

edges correspond to segments of the network with the same set of

lines following the same course; (2) construct an ILP that yields a

line ordering for each edge which minimizes the total number of

line crossings and line separations; (3) based on the line graph and

the ILP solution, draw the map. As a naive ILP formulation is too

demanding, we derive a new custom-tailored formulation which

requires significantly fewer constraints. Furthermore, we present

engineering techniques which use structural properties of the line

graph to further reduce the ILP size. For the subway network of

New York, we can reduce the number of constraints from 229,000

in the naive ILP formulation to about 3,700 with our techniques, en-

abling solution times of less than a second. Since our maps respect

the geography of the transit network, they can be used for tiles and

overlays in typical map services. Previous research work either did

not take the geographical course of the lines into account, or was

concerned with schematic maps without optimizing line crossings

or line separations.

CCS CONCEPTS
• Human-centered computing → Graph drawings; • Theory
of computation → Integer programming;
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Figure 1: Automatically generated map of the NYC subway.
Express lines have been uncollapsed to artificially increase
the line graph complexity.

1 INTRODUCTION
Cities with a public transit network usually have a map which

illustrates the network and which is posted at all stations. Many

map services also feature a transit layer where all lines and stations

in an area are displayed. Such a map should satisfy the following

main criteria:

(1) It should depict the topology of the network: which transit

lines are offered, which stations do they serve in which order, and

which transfers are possible.

(2) It should be neatly arranged and esthetically pleasing.

(3) It should reflect the geographical course of the lines, at least to

some extent.

https://doi.org/10.1145/3274895.3274955
https://doi.org/10.1145/3274895.3274955
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Figure 2: Left: Excerpt from a line graph which LOOM constructed from the GTFS data for the 2015 light rail network of the
city of Stuttgart. Each edge corresponds to a segment of the network where the same set of lines takes the same geographical
course. Segment boundaries are often station nodes (large) but may also be intermediate nodes (small). The line ids for each
segment are given in ascending order. LOOM’s central optimization step computes a line ordering for each segment. This
determines how the lines are drawn in the map, and where line crossings and separations occur. Right: The corresponding
excerpt from LOOM’s transit map.

So far, such maps have been designed and drawn by hand. Concern-

ing (3), the designers usually take some liberty, either to make the

map fit into a certain format or to simplify the layout, or both.

The goal of this paper is to produce transit maps fully automati-

cally, adhering to (3) rather strictly: within a given tolerance, the

lines on the map should be drawn according to their geographical

course. This gives rise to several algorithmic challenges; in partic-

ular because the geographical course of some lines may overlap

partially. These lines should then of course not be rendered on top

of each other as this would obfuscate the visibility. Instead, they

should be drawn next to each other. This requires to first iden-

tify overlapping parts and then to choose the line ordering in the

rendered map. A bad ordering can lead to many unnecessary line

crossings. Hence our goal is to find orderings that minimize these

undesired crossings. As the number of possible orderings exceeds

an octillion even for the transit network of medium sized cities,

we need to develop efficient methods to find the best ordering in

reasonable time.

1.1 Overview and Definitions
LOOM proceeds in three stages, which we briefly describe in the

following along with some notation and terminology that will be

used throughout the paper. (1) given the line data, construct the

line graph; (2) compute an optimal line ordering for each edge via

an ILP; (3) from the line graph and the line ordering, render the

map. Each stage is described in more detail in one of the following

sections.

Input: The input to LOOM is a set S of stations and a set L of lines.

Each station has a geographical location. Each line has a unique ID

(in our examples: numbers), and information about the sequence of

stations it serves, and the geographical course between them. This

data is usually provided as part of a network’s GTFS feed.

Line graph construction (Sect. 2): In its first stage, LOOM com-

putes a line graph. This is an undirected labeled graphG = (V ,E,L),
where V ⊇ S (each station is a node, but there may be additional

nodes), E is the set of edges, and each e ∈ E is labeled with a subset

L(e ) ⊆ L of the lines. Intuitively, each edge corresponds to a seg-

ment of the network, where the same set of lines takes the same

geographical course (within a certain tolerance), and there is a node

wherever such a set of lines splits up in different directions. Fig. 2,

left shows the line graph for an excerpt from the light rail network

of Stuttgart. We will see that the complexity of our algorithms in

Sect. 3 depends onM = maxe ∈E |L(e ) |, the maximal number of lines

per segment. The line graph construction is described in Sect. 2.

Line ordering optimization (Sect. 3): In its second stage, LOOM

computes an ordering of L(e ) for each e ∈ E. This ordering deter-

mines where line crossings and separations occur, and is hence

critical for the final map appearance. Previous research referred

to the problem of minimizing crossings as the metro-line crossing

minimization problem (MLCM), see Sect 1.3. We formulate two

strongly related problems: the metro-line node crossing minimiza-

tion problem (MLNCM), and a variant with a line separation penalty

(MLNCM-S). We formulate a concise Integer Linear Program (ILP)

to solve instances of these problems.

Rendering (Sect. 5): In its third stage, LOOM draws the transit

map based on the line graph from stage 1 and the ordering from

stage 2. Each station node v is drawn as a polygon, where each side

of the polygon corresponds to exactly one incident edge of v . We

call this side the node front of that edge at that node. The node front
for an edge e has |L(e ) | so-called ports (Fig. 4). Drawing the map

then amounts to connecting the ports (according to the ordering
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computed in stage 2) and drawing the station polygons. Fig. 2, right

shows a rendered transit map after layout optimization.

1.2 Contributions
• We present a new automatic map generator, called LOOM (Line-

Ordering Optimized Maps), for geographically accurate transit

maps. The input is basic schedule data as provided in a GTFS feed.

This is, as far as we know, the first research paper on this problem

in its entirety. Previous research work considers only parts of this

problem (oblivious either to the geographical course or to the order

of the lines) and does not yield maps that can be used for tiles and

overlays in typical map services.

• We describe a line-sweeping approach to extract the line graph

from a set of (partially overlapping) vehicle trips as they occur in

real-world schedule data.

• We phrase the crossing minimization problem in a novel way

and provide an ILP formulation to solve it. Our new model resolves

some issues with previous models, in particular, the restricted ap-

plicability of some algorithms to planar graphs, and the necessity

of artificial grouping of crossings (which happens naturally with

our approach).

• As a naive ILP formulation turns out to lead to impractically

many constraints, we derive an alternative formulation yielding

significantly smaller ILPs in theory and practice.

• We describe engineering techniques which allow to further sim-

plify the line graph and hence lead to even smaller ILPs without

compromising optimality of the final result.

• We evaluate LOOM on the transit network of six cities around

the world. For each city, line graph construction, ILP solution and

rendering together take less than 15 seconds.

• Our maps are publicly available online
1
.

1.3 Related Work
1.3.1 Map Construction and Edge Bundling. The first step in our

pipeline – the line graph construction – is closely related to map

construction and edge bundling.

The goal ofmap construction algorithms is producing the graph of

an underlying (street) network from vehicle trajectory data. There

is a variety of map construction algorithms described in the litera-

ture; see [1] for an overview. For example, in [2], an incremental

approach is used which starts with an empty map and incrementally

updates the network graph with new trajectories. New trajecto-

ries are partially map-matched to existing graph segments with a

global distance threshold and their geometries updated accordingly,

while unmatched parts introduce new edges (and thus intersection

nodes). The main difference between existing work (on street net-

works) and our approach is that our input data already represents

a multigraph (with stations as intersection nodes) and is usually

quite sparse.

The goal of edge bundling in general networks is to group edges

in order to save ink when drawing the network. Usually, the em-

bedding of the edges is not fixed a priori but can be chosen such

that many bundles occur (possibly respecting side constraints, like

edges being short). For example, in [13] a force-directed heuristic

was described where edges attract other edges to form bundles

1
http://loom.informatik.uni-freiburg.de

automatically. For our problem, we are not allowed to embed edges

arbitrarily as we want to maintain the geographical course of the

vehicle trajectories. In [17], edge bundling in the context of metro

line map layout was discussed, also considering orderings within

the bundles to minimize crossings. But for their approach to work,

the underlying graph has to fulfill a set of restrictive properties. For

example, the so called path terminal property demands that a node

in the graph cannot be an endpoint of one line and an intermediate

node of another line at the same time. But this structure regularly

appears in real-world datasets. For example, a local train might end

at the main station of a town, while a long-distance train might have

this station only as an intermediate stop. Also self-intersections

are forbidden which excludes instances with cyclic subway lines.

With these additional properties required in [17], the problem be-

comes significantly easier but is no longer compatible with most

real-world datasets. In contrast, our line graph construction and

subsequent crossing minimization algorithms are compatible with

real-world inputs of arbitrary structure.

1.3.2 Crossing Minimization. Previous research on the metro-

line crossing minimization problem (MLCM), as briefly summarized

in the following, typically comes without experimental evaluations

and without the production of actual maps. The problem of mini-

mizing intra-edge crossings in transit maps was introduced in [7],

with the premises of not hiding crossings under station markers for

aesthetic reasons. A polynomial time algorithm for the special case

of optimizing the layout along a single edge was described. The

term MLCM was coined in [6]. In that paper, optimal layouts for

path and tree networks were investigated but arbitrary graphs were

left as an open problem. In [3, 4, 15], several variants of MLCM

were defined and efficient algorithms were presented for some of

these variants, often with a restriction to planar graphs. In [5], an

ILP formulation for MLCM under the periphery condition (lines

ending in a station must be drawn at the left- or rightmost posi-

tion in incident edges, see Sect. 3.3) was introduced. The resulting

ILP was shown to have a size of O ( |L|2 |E |) with L being the set of

lines and E the set of edges in the derived graph. In [11], it was

observed that crossings scattered along a single edge are also not

visually pleasing, and hence crossings were grouped into so-called

block crossings. The problem of minimizing the number of block

crossings was shown to be NP-hard on simple graphs just like the

original MLCM problem [10]. Our adapted MLNCM problem has

the same complexity as MLCM and is hence also NP-hard.

1.3.3 Schematic Metro Maps. Another line of research focuses

on drawing schematic metro maps, for example, by restricting the

representation of transit lines to octilinear polylines [14] or Bézier

Curves [9]. See [16] for a recent survey on automated metro map

layout methods. These approaches strongly abstract from the geo-

graphical course of the lines (and often also from station positions),

and the minimization of line crossings or separations is not part of

the problem. In particular, the resulting maps cannot be used for

tiles or overlays in typical map services.

There is also some applied work on transit maps, but without

publications of the details. One approach that seems to use a model

similar to ours was described by Anton Dubreau in a blog post [8]

although without a detailed discussion of their method. As far as

http://loom.informatik.uni-freiburg.de
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Figure 3: Left: Input multigraph G0 created from schedule
data (GTFS). Nodes represent stations, and each edge holds
a single line that occurs between two stations. There may
be many overlapping edge segments. Right: Line graph G
constructed from G0 by repeatedly combining shared edge
segments into a single, new edge. The overlapping segments
have been collapsed, and a new node u ′ was introduced at
the segment boundaries.

we are aware there are no papers on MLCM that deal with real

public transit data.

2 LINE GRAPH CONSTRUCTION
This section describes stage 1 of LOOM: given line data, construct

the line graph. We assume that the data is given in the GTFS format

[12]. In GTFS, each trip (that is, a concrete tour of a vehicle of

a line) is given explicitly and the graph G0
formed by all station

coordinates and the trips between them has many overlapping

edges that may (partially) share the same path (Fig. 3, left).

Let e1, e2 be two edges inG
0
with geometrical paths τ1 and τ2. For

each τ , we define a parametrization pτ (t ) : [0, 1] 7→ R2 which maps

the progress t to a point on τ (e.g., if the length of τ is 10 meters,

pτ (
1

2
) returns the point we would reach after travelling on τ for 5

meters). We call (t , t ′), t ′ ≥ t a segment of e . To decide whether a

segment (t1, t1
′) of e1 is similar to a segment (t2, t2

′) of e2, we use
a simple approximation. For a distance threshold

ˆd (e1, e2), we say
((t1, t2) , (t1

′, t2 ′)) is a shared segment of e1 and e2 if

∀u ∈ [t1, t1 ′] : ∃u ′ ∈ [t2, t2 ′] : pτ1 (u) − pτ2 (u
′) ≤ ˆd (e1, e2), (1)

that is, if for every point pτ1 (u) on τ1, there exists a corresponding

point pτ2 (u
′) on τ2 within the threshold distance

ˆd (e1, e2).
As we want to avoid overlapping lines during rendering, we

have to chose
ˆd (e1, e2) in such a way that there will be enough

space between the edges in the final line graph. Letw be the desired

width of a single line in the rendered map. The definition

ˆd (e1, e2) =
w |L(e1) | +w |L(e2) |

2

(2)

satisfies this, as we need w |L(e ) |/2 map units of space on either

side of e to render all l ∈ L(e ) with widthw (see Sect. 5).

We transform G0
into a line graph G by repeatedly combining a

shared segment between two edges e1 = {u1,v1} and e2 = {u2,v2}
into a single new edge e12 until no more shared segments can be

found. The path τ12 of e12 is averaged from the shared segments

on e1 and e2, and we set L(e12) = L(e1) ∪ L(e2) (Fig. 3, right). Two
new non-station nodes u ′ and v ′ which mark the beginning and

end of the shared segment are introduced and split e1 and e2 such
that e1 = {u1,u ′}, e2 = {u2,u ′}, e ′

1
= {v ′,v1}, e ′

2
= {v ′,v2} and

{A,B,C}

{A,B}

{D}

{C,D}

{A,B,C}

{B,D}

{A,C}

{D}
w w

1
2
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1
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Figure 4: Example instances. Both station polygons have 4
node fronts, each corresponding to an incident edge. Each
node front has exactly one port (1, 2, ...) for each line travers-
ing through its edge. Gray lines depict possible inner node
connections. Left: A,B extend from e to e ′ over w and may
introduce a crossing, if the position of A is smaller than the
position of B in e, but not in e ′ (or vice versa). Right: a cross-
ing between A and B only depends on the line ordering in e,
but not on the orderings in e ′ and e ′′.

e12 = {u ′,v ′}. Note that the new non-station nodes v ′ and u ′ will
always have a degree of 3. After each iteration, we obtain from

Gi
a new graph Gi+1

. If the distance between a node v ′ added to

Gi+1
and an existing node v in Gi

is smaller than
ˆd (e1, e2) after

collapsing an e1 and e2, we merge v and v ′ to avoid cluttering the

graph with many start and end nodes of shared segments.

To find the shared segments between e1 and e2, we sweep over τ1
in n steps of some ∆t , measuring the distance d between pτ1 (i · ∆t )
and τ2 at each i < n along the way. If d ≤ ˆd (e1, e2), we start a new

shared segment. If d > ˆd (e1, e2) and a shared segment is open, we

close it. For our test datasets, we found that a ∆t of 10 meters is

usually small enough to achieve satisfying results.

The algorithm can be made more robust against outliers by

allowing d to exceed
ˆd (e1, e2) for a number of k steps. It can be sped

up by indexing every linear segment of every path in a geometric

index. Just like in previous work on incremental map construction,

the results of our algorithm depend on the order in which the

segments are combined. For our evaluation in Sect. 6, we used a

random order.

3 LINE ORDERING OPTIMIZATION
This section describes stage 2 of LOOM, namely how to solve ML-

NCM: given a line graph, compute an ordering of the lines for each

edge such that the total number of crossings in the final map is

minimized. Contrary to the classic MLCM problem, which imposes

a right and left ordering on each L(e ) and allows crossings to occur
anywhere on e , MLNCM only imposes a single ordering on each

edge and restricts crossing events to nodes. This will prove advan-

tageous during rendering, see Sect. 5. As the set of stations S is

only a subset of V in our model (Sect. 1.1), we can still avoid line

crossings in them.

3.1 Baseline ILP
For each edge e , there are |L(e ) |! many orderings, therefore the

total number of combinations for the whole graph is immense. We

formulate an ILP to find an optimal solution. We first define a base-

line ILP which explicitly considers line crossings and has O ( |E |M2)
variables and O ( |E |M6) constraints. We then define an improved
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ILP with only O ( |E |M2) constraints and which also considers line

separations (MLNCM-S).

For every edge e ∈ E, we define |L (e ) |2 decision variables xelp ∈
{0, 1} where e indicates the edge, l ∈ L(e ) indicates the line, and
p = 1, ..., |L (e ) | indicates the position of the line in the edge. We

want to enforce xelp = 1 when line l is assigned to position p, and
0 otherwise. This can be realized with the following constraints:

∀l ∈ L(e ) :
∑ |L(e ) |

p=1
xelp = 1. (3)

To ensure that exactly one line is assigned to each position, we

need the following additional constraints:

∀p ∈ {1, ..., |L (e ) |} :
∑

l ∈L(e ) xelp = 1. (4)

Let A,B be two lines belonging to an edge e = {v,w } and both

extend overw . We distinguish two cases: either A and B continue

along the same adjacent edge e ′ (Fig. 4, left), or they continue along
different edges e ′ and e ′′ (Fig. 4, right).

In the first case, A and B induce a crossing if the position of A is

smaller than the position of B in L(e ), so pe (A) < pe (B), but vice
versa in L(e ′). We introduce the decision variable xee ′AB ∈ {0, 1},
which should be 1 in case a crossing is induced and 0 otherwise.

To enforce this, we create one constraint per possible crossing. For

example, a crossingwould occur if we havepe (A) = 1 andpe (B) = 2

as well as pe ′ (A) = 2 and pe ′ (B) = 1. We encode this as follows:

xeA1 + xeB2 + xe ′A2 + xe ′B1 − xee ′AB ≤ 3. (5)

In case the crossing occurs, the first four variables are all set to 1.

Hence their sum is 4 and the only way to fulfill the ≤ 3 constraint is

to set xee ′AB to 1. In the example given in Fig. 4, six such constraints

are necessary to account for all possible crossings of the lines A
and B at nodew . The objective function of the ILP then minimizes

the sum over all variables xee ′AB .
In the second case, the actual positions of A and B in e ′ and e ′′

do not matter, but just the order of e ′ and e ′′. We introduce a split

crossing decision variable xee ′e ′′AB ∈ {0, 1} and constraints of the

form xeAi + xeBj − xee ′e ′′AB ≤ 1 for all orders of A and B at e with
i < j as in that case a crossing would occur. We add xee ′e ′′AB to the

objective function.

3.1.1 ILP size. For mapping lines to positions at each edge we

need at most |E |M2
variables and 2|E |M constraints. To minimize

crossings, we have to consider at mostM2
pairs of lines per edge,

and introduce a decision variable for each such pair. That makes at

most |E |M2
additional variables, which all appear in the objective

function. Most constraints are introduced when two lines continue

over a node in the same direction. In that case, we create no more

than

(M
2

)
2

< M4
constraints per line pair per edge, so at most |E |M6

in total. In summary, we have O ( |E |M2) variables and O ( |E |M6)
constraints.

3.2 Improved ILP Formulation
The O ( |E |M2) variables in the baseline ILP seem to be reasonable,

as indeed Ω( |E |M2) crossings could occur. But the O ( |E |M6) con-
straints are due to enumerating all possible position inversions

explicitly. If we could check the statement position of A on e is
smaller than the position of B efficiently, the number of constraints

could be reduced. To have such an oracle, we first modify the line-

position assignment constraints.

3.2.1 Alternative line-position assignment. Instead of a decision

variable encoding the exact position of a line, we now use xel ≤p ∈
{0, 1} which is 1 if the position of l in e is ≤ p and 0 otherwise. To

enforce a unique position, we use the constraints:

∀l ∈ L(e ) ∀p ∈ {1, ..., |L (e ) | − 1} : xel ≤p ≤ xel ≤p+1. (6)

This ensures that the sequence can only switch from 0 to 1, exactly

once. To make sure that at some point a 1 appears and that each

position is occupied by exactly one line, we additionally introduce

the following constraints:

∀p ∈ {1, ..., |L (e ) |} :
∑

l ∈L(e ) xel ≤p = p. (7)

So for exactly one line l , xel ≤1 = 1, for exactly two lines l ′ and l ′′,
xel ′≤2 = xel ′′≤2 = 1 (where for one l ∈ {l ′, l ′′}, xel ≤1 = 1) and so

on.

3.2.2 Crossing Oracle. We reconsider the example in Fig. 4, left.

Before, we enumerated all possible positions which induce a cross-

ing for A,B at the transition from e to e ′. But it would be sufficient

to have variables which tell us whether the position of A is smaller

than the position of B in e , and the same for e ′, and then com-

pare those variables. For a line pair (A,B) on edge e we call the

respective variables xeB<A,xeA<B ∈ {0, 1}. To get the desired value
assignments, we add the following constraints:∑ |L(e ) |

p=1
xeA≤p −

∑
p
xeB≤p + xeB<AM ≥ 0 (8)

xeB<A + xeA<B = 1. (9)

The equality constraints make sure that not both xeA<B and xeB<A
can be 1. If the position of A is smaller than the position of B, then
more of the variables corresponding to A are 1, and hence the sum

for A is higher. So if we subtract the sum for B from the sum for

A and the result is ≥ 0, we know the position of A is smaller and

xeB<A can be 0. Otherwise, the difference is negative, and we need

to set xeB<A to 1 to fulfill the inequality. It is then indeed fulfilled

for sure as the position gap can never exceed the number of lines

per edge.

To decide if there is a crossing, we would again like to have a

decision variable xee ′AB ∈ {0, 1} which is 1 in case of a crossing

and 0 otherwise. The constraint

|xeA<B − xe ′A<B | − xee ′AB ≤ 0 (10)

realizes this, as either xeA<B = xe ′A<B (both 0 or both 1) and

then xee ′AB can be 0, or they are not equal and hence the absolute

value of their difference is 1, enforcing xee ′AB = 1. As absolute

value computation cannot be part of an ILP we use the following

equivalent standard replacement:

xeA<B − xe ′A<B − xee ′AB ≤ 0 (11)

−xeA<B + xe ′A<B − xee ′AB ≤ 0. (12)

If the values are equal, nothing changes in the argumentation. If

the values are unequal, either (11) or (12) will produce a 1 as the

sum of the first two terms, enforcing xee ′AB = 1 as desired.
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Figure 5: Minimized crossings in the left example, but the
right example better indicates line pairings.

Figure 6: Both orderings have 2 crossings, but in the right
example they are done in one pass.

3.2.3 Complexity of the improved ILP. For the line-position as-

signment, we need at most |E |M2
variables and constraints just like

before. For counting the crossings, we need a constant number of

new variables and constraints per pair of lines per edge. Hence the

total number of variables and constraints in the improved ILP is

O ( |E |M2).

3.3 Preventing Line Partner Separation
So far, we have only considered the number of crossings. Another

relevant criterion for esthetic appeal is that “partnering” lines are

drawn side by side. Fig. 5 and Fig. 6 provide two examples. We

address this by punishing line separations and call this extension to

our original MLNCM problem MLNCM-S. For two adjacent edges

e and e ′ and a line pair (A,B) that continues from e to e ′, if A and

B are placed alongside in e but not in e ′, we want to add a penalty

to the objective function. For this, we add a variable xeA ∥B ∈ {0, 1}
which should be 0 if

��pe (A) − pe (B)�� = 1 (if they are partners in

e) and 1 otherwise. As xeA ∥B = xeB ∥A, we define a set U (e ) of
unique line pairs such that (l , l ′) ∈ U (e ) ⇒ (l ′, l ) < U (e ). We add

the following constraints per line pair (A,B) inU (e ):∑ |L(e ) |
p=1

xeA≤p −
∑

p
xeB≤p − xeA ∥BM ≤ 1 (13)∑ |L(e ) |

p=1
xeB≤p −

∑
p
xeA≤p − xeA ∥BM ≤ 1. (14)

If |pe (A) − pe (B) | = 1, then the sum difference is ≤ 1 and xeA ∥B
can be 0. If |pe (A) − pe (B) | > 1, then either (13) or (14) enforce

xeA ∥B = 1. To prevent the trivial solution where xeA ∥B is always

1, we add the following constraint per edge e:∑
(l,l ′)∈U (e )

xel ∥l ′ ≤
(|L (e ) |

2

)
− |L (e ) | − 1, (15)

as there are

( |L(e ) |
2

)
line pairs (l , l ′) ∈ U (e ) of which |L (e ) | − 1 are

next to each other.

Like in Sect. 3.2, we add a decision variable xee ′A ∥B to the objec-

tive function that should be 1 if A and B are separated between e
and e ′ and 0 otherwise:

xeA ∥B − xe ′A∥B − xee ′A∥B ≤ 0 (16)

−xeA ∥B + xe ′A∥B − xee ′A∥B ≤ 0. (17)

As we only add 1 constraint per edge and a constant number

of constraints and variables per line pair in each edge, the total

number of variables and constraints remains O ( |E |M2).

3.3.1 Periphery Condition. Interestingly, punishing line sepa-

rations also addresses a special case of the periphery condition

introduced in [5]. In general, this condition holds if lines ending

in a station are always drawn at the left- or rightmost position

in each incident edge. For nodes with degree ≤ 2, the periphery

condition is trivially ensured in MLNCM-S (Fig. 7, left). For other

nodes, however, it is not guaranteed (Fig. 7, right).

3.4 Placement of Crossings or Separations
The placement of crossings or separations may be fine-tuned by

adding node-based weighting factors w× (v ) (for crossings) and
w ∥ (v ) (for separations) to the objective function to prefer nodes or

to break ties. For example,w× (v ) may depend on the node degree.

As described above, we especially want to prevent crossings

or separations in station nodes. This can be achieved by adding

constant global weighting factorswS× andwS∥ to each xee ′l l ′ and
xee ′l ∥l ′ in the objective function if l and l ′ continue over a node
vs ∈ S. These factors have to be chosen high enough so that a

crossing or separation in any other node v < S is never more

expensive than invs . As allw× (v ) andw ∥ (v ) appear as coefficients

in the objective function, they have to be invariant to the actual line

orderings. We can thus determine the maximum possible costs ŵ×
and ŵ ∥ prior to optimization and choosewS× = ŵ× andwS∥ = ŵ ∥ .

4 CORE GRAPH REDUCTION
It is possible to further simplify the optimization problem. In this

section, we describe a set of transformations that may be applied

to the line graph without affecting the global optimality of the

line ordering and thus the ILP solution. In our experiments, these

transformations reduced the size of the resulting ILPs by a factor

between 2 and 4 and led to significantly lower solution times (see

Sect. 6). We first prove Lemmata 4.1 - 4.3 and use them to derive a

set of pruning and cutting rules.

Lemma 4.1. If for some set B = {A,B,C, ...} ⊆ L it holds for all
l ∈ B, e ∈ E : l ∈ L(e ) ⇒ B ⊆ L(e ), then it always exists an optimal
ordering in which A,B,C, ... are bundled next to each other with a
fixed, global ordering.

Proof. Let L ∈ B be the line that induces the minimal number

of crossings and separations for some solution σ . Since all l ∈ B
take the exact same path through the network, a solution can only

be better than or equal to σ if it bundles all l , L alongside L. □

Figure 7: Left: Periphery condition guaranteed by separation
penalty. Right: Periphery condition not guaranteed by sepa-
ration penalty.
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Figure 8: Left: line graph G with 7 lines. Middle: core graph of G after applying pruning rules, {A,B} was collapsed into {X }.
Right: ordering-relevant connected components of G after applying cutting rules.

Lemma 4.2. Given an optimal ordering for each L(e ). We say a
node v belongs toW if deg(v ) = 2 and for its adjacent edges e and
e ′ the set of lines L(e ) is equal to L(e ′). A crossing or a separation in
some v ∈W can always be moved from v to a node v ′ <W without
negatively affecting optimality.

Proof. We set L∗ = L(e ) = L(e ′) and first consider crossings.

There are two possible cases: (1) all l ∈ L∗ always occur together
in each edge. Then Lemma 4.1 holds, and the optimal ordering of

L(e ) is the same as of L(e ′), inhibiting any crossings in v . We can

thus ignore this case. (2) Lemma 4.1 does not hold and the lines

in L∗ separate in some node v ′ , v . Then they either diverge into

separate edges at v ′, or a subset of them ends in v ′. If they diverge,

the degree ofv ′ has to be at least 3, implicatingv ′ <W . If some (not

all) of them end in v ′, then v ′ has to be adjacent to at least 2 edges

e, e ′ with L(e ) , L(e ′), again implicating v ′ < W . Such a v ′ will
thus indeed always exist. Under a uniform crossing penalty, we can

trivially move the crossing fromv tov ′ without affecting optimality.

Under the penalty described in Sect. 3.4, optimality will also not be

affected negatively, because deg(v ) is always 2, implying that v is a

station (Sect. 2). The same argument holds for line separations. □

Lemma 4.3. If for some edge e all l ∈ L(e ) end in a node v or
|L(e ) | = 1, the ordering of L(e ) will not affect the number of orderings
or separations in v .

Proof. In the first case, no l ∈ L(e ) extends over v , so they

cannot introduce any crossing or separation. In the second case, all

orderings of L(e ) are equivalent (there is only one). □

4.1 Pruning Rules
Using the lemmata from above, we may simplify the input line

graph with the following pruning rules:

(1) delete each nodev with degree 2 and L(e ) = L(e ′), and combine

the adjacent edges e = {u,v}, e ′ = {v,w } into a single new edge

ee ′ = {u,w } with L(ee ′) = L(e ) = L(e ′) (Lemma 4.2).

(2) collapse lines that always occur together into a single new line

k (Lemma 4.1). Weight crossings with k by the number of lines it

combines to avoid distorting penalties.

(3) remove each edge e = {u,v} where u and v are termini for all

l ∈ L(e ) (Lemma 4.3).

We call the resulting graph the core graph of G. Fig. 8, middle

gives an example of a core graph after applying pruning rules 1− 3.

4.2 Cutting Rules
The core graph may then be further broken down into ordering-

relevant connected components using the cutting rules below. The

components can then be optimized separately and in parallel (Fig. 8,

right).

(1) cut each edge e = {u,v} with |L (e ) | = 1 into two edges e ′ =
{u,v ′} and e ′′ = {v ′′,v} (Lemma 4.3).

(2) replace each edge e = {u,v} where v has a degree > 1 and is a

terminus node for each l ∈ L(e ) with an edge e ′ = {u,v ′} where v ′
is only connected to e ′ (Lemma 4.3).

5 RENDERING
This section describes stage 3 of LOOM: given the line graph as

computed in stage 1, and a line ordering for each edge as computed

in stage 2, render the actual map. We split this into four basic steps,

as illustrated in Fig. 9.

In the first step (1), a basic skeleton of the map is rendered. We

make use of the fact that only a single ordering is imposed on

each L(e ) and draw each l ∈ L(e ) by perpendicular offsetting the

segment’s geometry τe by −w |L(e ) | /2 +w (pe (l ) − 1), wherew is

the desired line width. As τe is just a piecewise linear curve, any

method for offsetting (open) polygons may be used. Each drawn

node v now has deg(v ) node fronts (Fig. 9.2). The width of each

(1) (2)

(3) (4)

Figure 9: The four steps of rendering a given line graph: (1)
render ordered lines as edges, (2) free node area, (3) render
inner connections, (4) render station overlays.



SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA Hannah Bast, Patrick Brosi, and Sabine Storandt

Table 1: Line graph dimensions for our testing datasets with
extraction times from GTFS. S are the stations, V the graph
nodes, E the graph edges and L the transit lines. M is the
maximum number of lines per edge.

textr |S| |V | |E | |L| M

Freiburg 0.7s 74 80 81 5 4

Dallas 3s 108 117 118 7 4

Chicago 13.5s 143 153 154 8 6

Stuttgart 7.7s 192 219 229 15 8

Turin 4.9s 339 398 435 14 5

New York 3.7s 456 517 548 26 9

Table 2: Core graph dimensions for our testing datasets after
applying pruning rules.

|V | |E | |L| M

Freiburg 20 21 5 4

Dallas 24 24 7 4

Chicago 23 24 8 6

Stuttgart 50 58 15 8

Turin 91 124 14 5

New York 110 138 23 9

node front depends on the number of lines on the incident edge

and on the the line widthw .

In the next step (2), we make room for the line connections

between these node fronts by expanding them. As a stopping criteria

for this expansion, we simply use a maximum distance from the

node front to its original position.

In a third step (3), the line connections in the node are then

rendered by connecting all port pairs (3). In our experiments, we

used cubic Bézier curves for this, but for schematic maps a circular

arc or even a straight line might be preferable.

In the last step (4), we render the stations. This is trivial for nodes

of degree 1 and 2, but more complicated in large stations with mul-

tiple lines. We found that the buffered node polygon already yields

reasonable results here, although with much potential for improve-

ment. We also experimented with rotating rectangles until the total

sum of the deviations between each node front orientation and the

orientation of the rectangle was minimized. Both approaches can

be seen in Fig. 2.

6 EVALUATION
We tested LOOM on the public transit schedules of six cities in

Europe and the US: Freiburg, Dallas, Chicago, Stuttgart, Turin and

New York. Table 1 provides the dimensions of each dataset and the

time needed to extract the line graph.

For each dataset, we considered two versions of the line graph:

the baseline graph and the core graph. For each graph, we consid-

ered three ILP variants: the baseline ILP (B), the improved ILP (I)

and the improved ILP with added separation penalty (S). For each

ILP, we evaluated three solvers: the GNU Linear Programming Kit

(GLPK), the COIN-OR CBC solver and gurobi (GU). As most of the

datasets (except Turin) still only had one connected component

after applying the splitting rules described in Sect. 4, we did not

evaluate their application.

For each node v , the penalty for a crossing between edge pairs

({A,B} in Fig. 4, left) was 4 · deg(v ), for other crossings ({A,B}
in Fig. 4, right) it was deg(v ). The line separation penalty was

3 · deg(v ). We found that these penalties produced nicer maps than

a uniform penalty. This would imply wS× = 4 · maxv ∈V deg(v )
and wS∥ = 3 · maxv ∈V deg(v ). However, we found that moving

some crossings or separations to stations with a degree greater than

2 yielded better looking results. Hence, crossings in v ∈ S were

punished with wS× if deg(v ) = 2 and otherwise with 3 · deg(v )
(normal crossing) or 12 · deg(v ) (edge-pair crossing). Similarly, in-

station line separations where punished with wS∥ if deg(v ) = 2

and 9 · deg(v ) otherwise. Note that Lemma 4.2 still holds because

we did not change the punishment for degree 2 stations. Also note

that separations were only considered in (S ) and thus depended on

the solver and the input order in (B) and (I ).

6.1 Comparison of ILP Variants
Table 4 shows the results of the ordering optimizations for 4 of our

6 datasets: Chicago, Stuttgart, Turin and New York. Tests were run

on an Intel Core i5-6300Umachine with 4 cores à 2.4 GHz and 12 GB

RAM. The CBC solver was compiled with multithreading support,

and used with the default parameters and threads=4. The GLPK
solver was used with the feasibility pump heuristic (fp_heur=ON),
the proximity search heuristic (ps_heur=ON) and the presolver en-

abled (presolve=ON). We used gurobi with the default parameters.

6.1.1 ILP Solution Times. With our improved ILP (I), the optimal

orderings on the core graph could be found in under 50 milliseconds

with gurobi, and in under 1 second with CBC, on any dataset. If

line separation was also punished (S), the ILP could be solved on

the core graph in under 2.5 seconds with gurobi for any dataset,

and in under 1 minute with CBC. Although the ILPs for (S) were

only slightly larger than for (I), optimization on the core graph took

28 times longer on average with the fastest solver.

6.1.2 Effects of Core Graph Reduction. On the baseline graph,

(B) could not be optimized for all datasets except Turin with gurobi,

and only after core graph reduction was a solution for Stuttgart

and Chicago found in under 12 hours. As expected in Sect. 4, core

graph reduction made the ILPs significantly smaller. On average,

the number of rows decreased by 61 % and the number of columns

by 59 % for (I). For (S), the decrease was 62 % and 60 %, respectively.

With the fastest solver and the improved ILP (I), core graph reduc-

tion lead to speedup by a factor between 4 for Chicago, and 2 for

New York. For (S), this speedup was between 22.4 for Stuttgart, and

2.5 for Turin.

6.2 Comparison to Manually Designed Maps
We also did a manual analysis to evaluate the esthetic quality of our

work. For our datasets Freiburg, Dallas, Chicago and Stuttgart, we

compared our automatically generated maps to the official maps
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Figure 10: Left: Google transit map cutout for Chicago. Center: Same area in our automatically generated map. Right: Official
CTA map for the same area. Note the near-perfect match of the line orderings in the official map and our map.

Table 3: Comparison of the line orderings in our maps and
inmanually designed official maps published by transporta-
tion authorities. For the official maps, we hand-counted the
number of crossings (×) and separations (| |) and calculated
the score in our penalty system. T is the number of line
swaps necessary to transform the line orderings in our map
into those of the official map. Swaps between the same two
lines on consecutive edges were only counted once.

Official map Our map

× || pen. × || pen. T

Freiburg 7 1 132 7 0 96 2

Dallas 3 1 27 3 0 9 1

Chicago 26 0 80 27 0 80 1

Stuttgart 65 5 264 64 2 156 4

published by the respective transit agencies
2
. These maps are usu-

ally highly simplified and only respect the geographical course of a

line to a limited extent. However, they still provide valuable ground

truth for the line orderings computed by our ILP (Sect. 3).

For each official map, we hand-counted the number of line cross-

ings as well as the number of line separations and calculated the

overall score in our penalty system. In addition, we counted the

number of line swapsT necessary to transform the line ordering of

our map into the line ordering of the official map. Line swaps on

multiple consecutive edges were only counted once. Fig. 10 gives

an example of that: although we have to swap the brown and the

2
http://loom.informatik.uni-freiburg.de/officialmaps/vag.pdf

http://loom.informatik.uni-freiburg.de/officialmaps/dart.pdf

http://loom.informatik.uni-freiburg.de/officialmaps/cta.pdf

http://loom.informatik.uni-freiburg.de/officialmaps/vvs.pdf

purple line on multiple edges between stations to match the official

CTA map, we only count a single, consecutive swap.

For our 4 manually evaluated datasets, we found that a surpris-

ingly low number of line swaps was necessary to transform the

line orderings found by our ILP to the line orderings of the official

map. Even for the highly complex 2015 Stuttgart map, only 4 line

swaps were required. This is strong evidence that our combination

of penalizing line crossings and line separations closely models the

esthetics of professional, hand-drawn transit maps.

We also found that our maps always scored better or equal in

our penalty system than the official maps, and that only minimal

changes to the official map (missed by the designers) would be

required to improve the readability. The results can be seen in

Table 3. For Dallas, our ILP found a single (trivial) line swap that

prevented a line separation at no cost and lowered the penalty by

66%. For Chicago, our orderings nearly match the ones in the official

map, but our ILP found a solution with one additional crossing, but

equivalent score. For Stuttgart, 4 line swaps could reduce both the

number of crossings and the number of separations and lower the

penalty by nearly 59%.

7 CONCLUSIONS AND FUTUREWORK
This paper presented a complete end-to-end method for produc-

ing geographically accurate transit maps from raw schedule data.

We evaluated LOOM, a full implementation of this method, and

showed that it produces geographically accurate transit maps fast.

We demonstrated that our intuition of punishing both line cross-

ings and line separations lead to results that closely resemble the

esthetics of manually designed maps.

The biggest challenge was getting the optimal line orderings in

acceptable time. We have shown that with an improved formulation

of our ILP and several pruning and cutting rules we could reduce

http://loom.informatik.uni-freiburg.de/officialmaps/vag.pdf
http://loom.informatik.uni-freiburg.de/officialmaps/dart.pdf
http://loom.informatik.uni-freiburg.de/officialmaps/cta.pdf
http://loom.informatik.uni-freiburg.de/officialmaps/vvs.pdf
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Table 4: Dimensions and solution times for Chicago, Stuttgart, Turin and New York and our three ILPs: baseline (B), improved
(I), and with line separation penalty (S), with or without reduction to the core graph, solved with GLPK, COIN-OR CBC and
gurobi (GU). A time of — means we aborted after 12 hours. The last two columns show the number of crossings (×) and sepa-
rations (| |) after optimization.

On baseline graph On core graph

rows×cols GLPK CBC GU rows×cols GLPK CBC GU × ||
Chicago B 41k×861 — — — 8.2k×266 — 47m 2m 22 4-7

I 1.4k×982 9s 1s 41ms 394×285 0.8s 0.1s 10ms 22 4-7

S 1.9k×1.2k 47m 19s 1.8s 505×338 23s 3.8s 0.3s 27 0

Stuttgart B 224k×2.4k — — — 44k×950 — — 10h 60 11

I 4.1k×2.8k — 3.5s 0.1s 1.5k×1k 8s 0.2s 36ms 60 7-15

S 5.6k×3.5k — 2m 47s 2.1k×1.3k — 36s 2.1s 64 2

Turin B 24k×2.1k — — 14m 13k×1k — — 2m 79 6

I 3.3k×2.4k 2m 0.6s 0.1s 1.6k×1.1k 16s 0.3s 41ms 79 6-10

S 4.3k×2.9k — 14s 1s 2k×1.4k — 4.2s 0.4s 81 2

New York B 229k×5.2k — — — 96k×2.3k — — — — —

I 8.6k×6k — 1.8s 0.2s 3.7k×2.5k — 0.7s 0.1s 127 6-14

S 12k×7.4k — 2.5m 12s 4.9k×3.2k — 50s 1.5s 132 2

the solve time by several orders of magnitude for some datasets,

compared to our initial approach. The whole pipeline (including

line graph construction fromGTFS schedule data, line ordering opti-

mization and rendering) took less than 15 seconds for all considered

inputs.

It may be interesting to additionally compare our ILP solution

times and the final solution scores to a heuristic baseline (for exam-

ple, a local search).

Since the line graph construction required more time than the

subsequent ILP solution for some datasets, faster algorithms for

extracting the line graphwould help to further decrease the running

time. It would be interesting to evaluate the adaptability of other

map construction algorithms to this problem, both in terms of

running time and quality.

As mentioned in Sect. 5, we see room for improvement in the

rendering of station polygons. It may be necessary to enforce a local

octilinearity on edges leaving stations for a cleaner look. Another

open problem is that of overlapping station nodes on very small

resolutions.

Both our line-ordering and rendering steps may be used with any

multigraph as input and are not restricted to a geographically accu-

rate network. It may be interesting to evaluate LOOM on schematic

transit networks as well.

Lastly, the ideas behind LOOM may be useful also in a non-

transit scenario. For example, one closely related problem is that of

wire routing in integrated-circuit design. There, stations correspond

to chips and other elements (which in wire routing are indeed of

polygonal form), lines correspond to wires, and the geographical

course of the lines may correspond to a pre-existing wiring.
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